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Abstract

This dissertation proposes a novel Compressive Sampling (CS) scheme for Sub-

Nyquist Spectrum Sensing (SNSS) of spectrally sparse wideband signals. A nov-

elty of our proposed SNSS scheme resides in the analog front-end. We show that

it can be modeled as a sparse binary-valued measurement matrix. This has al-

lowed us to bring to bear the proven advantages of the Low Density Parity Check

(LDPC) matrices in improving the performance of the existing SNSS methods.

Specifically, we show that the number of parallel SNSS channels required for a

robust CS sparsity detection in our proposal is reduced compared to the existing

SNSS methods. We provide new analytic (information-theoretic) lower bounds

on this number and show that the LDPC-based measurement matrix is closer to

this bound compared to the alternatives.

The existing algorithms (such as those based on Matching Pursuit or Basis Pur-

suit) for CS sparsity detection are not optimal for our proposed architecture given

the unique (sparse binary-valued) aspect of the measurement matrix. We develop

two new Belief Propagation (BP) algorithms - an Independent Probability Esti-

mates (IPE) algorithm and a Joint Probability Estimates (JPE) algorithm - to solve

the sparsity detection problem. The performance of these algorithms is evalu-

ated using Monte-Carlo simulations as well as semi-analytic approaches based on

Density Evolution and EXIT (Extrinsic Information Transfer) methods. We show

that the proposed algorithms outperform several existing algorithms (including

the well-known Orthogonal Matching Pursuit (OMP) algorithm).

Another contribution of our work is in mitigating the problem of noise enhance-

ment (during Zero-Forcing based signal reconstruction) that affects several ex-

isting SNSS schemes (such as the Modulated Wideband Converter (MWC)). We

vi



provide analytical proofs showing this benefit and confirm the analytical results

by simulation.

Finally, we demonstrate the signal reconstruction in the proposed CS receiver

through simulation. The Bit Error Rate (BER) performance of a QPSK system

with the proposed CS receiver is simulated and the performance improvement

over the MWC is demonstrated. As an extension of the developed algorithms, a

framework of joint compression and denoising application is envisioned and pre-

sented with theoretical analysis.
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CHAPTER 1

Introduction

With wireless communication becoming omnipresent, there is an increasing need

for cheaper, smarter and more energy-efficient wireless devices. However, there

is also an increasing need for higher amount of information processing and trans-

fer, which results in greater energy consumption by the signal processing engine

of these devices. Furthermore, the required sampling rate often exceeds the ca-

pability of the commercially-available analog to digital converters (ADC). Thus,

there are two objectives that stand in contrast: design wireless devices (i) that

have high energy efficiency and (ii) that can generate, process, and transfer infor-

mation at high rate. Satisfying these two objectives simultaneously poses a design

challenge.

The communication spectrum is a limited resource. Development of multiple

radio standards and their static spectrum allocation leads to under-utilisation of

allocated spectrum. Real-time wideband spectrum sensing will enable allocation

of un-utilised spectrum to secondary users on need basis, and thus improve its

utilisation. Nyquist sampling based real-time wideband spectrum sensing is dif-

ficult to realise using the available commercial ADCs due to their limited input

analog bandwidth and sampling rate. Additionally, it also needs a large amount

of hardware.

Numerous efforts have been made to develop an efficient sampling scheme

which results in minimal sampling rate and reconstruction of original signal from

those samples. The sampling schemes utilise different characteristics of input ana-

log signals such as spectral spread (bandlimited or bandpass signals) to achieve

optimum sampling rate. Different sampling techniques have been studied in de-
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tail, starting with classical Shannon-Nyquist sampling [1–3], Papoulis expansion

of sampling theorem [4], under-sampling or bandpass sampling [5], multichannel

sampling [6], and non-periodic sampling [7, 8].

Sub-Nyquist signal sampling, which offers a wideband signal with maximum

frequency of fh to be sampled at a rate less than the Nyquist rate fNYQ = 2 fh,

offers computational and storage advantages. However, it is not always possible

to achieve the optimum sampling rate due to the spectral occupancy pattern of

the input signal [5]. A practical approach to implement high rate sampling is to

distribute the task to a bank of M parallel samplers [4]. For example, in Time Inter-

leaved Converter Arrays (TICA) [9], there are M parallel branches and sampling

is performed at a rate fs = fh/M in each branch. Incoming signal is imparted a

time-shift (delay) of τm = m/ fNYQ at mth branch, where 0 ≤ m ≤ M− 1. While

TICA is a Nyquist rate method (aggregated rate over M branches equals fNYQ),

each individual branch operates at a rate lesser than the Nyquist rate. While ef-

forts are on to use TICA for wideband communications [10], there are some issues

(e.g. timing mismatch) [11] that need to be addressed.

Compressive Sampling or Compressive Sensing (CS) is a sub-Nyquist sam-

pling scheme which exploits the sparsity of input signal [12] to represent the high

dimensional sparse wideband signal with a few measurements and techniques

to recover signal from those measurements. In compressive sampling, a high-

dimensional sparse signal is under-sampled by linearly projecting the sparse sig-

nal onto a few basis vectors that forms a measurement matrix. This matrix has a

lesser number of rows compared to the number of columns and it represents an

under-determined system of linear equations. In CS, this matrix system is typi-

cally inverted using convex optimisation or a greedy pursuit approach.

Under-utilisation of allocated spectrum results in sparsity of spectrum occu-

pancy in time and frequency domain, which motivates the use of compressive

sampling schemes for wideband cognitive radio communications [13, 14]. There-

fore, as the needs of real-time spectrum sensing and wideband communication

are growing, work has begun on different possible CS system architectures and

signal processing techniques for energy-efficient wideband communication. This

2



work is aimed at developing efficient CS architecture and algorithms for wide-

band sensing.

1.1 Problem Statement

The CS system implementation has resulted in hardware architectures such as

Multicoset sampling [15], Random demodulator [16], and Modulated Wideband

Converter (MWC) [17]. In Multicoset sampling, the analog signal is sampled us-

ing a bank of low-rate ADCs where a random delay (subsample shift) is intro-

duced in each branch. Its drawbacks are that it requires the resolution of this sub-

sample delay to be on the order of bandwidth W, and that the finite bandwidth of

practically available ADCs restricts the maximum frequency of the signal that can

be accommodated. The second approach, the Random demodulator is more sen-

sitive to analog component tolerances, jitters, and non-linearity of mixers. MWC

overcomes these limitations to a large extent but the problem of noise foldover

due to deliberate aliasing introduced in each of the parallel branches [17] remains

a concern. By design, the communication performance of signals towards the

band edges gets penalised in MWC.

This work investigates the existing CS architecture and proposes an improved

CS framework that offers uniform treatment to all input bands and mitigates noise

enhancement problems of the present CS implementations such as MWC.

Sparse spectrum occupancy over wideband results in inefficient spectrum util-

isation. Recently, spectrum sensing techniques have inspired applications in Cog-

nitive Radio (CR) communications [18] to improve spectrum utilisation. Differ-

ent CS techniques have been proposed for spectrum sensing [19–21]. The major

challenge in it is to perform blind spectrum sensing or sparsity detection using

minimal hardware and signal processing resources.

The second proposal of this work is to develop algorithms for blind sparsity

detection under low SNR condition and their theoretical as well as simulation

based performance analysis. Finally, we build an improved CS framework for

wideband communication applications.
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1.2 Theoretical Background of Compressive Sampling

Most of the real world signals often have a sparse representation in some do-

main. Transform coding exploits the sparsity of signals to achieve compression.

CS has emerged as a framework for simultaneous sensing and compression of

finite-dimensional vectors, which relies on linear dimensionality reduction. It

enables potentially large reduction in sampling rate and computational cost for

signals that have a sparse or compressible description [12].

A real-valued, finite-length, discrete-time signal x (xεRN), can be represented

in terms of basis vectors as

x =
N

∑
i=1

siψi (1.1)

where, S is the N × 1 column vector of weighting coefficients si =< x.ψi >, and

S is an equivalent representation of the signal x in Ψ domain. Mathematically, the

sampled signal x is said to be k-sparse (or compressible) if it can be well approxi-

mated by k � N (N being number of Nyquist samples) coefficients under linear

transform as given in (1.2).

x = ΨS (1.2)

Here, Ψ is the sparsifying basis, and S, the transform coefficient vector that has at

most k (significant) non-zero entries. According to CS theory, such a signal can be

acquired through the following random linear projections as shown in (1.3) as

y = Φx + e (1.3)

where, y is the sampled vector with M << N data points, Φ represents an M×N

measurement or sensing matrix and e, the measurement noise. CS theory suggests

that it is possible to recover signal x faithfully from y using M = O(k log(N)) mea-

surements, provided the input signal x is sparse and sensing matrix is designed

appropriately [22]. It is important to note here that as per CS theory the sensing

matrix remains the same for all class of signals.

The CS framework acquires the compressible signal representation directly. It

does not follow the intermediate stages of acquiring N samples and then trans-
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forming them using a sparsifying basis to achieve compression. Considering a

general linear measurement process that computes M � N inner products be-

tween x and a collection of vectors aM
j as in yj =< x, aj >, and arranging the

measurements yj in a M× 1 vector y and the measurement vectors aT
j as rows in

an M× N matrix A , y can be written as

y = Ax (1.4)

where, A = φψ is an M × N matrix called measurement matrix. The measure-

ment process need not be adaptive, meaning that φ is fixed and does not depend

on signal x. In this framework, the problem consists of (a) designing a stable mea-

surement matrix φ (matrix A) such that the salient information in any k-sparse

or compressible signal is not lost due to dimensionality reduction from xεRN to

yεRM and (b) development of a reconstruction algorithm to recover x using only

M(M << N) measurements y and given sensing matrix A.

1.2.1 Properties of a Sensing Matrix

The main design criteria for the sensing matrix A εRM×N are to ensure the unique

identification of a sparse signal x in the transformed or measurement domain, i.e.

for any two sparse vectors x1 and x2 with the same sparsity (k) being sensed.

Using matrix A, it should be possible to reconstruct the input vectors uniquely

using their respective measurement vectors y1 and y2 under the framework of

y = Ax. Here, matrix A reduces dimensionality and x is assumed as a finite

length window of Nyquist rate samples. However, the issue of directly acquiring

compressive measurement without first sampling at Nyquist rate is ignored.

The major CS challenge is the design of the sensing matrix A and to decide on

the minimum number of measurements needed for signal recovery. The design of

suitable signal processing techniques to recover x from incomplete or compressed

measurements y is also needed.

Properties of Sensing Matrix A for Stable Reconstruction The property of a stable

sensing matrix for unique reconstruction guarantee has been studied in the litera-
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ture using various properties or metric such as Null Space Property (NSP), Spark,

Restricted Isometry Property (RIP), Coherence, and Mutual Coherence [12].

Null Space Property (NSP): The null space of a matrix A is defined as N (A),

where,

N (A) = {z : Az = 0} (1.5)

NSP suggests that for given sensing matrix A, all x ∈ ∑k (∑k represents the set

of k sparse vectors) can be recovered uniquely from measurements y, provided,

N (A) does not contain any vectors in ∑2k .

Spark: The spark of a matrix A is the smallest number of columns of A that are

linearly dependent. It is denoted by σ(A).

For any vector y ∈ RM, there exists at most one signal x ∈ ∑k , such that y = Ax

if any only if σ(A) ≥ 2k. Therefore, for unique recovery of x from measurement y

and given A, we must have minimum measurement sample size equal to M ≥ 2k.

While NSP or Spark based conditions are necessary and sufficient to estab-

lish guarantees for sparse signal recovery, they do not account for noise. Candes

and Tao [23] [24] had introduced the Restricted Isometry Property (RIP) which

provides the error bounds on recovery for a given sensing matrix with noisy mea-

surement.

Restricted Isometry Property (RIP): A matrix A is said to satisfy the RIP of order

k if there exists a positive constant δk ∈ (0, 1) such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (1.6)

for all x ∈ ∑k .

According to CS theory, the sensing matrix A that satisfies RIP of order 2k

approximately preserves the distance between any pair of k-sparse vectors and

guarantees stable recovery. Matrices which satisfy RIP, also satisfy NSP [12].

While RIP provides tighter bounds of recovery errors, it is often difficult to

compute for large sensing matrix. In many cases, it is easy and preferable to use

the other properties of A that provide more concrete recovery guarantee. Coher-

ence is one such property which is used extensively in CS matrix evaluation.
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Coherence: The coherence of a matrix A (denoted as µ(A)) is defined as the largest

absolute inner product between any two columns ai and aj of A. This is expressed

as:

µ(A) =
max

1 ≤ i < j ≤ N

|〈ai, aj〉|
‖ai‖2‖aj‖2

(1.7)

For any matrix A of size M x N (with M ≤ N; N ≥ 2), whose columns are nor-

malised (i.e.‖ai‖ = 1 for all i), the coherence of A satisfies the limit given by

√
N −M

M(N − 1)
≤ µ(A) ≤ 1 (1.8)

In CS framework, coherence is used as a measure of stability for sensing matrices.

For a sensing matrix A, if the sparsity k satisfies (1.9),

k <
1
2
(
1 +

1
µ(A)

) (1.9)

then for each measurement vector y ∈ RM there exists at most one signal x ∈ ∑k

such that y = Ax.

RIP constant and coherence: If A has unit-norm columns and coherence µ (=

µ(A)), then matrix A always satisfies RIP of order k with δk ≤ (k− 1)µ. This rela-

tionship outlines the importance of coherence as a measure for quality of sensing

matrices for signal recovery in compressive sensing framework. For sparse binary

sensing matrices, coherence is used as a measure for CS recovery.

Mutual Coherence: When the sensing matrix is a combination of two matrices

(a sparsifying basis and another random matrix), mutual coherence is used as a

measure to determine the recovery guarantees. Mutual coherence is defined as

the largest absolute inner product between columns of two constituent matrices

of sensing matrix. Let, the sensing matrix A = [Φ, Ψ] be the concatenation of two

orthogonal bases Φ and Ψ, where both are unitary and of size N x N, then mutual

coherence µ(Φ, Ψ) satisfies the bounds given by,

1√
N
≤ µ(Φ, Ψ) ≤ 1 (1.10)
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For any given sensing matrix A = [Φ, Ψ], if the sparsity of input signal k and

mutual coherence satisfy the relationship given by (1.11),

k <
1

µ(Φ, Ψ)
=

1
µ(A)

(1.11)

then for each measurement vector y ∈ RM there exists at most one signal x ∈ ∑k

such that y = Ax, which provides the CS recovery guarantee for a given input

signal through measure of mutual coherence.

1.2.2 Recovery from Compressed Measurements

In the compressive sensing setup, for a given k sparse signal x ∈ RN (k� N), the

compressed measurement y and sensing matrix A are related as given in (1.12).

y = Ax (1.12)

Here, A ∈ RMxN and y ∈ RM. In case of CS, M � N, this system of linear

equation results in an under-determined system. The sparsity assumption helps

in the recovery of x from y for the given sensing matrix A. For reconstruction, the

natural attempt is to solve this optimization problem by finding

x̂ =
arg min

y = Ax
‖x‖0 (1.13)

This turns out to be an NP-Hard problem. However, Donoho [22] suggested that

for a given matrix A which satisfies the condition of RIP, the generally NP-Hard

(l0) problem becomes equivalent to its convex relaxation problem as given by

x̂ =
arg min

y = Ax
‖x‖1 (1.14)

where, M ≈ Klog(N) � N. In the most practical cases, when x is not exactly

sparse and corrupted with noise, we consider the mathematical program for re-
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construction given by

min‖x‖1 subject to ‖(Ax− y)‖2 � ε (1.15)

Basis Pursuit (BP): Basis Pursuit is the most popular reconstruction algorithm

in CS which can reconstruct a sparse signal with a high accuracy by solving a

convex optimisation problem through linear programming (LP) [25]. The l1 norm

minimisation

min‖x‖1 subject to Ax = y (1.16)

solution is unique and is the closest estimate to x0. The major advantages of Basis

Pursuit (and its related methods) are high performance and robustness, whereas

its weakness is high computational complexity.

Matching Pursuit (MP): Matching pursuit is an iterative greedy algorithm which

takes advantage of greedy search and vector projection to reconstruct a sparse

signal [26]. It reconstructs the k-sparse signal by iteratively constructing a sup-

port set S of the signal. At each iteration, matching pursuit optimises the ap-

proximation by selecting one column (called an atom) which has the maximum

correlation (the inner product with the largest absolute value) with the residue R

from the measurement matrix A (also called dictionary D). Then, matching pur-

suit updates the support set by appending selected atoms till termination. The

drawbacks of matching pursuit are its slow convergence rate and poor sparse re-

construction performance than Basis Pursuit.

Orthogonal Matching Pursuit (OMP): Orthogonal Matching Pursuit, an improved

version of Matching Pursuit, addresses the drawbacks of matching pursuit by pro-

jecting the signal orthogonal to the set of all selected atoms [27]. The principle of

OMP is the same as that of matching pursuit, but its major difference is that it

never chooses an atom selected in the previous iterations since the residual R is

orthogonal to the already chosen atoms.

If a sensing matrix A satisfies the RIP of order (k + 1) with δk+1 < 1
3
√

k
and

given y = Ax, OMP can recover the k-sparse signal exactly in k iterations. Since,

we expect the columns of sensing matrix A to be approximately orthogonal, then
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A ∗Ax is locally a good approximation of x. Therefore, the largest coordinate of

the observation vector A ∗ Ax corresponds to a non-zero entry of x. Thus, one

coordinate for the support of x is estimated. Its subtraction from the observation

vector y and repeating the process k times yields the entire support of the signal x.

OMP is quite fast, both in theory and in practice, but its reconstruction guarantees

are not as strong as that of BP.

Many variants of OMP such as Stagewise OMP (StOMP), Regularised OMP

(ROMP), and Compressive Sampling Matching Pursuit (CoSAMP)) are applied

[28, Chapter 8] for signal reconstruction.

Approximate Message Passing Algorithm (AMP): AMP algorithm proposed by

Donoho, Maleki, and Montanari [29] is a low complexity algorithm with recon-

struction guarantee similar to Basis Pursuit. The AMP method has been derived

using the statistical concept of “state evolution”, and considerably accelerates the

convergence rate in special CS-decoding applications.

The standard AMP algorithm iteratively updates the estimates of the unknown

input signal, with xt being the estimate and zt being the residue at the tth iteration.

Based on the iteration count and the measurement vector (y), AMP estimates the

sparse signal x̂ which is almost similar to x, starting with the initial guess x0 = 0

and z0 = y. The first order AMP algorithm proceeds iteratively according to the

following equations [30]:

xt+1 = ηt(φ
∗zt + xt) (1.17)

zt+1 = y− φxt + zt−1(η
′
t(φ
∗zt−1 + xt−1)) (1.18)

Here, ηt(.) is a scalar threshold function. An improved version of AMP called En-

hanced Approximate Message Passing (EAMP) algorithm performs exceedingly

well for many deterministic and highly structured matrices compared to the AMP

algorithm.

Compressive video sampling using AMP has been proposed in the literature

[31]. During the performance evaluation of different reconstruction algorithms,

we conceptualised and simulated a novel design of CS based Scalable Video Codec
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(SVC) which uses Bernoulli sensing matrices to encode high frequency sparse

3-D wavelet coefficient and decodes them successfully at decoder using EAMP

algorithm. While this technique offers a better compression ratio without com-

promising on quality (PSNR), the reconstruction is robust and fast compared to

AMP. The details of CS based Scalable Video Codec application is included in

Appendix-A [32–34].

In addition to these popular reconstruction algorithms, other known algo-

rithms available in the literature are LASSO and Basis Pursuit Denoising (BPDN)

based on `1 penalized Least Squares [28, Chapter 9], Bayesian Belief Propaga-

tion [35], iterative thresholding [29], and CS Linear Programming Decoding [36].

A detailed study on sparse signal recovery guarantee for different reconstruc-

tion algorithms is presented in [12]. The table 1.1 presents the complexity of the

some of known reconstruction algorithms where, N represents length of signal,

M is the minimum number of measurements required for reconstruction and k is

sparsity.

Algorithm Complexity Minimum Measurement

Basis Pursuit O(N3) O(k logN)

OMP O(kMN) O(k logN)

StOMP O(N logN) O(N logN)

Belief Propagation O(N log2N) O(k logN)

Table 1.1: Complexity and minimum measurement requirement comparison of
some reconstruction algorithms

A detailed review on complexity and memory requirements of sparse recovery

algorithms is also described in [37].

1.2.3 Signal Measurement Models in CS

Compressive sampling framework is applicable to all classes of signals. Depend-

ing upon the application setup, their measurement and signal recovery algorithms

can be optimised for better performance. The measurement setup and signal re-

covery in CS setup are categorised into three main segments namely Single Mea-
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surement Vector (SMV), Multiple Measurement Vector (MMV), and Infinite Mea-

surement Vector (IMV) [12].

Single Measurement Vector (SMV): According to CS theory, it is possible to uniquely

recover the k sparse input signal vector x of size N × 1 from measurement vector

y of size M× 1 (where, M > 2k) obtained using sensing matrix A of size M× N

(here, M ≤ N). A setup, wherein the input signal vector x is recovered directly

using single measurement vector y and knowledge of sensing matrix A, is called

the Single Measurement Vector (SMV). Recovery in such setups are performed in

two stages, support recovery using algorithms like OMP and reconstruction of

input signal using measurement y [12].

Multiple Measurement Vector (MMV): There are real-life applications where CS

theory is applicable in distributed acquisition of multiple correlated signals. The

cases wherein multiple signals are sparse and exhibit the same indices for non-

zero locations (or jointly sparse) are referred to as MMV setup. In an MMV set-

ting, L measurements of yi (= Axi) are given, where vectors xi; 1 < i < L are

jointly sparse. By making multiple measurements and stacking these vectors into

the columns of a matrix X, there will be at most k non-zero rows in X which occur

on a common location set. In such MMV cases, X is said to be row-sparse. It is

different from SMV as we use multiple measurement vectors for recovery of in-

put signal. Rather than trying to recover for each xi separately, we try to jointly

recover the set of vectors using their common sparse support.

In MMV setup, the recovery approach uses convex optimisation and greedy

methods similar to SMV setup. However, specialised algorithms such as ReMBo

were also introduced which convert the MMV problem into SMV problem and

then utilise SMV recovery techniques for better performance [12].

Infinite Measurement Vector (IMV): A CS measurement is called an IMV setup,

if the measurement set λ is continuous in time or it consists of infinitely large

number of samples.

y(λ) = Ax(λ), λ ∈ Ω (1.19)

An IMV system comes up naturally whenever analog signals are considered. IMV

problems are converted into equivalent MMV problems and then signal recovery
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is performed. In this approach, the number of unknowns is large and this in-

creases the computation load. A specialised method such as continuous to finite

(CTF) [38] is proposed to convert the IMV problem into an MMV problem for

signal recovery.

1.2.4 Realisable CS Architectures

The hardware realisation of the CS framework results in an equivalent sensing

matrix, which should meet the signal reconstruction guarantees similar to RIP.

Very few deterministic construction methods are available in the literature [39],

and the hardware implementation of CS sensing matrix has evolved in different

architectures. Some popular architectures include Multicoset sampling [15], Ran-

dom demodulator [16], Modulated Wideband Converter (MWC) [17], and vari-

ants of MWC. The MWC architecture offers benefits such as hardware realisation

using available low sampling rate devices, analog mixers, and low pass filters.

While MWC does not depend on limited analog bandwidth of available ADCs,

it has several other constraints. The detailed review of available CS hardware

realisations are presented in Chapter 2.

1.3 Research Contribution

The major research contributions of this dissertation are:

1. A regular sparse binary LDPC matrix based realisable novel CS hardware

architecture for frequency domain sparse multi-band wideband communi-

cation system is proposed. CS implementation in the form of analog front-

end and use of complex sinusoid as mixing sequence has ensured uniform

performance of all input bands and mitigates noise enhancement present in

CS implementations such as in MWC [40, 41].

2. Two new Belief Propagation (BP) algorithms for blind sparsity detection

have been developed. The theoretical lower bound on the size of the mea-

surement matrix for a given sparsity level is derived. The performance of
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developed algorithm is closer to theoretical lower bound than any other sim-

ilar detection techniques [40, 41].

3. Semi-analytical convergence analysis using Density Evolution and EXIT chart

methods has been performed for the developed sparsity detection algorithms.

Also simulation based performance verification has been done to establish

that the proposed architecture together with developed sparsity detection

algorithms offer minimum one fourth hardware savings [41].

4. Noise performance analysis of PSK communication system within the pro-

posed CS architecture and simulation based performance verification has

demonstrated that the proposed CS system offers better noise mitigation

than the published MWC framework [41].

5. Theoretical analysis and framework to use BP algorithms for compression

and denoising application are also presented. Also, a deterministic algo-

rithm is developed for lossless compression [42].

6. During the dissertation work, proposal for CS-based applications such as

(i) receiver for interference detection and filtering [43–46](ii) Scalable Video

Codec implementation [33, 34] were envisioned, simulated, and presented.

Presently we are working on its hardware implementation.

1.4 Overview of the Dissertation

This dissertation work is organised in seven chapters. The first introduces the the-

oretical background of compressive sampling, the problem statement, and high-

lights major research contributions. The second chapter includes a comprehensive

review of different CS architectures and signal processing techniques for spectrum

sensing. The third chapter provides a detailed review of MWC architecture and

variants, their performance and limitations. The fourth and fifth chapters cover

the novel contributions made in the development of CS architecture and spar-

sity detection algorithms. They include derivation of theoretical lower bound
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and convergence analysis for developed algorithms together with noise perfor-

mance analysis of the proposed CS system for wideband communication. The

sixth chapter proposes the concept of using the sparsity detection algorithms for

compression and denoising applications. The last seventh chapter summarises

the research work and presents the future work.
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CHAPTER 2

A Review of CS Architectures and Spectrum

Sensing Techniques

CS is one of the sub-Nyquist signal acquisition technique which performs sig-

nal acquisition and compression simultaneously. The performance of CS relies

on two fundamental requirements: the first is representation of the signal using

sparse basis and the second is the design of measurement matrix [47] [48]. The

measurement matrices and their hardware realisations are key to CS recovery per-

formances for any application. The efficient implementation of CS measurement

matrix using available hardware technologies has been challenging, especially for

wideband communication.

The first section of this chapter presents an overview of few popular CS real-

isations and their equivalent measurement matrices representation. It also high-

lights advantages and shortcomings of those architectures. The second section of

this chapter presents the needs of spectrum sensing and provides a brief review

of signal presence detection techniques being used for spectrum sensing.

2.1 Hardware Architectures for Compressive Sampling

CS is highly promising for wideband communication systems as it brings sam-

pling and compression together to decrease the processing power and memory

requirements. There are several techniques in literature for signal recovery from

compressed samples [49] making the CS suitable candidate for various applica-

tions. Many hardware architectures for CS implementation have been proposed.
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Here, We briefly discuss few popular CS hardware architectures.

2.1.1 Multicoset Sampling

Multicoset sampling proposed by Venkataramani and Bresler [50] is one of the

first CS implementations, which reduces the sampling frequency of multi-band

signals, whose frequency support is finite union of intervals. There are many re-

ported implementations of Multicoset sampling framework. The most popular

multicoset implementation is composed of several parallel branches, each with

a time shift followed by a uniform sampler operating at a sampling rate lower

than the Nyquist rate. Domìnguez-Jitnènez and N.González-Prelcic proposed

Synchronous Multirate Sampling which uses uniform samplers operating at differ-

ent rates to realize multicoset framework [51]. A subset of synchronous multirate

sampling namely dual sampling architecture is presented for multicoset sampling

by Moon et al. [52].

In multicoset sampling, the analog signal x(t) is sampled at Nyquist rate and

the Nyquist grid is divided into successive segments of L samples each. In each

segment only p samples out of L are retained. Those p samples described by the

set is called coset (C). In generic multicoset implementation, the input signal is

fed into m parallel branches which are maintained at different time shifts. Few (at

least one) samples from each branch are picked up as defined by cosets. The block

diagram of multicoset sampler is shown in Fig. 2.1.

Figure 2.1: Block diagram of multicoset sampling.

The multicoset sampling is a selection of certain samples from the Nyquist

grid. A constant set C of length p describes the indices of p samples that are
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retained in each block while the rest are zeroed out. The set C = {ci}
p
i=1 is referred

to as the sampling pattern or coset where,

0 ≤ c1 ≤ c2... ≤ cp ≤ L− 1, (2.1)

Here, we define the ith sampling sequence for 1 ≤ i ≤ p as given by (2.2),

xci [n] =

 x(t = nT), n = mL + ci, f or m ∈ Z

0, otherwise
(2.2)

The sampling stage is implemented by p uniform sampling sequences with pe-

riod 1/(LT), where the ith sampling sequence is shifted by ciT from the origin.

Therefore, a multicoset system is uniquely characterized by the parameters L, p,

and the sampling pattern C.

The calculation of the Discrete-Time Fourier Transform (DTFT) of xci [n] as rep-

resented by Xci(e
j2Π f T) is shown as

Xci [e
j2π f T] =

1
LT

L−1

∑
r=0

exp(j
2π

L
cir)X( f +

r
LT

) (2.3)

∀ f ∈ F0 =
[
0,

1
LT
)
, 1 ≤ i ≤ p (2.4)

In CS framework, the goal is to choose parameters L, p, and C such that X( f ) can

be recovered. The above equation in a matrix form is represented as

y( f ) = Ax( f ), ∀ f ∈ F0 (2.5)

where y( f ) is a vector of length p whose ith element is Xci(e
j2π f T), and the vector

x( f ) contains L unknowns for each f , given as follows:

xi( f ) = X( f +
i

LT
), 0 ≤ i ≤ L− 1, f ∈ F0 (2.6)

The matrix A depends on the parameters L, p, and the coset C. The measurement
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matrix A is expressed as

Aik =
1

LT
exp(j

2Π
L

cik) (2.7)

The average sampling rate of a multicoset sampling set is given by

1
TAVG

=
p

LT
(2.8)

For p < L, the average sampling rate is lower than the Nyquist rate. In multicoset

samplers, even if the input changes, parameter p and L remains fixed. Therefore,

an adaptive multicoset sampler is described in [53], offers reconfiguration and

better reconstruction.

Thus multicoset sampler is an efficient way of implementing CS framework

but it needs the analog input bandwidth of the uniform sampler to be very high

for wideband communication applications. Multicoset implementation also needs

precise time shift and synchronization among parallel branches which makes it

difficult to realize for higher bandwidth signals.

2.1.2 Random Demodulator

Random Demodulator (RD) is another proposed implementation of CS frame-

work for acquisition of sparse band-limited multi-tone signal [54]. Block diagram

of the random demodulator is shown in Fig. 2.2.

Figure 2.2: Block diagram of random demodulator.

In this implementation, the input signal x(t) is multiplied with periodic ran-

dom piecewise constant chipping sequence between +1 and -1 at a Nyquist or

higher rate, hence this architecture is called random demodulator. The demod-
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ulation phase smears the tones across the entire spectrum due to the equivalent

convolution in the frequency domain. The demodulator output is then passed

through a low pass filter and sampled at a fraction of Nyquist rate. The low pass

filter bandwidth and sampling rate depends on the maximum bandwidth of any

band in multiband input signal.

The random demodulation results in aliasing of input bands to baseband by

random amount resulting in unique signature of each tone present in the input

multi-tone signal. For the mathematical analysis, the input signal x(t) can be ex-

pressed as

x = FS (2.9)

where, F denotes DFT matrix and Fourier coefficients are denoted by S. The

random periodic sequence can be expressed in Fourier domain by ε0, ε1, ..., εN−1.

Therefore, the demodulation matrix can be represented as in (2.10),

D =


ε0 0 0

0 ε1 0

0 0 εN−1

 (2.10)

Demodulation matrix of RD is a N × N diagonal matrix which translates x to Dx.

The demodulation is followed by low pass filter, which is realized as an integrator.

It integrates the input over a duration before being digitized by low sampling rate

ADC. The integrator can be expressed in matrix form (H) as given by (2.11).

H =


1111

1111

1111

 (2.11)

The above low pass filter matrix is given for a sub-sampling ratio of 4, which is

a ratio of Nyquist sampling rate for input signal to low sampling rate of ADC in

the RD architecture.

Mathematically, the RD architecture in matrix form is represented as HD. As

this operates on input signal x (x has sparsity in frequency domain), the overall
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sensing matrix (Φ) can be expressed as

Φ = HDF (2.12)

The measurement matrix Φ satisfy the RIP property and the compressed output

of RD can be expressed as y = Φx [54, 55]. Using the measurement vector y and

measurement matrix Φ, the input signal vector x can be recovered using proven

CS recovery algorithms like Iteratively Re-weighted Least Squares method for

the l1-norm optimization [56]. The lowest required sampling rate (R) to achieve

reliable reconstruction, while k is the number of frequency spikes and w is the

Nyquist rate of the sparse signal, is derived empirically [55].

R ≤ 1.7k log(
w
k
+ 1) (2.13)

The RD sensing architecture is suitable for multi-tone signals [16]. Within RD

framework, the signal recovery guarantees gets compromised due to non-ideal

filter response, quantization, jitters, and mixer non-linearity, which is of major

concern in RD implementation.

2.1.3 Modulated Wideband Converter

Modulated Wideband Converter (MWC) is an efficient and physically realizable

sensing architecture for frequency domain sparse multiband signals as proposed

by Mishali and Eldar [38]. The block diagram of MWC sensing architecture is

shown in the Fig. 2.3. In MWC, the input multiband signal x(t), which is com-

posed of N bands of equal bandwidth B, enters into m channels simultaneously

(m ≥ 4k). In the ith channel, x(t) is multiplied by a random periodic mixing se-

quence pi(t), which is Tp periodic. The mixing of input signal by periodic wave-

form results in a linear combination of infinite fp-shifted copies of X( f ) in fre-

quency domain as expressed in (2.15). The mixing process aliases all the bands

of input to baseband by a random amount determined by the DTFT coefficients

of mixing sequence. The mixer output spectrum is truncated by a low-pass filter

with a cut-off frequency of 1/2Ts and the filtered signal is sampled at rate 1/Ts.
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Figure 2.3: Block diagram of modulated wideband converter.

The reduced sampling rate required for each channel is set to B (or > B).

The Fourier transform of the output of mixer x̃i(t) = x(t)pi(t) is expressed as:

X̃i( f ) =
∫ ∞

−∞
x̃i(t)e−j2π f tdt (2.14)

The low pass filtered output of ith branch of MWC is expressed as [38]

Yi(ej2π f Ts) =
L0

∑
l=−L0

cilXi( f − l fp) (2.15)

Here, fp (= 1
Tp

; Tp is time period of mixing sequence) is the frequency of mixing se-

quence and L0 is filter design parameter which equals the number of input bands

contributing to aliasing.

In frequency domain, the MWC can be written in matrix form as [38]:

y( f ) = Az( f ) (2.16)

where, y( f ) is a vector with ith element as yi( f ) = Yi(ej2π f Ts) and,

z( f ) = [z1( f ), z2( f ), . . . . . . . . . , zL( f )]T

zi( f ) = X( f + (i− L0 − 1) fp); 1 ≤ i ≤ L ;

Here, L is the length of mixing sequence given by L = 2L0 + 1. L0 is the

smallest integer which contains all non-zero contribution of X( f ). Here, L0 is
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given by:

L0 =

[
fnyq + fs

2 fp

]
− 1 (2.17)

The measurement matrix for MWC is expressed in matrix form [38], as given by

(2.18),

A =


a1,0 · · · a1,M−1

... . . . ...

am,0 · · · am,M−1




...
...

...

FL0 F0 F−L0
...

...
...




dL0

. . .

d−L0

 (2.18)

A = S F D (2.19)

Wherein, matrix F represents the DFT matrix and S is the sign matrix with each

row representing the piecewise constant value of mixing sequence corresponding

to that branch (ail). D is a diagonal matrix which represents the modulating co-

efficients for frequency domain response originating due to the shape of mixing

waveform.

The sensing matrix A derived for MWC satisfy RIP guarantees. Therefore,

MWC is a means of realizing the CS sensing matrix using available hardware

components. MWC has m (> 4k) hardware branches operating with sampling

rate B resulting in mB samples per second (m � N; N = W
B = total number of

input bands spread over W Hz). This results in significant hardware savings with

respect to Nyquist processing. The proposed architecture can also work for input

signal spread across two bands or falling on boundary of two consecutive bands

with change in processing algorithms [57]. There are many MWC application

frameworks reported. A detailed performance review of MWC architecture is

covered in next chapter.

2.2 Spectrum Sensing Techniques

Usable spectrum is becoming scarce due to static spectrum allocation policies to-

gether with continuously increasing demand for broadcast, multimedia, and in-

teractive services [58]. Spectrum sensing aims at detecting unused spectrum loca-
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tions over the wideband such that it could be allocated to secondary users without

causing interference to primary users [59].

Spectrum sensing techniques are classified into two main categories namely

cooperative sensing and non-cooperative sensing. In non-cooperative sensing,

the secondary users makes their own decision based on defined objectives and

there is no communication among users. Cooperative sensing is primarily imple-

mented in two ways, namely distributed sensing and centralised sensing. In case

of distributed sensing architecture, the secondary users share their observations

about spectrum usage (primarily uses narrowband sensing techniques) among

themselves which helps secondaries to make their own decision. In centralised

sensing architecture, all secondary users send their decisions to a centralised node

for final decision making.

In today’s cognitive communication world, real-time wideband sensing can

greatly improve spectrum utilisation. Wideband spectrum sensing can be per-

formed using Nyquist Sampling. However, challenges in wideband spectrum

sensing with Nyquist sampling are requirement of high sampling rate, limited

power and large amount of hardware [60]. Nyquist sampling based wideband

spectrum sensing pushes contemporary ADCs to their performance limits, as the

sampling rate must be at least twice the bandwidth of the signal. Since, in practise

the spectrum occupancy remains sparse and Nyquist sampling at this rate may be

inefficient as the signals of interest occupy limited bands within the wide multi-

band spectrum. Therefore, the important task is to do blind spectrum sensing at

sub-Nyquist sampling rates.

Due to the sparse nature of spectrum occupancy, CS based spectrum sens-

ing techniques are used in Cognitive Radio (CR) communications [18]. Different

CS techniques have been implemented to improve the performance of wideband

spectrum sensing [19–21]. There are ongoing efforts reported for terrestrial CR but

still much research work has not been performed in the context of cognitive satel-

lite communication [61]. MWC based CS receivers has significant advantages over

other sub-Nyquist sampling systems for wideband applications [62,63]. However,

the effectiveness of all spectrum sensing and cognitive communication schemes
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lies on techniques for the signal presence detection under all channel conditions.

Spectrum Sensing or Signal Presence Detection Techniques : In literature, a

number of spectrum sensing techniques have been proposed to identify the pres-

ence of the user signal transmission. These techniques are used by secondary

users to identify the presence of primary users and to draw opportunistic spec-

trum utilization plan without causing interference to the primary users. The ac-

curacy and latency of signal presence detection techniques has major impact on

the overall system performance. Some of very popular techniques described in

literature are summarized here.

2.2.1 Auto Correlation based Detection

This method exploit the features of auto correlation function of the received sig-

nal. The coefficients are calculated by:

Rx,x(τ) =
∫ ∞

−∞
x(t)x∗(t− τ)dt

where τ is the lag in time and x∗(t) is the complex conjugate of the signal x(t).

The sensing decision is based on the knowledge of the statistical distribution of

the auto correlation function in presence of noise [64]. Since white noise is un-

correlated the auto correlation function of white noise results into peak at τ = 0

and zero values elsewhere. However, the same auto correlation function has de-

creasing values with increasing τ and the difference between the auto correlation

function value at τ = 0 and τ = 1 is used to decide the signal presence or absence.

Typically a small difference indicates signal presence while large difference indi-

cates absence of signal.

Ariananda and Leus have successfully used the auto correlation of compres-

sive domain measurement samples to calculate the power spectral density of in-

put signal within MWC framework [65]. This compressive wideband power spec-

trum estimation technique needs reduced processing power.
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2.2.2 Euclidean Distance based Detection

Euclidean distance based sensing technique is described in [66]. It works by cal-

culating the euclidean distance between the auto correlation of the received signal

and with that of a reference signal or reference line. The euclidean distance D is

calculated by :

D =
√

∑(Rx,x(τ)− R)2

where, the reference line calculation is described in [67,68] and Rx,x(τ) is the auto

correlation of the received signal. Euclidean distance is compared with a thresh-

old to detect the presence or absence of signal. This distance based sensing is

reported to be more efficient than the auto correlation methods of sensing.

2.2.3 Wavelet based Detection

Wavelet based sensing or edge detection is a continuous wavelet transform in

which signal is decomposed into coefficients with the help of a basis [69]. For a

given signal s(t), the continuous wavelet function ψ(t) is given by :

g(u, v) =< x(t), ψu,v >=
∫ ∞

−∞
x(t)ψ∗u,v(t)dt

where, u is the scaling parameter, v is the translating parameter, and ψu,v(t) is

the basis. This transform maps one dimensional signal into two dimensional co-

efficients g(u, v). This can help in frequency-time analysis with frequency corre-

sponding to parameter v, and the time instant corresponding to parameter u. The

wavelet based sensing is done by calculating the power spectral density using

computation of continuous wavelet transform. The local maxima of the power

spectral density is compared to the threshold to decide about the spectral occu-

pancy.

Wavelet based sensing easily distinguishes between the signal and the noise

while deciding about the spectrum occupancy. It is used for cases where sensing

over a wideband is required for multi channel communication. While, it is very

effective for wideband multi channel use cases, it needs large processing time.
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2.2.4 Matched Filter based Detection

Matched filter based detector works on the principle of maximizing the SNR at

the output of the detector. This method is best suited, where the receiver has prior

knowledge about the input signal. The prior knowledge is provided to secondary

user in form of pilot signal or PN sequence. The matched filter performs convo-

lution of the received signal with the already known pilot signal at the receiver.

The matched filter based detection is prone to errors due to frequency mismatch

and phase noise. To improve the performance of match filter based detection due

to frequency errors, a hybrid match filter technique has been proposed [70].

2.2.5 Energy Estimator based Detection

Energy estimator uses the sampled output of the ADC to calculate the energy

of the received signal which is then compared against a threshold to declare the

presence or absence of a signal. Energy can be estimated by calculating the square

of the magnitude of the FFT bins and comparing them against the threshold. The

other method of energy estimation is by calculating the square of the sampled

output of ADC averaged over fixed number of samples. The output of the detector

can be given by:

Ed =
N

∑
n=0

y2(n)

The energy of the received signal is compared with that of the noise level for es-

timating the presence of signal. The energy based sensing is easier to implement

but poses major challenge in case of time varying noisy conditions. The threshold

for energy detector is an important parameter and poor estimate of threshold re-

sults into significant performance degradation. In order to minimize the sensing

error due to estimation error of the noise power, a dynamic estimation of the noise

power is recommended in [71].

All the above techniques of spectrum sensing are well defined for Nyquist based

signal processing. In CS, the measurement samples are compressed. Therefore,

these techniques can not be applied directly to CS measurements. An intermedi-
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ate signal processing step is required for conditioning of the measurement sam-

ples. One such algorithm called Back-DSP for the popular MWC framework

is proposed in [57] to condition the compressed measurement samples before

Nyquist processing. Alternatively, there are specialized signal processing algo-

rithms proposed for a given architecture as described in [65].

In this work, along with other design changes, it is proposed to use energy

based signal presence detection technique to convert the MWC architecture to

discretized CS framework [41] as explained in Chapter 4.

Summary: A brief review on some popular CS architectures and signal presence

detection techniques are included in this chapter. The MWC architecture is found

to be a realizable CS framework for spectrum sensing using available analog hard-

ware components.

The next chapter provides a detailed analysis on MWC implementation with

its advantages and disadvantages for spectrum sensing and wideband applica-

tions. It also covers the modified version of MWC and its performance analysis.
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CHAPTER 3

A Detailed Review of MWC Architecture

This chapter discusses the MWC architecture for compressive sampling. MWC

overcomes the shortcomings of CS architectures such as multicoset sampling,

which suffers with the limitation of input analog bandwidth. MWC is different

from multicoset sampling in the process of aliasing. In multicoset, aliasing is due

to under-sampling whereas in MWC, aliasing is due to modulation of the input

signal with random periodic sequence before sampling operation. It also uses

multiple parallel modulating branch to achieve wideband operation suitable for

analog multiband signals. It has several potential advantages for CS hardware

realisations such as (i) analog mixers are proven technology (ii) sign alternating

mixing sequences can be implemented by standard digital circuit (iii) sampling

is synchronized in all channels without need of additional time shifts and (iv)

reduced sampling rate requirement with respect to Nyquist for wideband appli-

cations.

In this chapter, a detailed analysis of MWC framework starting with signal re-

construction, noise performance analysis, modified MWC architecture and their

advantages are provided. An application of interference detection and filtering

using MWC is also included. The problem of noise enhancement and non-uniform

treatment of input bands in MWC are explained with simulation results, which is

the prime motivation for the development of the new CS architecture.
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3.1 Signal Reconstruction in MWC

The MWC hardware architecture is shown in Fig. 2.3. The MWC input is an

analog signal. The sampled output of MWC is a vector of size m × 1, where,

m is number of parallel branches. Since, the input to MWC is an analog signal,

the signal reconstruction setup becomes an Infinite Measurement Vector (IMV)

setup. First, the IMV measurement setup is converted to MMV using Continuous

to Finite (CTF) transformation proposed by Mishali et.al., in their works [17, 38]

and [72]. In CTF, we compute frame Q from time domain measurements as given

by

Q =
∫

f εFs
y( f )yH( f )d f =

∞

∑
n=−∞

y[n]yT[n] (3.1)

where, y[n] = [y1[n], y2[n], ......., ym[n]]
T is the vector of samples at time instances

nTs. Then, any matrix V, for which Q = VVH is a frame of y(Fs) and its column

span is equal to that of y( f ). It is also shown that vector U obtained by solving

V = AU exhibit same support as that of the input signal [73]. The decomposition

of Q to obtain V is based on eigen decomposition.

Therefore, finding support in MWC is a MMV problem. Using the frame of

samples in time domain, we compute the active support set (S) of input signal

using standard CS recovery methods. The knowledge of active support is then

used to determine the updated sensing matrix AS, which is made up of columns

of A corresponding to active support set S. The product of pseudo inverse of

updated sensing matrix (AS) and measurement sample vector y[n] provides the

reconstructed input signal.

The above reconstruction method is used in MWC framework and all its vari-

ants for signal recovery. The reconstructed signal with input is therefore used for

MSE calculations for architecture performance analysis.

By architectural design, MWC has been robust and realizable sensing archi-

tecture for wideband communication. However, one of the major challenges faced by

MWC is design of m mixing PN sequences of length L. In many applications, the value

of L is small and the number of required parallel branches, m (≥ 4k ; where, k is
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sparsity), is high. This is a contrasting requirement and often difficult to achieve.

Next, we describe the modified MWC architecture, which needs only one mixing

sequence in place of m different mixing sequences without having a performance

penalty.

3.2 Modified MWC Architecture

To address the challenge of designing m different mixing sequences of length L in

MWC, a new modified MWC framework with single mixing sequence has been

proposed [74]. The modified MWC has only one mixer and a filter bank with m

sub-filters and m low rate ADCs as shown in Fig. 3.1.

Figure 3.1: Block diagram of modified MWC architecture.

The modified architecture uses a filter bank with pass-band of each branch

shifted by B, where B is the maximum bandwidth of any single channel of multi-

band input signal. Each parallel branch filters a unique aliased version of input

bands. This modified architecture has implementation advantages. Due to the

use of only one mixing sequence (PN sequence generator) and single mixer, the

complexity of analog circuit design and the effort for synchronization between m

branches are significantly reduced. Moreover, it is observed that the equivalent

measurement matrix of the proposed CS implementation follows a Toeplitz struc-

ture [74]. As a result, the matrix computations also gets simplified. Since, the
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requirement is getting reduced to one mixing sequence, the use of the best mixing

sequence is possible. The proposed system is reported to provide reconstruction

guarantee similar to MWC.

The modified sensing matrix A for a typical case of m = 3 and L0 = 3 (where,

L = 2L0 + 1; L is the length of mixing sequence), takes the form as given by (3.2),

A =


c−3 c−2 c−1 c0 c1 c2 c3

0 c−3 c−2 c−1 c0 c1 c2

0 0 c−3 c−2 c−1 c0 c1

 (3.2)

where the matrix coefficients ci are obtained by performing the Fourier transform

of the αk (piece-wise constant values of periodic mixing sequence), i.e.

ci =
1
M

M−1

∑
k=0

αkej 2Π
M ik; −L0 ≤ i ≤ L0 (3.3)

Therefore, the storage requirement is reduced to 1
2M of that in MWC. A simula-

tion based recovery performance comparison of MWC and the modified MWC

is carried out by calculating MSE. A multiband signal with three occupied bands

containing a modulated signal of bandwidth B is used for MSE calculation. The

MSE comparison is shown in Fig. 3.2.

Figure 3.2: MSE comparison for MWC and modified MWC.

32



The modified MWC architecture with single mixing sequence offers similar

reconstruction as compared to standard MWC. This architecture needs only one

mixing sequence which is easy to construct. Alternatively, to address the need and

construction of multiple mixing sequences, another variant of MWC architecture is

also proposed, which uses deterministic construction methods of mixing sequences [75].

A simulation based performance verification is carried out for MWC receiver

with different types of mixing sequences. A performance comparison of MWC

at different SNR with different types of mixing sequences are shown in Fig. 3.3.

From the simulation, it is seen that Legendre Sequence performs better at low SNR

conditions. In high SNR conditions all the sequences have similar reconstruction

performance.

Figure 3.3: MSE comparison for different mixing sequence in MWC.

In next section, a MWC based CS receiver for interference detection and fil-

tering is proposed. The proposed CS framework provides significant processing

advantage for such applications.
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3.3 MWC Receiver for Jamming Detection and Filter-

ing

There are instances of unauthorized spectrum access and transponder jamming by

injecting narrowband interferer [76, 77]. Fixed spectrum allocation policies often

leads to sparsity of channel occupancy in time and frequency domain. This fre-

quency domain sparsity of channels makes CS based receiver suitable candidate

for implementation. MWC based CS receiver is proposed to address the problem

of interference detection and filtering in satellite transponder.

Application Setup: This application assumes that a satellite transponder is chan-

nelized and very few channels are active at any given point of time leading to

sparsity in frequency domain. In each channel, there are one or more valid users

with similar waveform for communication. The objective is to identify the pres-

ence of jamming signal (high power tone-jammer) or interfere in real-time and

notch it out before the output stage of transponder, without affecting the other

communications from valid users.

Figure 3.4: Block diagram of overall system.

System Description: The block diagram of proposed receiver is shown in Fig.

3.4. In the proposal, a MWC based CS receiver is used for real-time monitoring

of presence of interfere in satellite payload. The block diagram of MWC based
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CS receiver is shown in Fig. 3.5. During operation, when the interfere presence

is detected by CS receiver, it switches the input of Power Amplifier (PA) to the

filtered output coming from the CS receiver. The signal processing in receiver

is done in a way that no other ongoing communication in that transponder gets

affected.

Figure 3.5: Block diagram of CS receiver for jamming detection and filtering.

Signal Processing steps of CS Receiver:

1. The receiver estimates the input signal power spectrum using compressed

output samples of MWC and a computationally light algorithm [65]. Ac-

cording to theory, the Fourier transform of auto-correlation function of a

signal x[n] gives its power spectral density.

px[w] =
∞

∑
−∞

rx[n]e−jnw, 0 ≤ w ≤ 2π (3.4)

where, rx[n] is the auto correlation function of the samples x[n] given by

rx[n] = E[x[m]x[m− n]]. The cross correlation between output samples of

MWC (i.e. between yi[k] and yj[k]) along with deterministic cross correlation

between ci[n] and cj[n] (coefficients of mixing sequences), can be used to de-

termine the auto correlation function rx[n] of input signal. The relationship

between rx and ry is expressed as [65]

ry = Rcrx (3.5)
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Solving (3.5), using Least Square method to obtain rx[n] and in-turn px[w].

Thus, the input power spectrum is estimated using compressed domain

samples. Alternatively, the power spectrum can also be estimated by apply-

ing conventional pwelch method to MWC output samples after necessary

conditioning to bring the samples in Nyquist domain [57].

2. The power spectrum of input signal is compared against a threshold based

on spectrum allocation plan of service provider and regulations [78], to iden-

tify the presence of an interfere (Jamming signal).

3. Once the presence of interfere is identified, the corresponding sub-band or

channel is filtered [43].

4. The samples of filtered sub-band are then conditioned suitably for Nyquist

processing [57] and Frequency Difference Detection techniques (Analog Dou-

bling Automatic Frequency Detector is used in this case) is applied to find

accurate location of interference within that band or channel. Here, assump-

tion is that any channel can have multiple narrowband communication car-

riers. The FDD technique utilizes the centre frequency of the band or chan-

nel as initial coarse estimate and resolves it further to estimates the fine sup-

port of the jamming signal. This is possible as amplitude of the jamming

signal is high compared to that of other carriers. A discrete version of Ana-

log Doubling Automatic Frequency Detector (AD-AFC) is used for faster

convergence and better tracking accuracy [45].

5. The interferer is then filtered out using notch of fixed width.

Simulation and Result: The MWC receiver is simulated with m=24 parallel branches,

considering maximum of six (6) active bands at any point of time. The multiband

input signal x[n] with three (3) active channels, one with tone-jammer, are sim-

ulated. The total signal bandwidth of 5 GHz with 100 channels (maximum in-

dividual channel bandwidth of B = 50 MHz) is considered. A user defined PFD

threshold is used for jamming signal presence detection. After interfere location

identification, a notch filter with fixed Q-factor (= 10) is used for filtering of the

jamming signal.
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The estimated power spectrum of the input signal obtained by MWC based

receiver is shown in Fig. 3.6. The receiver output spectrum after interference

(jamming signal) detection and filtering is shown in Fig. 3.7. The output shows

that other ongoing communication within the transponder remains unaffected

while jamming signal is filtered successfully.

Figure 3.6: Estimated power spectrum of input with jamming signal.

Figure 3.7: Power spectrum of receiver output signal after filtering.

The above simulation work uses less than fifteen (15) percent Nyquist samples

for blind interference detection and filtering task. This offers significant reduc-

tion in processing load making CS based receiver suitable for wideband signal

processing.
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The noise performance analysis of MWC system together with generic CS

framework is provided in next section.

3.4 Noise foldover and its characterization in CS

The CS receivers encounters two types of noise in the system, the measurement

noise w due to sensing hardware and the channel noise (z) added with the sig-

nal x (∈ RN) at the input to the sensing device. The CS receiver is represented

by sensing matrix A (∈ RMxN; M � N). The sensing system therefore, can be

expressed as given by (3.6).

y = A(x + z) + w (3.6)

where, z represents the channel noise vector (∈ RN) and assumed to be additive

white Gaussian noise with zero mean. The measurement noise w, due to sensing

hardware is also assumed to be white noise with zero mean [79]. Assume, that

noise vector w has covariance σ2I and z has covariance σ2
0 I, which is independent

of w. Then (3.6) in equivalent form is written as

y = Ax + v (3.7)

where, v is defined by v = w + Az. Under the assumption of white noise, the

effective noise vector v has covariance Q, which is given by

Q = σ2I + σ2
0 AAT (3.8)

This shows that the noise vector v expressed in (3.7), no longer remains white.

In case if AAT becomes proportional to identity matrix I, then only v can still be

considered as white noise. Assume A as a concatenation of r orthonormal bases,

i.e. A =
[
A(1). . . ...A(r)]. Where, r = N

M = compression ratio. Here, each A(k) is an

N × N orthogonal matrix.

AAT = [A(1)A(1)T + .. + A(r)A(r)T] = rI =
N
M

I (3.9)
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In this case the variance of noise vector v becomes Q = γI and γ = σ2 + N
M σ2

0 [80].

The noise variance has increased by a factor of N
M . This is called noise fold-over.

However, in this case the noise becomes white and all recovery method works

well. Noise whitening is also achieved by multiplying the linear system by Q1
−1
2 ,

where, Q1 = Q
γ . This whitening results into an equivalent system, given by

y = Bx + u (3.10)

where,

B = Q1
−1
2 A; u = Q1

−1
2 v

Now, the noise vector u is white, similar to the case of AAT being proportional

to identity. However, the main difference is that whitening has changed the mea-

surement matrix from A to B. It has been shown that new matrix B also satisfies

RIP property. If A satisfies the RIP of order k with constants 0 ≤ a1 ≤ b1, then ma-

trix B also satisfies the RIP of order k with constants a1(1− α1) and b1(1+ α1) [81].

Here, α1 = α
1−α , α is the measure of quality of approximation of A as concatenation

of orthonormal bases [81]. Noise whitening is used in many CS applications.

The above analysis shows that CS framework has inherent noise foldover. It is

a challenging problem in CS based receivers for wideband communication appli-

cations. In MWC architecture, the periodic random mixing sequence results into

noise enhancement [82]. This is primarily due to the non-zero DTFT coefficients

of mixing sequences in each branch. As noted in earlier section that the diago-

nal matrix D in the sensing matrix contains DTFT coefficient of periodic mixing

sequence which determines the amount of aliasing in MWC. This aliasing can be

controlled, if the contribution of these DTFT coefficients could be limited to few

bins. Within MWC architecture, pulse shaping of mixing sequence with design

of different pulse shaping functions [46] were carried out to study the effect of

shaping on recovery under different noise conditions.

Another disadvantage of MWC is that the shape of analog periodic mixing

sequence, which results in the sampled response of each branch weighted by

different coefficients in the spectral down-conversion process. The rectangular
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pulses shape of the analog mixing signal generates sin(x)/x profile ( waveform)

in the frequency domain (this is captured by diagonal matrix D of the sensing ma-

trix( [17]). The null of this frequency-domain pulse shape coincides with the edge

of the wide band W that is sensed. Effectively, the rectangular pulse shape causes

a low-pass filtering effect, thereby penalizing the higher frequency subbands in

the signal reconstruction.

Figure 3.8: MSE vs band number plot of MWC architecture.

The effect of rectangular mixing sequence has been simulated by calculating

the MSE of the input and reconstructed waveform after placing them in different

sub-bands. The plot of MSE vs Band number for MWC is shown in Fig. 3.8. The

MSE increases towards the band edge. The simulation was performed with 36

bands. It may be noted that the pseudoinverse of the MWC measurement matrix

A greatly amplifies the noise at the high-frequency subbands in attempting to

equalize the sinc shaped weighting of the coefficients.

Summary: In this chapter the performance of MWC and its variants is described.

MWC architecture leads to real sensing matrix resulting into large noise fold-over

problem. MWC also suffers from the non uniform performance of input sub-

bands.

Recently, researchers started use of Binary matrix for CS systems. These matrix

have deterministic construction methods and offer definite recovery guarantee

[83–85]. It is well established that the binary LDPC matrix under l1 minimization
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performs well for CS implementation [86].

In next chapter, a regular binary LDPC matrix based novel CS architecture

(motivated by MWC framework) is proposed, which is suitable for implementa-

tion using available ADCs. In the proposed architecture, the use of wr (equals

to number of ones in a row of LDPC matrix) complex sinusoid is proposed in-

stead of the rectangular mixing sequences of MWC. This has ensured the uniform

treatment of all bands and their DTFT coefficients are limited to wr bins, thereby,

reducing noise foldover.
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CHAPTER 4

Proposed CS Architecture and System Model

In this chapter, we propose a CS architecture motivated by MWC, with a novel

approach towards reducing the noise foldover and to achieve fairness to all input

bands unlike in MWC. This has been achieved by modifying the architecture to

provide discrete measurements, thereby, allowing signal processing techniques

such as message passing algorithms to be used for sparsity detection resulting in

robust signal recovery.

The CS architecture is an analog front-end implementation of sparse binary

regular LDPC matrix. This chapter describes the signal model and architecture de-

tails, followed by the theoretical bound on size of the measurement matrix (equiv-

alent hardware requirement) for given sparsity of input signal. It also describes

the two message passing algorithms motivated by Sudocode and Gallager (hard

decision LDPC decoding), for sparsity detection followed by noise performance

analysis of the proposed architecture for wideband communication.

4.1 Signal Model

The proposed signal model considers the input to the sampling device as a complex-

valued continuous-time multiband signal, x(t) = s(t) + n(t), bandlimited to W =

1/TW . The Fourier Transform of x(t) is nonzero over a frequency range of
[
−

1/2TW ,+1/2TW
]
. Signal x(t) comprises of a variable number (k) of narrowband

signals, each of bandwidth B � W. It is assumed that x(t) is spectrally sparse.

Denoting the ratio W/B as N (i.e, N is the number of subband locations within W

in which the narrowband signals can reside), the spectrum sparsity assumption
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Figure 4.1: Model of spectrally sparse multiband signal (maximum subband
bandwidth = B and total bandwidth = W).

translates to k � N. Here, p denotes the ratio k/N, and note that as N → ∞, the

ratio p approaches the probability that an element of vector x( f ) is nonzero. A

schematic spectral diagram that illustrates this spectrally sparse nature of x(t)

is shown in Fig. 4.1. The goal of the sampling mechanism in this scheme, as

in [17,38,56,87], is to sample this wideband signal using a bank of analog mixers,

analog filters, and ADCs (analog to digital converters) with a total of L branches,

where each ADC operates only at a rate comparable to B. Furthermore, this sav-

ing in the required ADC sampling rate (from W to an aggregate of LB) is to be

achieved without prior knowledge of the occupied spectral locations.

4.2 Proposed CS Architecture

There are several CS hardware architectural approaches proposed in the liter-

ature; specifically, random filtering [88], random convolution [89], random de-

modulator [56], multicoset sampling [38], and modulated wideband converter or

MWC [17]. A unifying concept behind these various scheme is to allow different

subbands to overlap with each other. The resulting aliasing is introduced in a

controlled manner and it is removed by subsequent algorithmic processing.

The CS architecture proposed in this section is based on the use of a sparse

binary sensing matrix A (this is unlike the earlier approaches [17, 56] in which all

M× L elements of matrix A are nonzero and non-binary). Similar to the construc-

tion of LDPC parity check matrix H, our proposed sensing matrix has wr number

of ones randomly placed in each row and wc number of ones in each column at

random locations. The advantage of using a sparse matrix A is that it causes alias-

ing (overlapping in frequency domain) of only wr slices of X( f ), thereby reducing

the severity of noise fold-over phenomenon that affects the MWC. Another reason
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for preferring a sparse matrix is that it holds Restricted Isometry Property (RIP)

(and low mutual coherence), which allows easy recovery of sparse signals [90].

The implementation of A could be achieved as an analog front-end architecture

Figure 4.2: Hardware architecture of the proposed CS framework.

as shown in Fig. 4.2, which is similar to that in MWC [17]. Each branch has a

front-end mixer stage, whose functionality is that of a group of wr local oscillators

which brings wr different slices x`( f ) of input signal to the baseband. The mixing

signals are complex exponentials, ∑wr
r=1 exp(j2π f m,r

LO t), where f m,r
LO is rth mixing fre-

quency on mth branch. The f m,r
LO of mixing frequencies are set as per the locations

of ones in matrix A, and the indices of a total of wr slices x`( f ) that are down-

converted in each of mth branch. The construction of analog mixing sequence is

explained at a later stage.

As in MWC scheme, signal at the output of the mixer stage in each of M

branches is passed through an analog low pass filter (LPF) with bandwidth B

(with impulse response h(t)) as shown in Fig. 4.2. The complex output of filter is

sampled at a rate of 1/B. In our proposal for CS framework, this sampled stream

is sent to an energy detector. Assuming an ideal energy estimator and uniform

power spectral densities in all the k occupied bands, the normalized estimator

output ym is an integer in the range 0, 1, . . . , wr. The ym is equal to the number

of nonzero signal bands that coincide with the frequencies of wr complex expo-

nential comprising the mixing signal in mth branch. In practice, this ideal energy
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estimation is not achieved and the normalized estimator has to be modeled as a

continuous random variable with a mean that equals an integer from 0 to wr and

a variance that is determined by the duration of energy estimation.

The output of energy estimator is a M × 1 vector which is given as input to

the belief propagation based message passing (MP) algorithms like Sudocode

MP [91] and Gallager MP ( the one developed based on Gallager LDPC decod-

ing technique). The algorithm does the sparsity detection, which inturn provides

the location of active sub-bands of input signal. These active sub-band locations

information is used to select the columns of sensing matrix for signal reconstruc-

tion. In the proposed CS framework, signal is reconstructed using the derived

sensing matrix together with sampled output of LPF. The signal processing steps

for sparsity detection and signal reconstruction are shown in Fig. 4.3.

Figure 4.3: Signal processing steps for signal reconstruction of proposed CS
framework.
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4.2.1 Design of Analog Mixing Waveforms

The mixing waveform p`(t) used in `th branch (shown in Fig. 4.2) has a period of

TB = 1/B = NTW . Its Discrete Fourier Series takes the following form:

p`(t) =
wr−1

∑
k=0

exp(2πm`(k)Bt)

P`(ω) =
wr−1

∑
k=0

δ(ω−ω`), where ω` = 2πm`(k)B

Thus, the mixing waveform, a combination of complex sinusoidal (continuous

waveform or CW) signals at wr different harmonics of B, acts as a combined wr

complex-valued local oscillators (LOs). The set of harmonic multipliers { f`(k) =

m`(k)B}, k = 0, . . . , wr − 1 defines the spectral locations of wr � N LOs within 0

to W Hz on `th hardware branch (1 ≤ ` ≤ L).

Direct Digital Synthesis

One of the methods for the generation of analog mixing waveforms {p`(t)} is the

Direct Digital Synthesis (DDS).

A major concern with the DDS of these waveforms is a maximum frequency

of W that needs to be synthesized. The solution that we propose is as follows.

When the generated signal is in the discrete-time (D-T) domain, it is periodic in

the frequency-domain, with a period (Hertz) equal to the sample rate F`
S used on

`th branch. A D-T signal p̃(t) generated at one frequency, k × B, where k is an

arbitrary integer, at a sample rate FS has the following frequency-domain (DTFT)

representation:

P̃( f ) = F ( p̃(t)) =
∞

∑
u=−∞

δ

(
f −

(
k
(

B
FS

)
− u

)
FS

)

In the conventional discrete-to-analog time converters, only the base or the pri-

mary period of this signal, within 0.5× [−FS, FS] is retained by passing the D-T

signal through a low-pass filter. For our purpose, we enlarge the cutoff frequency

of this filter to v × [0, FS], where v is a positive integer, so that the filter output

46



encompasses multiple adjacent periods besides the base period. The aliases of

the base frequency kB can be included in the analog filter bandwidth as shown in

Fig. 4.4. We require these aliased frequencies to be multiples of B. Specifically, for

some integers k, q, we require kB + FS = qB.

The required sampling frequency corresponding to a chosen value of integer

q > k is determined as FS = (q− k) B.

Figure 4.4: An approach for direct digital synthesis of the proposed analog mixing
signal.

Analog Domain Synthesis

In this method, whose schematic diagram is provided in Fig. 4.5, a reference fre-

quency of B Hertz is input to a comb generator [92–94] to produce a signal com-

prising of all the harmonics of B over a wide range of frequencies. This signal is

fed to a bank of tunable bandpass filters centered at the desired harmonics of B

(i.e., those in the set { f`(k) = m`(k)}wr
k=1) in the synthesis of p`(t) [95–97]. The out-

put of these filters are given to a combiner to generate the desired mixing signal

p`(t).

Figure 4.5: Analog mixing signal generation by a comb generator.

In the cases where the bandwidth B is very small, the realization of filter bank

becomes challenging. For those cases, an alternative scheme of analog-domain
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synthesis is to use bank of Phase Locked Loop (PLL) circuits fed with a common

reference (B), which generates programmable multiples of B Hertz. The output of

bank of PLLs are combined for the desired set of waveforms {p`(t)} for 1 ≤ ` ≤ L.

As wr is a small number, this option turns out to be easy and realisable.

4.2.2 Model of Discrete-Time Measurements

In this section, we provide a mathematical description of the effect of mixing

the incoming wideband signal x(t) with the bank of analog mixing waveforms

{p`(t)}.

The Fourier Transform of the analog product x̃`(t) = x(t)p`(t) on `th hardware

branch can be formulated as follows:

X̃`( f ) =
∫ ∞

−∞
x̃`(t) exp(−j2π f t) dt

=
∫ ∞

−∞

(
wr−1

∑
k=0

exp(2π f`(k)t)

)
x(t) exp(−j2π f t) dt

=
wr−1

∑
k=0

∫ ∞

−∞
x(t) exp(−j2π( f − f`(k))t) dt

=
wr−1

∑
k=0

X( f − f`(k))

In a hypothetical noiseless scenario, the above sum, at a frequency f , contains

at the most wr nonzero terms, which occurs when all wr band slices (subbands)

X( f − f`) are nonzero [17].

The mixer output signal on each branch is passed through an ideal analog

lowpass filter of bandwidth B and impulse response h(t) as shown in Fig. 4.2. The

filter output is converted to discrete time (D-T) at a sample duration of TB = 1/B

seconds. The DTFT of the D-T signal y`(n) on `th branch is given as follows:

Y`( f ) =
∞

∑
n=−∞

y`(n) exp(−j2π f nTB)

=
wr−1

∑
k=0

X( f −m`(k)B), | f | ≤ B/2 (4.1)
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Figure 4.6: Pictorial representation of effect of low density measurement matrix
(wr = 3, wc = 2 in this illustration).

Above equation can be written in a matrix form as follows:

y( f ) = Ax( f ) = A (s( f ) + n( f )) (4.2)

Here, y( f ) is a L × 1 vector, and s( f ) is an N × 1 sparse vector, whose nth

element Sn( f ) is the nth narrowband channel at the baseband (i.e., nth subband of

the original spectrum S( f ) of width B Hz, as shown in Fig. 4.1, shifted to the left

by nB Hertz).

Each element of y( f ) is a sum of multiple input bands of original signal. This

is similar to the MWC scheme, with one important difference. In the MWC, this

summation is a weighted sum, not limited to a fixed number wr of subbands. The

MWC weights are complex-valued coefficients of the Fourier Transform of the

rectangular-shaped mixing sequences.

In the proposed approach, in contrast, the summation is over a fixed number

wr of subbands, and this is not a weighted sum (coefficients of summation are

all unit valued). Effectively, the measurement matrix A is a Low Density Parity

Check (LDPC) matrix with a total of wr ones in a row and wc ones in a column,

with wr, wc � N, and its effect, as illustrated in Fig. 4.6 is to fold `th set of wr

narrowband channels to the first narrowband
B
2
[−1, 1].

Unlike the MWC scheme, the SNR loss due to spectrum foldover caused by

the measurement matrix is significantly reduced in the proposed approach, since

wr � N (in contrast, all N elements of each row of the MWC measurement ma-

trix are nonzero). Furthermore, the rectangular pulses used in MWC for the ana-
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log mixing signal generate sin(x)/x profile ( waveform) in the frequency domain

(this is captured by diagonal matrix D in equation (20) of [17]). The null of this

frequency-domain pulse shape coincides with the edge of the wide band W that is

sensed. Effectively, the rectangular pulse shape causes a low-pass filtering effect,

thereby, penalizing the higher frequency subbands in the signal reconstruction.

In contrast, the coefficients of summation are all unit valued in the proposed ap-

proach, thereby entirely avoiding the noise enhancement problem. Also in the

proposed scheme, it is possible to apply a variant of the standard binary LDPC

message-passing decoder to recover the subband signals from the output of the

measurement matrix.

Designs for Time-Varying Signal Sparsity

The minimum required number L of hardware branches is discussed in Section 4.3,

where it is shown to be a function of the ratio p def
= k/N, which measures the spar-

sity of the signal x(t). When p varies with the time, the design of the analog

front-end hardware architecture poses several choices. One, inefficient, option is

to design for the worst-case sparsity level. The advantage of this choice, in which

the hardware is over-designed, is that the recovery performance improves with

decreasing value of p below the maximum permissible limit. However, the draw-

back of this method is a potentially over-designed, and expensive RF architecture.

An alternative, therefore, is to design for the average case and either perform time-

segmentation [98] on each hardware branch, or frequency-segmentation [17]. In

the latter method, the bandwidth of the analog LPF is changed to
u
2
[−B, B], where

u is a positive integer.

Model for Sparsity Estimation

For sparsity estimation, let us begin by constructing a correlation matrix [17]

R =
∫ B/2

−B/2
y( f )yH( f )d f
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where, y( f ) is L× 1 vector defined in (4.2) (the superscript (·)H denotes the Her-

mitian transpose).

Assuming the signal vector s( f ) and the noise vector n( f ) are uncorrelated,

the correlation matrix can be written, given (4.2), as

R = A [Rs + Rn]AT, (4.3)

where Rs
def
=

∫ B/2

−B/2
s( f )sH( f )d f is the correlation matrix of signals in different

subbands, and Rn
def
=

∫ B/2

−B/2
n( f )nH( f )d f is the correlation matrix of the noise

affecting N subbands.

Leveraging Parseval’s identity, the correlation matrices can be estimated by

time-domain (instead of frequency domain) averaging, provided the averaging

duration P in samples is greater than the dimension N of the vector y(n).

R =
P

∑
n=1

y(n)yH(n)

Rs =
P

∑
n=1

s(n)sH(n)

When the wideband noise is spectrally white in each of N subbands, the noise

correlation matrix Rn becomes σ2
n IN×N. Similarly, we take the signals in differ-

ent subbands to be generated from independent and identically distributed (iid)

processes, with a variance of σ2
s , i.e., Rs = σ2

s diag
{

vS
1
}

, where vS
1 is a sparse

N × 1 binary vector, with ones at the subband locations where the signal Sn( f ) is

present, and zeros everywhere else.

Therefore, we can write R as follows:

R = A
[
Rs + σ2

nI
]

AT

= ARsAT + σ2
nRA

= σ2
s A diag

{
vS

1

}
AT + RAσ2

n

= σ2
s RAS + RAσ2

n
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Here, matrix RAS

def
= A diag

{
vS

1
}

AT, and RA
def
= AAT = {ρi,j}.

The element at (i, j)th position of matrix RA is the inner product between two

arbitrary rows Ai and Aj, i.e.,

ρi,j
def
= AiAT

j = ai,jv1 (4.4)

Here, ai,j
def
= Ai ◦Aj is a 1×N vector obtained by element-by-element (Hadamard)

product of vectors Ai and Aj and v1 def
= [1, 1, . . . , 1]T is a N × 1 vector of all ones.

Given that the vector Ai is binary-valued,

ai,i = Ai ◦Ai = Ai, (4.5)

and we have that ρi,i = Aiv1 = wr. It can be shown, when i 6= q, ρi,j → 0 as

N → ∞ for a given value of wr. In this case, RA → wr IL×L.

The following lemma states several relationships that are used subsequently.

Lemma 4.2.1 The vector λ̄R of eigenvalues of RAS approaches the vector w formed by

the diagonal entries of RAS (w def
= diag

{
RAS

}
) as RA approaches a diagonal matrix.

Specifically,

λ̄R → w as RA → wr IL×L (4.6)

Furthermore, the vector w can be modeled as the sparsity vector v1 linearly transformed

by the measurement matrix A, i.e.,

w = AvS
1 (4.7)

Consider {i, j}th element ρ′i,j of matrix RAS i,j. This can be written as

ρ′i,j = Ai diag
{

vS
1

}
AT

j =
(
Ai ◦Aj

)
vS

1 = ai,j vS
1 . (4.8)

Comparing (4.4) with (4.8), it can be seen that 0 ≤ ρ′i,j ≤ ρi,j. This shows that as

RA → wr IL×L, RAS approaches the diagonal matrix w (this is because ρi,j → 0 if

i 6= j, and therefore, ρ′i,j → 0). Given that, the eigenvalues of a diagonal matrix are

the elements along its diagonal, the proof of (4.6) is completed.
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Next, consider the vector w = diag
{

RAS

}
. The ith element of this vector is given

as

wi = ρ′i,i = ai,i vS
1 = Ai vS

1 . (4.9)

The equality in the above is derived from (4.5) and (4.8). Therefore, we have

w =


w1

w2
...

wL

 =


A1

A2
...

AL

 vS
1 = AvS

1 . (4.10)

This completes the proof of (4.7).

4.2.3 Sensing Matrix Construction

In the proposed system model and architecture, the hardware realization is based

on sparse binary LDPC matrix, which has well defined construction methods in

the field of communication. The construction of LDPC matrix is very important to

the sensing architecture, as it affects the robustness of signal reconstruction in CS

framework. In our proposal, we have used a sparse binary matrix construction

which is free from cycle of 4 and cycle of 6 as described in [99].

4.3 Theoretical Bounds on the Size of Measurement

Matrix

This section focuses on the minimum number L of hardware paths, i.e., the size of

the measurement vector y( f ), given the blind nature of spectrum detection prob-

lem (where no a-prior information about the spectral occupancy is assumed). We

derive theoretical lower bound on the ratio L/N for ensuring a perfect detection

of spectral occupancy.

Besides defining the requirement, this result can also be interpreted as the

necessary requirement for a successful signal recovery/reconstruction from sub-

Nyquist samples. Detection of sparsity pattern v1
S is the primary requirement
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for signal reconstruction [17], since given the knowledge of v1
S, the measurement

y( f ) can be modeled as y( f ) = ASx( f ), where AS is a matrix constructed by

taking those columns of A, which has v1
S a unit-valued coefficient at the corre-

sponding positions. The reconstruction of signal x( f ) is possible by taking pseu-

doinverse of AS, where the only requirement is that all columns of AS are linearly

independent. The pictorial representation of sparsity detection and signal recon-

struction is shown in Fig. 4.3.

4.3.1 Derivation of Lower Bounds: Coding Theory Approach

In CS, the problem of identifying the sparsity pattern of a sparse binary vector

x is analogous to the problem of decoding the information bits from the noisy

received version of the transmitted code word, c. The received vector r can be

written as:

r = c + e

In the above equation, e is a vector of zeros and ones, where the location of ones

indicate the channel induced bit error. Code word vector c is generated from a

vector m of M information bits using a block code with a generator matrix G of

size N ×M as:

c = G×m

Sensing matrix A of dimension L × N is constructed using the basis vector of

the null space of G. Number of rows L in matrix A equals the redundancy intro-

duced,i.e., L = N −M. Since A spans the null space of G, A×G = 0.

Consider the matrix product v = A× r.

v = A× r = A× (c + e) = (A×G×m) + A× e = A× e

Information theory provides a feasibility bound on the communication problem.

It has been leveraged upon to derive the bound on the size of the CS sensing

matrix A. A binary symmetric channel (BSC) with the crossover probability p is

shown in Fig. 4.7. Since the occurrence of bit errors are represented by ones in
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vector e, the variable p denotes the probability of bit errors in communications

over BSC settings.

Figure 4.7: State diagram of a binary symmetric channel.

Channel capacity of a BSC is given by C = 1− Hb(p), where Hb(p) is binary

entropy function of p. According to the information theory, code rate is R = M
N ≤

C. Therefore in CS framework, the size of sensing matrix should be such that

the ratio L
N = N−M

N = 1− R is greater than or equal to 1− C = Hb(p). Therefore,

Hb(p) is the lower bound of L
N . In case of sparsity detection using message passing

algorithm, where the elements of v is going to take values from 0 to wr (all with

equal probability), it conveys log(wr + 1) bits of additional information. For the

type of sensing matrix used in this calculation, rate is given by 3
wr

[99]. Therefore,

the binary entropy function gets divided by log(wr + 1).

L
N

>
Hb(p)

log(wr + 1)
(4.11)
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Figure 4.8: Theoretical lower bound for different rates.
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This provides the theoretical lower bound. Fig. 4.8 shows the lower bound of
L
N

as a function of p for different rates.

4.3.2 Derivation of Lower Bounds : An Information Theoretic

Approach

We begin by positing the following lemma:

Lemma 4.3.1 A length N sequence of discrete-valued iid symbols X can be represented

by a length L sequence of iid discrete symbols Y such that L = N × H(X)

H(Y)
.

From AEP (Asymptotic Equipartition Property) [100], the cardinality of the

typical set of sequences of symbols X, as N → ∞, is given as 2NH(X), where

H(X) is the entropy of the discrete random variable X. Cardinality of the typical

set of sequences of symbols Y of length L is given as 2LH(Y). For lossless and

efficient representation, we require a value of L such that the sizes of these two

sets are equal. This value is L = N × H(X)

H(Y)
(alternatively, the length N sequence

of symbols X can be compressed to NH(X) bits, whereas the sequence of symbols

Y can be compressed to LH(X) bits. Therefore, L = N × H(X)

H(Y)
when these bit

sizes are equal). The following theorem generalizes Lemma 4.3.1.

Theorem 4.3.1 Suppose a sparse vector x of size N × 1 with discrete-valued elements X

is transformed by a CS measurement matrix A (of size L× N) to a vector y = Ax of size

L × 1. For a successful recovery of x from y, the ratio of
L
N

of the rows to columns of

matrix A is lower bounded by
H(X)

H(Y)
.

We first show that

H(y) = H(x). (4.12)

Consider H(x, y), which is expressible as follows [100, (Problem 5 of Chapter 2)]:

H(x, y) = H(x) + H(y|x) a
= H(x)

= H(y) + H(x|y) b
= H(y)
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In the above, equality (a) follows, given that y is determined by x, whereas equal-

ity (b) is due to one-to-one mapping between y and x is required for a guaranteed

recovery of x from y.

Elements X of N× 1 vector x are assumed as iid. Therefore, H(x) = N×H(X)

(from the additivity property of Entropy [100]). Elements Y of L× 1 vector y may

not be independent. Therefore, H(y) ≤ L × H(Y). From (4.12), it follows that

N × H(X) ≤ L × H(Y), i.e., the ratio L/N is lower bounded by H(X)/H(Y).

We now consider several example applications of theorems derived in Section

4.3.2 to determine theoretical lower bounds for different use cases.

4.3.3 Type of Applications and their Lower Bounds

Focus of our work is on an architecture in which the measurement matrix A takes

the form of an LDPC matrix [101]. We take this matrix to be regular, i.e., let each

row with N elements have a fixed wr elements that are ones, with the rest being

zeros.

Binary Input and Binary Output

As a specific case with this measurement matrix, let the input sparse vector be

binary-valued with a probability of X = 1 denoted as p. Let the measurement

matrix A be such that Y is fully randomized, and probability that Y = 1 is 0.5.

With this H(X) = Hb(p) = −p log2(p)− (1− p) log2(1− p) and H(Y) = 1. The

lower bound on the size of A, i.e., L/N, becomes Hb(p).

This lower bound can also be derived from a forward error correction perspec-

tive. Denoting the transmitted N× 1 binary codeword vector as c, the received bit

vector on a Binary Symmetric Channel (BSC) can be written as r = c + x (all the

additions for the binary case are modulo-two). In the above, x is a vector of zeros

and ones, with the locations of ones designating the channel-induced bit errors. If

A is the parity check matrix for this code,

y = Ar = A (c + x) = Ax
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Probability p of occurrence of 1 in x is equivalent in this setting to the prob-

ability of bit errors over BSC channel. Since the channel capacity for a BSC with

crossover probability p is known to be C = 1−Hb(p), the size of the measurement

matrix A is constrained such that the ratio
L
N

= 1− R is greater than or equal to

1−C = Hb(p) (here, L = N−M is the extra redundancy introduced in a message

vector of length M bits to derive the codeword c of N bits, and R = M/N is the

code rate).

Binary Input and Nonbinary Output

In the proposed CS architecture, measurement vector y (= Ax) is non-binary (as

modulo-2 operation is not performed).

Since the matrix A has a total of wr ones and N − wr zeros randomly lo-

cated in any row, an element Y ∈ Y = {0, 1, . . . , wr} of y, has Binomial Dis-

tribution, PY(k) = (n
k)pk (1− p)wr−k. Its entropy H(Y) can be approximated as

1
2

log2 (2πenp (1− p)). This allows a bound on the maximum value of
L
N

, which

occurs when p = 0.5. For this value of p, H(X) = Hb(p) = 1 bit and H(Y) ≈
1
2

log2 (πen/2) ≈ 1 + log2(n)/2 bit. Maximum value of the ratio L/N is lower

bounded in this case by 1/(1 + 0.5 log2(n)).

Nonbinary Discrete Input and Nonbinary Output

A generalized case of the above is when the input is non-binary but is drawn from

a discrete-valued set X ∈ X = {0, 1, . . . , M − 1}, with the probability of X = m

equal to pm. In this case, Y ∈ Y = {0, 1, . . . , (M − 1) ∗ wr} has the summed

multinomial distribution.

p(y) = ∑
k∈Ky

wr!

w(k)
0 ! w(k)

1 ! . . . w(k)
M−1!

×
(

pw(k)
0

0 · pw(k)
1

1 · . . . · pw(k)
M−1

M−1

)

Here, Ky is a set for which
M−1

∑
m=0

w(k)
m m = y, with w(k)

m (
M−1

∑
m=0

w(k)
m = wr) denoting the

number of occurrences of X = m in the summation performed in mth row of A.
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4.4 Algorithms for Blind Support Detection

The performance of CS systems depends on support detection algorithms. The al-

gorithm needs to perform blind active support detection. In the proposed frame-

work, the active support detection task amounts to sparsity detection (Refer Sec-

tion 4.2).

The two algorithms for sparsity detection presented in this section are based

on hard decision decoding used in channel coding. The first algorithm is moti-

vated by Gallager algorithm for LDPC decoding and second algorithm is based

on Sudocode. Additionally, the two novel BP algorithms developed to solve the

sparsity detection problem are further described in Chapter 5.

Notations

Following are the standard conventions used in description of message passing

algorithms over bipartite graphs [102], qn→m denote the message sent by nth vari-

able node bn to the check node cm, and um→n denote the message sent by the

check node cm to the variable node bn. Vn denotes a set of indices of check nodes

connected to nth variable node, and Cm denotes a set of indices of variable nodes

connected to mth check node. Cm,n = Cm\n is the set Cm without nth variable node,

and Vn,m = Vn\m, i.e., the set Vn without mth check node.

4.4.1 Algorithm A: Based on Gallager LDPC Decoding Technique

The algorithm is motivated by Gallager LDPC decoding technique and is summa-

rized here with its listing shown on Page 61.

• Initialization:

– Lines 1 to 3: In the initialization step, only zero-valued check nodes

pass a message to the connected variable nodes, all of which gets ini-

tialized with zero. Other variable nodes are set to undetermined state.

– Lines 4 to 6: If any of the check nodes connected to a variable node has

sent a message 0, the variable node sends 0 to all other check nodes
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connected to it.

• Lines 8 to 15 (Message um→n from mth check node to nth variable node):

– If a variable node has sent either 0 or 1 valued message to a check node,

the check node sends this message back to the variable node.

– If u′m→n = rm − ∑n′∈Cm,n qn′→m equals either 0 or 1, send u′m→n as the

message um→n, else set um→n to undetermined ∗ state.

• Lines 16 to 23 (Message qn→m from nth variable node to mth check node):

– Calculate subset V′n,m of Vn,m for which messages from check nodes con-

nected to nth variable nodes are either 0 or 1.

– If cardinality of V′n,m is zero, qn→m = ∗, else qn→m equals 0 if majority

of the messages um′→n, with m′ ∈ V′n,m are 0; otherwise it is 1.
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1 Algorithm: A

2 for all check node indices m ∈ {1, . . . , M} do

3 if cm = 0 then ∀n ∈ Cm, um→n ← 0

4 else um→n = ∗

5 for all variable node indices n ∈ {1, . . . , L} do

6 if ∃m′ ∈ Vn, such that um′→n = 0 then qn→m ← 0

7 else qn→m ← ∗

8 do

9 for all check node indices m ∈ {1, . . . , M}, and variable node indices

n ∈ Cm,n do

10 if qn→m 6= ∗ then um→n ← qn→m

11 else

12 if qn′→m = ∗ for any n′ ∈ Cm,n then um→n ← ∗

13 else

14 u′m→n = rm − ∑
n′∈Cm,n

qn′→m

15 if u′m→n = 0 or u′m→n = 1 then um→n ← u′m→n

16 else um→n ← ∗

17 for all variable node indices n ∈ {1, . . . , L} and check node indices m ∈ Vn,m

do

18 Calculate set V′n,m where ∀m′ ∈ V′n,m, um′→n 6= ∗

19 sm ← cardinality of set V′n,m

20 t← ∑
m′∈V′n,m

um′→n

21 if sm = 0 then qn→m ← ∗

22 else

23 if s <= sm/2 then qn→m ← 0

24 else qn→m ← 1

25 while at least one variable node is undetermined or number of iterations is less

than a threshold
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4.4.2 Algorithm B : Based on Sudocodes

Sudocodes are new compressive sampling schemes for measurement and recon-

struction of sparse signals using algorithms on graphs [103, 104]. The second al-

gorithm, Algorithm B, closely follows sudocodes decoding algorithm. Its listing,

provided on Page 62, is self-explanatory.

1 Algorithm: B

2 Similar to algorithm A, in the initialization step, all the variable nodes are

set to undetermined ∗ state

3 Only the zero-valued check nodes are selected and the variable nodes

connected to the selected check nodes are set to zero

4 do

5 for ( i = 1; i ≤ wr; i← i + 1 ) {

6 for each check node with a value of i do

7 if sum of the determined variable nodes equals i then

8 all the undetermined variable nodes connected to this check

node are set to zero.

9

10 if number of undetermined variable nodes equals i then

11 all of i undetermined variable nodes are set to unity.

12 while at least one variable node is undetermined or number of iterations exceeds

a threshold

4.4.3 Performance comparison

The performance of Algorithm A and Algorithm B for different size of measure-

ment matrix and different sparsity levels (p1 represents probability of ones in a

given block of size N) was verified through Monte Carlo simulation. The perfor-

mance comparison as shown in Fig. 4.9, suggests that Algorithm A outperforms

Algorithm B. The details of Belief Propagation based two improved sparsity de-

tection algorithms developed under this dissertation work are presented in next
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chapter.

Figure 4.9: Algorithm performance comparison (size of A vs sparsity).

4.5 Signal Reconstruction

The signal reconstruction method in the proposed architecture is similar to that

described in MWC [38]. However, in our work, we propose to use different al-

gorithms other than OMP for active band detection. Two methods motivated by

Gallager LDPC decoding and Sudocoding with binary input (hard decision) is

used for active support detection. Two novel message passing algorithms devel-

oped for active support detection is described in next chapter. Subsequently, the

performance of all algorithms are compared with theoretical bounds to prove the

robustness claim.

The Model of Discrete Time Measurements [4.2.2] of proposed scheme de-

scribes Y( f ) = AX( f ) where A is the sensing matrix. The multi-band input signal

to the model is assumed to be sparse and binary (All bands are assumed to have

equal bandwidth with same power per unit bandwidth). In the proposed scheme,

the discretized output of low pass filter gives y[n], which upon passing through

the energy detector gives discrete output ranging between 0 to wr. This binary

output is then given to the modified Sudocode and the Gallager algorithms to
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identify the active supports. Columns of the sensing matrix A, corresponding to

the detected active supports, forms the modified sensing matrix As. The product

of pseudo-inverse of the matrix As with the measured signal vector (y[n]), gives

the recovered signal (x̂[n]). The architecture recovery performance was verified

with four randomly located input bands with CW and QPSK modulated signals.

Figure 4.10: Recovery performance of proposed architecture in frequency domain
with CW input signal.

Figure 4.11: Recovery performance of proposed architecture in frequency domain
with QPSK input signal.
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Fig. 4.10 represents the recovered signal with CW input signal at the center of

four randomly selected bands. Fig. 4.11 shows the recovered QPSK modulated

input signal at the center of four randomly selected bands.

4.6 Noise Performance of Proposed Architecture

The noise performance of CS receiver is very important metric for communication

applications. Most of the sensing architectures like MWC has inherent problem

of noise fold over [80]. In this section, the theoretical noise performance analysis

of the proposed architecture and simulation based verification is presented. The

proposed CS receiver performance is verified by doing Bit Error Rate (BER) sim-

ulation analysis with QPSK modulated signal. Also, the BER performance of the

proposed CS receiver has been compared with MWC based CS receiver.

Theoretical Noise Performance Analysis

Consider that a multiband signal with additive channel noise enters into the pro-

posed sensing device shown in Fig. 4.2. For noise performance analysis let us

consider the model of the sub-Nyquist rate samples at the output of the low-pass

filter h(t) (e.g., which is typically square-root raised cosine filter for digital com-

munication transceivers)

y(n) = Ax(n) = A(s(n) + n(n)) (4.13)

Here, A is the sensing matrix and x(n) is the multiband input signal (with N

subbands) which is sparse (k sparse) in frequency domain. When N - k locations

of zero-valued elements of the sparse vector x(n) are known, the corresponding

columns of A, that multiply with zero-valued elements of subbands signal vector

s(n), can be removed. With this, the original CS measurement matrix A is reduced

to a matrix AS of size L x k, where L > k and represents the number of parallel

branches or rows of sensing matrix. Here, S denotes the sparsity pattern (i.e., the

locations of subbands x(n) which are occupied by valid signals), S̃ denotes the
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complementary set containing the indices of subbands with only noise, AS is a

matrix of size L x k.

y(n) = AS(sS(n) + nS(n)) + AS̃nS̃(n) (4.14)

Here, sS(n) denotes a vector of size k x 1 with signals of active subbands, and nS(n)

is a vector of the same size denoting the noise affecting these signals. Matrix AS̃, of

size L x (N − k), comprises of those columns of A that multiply with the signals

of non-active subbands, and vector nS̃(n) of size (N − k) x 1 denotes the noise

present in the nonactive subbands. Assuming that k columns of AS are linearly

independent, the standard Least Squares solution (i.e., the pseudoinverse of AS)

As
† = (As

TAs)
-1As

T (4.15)

is used to reconstruct the original sparse excitation pattern x(n) from the mea-

surement vector y(n).

ŝS(n) = AS
†y(n) (4.16)

ŝS(n) = AS
†(AS(sS(n) + nS(n)) + AS̃nS̃(n))

ŝS(n) = sS(n) + nS(n) + AS
†AS̃nS̃(n)

Compared to the ideal signal recovery in which ŝS(n) is obtained as

ŝS(n) = sS(n) + nS(n), (4.17)

the proposed scheme results in enhancement of noise by an additional term

n’(n) = AS
†AS̃nS̃(n) (4.18)

The variance of the noise that affects the vector of the recovered signals of active

subbands is given as follows:

E[(nS(n) + AS
†AS̃nS̃(n))(nS(n) + AS

†AS̃nS̃(n))
H] = σn

2 Ik x k + σn
2QA (4.19)
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Here,

QA
∆
= AS

†AS̃As̃
T(AS

†)T. (4.20)

Also, the variance on k th subband increases from σn
2 to σn

2(1+QA(k,k)), where

QA(k, k) denotes kth element on the diagonal of QA.

Simulation Based Noise Performance Analysis

The setup for noise performance evaluation of proposed CS based receiver is

shown in Fig. 4.12. In this simulation, a multiband QPSK modulated signal has

been generated and fed to proposed CS based receiver for BER performance eval-

uation. Later, the same input is fed to MWC based receiver for BER performance

comparison.

Figure 4.12: Simulation setup for noise performance evaluation of CS.

The simulation is conducted using a wideband of width W Hertz comprising

of a total of N = W/B = 36 narrow bands of width B Hertz. A total of κ = 4

active subbands are simulated at subband locations 2, 8, 25 and 33 (as shown in

Fig. 4.13).

Each subband carries a QPSK-modulated symbol stream, with symbol rate of

RS = B/(1 + αSRRC), where the roll-off factor αSRRC of the square-root raised

cosine filter is kept to be 0.25. The modulated stream added with AWGN noise
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is fed to proposed CS receiver. The CS receiver uses the developed algorithm

for detection of active sub-band locations. The band location along with ADCs

output samples are used for signal reconstruction and symbol demodulation. The

demodulated symbol is used for BER comparison.

Figure 4.13: Simulated wideband signal (noiseless case) with N = 36 narrow
bands and four active bands.

The average bit error probability after signal reconstruction is shown in Fig. 4.14

for the proposed method and for the MWC approach [17].

Figure 4.14: QPSK bit error probability: proposed approach versus MWC.

The simulated bit error probability compares well with the analytical result
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obtained as follows:

Perr
b =

κ

∑
k=1

Q

(√
2Eb

N0 × (1 + QA(S(k), S(k)))

)
(4.21)

Here, QA(S(k), S(k)) denotes the element at location S(k) along the diagonal of

matrix QA defined in (4.20), and S is the sparsity vector defined in Section 4.6. It

is seen that the MWC result is significantly deteriorated compared to that obtained using

the proposed method. This demonstrates that the proposed CS architecture offers

better noise performance compared to MWC.

Figure 4.15: Noise amplification at different subbands; MWC versus proposed
approach.

Similarly, as shown in Fig. 4.15, the Least-Squares solution exhibits (as de-

scribed in Section 4.2) noise enhancement for the subbands located near W Hz.

This noise enhancement is not seen in the proposed method since the frequency-

domain pulse shaping is rectangular over the entire bandwidth of W Hz. There-

fore, the proposed CS scheme offers better noise performance than MWC.

This analysis completes the basic description about the proposed CS architec-

ture for wideband communication and its advantages over MWC.

Summary: The two algorithms described in this chapter are with the assumption

of binary inputs. However, the algorithms do account for variance in energy de-
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tector output leading to real samples for input signal combined with channel noise

(i.e. non-zero sigma). Two new BP algorithms for sparsity detection, their perfor-

mance analysis for measurements with non-zero sigma values are presented in

the next chapter. The next chapter also includes performance comparison of these

algorithms with theoretical lower bound on size of measurement matrix vs spar-

sity and their semi-analytical convergence analysis.
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CHAPTER 5

Belief Propagation based Sparsity Detection

Algorithms

In several CS architectures, the active sub-band location is first identified and then

signal reconstruction is done using knowledge of the active sub-bands. When a

multi-band signal is provided a input to the RF front-end of an architecture as

described in Section 4.2, the problem of spectrum sensing and reconstruction re-

duces to a sparsity detection problem. The sparsity detection provides the loca-

tion of active bands of input multiband signal, which in turn is used to select the

column of sensing matrix to form a modified sensing matrix to be used for signal

reconstruction. This chapter describes two novel algorithms for sparsity detec-

tion, their convergence analysis, and performance comparison against theoretical

lower bounds.

Algorithmic setup for Sparsity Detection

In the proposed CS framework, the identification of active band locations of in-

put multi-band signal amounts to sparsity detection in vector x given the mea-

surement vector y and knowledge of sensing matrix A where, A is sparse binary

LDPC matrix and y is the output of energy detector. It is assumed that all the

active bands of input signal contains similar energy (same power flux density)

making y a vector with elements drawn from a set of discrete alphabets.

To achieve the objective of sparsity detection, we now propose two novel mes-

sage passing approaches based on probabilistic (belief) messages. Our approach

differs from those in literature in the many ways. In the classical compressive
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sensing framework, y = Ax, where, the sparse signal x which is to be determined

is said to have elements drawn fromR, in our approach, elements of x are drawn

from finite alphabet. In this work two cases are considered, first when x have only

binary elements and in the second case x have elements drawn from the discrete

non-binary set of {0, 1, 2}. The sensing matrix A, in this work is identical to LDPC

parity check matrix H.

LDPC decoding techniques are well developed and better understood. In or-

der to establish better correspondence for all further explanation of the sparsity

detection algorithm, output of energy detector of each branch would correspond

to bit nodes value and each measurement would correspond to check node value

for a given sensing (LDPC like) matrix.

Figure 5.1: Tanner graph model of the CS spectrum sensing architecture.

In binary LDPC codes, bit parity at a given check node is ensured, i.e., modulo-

2 sum of the bit nodes connected to a given check node is ensured to be zero. In

the proposed CS framework, the sum (not modulo-2) of a total of wr bit nodes

connected to a check node takes an integer value from 0 (when all wr bits are

zero) to wr (when all wr bits are unity, i.e. when all wr spectrum is occupied). At

binary LDPC decoder, (noisy) estimates of the bit (or variable) nodes are available

from the channel measurements. The decoder estimates the encoded bits that is

likely to have been transmitted given the noisy channel output. In the CS setting
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described here, it is the check nodes (instead of the bit nodes) whose noisy esti-

mates are available as vector y, and the task is to estimate the bit nodes given the

measured values of the check nodes as shown in Fig. 5.1.

5.1 Proposed Sparsity Detection Algorithms

This section describes two novel algorithms derived for sparsity detection. The

algorithms are based on belief message propagation.

Notations

Following the standard convention used in description of message passing algo-

rithms over bipartite graphs [102], qn→m denote the message sent by nth variable

node bn to the check node cm, and um→n denote the message sent by the check

node cm to the variable node bn, Vn denotes a set of indices of check nodes con-

nected to nth variable node, and Cm denotes a set of indices of variable nodes

connected to mth check node, Cm,n = Cm\n is the set Cm without nth variable node,

and Vn,m = Vn\m, i.e., the set Vn without mth check node.

5.1.1 Message Passing Algorithm with Independent Probability

Estimate (IPE)

This message passing algorithm assumes that occupancy of each band of input

signal is independent of each other. Given the measurement vector y (check node

vector) and sensing matrix A, the algorithm describes the probabilistic decoding

approach to determine x (bit node vector representing input spectrum occupancy)

as listed on Page 74. The steps of algorithm processing is described here:

• On lines 2 and 3, variable nodes messages to check nodes, qn→m are ini-

tialized by the log likelihood ratio (LLR) log (p/(1− p)). Here, elements of

sparse matrix x are assumed to be iid, where each one takes a value of 1 with

probability p.
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• Line 5 shows the message from the check nodes to the variable nodes, um→n.

This message is calculated using function f (·) that is described below.

• Line 6 shows the message from the variable nodes to the check nodes. This

message is simply the sum of the likelihood ratios received from the neigh-

bor check nodes.

1 Algorithm: MP with IPE assumption
2 for all variable node indices n ∈ {1, . . . , L} do
3 qn→m ← p/(1− p)

4 do
5 for all check node indices m ∈ {1, . . . , M} do

um→n ← f
[
qn1→m, qn2→m, . . . , qnwr−1→m, psm|ym

]
, ∀ni ∈ Cm,n

6 for all variable node indices n ∈ {1, . . . , L} do qn→m ← ∑
mi∈Vn,m

umi→n

7 while number of iterations is less than a threshold

The heart of Algorithm (MP with IPE) is the function f (·) in Line 5. It is mainly

this function besides the initialization scheme on Lines 2 and 3, that makes this Al-

gorithm different from the standard BP algorithm being used in LDPC decoding.

This function generates at its output the log likelihood ratio (LLR) of nth variable

node given the probabilities of its neighbor variable nodes connected to mth check

node.

Let p0
m,n denote the probability that nth variable node is zero given the probabil-

ities of all the variable nodes in the set Cm,n. Using Bayesian rule, this can be

written as follows:

p0
m,n =

wr

∑
sm=0

p0 (u (m, n) |sm) p (sm|ym) (5.1)

Here, p0 (u (m, n) |sm) is the conditional probability of nth variable node being

zero given a specific sm ∈ {0, 1, . . . , wr} and p (sm|ym) denotes the conditional

probability of sm given the measured value of ym.

Conditional probability p0 (u (m, n) |sm) can be calculated as being proportional
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to the probability of a bit-sequence set p
(
bwr−1,sm

)
, where

bwr−1,sm = {bwr−1,sm
0 , bwr−1,sm

1 , . . . , bwr−1,sm
Nwr−1,sm−1} (5.2)

is a set of bit sequences of length (wr − 1) with cardinality of Nwr−1,sm = (wr−1
sm

).

Bits of each member sequence in this set add up to sm. Similarly, bit-sequences

that the variable nodes in set Cm,n can take such that mth check node has a value of

sm and nth variable node has a value of 1 can be represented as a set bwr−1,sm−1 =

{bwr−1,sm−1
0 , bwr−1,sm−1

1 , . . . , bwr−1,sm−1
Nwr−1,sm−1−1}. Binary sequences in this set have a length

wr − 1, and the bits of each member sequence add up to sm − 1.

Conditional probability p0 (u (m, n) |sm) is obtained by the following ratio.

p0 (u (m, n) |sm) =
p0

m,n(bwr−1,sm)

p0
m,n(bwr−1,sm) + p1

m,n(bwr−1,sm−1)
(5.3)

Here, p0
m,n(b

wr−1,sm
n ) denotes the total probability of the set bwr−1,sm at mth check

node and for nth variable node and it is the sum of probabilities of individual

member sequences:

p0
m,n

(
bwr−1,sm

)
=

Nwr−1,sm−1

∑
i=0

pm,n,0

(
bwr−1,sm

i

)
(5.4)

Due to iid assumption of the variable nodes in the set Cm,n, the probability

pm,m,0

(
bwr−1,sm

i

)
in the above of ith binary sequence bwr−1,sm

i is the product of

individual bit probabilities:

pm,n,0(b
wr−1,sm
i ) =

wr−1

∏
j=1

p′m,n′(b
wr−1,sm
i,j ) (5.5)

Here, bwr−1,sm
i,j denotes jth bit of ith sequence of set bwr−1,sm in (5.2). Variable n′ in

(5.5) denotes jth element of set Cm,n, and p′m,n′(b
wr−1,sm
i,j ) denotes the probability of

this variable node.

Similarly,

p1
m,n

(
bwr−1,sm−1

)
=

Nwr−1,sm−1−1

∑
i=0

pm,n,1

(
bwr−1,sm−1

i

)
(5.6)
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First term of (5.1), expanded upon in (5.3), can be computed using (5.4) and (5.6).

Now, we derive an expression for the second term of (5.1), i.e., p (sm|ym). To-

wards this, we begin by letting sm ∈ 0, 1, . . . , wr denote the integer value that mth

check node can take. Measured value ym of mth check node implies a probability

distribution on sm, which is given by bayesian formula

p(sm|ym) =
p(ym|sm)p(sm)

∑wr
sm=0 p(ym|sm)p(sm)

(5.7)

Given the iid assumption regarding elements of x, the prior probability p(sm) is

given by binomial PMF:

p(sm) =

(
wr

sm

)
psm(1− p)wr−sm (5.8)

Conditional distribution p(ym|sm) can be obtained by assuming certain distribu-

tion of the normalized energy estimator. Assuming that the estimator is unbiased

and has Gaussian distribution with variance of σ2,

p(ym|sm) =
1√

2πσ2
exp

(
−
(
ym − sm

)2

2σ2

)

This completes the calculation of p0
m,n in (5.1). Complementary probability of nth

variable node being 1 at mth check node is simply p1
m,n = 1− p0

m,n. With this, the

message um→n from mth check node to nth variable node (i.e., the output of func-

tion f
(
◦) on Line 5 of Algorithm: MP with IPE assumption) is the log likelihood

ratio um→n = log
( p1

m,n

p0
m,n

).

The simulation result and its comparison with the theoretical performance

bound is presented later on.
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5.1.2 Message Passing Algorithm with Joint Probability Estimate

(JPE)

As explained in previous section, the heart of the BP algorithm is calculation of

function f (·) and in turn the probability calculations. This second algorithm is

based on the joint probability estimate of all variable nodes connected to a check

node given the discrete value of that check nodes. The algorithm provides the

estimate of the all variable nodes for a given check node vector and sensing matrix

as explained in theorem below.

Theorem Statement

A vector of N binary variable nodes (b1, b2, ..., bN) with known prior probabilities

when connected to a check node (C), whose value (Sm) ranges between zero to

the number of variable nodes connected to it (i.e. N), then the probability of nth

variable node being zero or one is given by :

P(bn = 0|Sm) =


p1

T − (Sm − 1) if, Sm ∈ {1, 2, . . . , N − 1}

1 if, Sm = 0

0 if, Sm = N

(5.9)

and,

P(bn = 1|Sm) = 1− P(bn = 0|Sm) for, Sm ∈ {0, 1, 2, . . . , N − 1, N} (5.10)

Where, P1
T is the sum of the probabilities of all individual variable nodes being

one which are connected to that check node except for which the probability is

being calculated. It can be mathematically represented as:

P1
T = P1

b1
+ P1

b2
+ · · ·+ P1

bn−1
+ P1

bn+1
+ · · ·+ P1

bN
(5.11)
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Figure 5.2: Connectivity graph for N variable nodes connected to a check node.

Proof of Theorem

With fixed number of variable nodes (N) connected to a single check node and

with known check node value Sm, the possible states of variable node vectors

connected to a check node can be shown as in Fig. 5.3. Each row represents

a possible state of the variable node vector. The upper half represents all the

variable node vectors with Nth variable node (bN) equal to 0 and the lower half

represents all variable node vectors with the Nth bit node bN equal to 1 case.

Figure 5.3: Possible states of variable node vectors for a given N and Sm.

For a given Sm and N, number of variable node vectors with nth variable node

being 0 equals N−1CSm and number of variable node vectors with nth variable

node being 1 equals N−1CSm−1.

In the case, for any N and Sm = 0, variable node vector results into all variable

node equals to 0, i.e., P(bn = 0|Sm = 0) = 1. Similarly, with Sm = N, it results

78



into only one variable node vector with all variable node equals to 1, i.e. P(bn =

0|Sm = N) = 0.

For the cases, when check nodes takes value (Sm) other than 0 and N, P0
D =

P(bn = 0|Sm) signifies the sum of joint probability of all variable node vectors

when the desired variable node (bn) equals 0 given the check node value Sm. Also,

P1
D = P(bn = 1|Sm) represents sum of joint probability of all variable node vectors

when the desired variable node (bn) equals 1, given the check node value Sm.

From all the possible states of the variable node vectors (as is shown in the

Fig. 5.3, number of possible combinations of variable nodes with ith variable node

equal to one (i.e. (N1)bi) equals N−1CSm−1. Number of possible combinations of

variable nodes vectors with ith variable node being one and nth variable node (bn)

equal to zero (i.e. (N1)D0,bi) is given by N−2CSm−1. Similarly, number of possible

combinations of variable nodes vectors with ith variable node being one and nth

variable node (bn) equal to one (i.e. (N1)D1,bi) is given by N−2CSm−2. Therefore,

(N1)bi = (N1)D0,bi + (N1)D1,bi (5.12)

Equation (5.11) can be written as:

P1
T = Joint probability of variable vector corresponding to (N1)b1+ Joint probabil-

ity of variable vector corresponding to (N1)b2+ . . .+ Joint probability of variable

vector corresponding to (N1)bN−1 .

The value of (N1)bi remains constant for all bi therefore the above equation

can also be written as:

P1
T = (N − 1)(N1)bi

Using (5.12) and the above described notations, we can write,

P1
T = (N − 1)

[
N−2CSm−1 +

N−2CSm−2

]
(5.13)

Multiplying and dividing the first term by Sm and second term by (Sm − 1) in the

(5.13), we get

P1
T = Sm

N−1CSm + (Sm − 1) N−1CSm−1;
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Here,
N−1CSm = Number of variable vectors with nth variable node being 0 = P0

D
N−1CSm−1 = Number of variable vectors with nth variable node being 1 = P1

D

P1
T = SmP0

D + (Sm − 1)P1
D (5.14)

and

P0
T = (N − Sm − 1)P0

D + (N − Sm)P1
D (5.15)

P0
T can also be written as,

P0
T = (1− P1

b1
) + (1− P1

b2
) + · · ·+ (1− P1

bN−1
) = (N − 1)− P1

T

Therefore, (5.15) can be rewritten as,

(N − 1)− P1
T = (N − Sm − 1)P0

D + (N − Sm)P1
D (5.16)

Solving (5.14) and (5.16) for P0
D we get,

P0
D = P1

T − (Sm − 1)

Therefore, for any N and Sm

P(bn = 0|Sm) =


p1

T − (Sm − 1) if, Sm ∈ {1, 2, . . . , N − 1}

1 if, Sm = 0

0 if, Sm = N

and

P(bn = 1|Sm) = 1− P(bn = 0|Sm)

This completes the proof for joint probability calculation theorem described

above.
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5.2 Simulation based Performance Verification

In this section, we provide a simulation based performance verification of the

algorithms under different sparsity assumptions.

For all simulation work, parity check matrix or sensing matrix (A), is generated

using the method described in [99], wherein cycles of length 4 and 6 is removed,

therefore girth of the sensing matrix for this method is 8.

5.2.1 Characterization of Measurement Matrix

In order to ensure one to one correspondence between the measurement vector y

and input vector x within CS framework, the sensing matrix should have low mu-

tual coherence. The mutual coherence of sensing matrix A was verified through

simulation by calculating their coherence matrix (AAT) for a given wr. The diago-

nal elements of the calculated coherence matrix are equal to wr values (for binary

sparse matrix) and all the off diagonal values represent mutual coherence among

columns of sensing matrix A. Fig. 5.4 and Fig. 5.5 shows the coherence matrix of

the generated sensing matrix using the two different methods.

(a) With wr = 4, L = 96, M = 128. (b) With wr = 6, L = 108, M = 216.

Figure 5.4: Coherence measure for matrix A (Gallager method).
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(a) With wr = 4, L = 96, M = 128. (b) With wr = 6, L = 108, M = 216.

Figure 5.5: Coherence measure for matrix A (without cycles of length 4 and 6).

All the non-diagonal elements of the coherence matrix as shown in plot has

very low value (≤ 1), which corresponds to very low mutual coherence value for

given wr and satisfies (1.8). For the mutual coherence value we need to divide

each element of the matrix by w2
c . This shows that the sensing matrix is suitable

for CS implementation and also ensures one to one correspondence between mea-

surement vector and input vector.

5.2.2 Simulation Results for IPE and JPE Algorithms

In this section, all the algorithms were simulated for the regular LDPC matrix

based CS implementation. Measurement matrix A, is generated for different rates

by varying wr value while keeping wc constant. The value of wc is kept equal to

3 [99], where, wc is the number of ones in each column of the parity check matrix

and wr is the number of ones in each row of matrix A. This generation algorithm

generates a matrix such that the ratio of number of rows to that of number of

columns is equal to 3/wr. For simulation, it has been assumed that noise is not

present (σ = 0).

The objective of the sparsity detection algorithm is to estimate the locations

of ones in vector x using the sensing matrix A. Number of ones in vector x is

represented by probability p, which is varied from 0 to 1.
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Figure 5.6: Convergence of IPE algorithm for different p (rate = 0.75 and N =
5120.

The algorithm convergence for different occupancy probability or sparsity

with number of iterations is shown in Fig. 5.6. It is observed from the result

that IPE takes longer time to converge as sparsity decreases or p1 increases.

For the binary input case for the vector x, a performance comparison against

theoretical bound for all sparsity levels is shown in the Fig. 5.7.

Figure 5.7: Performance comparison of IPE algorithm.
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The Monte Carlo simulation (10000 simulation runs) of proposed message

passing algorithm is done and the points where algorithm converged for all the

trials are shown in the Fig. 5.7. Form this figure, it is seen that the algorithm works

for all sparsity levels for rates greater than 0.75 indicating that the proposed al-

gorithm and CS framework offers one fourth hardware savings under all sparsity

level of input signal.

1
0 0

1

5

−5

1
0

5

−5

0
1

JPE: 𝑝 = 0.21

JPE: 𝑝 = 0.15IPE: 𝑝 = 0.13

IPE: 𝑝 = 0.16

2 4 6 8 10 12 14

Iteration Count

E
st

. 
P

ro
b

a
b

il
it

ie
s

E
st

. 
P

ro
b

a
b

il
it

ie
s

1
0

5

−5

1
0

5

−5

0
1

0
1

10 30 50 70 90 110

2 4 6 8 10 12 14

Iteration Count

10 30 50 70 90 110

Figure 5.8: Convergence of the estimated probabilities of the variable nodes to 0
or 1 for IPE and JPE (L/N = 0.5, N = 4958).

The proposed JPE algorithm generates probability value outside the range of

[0, 1] due to initial values. Fig. 5.8 shows the range of probabilities generated

during different iteration count for IPE and JPE. This eventually converges to ei-

ther 1 or 0 with iteration. Table 5.1 shows the average residual estimation error

for IPE and JPE when the measurement matrix A size is L = 3840× N = 5120.

In this case, it is observed that JPE requires roughly three times more iteration

than IPE. The performance of new algorithms (IPE & JPE) is simulated and their

comparison with other developed algorithms reported in previous chapter such

as Sudocode, Gallager (Hard Decision) for all sparsity levels are shown in Fig. 5.9.
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Table 5.1: Average number of sparsity detection errors for IPE and JPE for increas-
ing iteration count ic when L = 3840 and N = 5120

ic
(IPE)

p for IPE ic
(JPE)

p for JPE
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

0 498 1020 1558 2553 0 512 1025 1538 2564.5
2 3 94 342 396 6 0.3 134.8 1066 1871.2
4 0 0 16 39 12 0 0 393 1247.3
6 0 0 0 0 18 0 0 17.1 683.3
8 0 0 0 0 24 0 0 0 171.3

10 0 0 0 0 30 0 0 0 1.3
12 0 0 0 0 36 0 0 0 0

Figure 5.9: A simulation based comparison of sparsity detection algorithms.

The simulation result demonstrates that BP algorithm based on JPE is closer to

theoretical lower bound and out performs other algorithms at all sparsity levels.

Also, Sudocode and Gallager algorithms are suited only up to a specified sparsity

levels and do not work for densely occupied channels. The simulated probability

threshold values p∗, i.e, the largest probability value in the range of [0, 0.5] at

which the algorithm is successfully recovering the sparsity pattern for a given

L/N = 0.5 is shown in Fig 5.10.
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Figure 5.10: Threshold p∗ for rate L/N = 0.5 with different values of N.

The algorithm performance was also simulated for different block lengths (or

wideband communication with more number of channels) and different wc val-

ues. Fig. 5.11 (a) shows the algorithm convergence plot for different block length

keeping wc, wr and p1 values fixed. Fig. 5.11 (b) shows the algorithm convergence

for different wc values.
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L/N = 0.33).

Figure 5.11: IPE Convergence with different parametric variations.

The algorithm convergence is also observed for different block length. This

indicates that proposed BP algorithms are suited for wideband communication

with more number of channels. It is observed that simulation shows faster con-

vergence for large value of wc.
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Figure 5.12: IPE convergence for different values of wr (wc = 3, p1 = 0.1).
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Fig. 5.12 shows the convergence plot for different wr keeping wc and p values

constant.It is observed that more number of iterations are required for algorithm

to convergence with increase in wr value. Using Gallager method of matrix gen-

eration it has been verified that algorithm converges successfully for different wr

values.

Convergence analysis in presence of noise

In the assumed signal model, noise is classified depending upon their source into

model noise e1e1e1 and measurement noise e2e2e2. The signal model can therefore be

written as,

yyy = AAA(xxx + e1e1e1) + e2e2e2 (5.17)

For mathematical simplicity, the two noise vector e1 and e2 are considered to be

taken as iid Gaussian with zero mean and variance σ2
i , i = 1, 2. Convergence of

proposed IPE and the JPE algorithms in presence of measurement noise (e2e2e2) and

keeping model noise e1e1e1 = 0 is shown in Fig. 5.13 and Fig. 5.14. This convergence

analysis result shows that JPE requires more iterations than IPE to converge in

presence of measurement noise.
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Figure 5.13: Convergence of IPE algorithm in presence of measurement noise (σ2
is varied and σ1 = 0, p1 = 0.2, N = 1280 and rate L/N = 0.75).
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Figure 5.14: Convergence of JPE algorithm in presence of measurement noise (σ2
is varied and σ1 = 0, p1 = 0.2, N = 1280 and rate L/N = 0.75).

Probability of success rate (correctly identifying the sparsity locations) of the

proposed IPE and JPE algorithm is compared to the OMP algorithm for different

cases of measurement and model noise.

Figure 5.15: Success rate for different σ1 (σ2 = 0, p = 0.04 and N ≈ 1280).
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Figure 5.16: Success rate for different σ2 and p (σ1 = 0.02, L = 960 and N = 1280
and rate L/N = 0.75).

Figure 5.17: Success rate for varying p at different rates L/N (σ1 = 0.02, σ2 = 0.04
and N ≈ 1280).
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Figure 5.18: Success rate for varying σi, i = 1, 2 at different values of p and L/N.

Fig. 5.15, 5.16 and 5.17 shows the probability of success for different noise

cases considered. The proposed algorithms is seen to outperform OMP algorithm

for lower rates (i.e, lower L/N values). This is evident from Fig. 5.18. This com-

pletes the convergence analysis of the developed algorithm. The theoretical anal-

ysis matches the simulation results thus, confirming its applicability to sparsity

detection task of CS based wideband communication applications.

5.3 Convergence Analysis using Density Evolution

and Extrinsic Information Transfer (EXIT) Chart

Convergence analysis of the proposed algorithms (without noise) has also been

conducted using density evolution approach as well as EXIT chart type of analy-

sis [101, 105]. For this, the matrix A is randomly generated in each semi-analytic

trial. The sparse binary vector c and the integer-valued measurement vector w

are generated. The probability of error at the variable node is statistically evalu-

ated at different iterations of the IPE algorithm. The average probability of error
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at the variable nodes is used to derive the density evolution result and the extrin-

sic error probability transfer curve. Similar statistical analysis of JPE algorithm is

conducted as well. The steps of convergence analysis using semi-analytical ap-

proach is explained in the given algorithm on Page 92.

1 Algorithm: To verify the convergence Analysis of the proposed

algorithm

2 do

3 for all check node indices m ∈ {1, . . . , M} do

4 Randomly select a bit node connected to it

5 if corresponding element in the vector c equals 0 then

6 Calculate the probability of that bit node being 1, i.e calculate p1

7 else

8 Calculate the probability of that bit node being 0, i.e calculate p0

9

10 The calculated probability value corresponds to the error of the

algorithm over each iteration

11 while For all iterations

Figure 5.19: Statistical evaluation of convergence of IPE algorithm by density evo-
lution method.
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The simulation result for convergence analysis of IPE algorithm using density

evolution approach is shown in Fig. 5.19. The simulation was conducted for a

given rate with two different probability value and the algorithm convergence

was in accordance with algorithm simulation results.

Figure 5.20: Statistical evaluation of convergence of IPE algorithm by EXIT chart
method (p = 0.1; rate = 1/2.)

Figure 5.21: Statistical evaluation of convergence of IPE algorithm by EXIT chart
method (p = 0.15; rate = 1/2.)

The simulation result for convergence analysis of IPE algorithm using EXIT
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Chart approach is shown in Fig. 5.20 and Fig. 5.21. The analytical convergence

analysis result matches the algorithm simulation results.

Figure 5.22: Convergence of the proposed IPE algorithm (Heat Map).

Additionally, a Monte Carlo simulation for size of measurement matrix (L/N)

vs sparsity level (p1) using semi-analytical approach was performed. The p1 value

was varied in steps of 0.001 and a total of 1000 trials was simulated. The out of

semi-analytical convergence is shown in Fig. 5.22 in the form of heat map. The

heat map provides the sparsity bound for a given size of measurement matrix to

decide on hardware for a given applications.

5.4 Computational Complexity of BP Algorithms

An approximate evaluation of the computational cost of IPE and JPE is summa-

rized in Table 5.2. The computational complexity of proposed algorithms are com-

pared with OMP.

For each variable node (VN) of degree wc, both the algorithms require

wc (wc − 1) computations (refer Algorithm 1 on Page 74). Furthermore, corre-

sponding to each VN, there is L/M CNs requiring wr (wr − 1) β computations.

Here β is a scalar multiplier that accounts for conditional checks implemented at
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Table 5.2
Computational Cost per Bit of IPE, JPE and OMP

I/J-PE OMP

ic,⊥

(
β(wr − 1)wr

L
N

+ (wc − 1)wc

) (
1 +

L
N

)
κ(κ + 1)/2

the CN (refer Algorithm 1 description on Page 74) for both IPE and JPE, and addi-

tionally the binary bit string listing required for the IPE, which is on the order of

(wr
sm
) for a CN with weight sm. Table 5.2 also lists, from [106, Table 1], the computa-

tional cost of an efficient implementation (based on the Matrix Inversion Lemma)

of the OMP.

5.5 Extension of Sparsity Detection Algorithms

This section presents two extensions of sparsity detection algorithms. The first

deals with extension of sparsity detection algorithm when the input to the al-

gorithm is discrete non-binary and second one is a deterministic algorithm for

sparsity detection in noiseless case more suited for source coding and decoding

application.

5.5.1 Algorithm for Discrete Non-binary Input

This sparsity detection algorithm refers to a CS problem y = Ax, the sparse signal

x, which is to be determined, have elements from the discrete set {0, 1, 2}, rep-

resenting different energy levels of different input bands. The analogy could be

similar to use of different waveform (modulation and coding) in different commu-

nication channels. The proposed method relies on the message passing algorithm

for decoding the elements of the sparse signal x from the received signal y.

Algorithm with IPE for non-binary case

Message Passing algorithm for decoding the elements in the sparse vector x is

described below:

• Messages from the variable node to the check nodes are initialized by an ar-
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ray of log likelihood ratio (LLR) for the different possible elements in vector

x. In this case an array of LLR for the elements being zero, one or two is

passed in the initialization step.

• Message from the check nodes to the variable nodes are calculated using a

function f (.). A detailed explanation about the function, f (.) is given below.

• Variable nodes then calculates sum of the messages received from the neigh-

bor check nodes and send it back to the check node.

Function f (.) generates log likelihood ratio of the nth variable node being zero,

one or two, given the probabilities of its neighbor variable nodes connected to mth

check node. Let pi
m,n, where i = 0, 1, 2 denotes the probability that the nth variable

node is having value i given the probabilities of all the variable nodes in the set

Cm,n. Using Bayesian rule one can write:

pi
m,n =

2wr

∑
sm=0

pi(u(m, n)|sm)p(sm|ym) i = 0, 1, 2 (5.18)

Here, pi(u(m, n)|sm) is the conditional probability of nth variable node being i

given a specific smε{0, 1, 2, .., wr, wr + 1, .., 2wr} and p(sm|ym) denotes the condi-

tional probability of sm given the measured value of ym.

Conditional probability pi(u(m, n)|sm), can be calculated as being proportional

to the probability of the bit sequence set p(bwr−1,sm−i) where,

bwr−1,sm−i = {bwr−1,sm−i
0 , bwr−1,sm−i

1 , bwr−1,sm−i
2 , .., bwr−1,sm−i

L } (5.19)

Each sequence in the set is of length wr − 1 and sum of each element in the se-

quence equals sm − i. Number of such bit sequence for a given sum is given by L.

An example of a set of such bit sequences for wr = 3 is illustrated in the table on

Page 97, where each row corresponds to a bit sequence.

Conditional probability pi(u(m, n)|sm) is obtained by the following ratio:

pi(u(m, n)|sm) =
pi

m,n(b
wr−1,sm−i)

∑2
j=0 pj

m,n(bwr−1,sm−j)
i = 0, 1, 2 (5.20)
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bit 1 bit 2 bit 3 Sum
0 0 0 0
1 0 0 1
2 0 0 2
0 1 0 1
1 1 0 2
2 1 0 3
0 2 0 2
1 2 0 3
2 2 0 4
0 0 1 1
1 0 1 2
2 0 1 3
0 1 1 2
1 1 1 3
2 1 1 4
0 2 1 3
1 2 1 4
2 2 1 5
0 0 2 2
1 0 2 3
2 0 2 4
0 1 2 3
1 1 2 4
2 1 2 5
0 2 2 4
1 2 2 5
2 2 2 6

Table 5.3: Set of bit sequence for wr = 3.

Here, pi
m,n(b

wr−1,sm−i) denotes the total probability of the set bwr−1,sm−i at mth

check node for nth variable node to have value i, and it is the sum of probabilities

of individual member sequences of the bit set.

pi
m,n(b

wr−1,sm−i) =
L

∑
j=0

pm,n,i(b
wr−1,sm−i
j ) (5.21)

Due to the iid assumption of the variable nodes in the set Cm,n, the probability

pm,n,i(b
wr−1,sm−i
j ) in the equation (5.21) can be written as the product of the indi-
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vidual bit probability in the sequence bwr−1,sm−i
j .

pm,n,i(b
wr−1,sm−i
j ) =

wr−1

∏
k=1

p′m,n′(b
wr−1,sm−i
j,k ) (5.22)

Here, bwr−1,sm−i
j,k denotes kth bit of the jth bit sequence of the set bwr−1,sm−i. Vari-

able n′ in equation (5.22) denotes kth element in the set Cm,n, and p′m,n′(b
wr−1,sm−i
j,k )

denotes the probability of that variable node.

Derivation of second term in the (5.18), p(sm|ym), is described in the following

section. sm denotes the integer value which the mth check node can take. In

this case smε{0, 1, 2, .., 2wr}. Measured value ym of mth check node have a prob-

ability distribution on sm, which is given by the Bayesian formula p(sm|ym) =

p(ym|sm)/ ∑2wr
sm=0 p(ym|sm)p(sm). Given the iid assumption regarding the ele-

ments of x, the prior probability p(sm) is given by Binomial Probability Mass

Function (PMF):

p(sm) =

(
2wr

sm

)
psm(1− p)2wr−sm (5.23)

Conditional distribution p(ym|sm) can be obtained by assuming that the energy

estimator has Gaussian distribution with variance σ2,

p(ym|sm) =
1√

2πσ2
exp

(
− (ym − sm)2

2σ2

)

This completes the calculation of pi
m,n in (5.18).

Above algorithm is repeated to calculate p0
m,n, p1

m,n and p2
m,n. The mes-

sage um→n, from mth check node to nth variable node is an array comprising of

log

(
p0

m,n

p1
m,n + p2

m,n

)
, log

(
p1

m,n

p0
m,n + p2

m,n

)
and log

(
p2

m,n

p0
m,n + p1

m,n

)
.

Simulation Result: Sparsity Detection with non-binary discrete input

The outcome of simulation based performance verification of IPE based sparsity

algorithm with 3-ary input elements (0,1,2) is shown in Fig. 5.23.
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Figure 5.23: Simulation result for sparsity detection with non-binary discrete in-
puts.

The proposed algorithm was simulated for different rates and for a range of

probabilities of non-zero elements (p1 of the input signal x). The non-zero prob-

ability (p1) are equally divided between two discrete input levels (x being one or

two). The plot shown in Fig. 5.23 is for p1 vs rate. The result shows that the IPE

algorithm works for p1 = 0.4 (probability of channel being occupied with normal-

ized energy as 1 is 0.2 and probability of channel being occupied with normalized

energy as 2 is 0.2) for rate 3
4 . This represents that when sparsity is 0.4 (half of the

occupancy is with signal energy twice than that of remaining half), then hardware

equivalent to rate 3
4 will successfully detect the support of occupied slots blindly

using IPE algorithm in given CS framework.

The algorithm can further be extended for a larger discrete set (in-turn for real

value bit nodes). Enhancement of the algorithm to achieve performance closer to

theoretical bounds to be worked out.

5.5.2 Deterministic Algorithm for Noiseless Case

A deterministic algorithm for sparsity detection was developed for noiseless case

with input having Bernoulli distribution. For sparsity detection algorithm, energy

present in each band would correspond to bit node value and output of energy

detector would correspond to check node value for given measurement (LDPC
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like) matrix. This algorithms aims at use cases of source coding and decoding.

Notations

Following the standard convention used in description of matrix multiplication,

ym denotes mth element of column vector or measurement y. Similarly, bn denotes

nth element of column vector b or bit node or variable node vector. Cm denotes a

set of indices of variable nodes connected to mth check node, Cm,n = Cm\n is the

set of elements of Cm whose values are determined as equal to 0 or 1. Enz contains

non-zero elements of error vector e.

Algorithm Description

The deterministic algorithm is listed below and can be described as:

• Conditions for element (bn) of the received vector being zero or one is

checked and accordingly all the connected bit nodes are set as 0 or 1.

• If the difference of the element of received vector ym and the sum of elements

in Cm,n is zero then, substitute bj with one ∀j ∈ Cj − Cm,n.

• Substitute cest = b and then calculate error vector e = y− Hcest.

• Make a vector consisting of all bit nodes connected to the non-zero elements

of vector e. Randomly pick an element from that vector e and replace it by

one.

• Re-calculate error vector e. If the number of non-zero elements in the vector

decreases then keep the change done in the previous step otherwise discard

it.

Simulation Results

The proposed deterministic algorithm was simulated for different size of mea-

surement matrices (rates) and for a range of probabilities of non-zero elements in

the sparse signal x. The H matrix implemented is same as other BP algorithms.
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1 Algorithm: Deterministic Algorithm
2 for all check node indices m ∈ {1, . . . , M} do
3 if ym == 0 then
4 bn ← 0, ∀n ∈ Cm
5 else if ym == wr then
6 bn ← 1, ∀n ∈ Cm
7 else if (ym −∑j∈Cm,n bj) == 0, ∀j ∈ Cm,n then
8 bj ← 1, ∀j ∈ Cj − Cm,n

9 With cest = b, Calculate e = y− Hcest
10 do
11 for all m ∈ Enz do
12 randomly pick an element rn ∈ Enz and replace brn with 1.
13 if Recalculate e. If number of non-zero elements decreases in e then
14 brn ← 1
15 else
16 brn ← 0
17

18 while number of iterations is less than a threshold
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Figure 5.24: Performance comparison of deterministic algorithm with JPE.

Fig. 5.24 shows a performance comparison of the deterministic algorithm with

that of the JPE algorithm for different size of measurement matrices or rates. The

Deterministic algorithm exhibits comparable or better performance in regions of

low sparsity than JPE. The drawback of this algorithm is that it does not account

for noise at the input and conceived only for noiseless case.

101



Summary: A detailed performance analysis of developed BP algorithms, their

convergence analysis and performance comparison against theoretical lower

bounds has been described in this chapter. The discretized sensing framework

enabled by sparsity detection algorithms proved to achieve at least one fourth

hardware savings by keeping the rate at 3
4 for all sparsity levels. This makes the

proposed framework very useful for wideband communication applications.

We also developed a deterministic light weight algorithm for sparsity detec-

tion for noiseless case. This algorithm offers performance close to JPE algorithm

and can be gainfully utilized for source decoding.

The next chapter provides an analytical framework called Low Density Inte-

ger Constrained (LDIC) codes for lossless data compression and denoising appli-

cations. The proposed LDIC framework uses deterministic as well as message

passing algorithms for source decoding.
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CHAPTER 6

Low Density Integer Constrained (LDIC)

Codes

Implementation of sparse binary LDPC matrix using RF front-end architecture

and belief propagation based sparsity detection algorithms provides a means of

CS framework realization. In this chapter, a new generalization of the LDPC codes

that is termed as Low Density Integer Constrained (LDIC) codes is proposed to be

used for lossless data compression as well as for joint compression and denoising

applications.

6.1. The Concept of LDIC Codes

In LDIC codes, similar to the standard application of LDPC matrices, the proposal

is to multiply an L × N binary-valued LDPC matrix H with an N × 1 binary-

valued vector c. However, unlike the standard LDPC codes, we do not perform

modulo operation on the product and maintain the integer-valued vector

w = Hc. (6.1)

Elements of w take an integer value from {0, 1, . . . , dc}, where dc denotes the de-

gree of the check nodes. Here, matrix H is taken as a regular LDPC matrix and dc

is same as wr (= number of ones in any row) of regular LDPC matrix.

The proposal of the LDIC codes, and the interest in studying them, arose from

the CS context. In the CS, LDPC matrices are used with real-valued sparse ex-

citation in the real-number field [36]. The goal is to determine a sparse vector
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x of size N × 1 (which has n0 << N nonzero elements randomly interspersing

N− n0 zeros) given an L× 1 measurement vector y = H x. Here, L� N, and H is

known as measurement matrix. One approach of solving this problem identifies

the sparsity locations, say, as a binary indicator vector c of size N. This vector c

has n0 ones whose locations coincide with n0 nonzero elements of x. Given c, the

locations of zero-valued elements of x are known. This allows removing N − n0

columns of H that multiply with zero-valued elements of x. With this, the original

CS measurement matrix H is reduced to a matrix HS of size L × n0. Assuming

that these columns of HS are linearly independent, the standard Least Squares

solution (i.e., the pseudoinverse of HS) is used to reconstruct the original sparse

excitation pattern x from the measurement vector y [17].

The main idea of LDIC codes is to measure w = Hc in addition to y = H x.

Whenever, this measurement of w in equation (6.1) is possible, i.e., the binary

sparsity pattern c inherent in the non-binary real-valued x can itself be measured

through the measurement matrix, the CS problem reduces to that of lossless data

compression, i.e., how to maximally compress a sparse binary vector c using the

measurements w (L� N). This proposed approach does not perform the modulo

operation, and restrict to GF(q), it is better suited to the task of data compression.

This is analysed in next section.

6.1.1 Source Encoding

As in (6.1), we apply the binary-valued LDPC matrix H at the source encoder. The

input to the source encoder (i.e. input to H) is a discrete-valued1 vector. The out-

put of the source encoder, i.e., the result of multiplication of the input vector with

LDPC matrix H, is non-binary; modulo operation is not performed on the output

of this multiplication. The LDIC code characterization presented in [42] provides

motivation for not restricting the output of (6.1) to GF(2).

Analysis: The discrete-valued vector of symbols at the input to the source en-

coder is denoted as c. The output of the source encoder is w = H c. Unlike the

application of LDPC matrices in the FEC, the output w takes values from the set

1For the sake of simplicity in the analysis and exposition, binary-valued case is focused.
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{0, 1, . . . , dc}, where dc denotes the degree of the check nodes. This is assumed to

be identical (i.e., matrix H is a regular LDPC matrix). Thus, matrix H transforms

a length N vector c into a length L < N discrete-valued vector w.

We consider the compression problem for binary random variable C, with proba-

bility of one denoted as p. For sake of simplicity, we denote an N× 1 vector of iid

variables C as c.

Specifically, we use the set of nonbinary constraints obtained as w = Hc as the

compressed version of the binary data. Unlike channel coding application there

is no modulo-two operation taken here.

Our proposal for not taking modulo-two operation (GF(2)) is motivated as fol-

lows.

We define the set of binary sequences each of which produce the integer-valued

output w when applied as the input to a system H of parity check equations as

C(H,w). For each c ∈ C(H,w), H c = w.

Consider a ratio Qp defined as follows:

Qp =
H(C)
H(W)

(6.2)

where H(C) and H(W) are the Shannon Entropy values of the input variable C

(elements of the input vector c are drawn from C where probability of 1 is p), and

output variable W (elements of the output vector w are variables W).

From information theory, the ratio L/N of the length L of the compressed non-

binary string w to the length of the binary string c is lower bounded by Qp, i.e.,

L/N ≥ Qp. (6.3)

As an example, consider a case when the input variable C is a non-

compressible Bernoulli RV and log2(dc + 1) is an integer. Thus, the probability

p that C takes the value 1 is 0.5, and H(C) = 1 bit. In this case Qp=0.5 =
1

H(W)
≥

1
log2(dc + 1)

, with the equality occurring if and only if W is uniformly distributed

in the range {0, . . . , dc}. Effectively, Qp=0.5 denotes the dimensionality reduction

L/N possible in this non-compressible case because the binary input C is trans-
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formed into a nonbinary variable W.

In general, the variable W can be efficiently compressed (e.g., by an Entropy

Coding scheme such as Huffman Coding) without any encoding loss if all the

probabilities pW(W) are negative powers of two [107]. In practice, an encoding

loss is typically incurred since this condition does not hold. Let encoding of kth

symbol (k = 1, . . . , dc + 1) with probability pk
W result in nk bits, and let pk

Ŵ
= 2−nk

denote the post-encoding pseudo-probability of kth symbol of W.

With this, the average number of bits RW per symbol of W can be written as

follows:

RW =
dc+1

∑
k=1

pk
Wnk

= −
dc+1

∑
k=1

pk
W log2

(
pk

Ŵ

)
= −

dc+1

∑
k=1

pk
W log2

(
pk

W

)
−

dc+1

∑
k=1

pk
W log2

(
pk

Ŵ

pk
W

)
= H(W) + D(pW ‖ pŴ). (6.4)

Here, D(pW ‖ pŴ) denotes the Kullback-Leibler Divergence between the distri-

bution of the output variable W and the encoded variable Ŵ.

The average number of bits required to encode L× 1 output vector w is given

as L× RW , which is lower bounded by N × H(C). Therefore, the efficiency 0 ≤

η ≤ 1 of data compression is given as the ratio η =
N × H(C)

L× RW
. An upper bound

on this ratio is stated in the following Lemma.

Lemma 6.1.1 Efficiency of the data compression η is upper bounded by(
1 + Qp ×

D(pW ‖ pŴ)

H(C)

)−1

.
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η =
N × H(C)

L× RW

=
N × H(C)

L×
(

H(W) + D(pW ‖ pŴ)
) (6.5)

=
1

L
N
×
(

H(W)

H(C)
+

D(pW ‖ pŴ)

H(C)

)
≤ 1

Qp ×
(

H(W)

H(C)
+

D(pW ‖ pŴ)

H(C)

) (6.6)

=
1

1 + Qp ×
D(pW ‖ pŴ)

H(C)

. (6.7)

Here, (6.5) is obtained from (6.4) and the inequality in (6.6) follows from (6.3).

We next consider the following two schemes for compression of the binary

source word.

• Scheme 1 (Serial to Parallel Approach): In this scheme, a total of log2(dc + 1)

bits are taken together (in a block-by-block manner, where the variable dc

is chosen to be a power of two minus 1) to create a variable W(1), which

takes one value out of a total of dc + 1 different symbols. We require a total

of L(1) such blocks for N bits, where L(1) = N/ log2(dc + 1). Thus, the

ratio L(1)/N equals 1/ log2(dc + 1). Assuming that N bits are independent,

H(W(1)) = log2(dc + 1)H(C), and we obtain

Q1
p = H(C)/H(W(1)) = 1/ log2(dc + 1) = L(1)/N. (6.8)

• Scheme 2 (with LDPC Matrix): In this scheme, we linearly transform vector c

to w using LDPC matrix H, i.e., w = Hc. Denoting the resultant RV as W(2),

when number of ones in rows of H is dc, W(2) has the same number (dc + 1)

of different symbols as in Scheme 1. However, instead of log2(dc + 1), a

greater number dc + 1 of bits are summed by each row of H to generate

W(2). The ratio L(2)/N is lower bounded by Q2
p = H(C)/H(W(2)). Here,

the denominator H(W(2)) is the Entropy of Binomial Distributed W(2),which
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can be approximated as

H(W(2)) = 0.5× (log2(dc) + log2 (p(1− p)) + log2(2πe)) +O(1/dc)

Lemma 6.1.2 In the asymptotic case of dc → ∞, ratio Q1
p/Q2

p is greater than 1 for

p ≤ 0.11.

Given the expression of Q1
p in (6.8) the ratio Q2

p/Q1
p can be written as follows:

Q1
p/Q2

p =
1

log2(dc + 1)
× H(W(2))

H(C)

=
0.5

H(C)
× (log2(dc) + log2 (p(1− p)) + log2(2πe)) +O(1/dc)

log2(dc + 1)︸ ︷︷ ︸
This term approaches 1 as dc increases.

Thus, in the limit dc → ∞, Q1
p/Q2

p →
0.5

H(C)
. This ratio equals 1 when H(C) = 0.5,

i.e., when p ≈ 0.11. For p < 0.11, H(C) < 0.5 and the ratio Q1
p/Q2

p becomes

greater than unity (vice versa when p > 0.11).

A numerical demonstration of Lemma 6.1.2 is provided in Fig. 6.1a, which

shows that Q1
p > Q2

p for p ≤ 0.11. Result of a numerical evaluation of the ratio
D(pW ‖ pŴ)

H(C)
for both Scheme 1 and Scheme 2 is provided in Fig. 6.1b. It is seen

that both the terms, Qp and
D(pW(W) ‖ pŴ(Ŵ))

H(C)
in the denominator of (6.7) are

greater for Scheme 1 compared to Scheme 2 when p ≤ 0.11. Accordingly, the

data compression efficiency of the LDPC scheme is greater than that of the con-

ventional Serial to Parallel (S/P) approach for low values of probabilities. This is

shown in Fig. 6.2.

The analysis presented above shows the efficacy of LDPC matrices in achiev-

ing a highly efficient data compression for low values of p and sparsely popu-

lated source vectors. This also shows that the LDPC matrices are well-suited to

the Compressive Sensing domain where a sparse source is simultaneously mea-

sured/sampled and compressed.
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(a) Ratios Q1
p in dotted and Q2

p in solid.
(b)

D(pW ‖ pŴ)

H(C)
.

Figure 6.1: Evaluation of the individual terms of (6.7).

Figure 6.2: Efficiency η.

6.1.2 Source Decoding

In noiseless data compression, the source encoder has the same information avail-

able to the decoder. Thus, not only it can check whether the original source word

will be correctly decompressed but it can also duplicate the decoder iterations.

The fixed-to-fixed (N to L) compression algorithm can be adapted to zero-error

variable-to-fixed or fixed-to-variable operation by tuning the input/output length

in the compression to guarantee decoding success, for example, by successively

generating the parity-check equations until successful decoding is achieved. Al-
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ternatively, the encoder can try several parity-check matrices (with equal or differ-

ent rates) from a library known at the decoder until success is achieved. A header

identifying the actual matrix sent is part of the compressed sequence.

Therefore, source decoding methods for noiseless data compression is com-

plementary to encoding scheme. For noiseless fixed-to-fixed (N to L) compres-

sion case, deterministic algorithm as described in Section 5.5.2 in Chapter 5 is

used for source decoding. The deterministic algorithm has proven performance

for information sequences with high sparsity compared to other known similar

algorithms.

Source decoding and denoising: For the non-binary, non-discrete, cases, the

analog-valued vector c can be represented as x = c + u, where u = x− c is the

error relative to the binary (or, in general, discrete-valued) model. Thus, our inter-

est is in compressed representation of binary cb when it is perturbed by modeling

error or noise u. The goal, therefore, is joint compression as well as denoising.

In such cases, the developed message passing algorithms with non-zero sigma

value is used at source decoder. The analysis and simulation results presented in

Section 5.2.2 of Chapter 5, shows that the developed BP algorithm within LDIC

framework is suitable for compression and performs denoising.

Summary: The mathematical analysis of the proposed LDIC codes have demon-

strated that the sparse binary LDPC matrix is a suitable candidate for the task of

lossless data compression than conventional serial to parallel approach. Also, the

deterministic algorithm and other message passing algorithms developed in this

work are suitable for source decoding and denoising applications.
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CHAPTER 7

Summary and Conclusion

7.1 Work Summary and Conclusion

In this work, the operation and efficacy of the proposed novel hardware architec-

ture with newly developed sparsity detection algorithms for wideband spectrum

sensing and communication applications has been demonstrated through anal-

ysis and simulation. The proposed hardware architecture implements a sparse

binary regular LDPC matrix (without cycles of 4 and 6) as analog front-stage of

compressive sampling (CS) receiver for sparse multiband signals. The hardware

architecture has wc (=number of rows) number of parallel branches which down-

convert the received signal using a sum of a small number (= wr) of complex-

valued sinusoids with random assignment of frequencies in the sensed spectral

width. The down-converted output of each branch is low-pass filtered and then

digitised. The sampled output of the digitiser is passed through energy estimator

block which provides observations as function of input with Bernoulli distribu-

tion. These observations along with the measurement matrix are used by belief

propagation based sparsity detection algorithms to determine the spectral loca-

tions of active sub-bands in the sparsely populated wide multiband input signal.

The active sub-band location is then used to form a modified measurement matrix

thereby, ensuring the linear independence of all columns in modified matrix. The

updated measurement matrix with sampled output of all branches is then used

for signal reconstruction.

The proposed architecture is different from the already known MWC architec-

ture in two distinct ways. The first being the use of a linear combination of wr
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complex sinusoids as mixing sequence in place of rectangular random periodic

mixing sequence. The use of complex sinusoid ensures uniform amplitude of all

spectral components of mixing sequence thereby, removing sync type amplitude

modulation present in the case of rectangular random periodic sequence. The

proposed change ensures uniform treatment of all input sub-bands which was not

the case for MWC architecture. The other advantage of using wr complex sinu-

soid (regular LDPC matrix) is reduced noise foldover due to the presence of only

wr spectral component in the mixing sequence. The quantum of benefit has been

derived analytically and demonstrated by performing Bit Error Rate analysis of

PSK system with the proposed hardware architecture and MWC architecture. The

proposed system shows better BER performance compared to MWC. The second

difference is use of energy estimator block which enables discretized compres-

sive sensing model and use of message passing based robust sparsity detection

algorithms. For given size of measurement matrix or hardware architecture, the

performance of the developed sparsity detection algorithms is found to be closer

to the lower bounds derived using information theoretic approach.

The two new algorithms developed for sparsity detection are message passing

algorithms with Independent Probability Estimates (IPE) and Joint Probability Es-

timates (JPE). The third algorithm is deterministic method of sparsity detection.

The probability (belief) calculation in case of IPE algorithm is based on the as-

sumption that the occupancy of each sub-band is independent of the other sub-

band. In case of JPE algorithm the probability is calculated based on observations

and joint probability of all sub-bands. For these algorithms, a Monte-Carlo sim-

ulation was run for different sizes of measurement matrix and all sparsity levels

for performance verification. Additionally, a semi-analytical convergence analysis

using Density Evolution and EXIT chart method was performed for different sizes

of measurement matrices and discrete sparsity levels. The outcome of simulation

was compared against derived information theoretic performance bounds of dif-

ferent sizes of measurement matrices and sparsity levels. The comparison shows

that the performance of JPE is closer to information theoretic bounds and offers

a minimum one fourth hardware savings compared to Nyquist processing for all
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sparsity levels. The performance of JPE and IPE is found to be better than the al-

gorithms motivated by Sudocode and Gallager based LDPC decoding techniques.

The IPE algorithm with non-binary (3-level) sparse signal vector input suggests

that the algorithms of sparsity detection can also be generalised for M−ary sparse

signal vectors.

A LDIC framework is proposed and analysed theoretically for joint compres-

sion and denoising application. The simulated results prove that the developed

framework can offer better compression efficiency. Wherever, it is possible to de-

tect the binary pattern hidden inside the real measurements, the framework can

achieve compression as well as denoising.

As an application of known theoretical CS framework, a simulation based per-

formance verification of CS receiver for narrowband jamming detection and fil-

tering application has been performed. The proposed framework demonstrates

low processing load advantage over conventional Nyquist based receivers. The

receiver performed blind interference detection and filtering and is suitable for

spectrum sensing in cognitive communication applications. Another unique ap-

plication of CS for realisation of Scalable Video Codec (SVC) is proposed. In this

SVC framework, at encoder, sparse wavelet coefficients are compressed using CS

matrix and they are retrieved using AMP algorithm at decoder.

The analytical framework of this thesis encourages the development of a hard-

ware prototype of the proposed analog front-end for wideband signal, which are

sparse in frequency domain. The characterisation and performance optimisation

of the developed algorithms will establish the proposed CS architecture as an

efficient sub-Nyquist sampling scheme. The CS-based receivers are best suited

for blind spectrum sensing and wideband communication receivers for cognitive

applications.
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7.2 Future Work

The CS framework presented in this research work is very promising and calls

for extended research. The two sparsity detection algorithms developed assume

Bernoulli distribution marked by the presence or absence of signal within a sub-

band of wide multiband input. This is valid only when all sub-bands have similar

flux density and occupied bandwidth. However, in many practical applications

the waveform of all sub-bands may be different resulting in discrete M− ary in-

puts to measurement matrices. Therefore, a generalisation of the message pass-

ing algorithms for discrete M − ary inputs will enhance the applicability of the

proposed framework. Signal reconstruction methods of input waveforms spread

across two or more bands need to be developed. Also, a suitable method of nor-

malisation of energy detector output of the proposed CS receiver will help im-

prove the efficacy of the system. In the present work, the convergence criteria for

developed MP algorithms are based on fixed number of iterations which could

be optimised and made dynamic for faster processing. The CS architecture is a

realisation of sparse binary matrix without cycles of 4 and 6 at given rates. De-

velopment of deterministic construction methods of sparse binary matrix for all

rates will further aid the realisation of the proposed CS architecture.
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Appendix A

CS Based Scalable Video Codec (SVC)

In modern age of communication, multimedia communication occupies highest

traffic bandwidth and due to the variable size of user gadgets and variable data

carrying capacity of communication networks, scalable video codec is in high de-

mand. Scalable video codec allows a video to be encoded in scalable mode which

could be decoded using a layered approach. Researchers have already proposed

a CS based SVC in literature [108]. CS based scalable video encoder that exploits

the sparsity of the video frames in the wavelet basis is used for source coding at

the transmitter end [33].

Wavelet based video compression schemes inherently provide frame rate, reso-

lution and quality scalabilities in spatial and temporal domains. Wavelet based

scalable video codec exhibit excellent coding efficiency without sacrificing the

compression ratio in comparison to non-scalable MPEG-4 coding technology. The

block diagram for proposed CS based Scalable Video Codec (SVC) is shown in

Fig-A.1.

In the proposed CS based SVC approach, the input video frames are decomposed

in several sub-bands using 3-D DWT and Compressed sensing (CS) is applied to

all the sub-bands except lowest frequency sub-bands [34]. Three dimensional Dis-

crete wavelet transform (3D-DWT) inherently offers resolution, frame-rate and

quality scalability. Wavelet based compression algorithms provide excellent cod-

ing efficiency without sacrificing Signal to Noise Ratio (SNR). The signal process-

ing steps for the proposed scalable video encoder is shown in Figure-A.2.
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Figure A.1: Block Diagram of CS based SVC

Figure A.2: Processing steps of Scalable Video Encoder

The process of 3D-DWT implementation to exploit spatial as well as tempo-

ral redundancy is shown in figure-A.3. The lowest frequency sub-band (LLL) has

most of the information preserved, and hence is fed directly to entropy encoder.

The seven other bands have sparsity, and hence are fed to Compressive Sensing

(CS) block through Adaptive Measurement Scheme for further compression. To

apply CS, multiple measurement vector (MMV) is formed by combining periodic

columns of the wavelet coefficients of sub-band matrices (except for LLL sub-

band). The MMV is converted into single measurement vector (SMV) by forming

vectors of N1 dimension (N = 1024 or 2048) for application of CS as shown in Fig-

ure A.3. The number of columns for each vector is equal to (N/Sub-band Height).
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Figure A.3: 3D-DWT Process at SVC Encoder

The CS samples are generated from SMV by multiplying with randomly gener-

Figure A.4: Conversion from MMV to SMV at Encoder

ated adaptive Bernoulli Matrix (φ). The size of the Bernoulli matrix (φ) is M× N,

where M is greater than twice the non-zero elements in the vector X. Based on the

value of M to be chosen, φ is selected from a codebook of eight Bernoulli matrices
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that are already generated. The measured matrix (Y) is calculated from the equa-

tion Y = φX. The CS samples are then quantized and entropy coded by context

based compression for variable length coding (VLC) to increase the compression

efficiency [33, 34].

At SVC decoder, post entropy decoding, the Approximate Message Passing algo-

rithm is used for recovery of coefficient of all sub-bands. The recovered coeffi-

cients are then given to inverse DWT block and video is reconstructed.

A simulation based performance verification of proposed CS based SVC was done

by taking eight frames in each autonomous video cube, and a maximum of three

levels of wavelet decomposition in spatial and temporal domains. The third level

low frequency frame (LLL band) is considered as a base layer. Enhancement lay-

ers are comprised of the wavelet coefficients of all the other frames i.e., LLH, LHL,

LHH, HLL, HLH, HHL and HHH bands. After applying the CS on 3D-DWT co-

efficients, the measurements are passed through the entropy coder. The complete

base layer (LLL band) is entropy coded without compressive sensing as sparse

information is unavailable. Loss-less compression is achieved when the video

frames are recovered by utilizing the base layer, however the other layers under-

goes lossy compression due to CS encoding and decoding. A constructed image

from a video frame at different resolution is shown in figure-A.5

The performance comparison in terms of objective metrics like CR and PSNR is

Figure A.5: Reconstructed frame from video at different resolutions

done for the proposed architecture with H.264 standards [109] for different video
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sequences and presented in Table A.1.

Table A.1: Performance comparison of CS based SVC with standard H.264 model

CODEC Video CR PSNR (dB)

Proposed CS Framework at Level-1
Clock 15.73 43.32

Viplane 12.53 40.48
Cyclone 8.34 39.03

Proposed CS Framework at Level-2
Clock 30.56 37.05

Viplane 21.16 34.16
Cyclone 14.85 31.69

Proposed CS Framework at Level-3
Clock 55.16 32.6

Viplane 56.26 28.62
Cyclone 40.53 26.88

Standard H.264 Model
Clock 62.3 42.65

Viplane 37.8 40.57
Cyclone 22.1 38.4

The PSNR realized by the proposed approach is comparable with H.264

model. The performance of the proposed architecture indicates that CS based

SVC offers comparable performance with much simpler encoder configuration

and is suitable for hardware implementation. The hardware implementation of

CS based SVC has been initiated and some initial results are also reported in liter-

ature [32].

As an extension of this work, the sparsity detection algorithms developed under

this dissertation could also be extended for CS based SVC application.
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