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Abstract

3D shapes are ubiquitous in many fundamental tasks of computer graphics and

geometry processing. For many applications, new shapes have to be generated

from the existing ones, for which it it imperative to understand and model shape

of an object and its deformation. This thesis focuses on shape deformations and its

applications. Real world 3D objects undergo complex, often non-rigid deforma-

tions. One way to model such deformations is using local affine transformations.

It is thus important for applications like 3D animation, to understand the struc-

ture of affine transformations and come up with robust and efficient computa-

tional tools on the set of affine transformations. With such tools, applications

like interactive shape deformation and mesh interpolation can be effectively dealt

with.

In this thesis, an interpolation framework for affine transformations, based on

a Lie group representation of a tetrahedron is proposed. The proposed framework

provides a intuitive closed form interpolation in all cases in contrast to existing

approaches and preserves properties like isometry, reversibility, and monotonic

change of volume. The proposed Lie group representation of the tetrahedron is

extended to represent triangular and tetrahedral meshes. A detailed analysis of

the invariance of the representation and interpolation to some choices made, is

provided in the thesis.

We demonstrate the applicability of the framework for several applications

like interactive shape deformation, shape interpolation, morphing, and deforma-

tion transfer. The proposed interactive shape deformation algorithm is close to

being real-time, while the mesh interpolation algorithm is able to handle non-

registered meshes and large deformation cases. The interactive shape deforma-

vi



tion algorithm is amenable to data-driven methods, and we hope to explore data-

driven methods using our mesh representation in near future.
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CHAPTER 1

Introduction

Since the inception of computers, researchers have been trying to make machines

intelligent. The core of this process is to make machines mimic the way humans

perceive the world. The world around us is 3D and almost all the objects in the

world have geometrical structures. One important aspect of human perception is

our ability to process this geometrical information. But for machines, it is a fairly

difficult task.

Until recently, the generation and reconstruction of 3D data was costly and

involved computationally demanding processes. Most of the geometrical infor-

mation came in the form of 2D imaging data. The last decade has seen a dras-

tic change in the technology through which machines perceive the world. With

emerging technology and new-age sensors, we now have relatively cheaper cam-

era tools that provide an overwhelming amount of RGB − D or 3D data. Hence,

it has become necessary to develop tools to process and analyze such data. The

branch of research which deals with acquiring, processing, and analyzing this 3D

geometrical data is known as geometry processing.

Geometry processing as a research field is closely related to the fields of com-

puter vision, computer graphics, and image processing. While computer vision is

focused on extracting information about the 3D world through 2D imaging data,

computer graphics focuses on the issues related to rendering 3D data in the form

of 2D images. Image processing and geometry processing consist of models, algo-

rithms, and tools to process 2D and 3D data respectively. Even though many tasks

in image and geometry processing are similar, but the algorithms from image pro-

cessing are usually not directly applicable to 3D data since, unlike 2D images, 3D
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Figure 1.1: Column-1: Given 3D model. Key frames for the action sequence are
shown in red while interpolated key frames are shown in green.

data is irregular.

Typically, 3D data, obtained from sensors, is in the form of 3D point clouds,

depth scans, or volumetric images. A lot of preprocessing, in the form of cleaning,

aligning, and registering the data, is needed which results in representations like

polygonal or volumetric meshes. Each of these representations comes with its

own set of pros and cons, and the choice of using a particular representation boils

down to the applications under consideration. Most basic and popular shape

representations are triangular and tetrahedral meshes, which are used for surface-

based and volume-based shape modeling, respectively.

From an abstract point of view, geometry processing can be divided into two

parts: (1) data acquisition and (2) data modeling. While data acquisition involves

procedures like noise removal, alignment, registration, and topological correc-

tions, data modeling involves choosing an appropriate representation and mod-

ifying /editing the data to get the desired shape. Usually, shape editing is done

by a digital artist who puts a lot of time and effort in the process. Research in

shape editing is focused on designing tools to produce realistic shapes while min-

imizing user input and intervention. Taking prior knowledge about shapes into

account helps to produce realistic outcomes. Typically, one would want to capture

the shape space and restrict the deformations to that space. Applications based on

modifying and generating new shapes are the focus of this thesis.

Let us consider an example in a typical animation pipeline. A digital artist is

given a digital model of a 3D object, say a humanoid, to animate and generate

an action sequence (Figure 1.1). One may proceed by first generating important

poses (called key-frames) in the action sequence followed by an interpolation pro-

cess to generate the required sequence. The digital artist interactively deforms
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the model to generate the key-frames (Figure 1.2). Without the assistance from

geometry processing algorithms, a digital artist may need to put in a lot of effort

to design the key-frames carefully, and the process is exhaustive. The key-frames

are then interpolated while preserving several properties so that the interpolation

looks realistic. An associated goal is to use an animation sequence for one 3D ob-

ject to produce a similar animation sequence for a different 3D object (Figure 1.3).

This is referred to as deformation transfer.

The raw 3D data captured through sensors is in the form of a point cloud,

which consists of a number of points, say N. Each point Vi is a sample on the sur-

face of the 3D object and represents the 3D coordinates (xi, yi, zi). While a dense

point cloud provides a good approximation of the 3D object, a better representa-

tion of the 3D object is in the form of a mesh, where information about how a point

is related to it’s neighbors is taken into account. There are several ways to capture

this information. In order to represent the mesh as a graph, an edge eij between

each pair of adjacent points Vi and Vj is created. In triangular and other polyhe-

dral meshes, the surface is approximated locally via triangular and/or polyhedral

elements. For example, in a triangular mesh, a triangle Fijk, called face, represents

the surface between points Vi, Vj, and Vk (also known as vertices of the mesh). In

cases where the volume of the 3D object is to be considered, tetrahedral elements

Fijkl are used to capture the volume between points Vi, Vj, Vk, and Vl. Thus, a point

cloud, a graph, a triangular mesh, and a tet-mesh can be thought of as 0D, 1D, 2D,

and 3D approximations of the actual object.

Once a digital representation, say a mesh P, of the 3D object is given, new

shapes for the 3D object can be generated by computing the positions (coordi-

nates) of the points for the new mesh P�. For each point Vi on mesh P, a new point

V�
i is generated by applying a transformation Ti on the original point. In practice,

only a set of key points are selected and transformed to the final positions on the

desired mesh. Interactive shape deformation algorithms are used to compute trans-

formations for the rest of the mesh. In cases where a pair of meshes P and P� is

given and is to be interpolated, the transformation on each point is interpolated

while preserving several important characteristics of the shape.

3



Figure 1.2: Interactive shape deformation. To generate key-frames from the given
3D model several handle markers (for example set of vertices) are picked on the
given 3D model (left) and moved. The desired key-frames are obtained by using
algorithms for interactive shape deformation (right).

Figure 1.3: Deformation Transfer. The animation of the source model (row-1) is
used to generate a similar animation of the target model (row-2). The key-frames
of the source model (row-1, red) are used to generate the key frames of the target
model(row-2, blue). The animation is computed by interpolating between the
generated target key-frames.

The deformation required to be captured between two shapes may belong to

a complex and non-linear deformation space. One way to handle such complex

deformations is to decompose the deformation into locally linear/ affine deforma-

tions. Hence, deformation modeling depends on how the affine transformations

are blended and interpolated. In literature, this is known as affine interpolation and

is not a trivial task.

In this thesis, we propose algorithms for interactive shape deformation, mesh

interpolation, deformation transfer, and affine interpolation using computational

tools available on appropriate Lie groups. We begin with a brief survey followed

by an overview of the thesis contribution.
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1.1 Related Work

Geometry processing deals with 3D data acquisition, pre-processing, shape anal-

ysis, shape modeling, deformation, and other related problems. In this thesis, we

focus on shape modeling and deformation.

Objects are characterized by their geometric information and external appear-

ances, which leads to a variety of shape representations. Typically objects are rep-

resented by their boundaries. For 2D objects, parametric curves, level-set func-

tions, medial axis, or a collection of landmark points etc. are used to represent

shapes. For a recent survey refer [32]. In case of 3D objects, popular representa-

tions are point clouds, splines, triangular, polygonal, and tetrahedral meshes.

Kendall [53] defined shape as the information that is invariant to the trans-

formations of interest. Typically, the transformations are assumed to be rigid

transformations, while in case of 3D objects, for example humanoids exhibiting

articulation, some non-rigid transformations may be included.

A widely used approach, proposed by Grenander and Miller [40] for object

representation, known as morphable models, is to use transformations acting on

the space than the object itself. Each shape is represented as a deformed version of

a template shape. For 3D objects represented by its surface, a deformation can be

characterized by a deformation field, where at each point of the surface, deforma-

tion is provided in form of a vector. Constraints on the deformation field yield the

set of allowable shapes, and an energy-like function on the set of deformations in-

terpreted as a cost function/metric gives rise to a shape space. Since translation has

no effect on the shape, a simple way to represent deformation is to use gradient

of displacement vectors, called deformation gradient [95]. For complex and large

deformations, piece-wise (local) linear or affine transformations are used [82].

In what follows, we give an overview of the related work done in the problems

that this thesis addresses, namely, interactive shape deformation, mesh interpo-

lation, deformation transfer, and affine interpolation. More details on state-of-

the-art methods are included in the corresponding chapters. To begin with, for

the sake of completeness, we provide a brief but nonexhaustive survey on shape
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statistics.

1.1.1 Shape Statistics

In many applications of deformation modeling, prior information on the shapes is

helpful. This information may be captured in the form of shape statistics or shape

space. Given a collection of example shapes, shape variation is computed by com-

paring each shape to a template shape. Some of the earliest contributions to shape

statistics are by Thomson [86] and Kendall [53, 32]. Traditional approaches use

principal component analysis (PCA) on the deformation space. For example in

the work by Allen et al. [6], a PCA on mesh vertex displacement was used and in

the work by Anguelov [7], known as the SCAPE model, a PCA on the deforma-

tion between triangular faces of example and template mesh was used. In [34],

a new Lie group representation for triangular meshes was proposed. Each mesh

is represented by a set of transformations needed to deform the mesh to a fixed

template mesh. The set of transformations forms a Lie group. Then the shape

statistics are computed by performing a principal geodesic analysis (PGA) in the

Lie group space.

1.1.2 Interactive Shape Deformation

Given a 3D shape, interactive shape deformation refers to the task of generating a

realistic new shape with user specified constraints. Free-form deformation is one

of the earliest methodologies for shape deformation [14]. The 3D space in which

the object is embedded is deformed itself to achieve the desired object deforma-

tion; for surveys refer to [36, 78].

A typical approach for shape deformation is to estimate the deformed shape

by minimizing a cost function based on the differences in important characteris-

tics between the original and deformed shape, while satisfying the user specified

constraints. Several linear methods are obtained by approximating the cost based

on the differences between the two fundamental forms of the surface [91], gradi-

ents of the position functions [98] or Laplacian of the position functions [3]. For

parametric surfaces, the new surface S� is found as a constrained minimizer of the
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cost function:

E(S�) =
�

Ω
D(P(S), P(S�)) dΩ, such that M(S�) = 0, (1.1)

where S is the original surface, P(S) is the chosen property of the surface to be pre-

served (First & Second fundamental forms, for example), and D is an appropriate

metric for the property chosen, Ω is the domain of definition for the parameters,

and M(·) = 0 are the given modeling constraints. A linear approximation fol-

lowed by discretization yields the deformed mesh as a solution to a system of

linear equations.

It is well known that linear methods fail to preserve geometric details under

large deformations, especially deformations induced by translation (translation

insensitive); for details see the survey by Botsch & Sorkine [18]. In order to over-

come this shortcoming, geometric details are separately added using deformation

transfer techniques as suggested in [19, 71]. Another approach consists of finding

local transformations that preserve geometric details [80]. In the work by Lip-

man et. al. [60], known as Linear Rotation-invariant (LRI) coordinates, a rotation

invariant mesh representation based on local frames and relation between adja-

cent local frames was proposed. A linear mesh deformation algorithm is given

which solves for the unknown mesh vertices (frames followed by vertices) that

satisfy the user constraints, such that the relation between adjacent local frames is

preserved.

In the last decade, a few nonlinear methods have come up that alleviate some

of the issues with linear methods. In the work by Sumner et al. [83], a graph

is embedded in the given mesh, and the deformed mesh is obtained by blend-

ing rigid transformations computed on graph nodes via minimizing a smooth-

ness/compatibility and modeling constraints based cost function. The density of

graph nodes in the mesh affects the quality of the deformation. In another popular

framework, known as As-Rigid-as-Possible(ARAP) [79], every vertex is equipped

with a local rotation. Every deformation is explained using a collection of rigid

transformations, as far as possible.

Another successful nonlinear method - PriMo [17], relies on local rigid trans-

7



formations on a collection of prisms surrounding a given mesh to impart a global

deformation. The local deformations are computed as minimizers of a non-linear

elastic energy between adjacent prisms. It provides intuitive deformations, but

the process is computationally expensive. The authors in [25] proposed an itera-

tive scheme to compute an elastic deformation whose differential at any point is

as close as possible to some rotation.

In order to mitigate the high costs associated with nonlinear methods while

preserving the quality of deformations as far as possible, minimization of energies

of the form given in Equation (1.1) is restricted to specifically chosen/designed

linear subspaces. A coarser mesh leads to a reduction in the dimension of the

search space. This is exploited for mesh editing in [44], where Laplacian coordi-

nates based energy minimization is performed for a coarser control mesh. In [42],

a subspace using the lower eigenmodes of the Hessian of the deformation energy

plays a major role in forming the desired subspace. The deformation subspace

obtained was shown to have a global presence over the mesh, to alleviate which

sparse and localized deformations were computed in [65].

Skinning based methods form another class of mesh deformation algorithms;

for a recent survey refer to [73]. Typically, deformations of a skeletal structure

for a mesh are provided, whose weighted combinations are used to deform each

vertex of the mesh. Rotations represented by Quaternions, blended using algo-

rithms such as SLERP [76, 23] are popular approaches for skinning but can result

in artifacts as one needs to handle translations separately. Unit dual quaternions

[51] provide a similar representation for rotations and translations, and by sepa-

rately blending the center of rotation take care of some of the artifacts found in

quaternion blending. Issues like blending along true shortest paths and handling

non-rigid transformations still persist.

1.1.3 Mesh Interpolation and Deformation Transfer

Mesh interpolation is the task of interpolation between a pair of meshes represent-

ing deformed shapes of an object. Mathematically, it can be seen as a boundary

value problem, where given the boundary constraints, the task is to generate in-
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termediate points. Approaches based on intrinsic shape representation such as

differential coordinates, Laplacian coordinates, deformation gradients, and Lin-

ear rotation invariant coordinates [3, 60, 81, 95, 43, 27], work well for small defor-

mations but fail for large deformation interpolation.

Complex large deformations can be interpolated on a local scale, using locally

linear [4] or affine transformations [84]. Linear/ affine transformations are usu-

ally decomposed into rotational and scale/shear components to handle the in-

trinsic non-linearity of the individual components, where translation, scale, and

shear components are interpolated linearly, while the rotational component is in-

terpolated either via the exponential map on rotation matrices or via quaternions.

When the local elements are interpolated independently, the interpolated mesh is

prone to discontinuities and hence extra constraints or post-processing is needed

to preserve the topology [4, 84]. Neighboring elements in a mesh are likely to un-

dergo similar deformations, hence using a smoothness prior on the deformation

yields realistic results [57]. In approaches based on interpolating dihedral an-

gles and edge lengths [35] of the mesh, interpolated mesh has to be reconstructed

which is a computationally expensive process. In some cases, patch based in-

terpolation is used, where the mesh is clustered into patches undergoing similar

deformations. Each patch is interpolated independently and the final mesh is re-

constructed via stitching the interpolated patches together [85].

Another popular class of algorithms are based on representing the shapes in a

shape space followed by an interpolation process. The shape space may be either

explicitly specified as in the case of Lie bodies [34] or implicitly defined via an

energy minimization framework, as is the case with As-Rigid-As-Possible(ARAP)

approach [4]. Other approaches based on energy minimization framework [54,

9, 101, 41], involve solving of differential equations at a very fine time step and

are also computationally expensive. An approach for computing discrete-time

geodesics in discrete-shell shape space is proposed in [41], while Brandt et al.[20]

generalize this for shape spaces. The geodesic is iteratively computed via a curve

smoothing/fairing method and thus is not real-time. A multiresolution approach

has been used to reduce the computational cost.
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Approaches based on volumetric modeling of 3D objects, either as tetrahedral

meshes or distance field [29] also exist. A distance field, usually based on signed

distance function, is computed for source and target meshes and blended to com-

pute distance field for intermediate objects [92, 94]. While volumetric approaches

are able to deal with the topological differences in source and target meshes, these

are typically computationally expensive.

A recent trend is to use data driven approaches which rely on a large number

of examples meshes of an object for guiding the interpolation process [38, 39, 13,

88, 35]. These approaches are known to work well for large deformations but rely

on a large number of similar examples.

A more involved task is of deformation transfer. Given a pair of shapes of a

source object the idea is to generate similar shapes of a target object. In many

cases, in order to get meaningful results, source and target meshes are assumed

to be of the same topology. In other cases, a semantically meaningful dense cor-

respondence is desired between source and target meshes, which is not trivial

to compute and makes the problem challenging [19, 99]. In skinning methods,

rig and weights used for the source shape are transferred to the target shape [8].

Spectral methods are based on representing meshes via harmonic basis and coef-

ficients corresponding to low frequency basis are transferred to the target mesh

[58]. Other methods are based on modifying the deformation gradients for the

source model to be used for the target shapes [82].

1.1.4 Affine Interpolation

In applications related to shape and deformation modeling, affine transforma-

tions are key building blocks. Thus, a reliable and efficient affine transformation

interpolation algorithm gives a framework in which tasks like mesh deformation

and interpolation can be carried out.

Affine transformation consists of linear transformations like rotation, reflec-

tion, scale, translation, and shear. Given a pair of affine transformations A(0) and

A(1), affine interpolation refers to the task of computing a smooth path A(t), t ∈
[0, 1], such that A(t) is an affine transformation. Affine interpolation can also be
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seen as the task of generating intermediate objects related by an affine transfor-

mation. Mathematically the task is to find the roots of a affine transformation.

There are two prominent issues with affine transformations: (1) The set of affine

transformations is not a linear space, assuming so produces artifacts, and (2) tools

needed for interpolation on the space of affine transformation are either not avail-

able in closed form or are not defined on the complete space. A popular way of

dealing with these issues is to decompose the affine transformation into simpler

transformations like rotation and shear/ scale transformation [77]. But such a de-

composition is not always intuitive. In [72], a closed form solution was proposed,

but the solution does not exist in all the cases.

1.2 Contribution

The contribution of the thesis is as follows:

1. A framework for interpolation of affine transformations is proposed, which

is based on decomposing the affine transformation into three constituent

parts, i.e. rigid, scale, and shear. The proposed framework provides a intu-

itive closed form interpolation in all cases in contrast to existing approaches.

The proposed interpolation algorithm preserves properties like isometry, re-

versibility, and monotonic change of volume [12].

2. A Lie group based representation for a tetrahedron is proposed which can

also be used to represent a triangle as a special case. The proposed repre-

sentation can be used to represent tetrahedral and triangular meshes. A de-

tailed analysis of the representation in term of invariance to certain choices

involved is provided [12].

3. The proposed mesh representation is used for several shape editing tasks

like interactive shape deformation, shape interpolation, morphing, and de-

formation transfer [10, 11].
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1.3 Thesis Organization

In Chapter 2, we introduce a Lie group representation of a tetrahedron and use it

to interpolate any given affine transformation. The work done in Chapter 2 is pub-

lished as [12]. In Chapter 3, the Lie group representation of tetrahedron is used to

represent tetrahedral and triangular meshes based on which an interactive shape

deformation framework is proposed. In Chapter 4 and 5, two applications, de-

formation transfer and shape interpolation, are discussed respectively. The work

included in Chapter 4 and 5 has been published as [10, 11]. We conclude with a

discussion and possible future work in chapter 6.

The work in this thesis requires a basic understanding of differential geometry

and Lie group theory. We provide a summary of the mathematical background

needed to understand the material in this thesis in Appendix A.1 and refer readers

to standard texts [37, 69] for detailed discussions.
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CHAPTER 2

Affine Interpolation

Affine transformations are of vital importance in many tasks pertaining to mo-

tion design and animation. Interpolation of affine transformations is non-trivial.

Typically, the given affine transformation is decomposed into simpler components

which are easier to interpolate. This may lead to unintuitive results, while in some

cases, such solutions may not work. In this chapter, we propose an interpolation

framework which is based on a Lie group representation of the affine transfor-

mation. The Lie group representation decomposes the given transformation into

simpler and meaningful components, on which computational tools like the ex-

ponential and logarithm maps are available in closed form. Interpolation exists

for all affine transformations while preserving a few characteristics of the origi-

nal transformation. A detailed analysis and several experiments of the proposed

framework are included.

2.1 Introduction

3D affine transformations play a pivotal role in many applications pertaining to

computer vision, computer graphics and geometry processing. The need to inter-

polate affine transformations arises ubiquitously in applications involving anima-

tion design [77, 93], inverse kinematics [84, 31], motion estimation and averaging

[100], image morphing, and robotics [74]. It is well known that the set of matri-

ces T representing affine transformations forms a Lie group[66], interpolation on

which is non-trivial. Moreover, as far as possible, the interpolated transforma-

tion should preserve the properties of the original affine transformation, such as

13



orthogonality and area preservation.

Typical approaches decompose affine transformations into rotational and shear/

scale components, after which each component is handled separately. Steady

Affine Motion (SAM) [72] for affine interpolation is found to maintain several

desired properties. But in cases exhibiting large shear and rotation, the SAM in-

terpolation does not exist.

The proposed approach decomposes any given 3D invertible, orientation-preserving

affine transformation1 into a series of intuitive transformations (each coming from

a Lie group) needed to deform a tetrahedron into a fixed canonical tetrahedron.

This gives a Lie group representation of the given affine transformation. Thus, an

orientation- preserving 3D affine transformation can be represented as a mapping

between two specific tetrahedrons, and conversely, a mapping between two ori-

ented tetrahedrons with given correspondence as a unique 3D orientation- pre-

serving affine transformation. This is a generalization of the Lie bodies repre-

sentation of 3D triangular meshes introduced by Freifeld and Black [34]. The Lie

bodies approach represents each triangle of a mesh via a specific set of transforma-

tions needed to deform a corresponding triangle in a given template mesh to the

triangle under consideration. The approach proposed in this chapter represents

any orientation-preserving 3D affine transformation as a decomposition into three

components: a 3D rigid transformation, uniform scaling, and a specific 3D-shear,

refer to Figure 2.1. The interpolation of the affine transformation is obtained us-

ing interpolation of the three components. The advantage of this decomposition is

that closed-form solutions are known for interpolations of the three components.

Moreover, several properties of the original affine transformation are preserved

by the proposed scheme.

To summarize:

1. The proposed approach interpolates any orientation-preserving 3D affine

transformation, unlike the state-of-the-art approach[72].

2. We provide a detailed analysis of the proposed interpolation scheme and

show that it has several desirable properties like: (a) preserves isometry, (b)

1An affine transformation T : Rn → Rn is orientation-preserving if det(T) > 0.
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preserves volume, and (c) yields a monotonic change in the volume.

3. The proposed interpolation scheme can also interpolate two tetrahedrons

(and as a special case, triangles) related by any orientation-preserving 3D

affine transformation. The interpolation is unique given a correspondence

and a vertex ordering. Variation with respect to vertex ordering is analyzed

in detail in this chapter.

In the next section, a review of the related work is provided. In Section 2.3,

we provide details of the proposed representation of an affine transformation/

tetrahedron, along with a discussion on its existence and uniqueness. Section 2.4

describes the proposed interpolation algorithm and properties of the given affine

transformation that are preserved by the interpolations obtained. Two important

invariance properties related to our approach are analyzed in Section 2.5, followed

by experiments and results in Section 2.6. We conclude the chapter in Section 2.7.

2.2 Related Work

There are two scenarios where the proposed approach is useful, (a) when two ob-

jects A(0) and A(1), also referred to as source and target, (as meshes, point clouds

or triangles in 3D) are related by a unique orientation-preserving 3D affine trans-

formation and (b) when an orientation- preserving 3D affine transformation T is

given. In the former, intermediate objects A(t), 0 < t < 1 need to be computed,

while in the latter intermediate affine transformations T(t), 0 < t < 1, such that

T(0) = I and T(1) = T need to be computed. We first deal with the former case,

and discuss ways to map the latter into the former, later in the chapter.

The set of affine transformations forms a non-linear manifold and is not com-

pact [37]. Closed-form expressions of differential geometric tools like the expo-

nential map are also not available. The interpolation of affine transformations

is typically carried out by decomposing the given transformations into simpler

transformations for which interpolation is well understood. The decomposition

itself may not be intuitive, and each decomposition comes with its pros and cons.

A popular decomposition consists of rotation with scale and/or shear transfor-
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mations. Interpolation of rotations (SO(3)) is a well-studied problem, often solved

using quaternions or matrix exponential and log maps.

In [77], Shoemake propose to decompose the affine transformation, T, using

polar decomposition T = QS, where Q and S are rotation and stretch components

(stretch being represented by symmetric positive definite matrices). Polar decom-

position was found to be more stable than SVD decomposition (which is costly

to compute and sensitive to small perturbations) and QR decomposition (which

is stable under small perturbations but produces unintuitive rotational compo-

nents). Interpolation of the rotational component is achieved using the SLERP

method for quaternions [76], while the stretch component is interpolated linearly.

For 2D affine transformations, authors in [50] use polar decomposition followed

by exponential maps on rotations and symmetric positive-definite matrices to in-

terpolate the rotation and stretch components, respectively. The limitation of po-

lar decomposition comes in form of its inability to handle shear directly. A similar

approach to model non-rigid deformation of meshes is used in [4].

In [1] the use of matrix exponential and log map was advocated. The matrix

exponential and log map used are not in closed form and a solution based on

Taylor series approximation is used. In [84], a combination of two approaches is

used. The affine transformation is decomposed into rotation and stretch transfor-

mations, and while the rotation transformation is interpolated using closed-form

matrix exponential and log map based on Rodrigues’s formula [64], the stretch

component is interpolated linearly.

A direct interpolation of a given 3D affine transformation is introduced by

defining a matrix exponential and log map in [72]. The maps defined are given

in closed-form, and are computationally efficient to implement. The interpolated

transformations are also shown to preserve important properties like isometry

and volume. However, in cases exhibiting large shear and rotation, the solution

does not exist.

Similar cases arise in the context of skinning where the blending of transforma-

tions is involved. Linear blend skinning (LBS) [61] and other linear methods are

known to produce candy-wrapper artifacts. Decomposition based linear blend-
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ing approaches are also failure-prone as the linear blending of rotations does not

necessarily produce a rotation. To alleviate limitations of linear methods, non-

linear methods are proposed, where the rotation transformations are treated us-

ing quaternions [76, 52], while for Euclidean transformations dual quaternions

were introduced [51]. For interpolation, the SLERP algorithm [76] is used which

is iterative in nature, but for practical purposes, an approximation is found to be

sufficient. While the quaternion based approaches work well for relatively large

rotations, they are not well suited to model non-rigid deformation, for quater-

nions can only capture euclidean/rigid transformations. For a detailed survey

refer to [48].

In [34], Freifeld et al.propose a Lie group based mesh representation for tri-

angular meshes, henceforth mentioned as Lie bodies, where each triangular face

of the mesh is represented by a set of transformations needed to deform a corre-

sponding triangle on a template mesh to the triangle under consideration.

The approach proposed in this chapter decomposes a given 3D orientation-

preserving affine transformation into a series of simpler transformations (each

from a Lie group) needed to deform a tetrahedron to a given fixed tetrahedron,

analogous to the Lie bodies framework. While the difference between our rep-

resentation and the one used in the Lie bodies framework may appear minor, it

is important to note that the Lie bodies framework provides a representation of

triangles and not tetrahedrons. Thus, it may be used for computing interpolations

between triangles (and hence a subset of orientation-preserving 3D affine trans-

formations), but not for interpolating all possible orientation-preserving 3D affine

transformations. Also, the translation component of the transformation is ignored

in the Lie bodies framework, as the framework is proposed for computing shape

variations and shape statistics of triangular meshes, which need to be translation-

invariant. However, in applications like designing motions or interpolating trans-

formations, translation plays a crucial role. Approaches that handle translation

and the linear component of the affine transformation separately [1, 84, 77], fail to

capture an intuitive interpolation path.

We also prove that our interpolation scheme has several desirable proper-
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ties like isometry preservation, volume preservation and monotonicity of vol-

ume, and analyze its invariance properties in terms of choice of canonical tetrahe-

dron and vertex orderings. These theoretical contributions are missing (for planar

transformations) in [34].

In the next section, we present the proposed representation of a tetrahedron

with respect to a chosen canonical tetrahedron, which can also be used to repre-

sent the orientation-preserving 3D affine transformation between the two tetrahe-

drons.

Figure 2.1: Lie group representation of a tetrahedron. (left to right): (1) A tetrahe-
dron with vertices (u0, u1, u2, u3) (in this order) is transformed using E = [R d] ∈
SE(3) to a tetrahedron with vertices (0, v1, v2, v3) such that the face (0, v1, v2) lies
in the xy plane, edge (0, v1) aligns with the positive x axis, y coordinate of v2
and z coordinate of v3 are positive. (2) A 3D uniform scaling with scaling factor
s = 1/||v1|| is applied such that the length of the first edge vector becomes 1,
to obtain the tetrahedron with vertices (0, (1, 0, 0), w2, w3). (3) Finally, a 3D shear
transformation A which leaves the x-axis unchanged, maps vertex w2 to the point
(1, 1, 0), and vertex w3 to the point (0, 0, 1) is applied in order to obtain the canon-
ical tetrahedron. The tetrahedron can thus be represented as the triplet (E, A, s)
with respect to the canonical tetrahedron.

2.3 Representation of a Tetrahedron using Transfor-

mations

In this work, we will denote the n × n identity matrix by In, a vector of n-ones

or zeros by 1n, 0n respectively, and the transpose of a matrix A by AT. We now

describe the representation of a tetrahedron in R3. We call the tetrahedron formed

by vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 0, 1) (in this order), a canonical tetrahedron.

Any non-degenerate2 tetrahedron with vertices u0, u1, u2, u3, (in this order) and

2A tetrahedron is non-degenerate if the volume enclosed by the tetrahedron is strictly positive.
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same orientation3 as the canonical tetrahedron, can be deformed into the canon-

ical tetrahedron using a sequence of transformations described below. Refer to

Figure 2.1 for a visualization of the process.

1. Rigid transformation in R3: The rotation component R of the rigid transfor-

mation aligns: (a) face (u0, u1, u2) to the xy plane, with u2 being mapped to a

point with positive y coordinate, and (b) edge (u0, u1) to the positive x-axis.

Due to the non-degeneracy and same orientation assumption, the vertex u3

will get mapped to a point with positive z-coordinate. The translation vec-

tor d shifts the point Ru0 to the origin. Let us denote the new vertices by

(0, v1, v2, v3).

2. Uniform scaling: An element of the Lie group R+, where the group opera-

tion is the usual multiplication between real numbers (henceforth denoted

by GS), uniformly scales the tetrahedron by s = 1
||v1|| so that the vertex v1

is mapped to the point (1, 0, 0). Let us denote the vertices of the resulting

tetrahedron by (0, (1, 0, 0), w2, w3).

3. Shear: A 3D transformation that preserves the side joining vertices 0 and

(1, 0, 0), while aligning the vertex w2 with the point (1, 1, 0), and vertex w3

with the point (0, 0, 1). Borrowing notations from [34], we denote this subset

of transformations as GA := {A ∈ GL(3) | A[1 0 0]T = [1 0 0]T, xy plane is an

invariant subspace of A, A22, A33 > 0}, or

GA :=








1 α1 α3

0 α2 α4

0 0 α5


 | αi ∈ R, i = 1, . . . , 5, α2, α5 > 0





.

Thus, each tetrahedron can be deformed into the canonical tetrahedron using the

transformations described above. It appears that there are two choices involved

in order to represent a tetrahedron: the choice of the canonical tetrahedron, and

the choice of vertex ordering. This raises an important question: Does the inter-

polation path vary if we choose a different canonical tetrahedron and ordering of
3Two tetrahedrons with vertices pi ∈ R3, i = 0, . . . , 3 and qi ∈ R3, i = 0, . . . , 3 listed in this

order, are said to have same orientation if sign(det(P)) = sign(det(Q)), where P = [ p̃0 p̃1 p̃2 p̃3] ∈
R4×4, Q = [q̃0 q̃1 q̃2 q̃3] ∈ R4×4, and p̃i ∈ R4 is the homogeneous coordinate representation of
pi ∈ R3.
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vertices in a tetrahedron? These questions are addressed in Section 2.5, where we

discuss the implications of the choices made.

2.3.1 Matrix Representation of Transformations

Since the individual transformations differ in the number of parameters, these

need to be embedded in appropriate matrices before they can be composed to

obtain a 3D affine transformation.

The rigid transformation E ∈ SE(3), consisting of a rotation R and transla-

tion vector d, will be represented as a 4 × 4 matrix: E =


 R d

0T
3 1


. The uniform

scaling s ∈ R+ will be represented by the matrix S =


sI3 03

0T
3 1


, while the 3 × 3

shear transformation matrices will be embedded in the upper left submatrix of I4,

i.e.


 A 03

0T
3 1


. We will denote both the 3 × 3 and 4 × 4 shear matrices with the

same notation, typically A. The 3D affine transformation that deforms a given

tetrahedron into the canonical tetrahedron is given by,

T = ASE. (2.1)

The transformation T is represented by the triplet (E, A, s) ∈ M := SE(3) ×
GA × GS, and thus, any tetrahedron can be represented by an element of the set

M. Note that each of the three sets of transformations used above forms a Lie

group4, and thus the direct product M is also a Lie group.

2.3.2 Lie Group Representation of a Tetrahedron

The group operation on Lie group M is defined as: (E1, A1, s1) · (E2, A2, s2) =

(E1E2, A1A2, s1s2). Henceforth the group operation p · q, for p, q ∈ M will simply

be denoted by pq. The Lie algebra m of M is defined as m = se(3) × gA × gS,

where
4SE(3) and GS are well known Lie groups, while the proof that GA is a Lie group is given in

Appendix A.2.
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se(3) =






Ω d

0T
3 0


 ∈ M4(R) | Ω ∈ M3(R), d ∈ R3, Ω = −ΩT



,

gA =








0 ᾱ1 ᾱ3

0 ᾱ2 ᾱ4

0 0 ᾱ5


 | ᾱi ∈ R, i = 1, . . . , 5





, and gS = R, are the Lie algebras of

the Lie groups SE(3), GA and GS, respectively. Thus M is a 12 dimensional Lie

group (6 for SE(3), 5 for GA and 1 for GS). The exponential and logarithm map

for M is obtained by concatenating the exponential and logarithm map for each

of three components: SE(3), GA and GS, i.e., exp : m → M = (exp : se(3) →
SE(3), exp : gA → GA, exp : gS → GS) and log : M → m = (log : SE(3) →
se(3), log : GA → gA, log : GS → gS). The exponential and logarithm maps for

the groups SE(3) and GS are known in closed form [37, 34] and are listed in the

Appendix along with the derivations for exponential and logarithm maps for Lie

group GA.

Thus, a non-degenerate tetrahedron can be represented using an appropri-

ate element of M, with respect to a chosen canonical tetrahedron. Given an

orientation-preserving affine transformation, we can apply the inverse of it on

a chosen canonical tetrahedron, to obtain another tetrahedron, whose Lie group

representation can be used to represent the given affine transformation. The exis-

tence and uniqueness of our representation for a tetrahedron, or for an orientation-

preserving affine transformation rely on the following two results. (1) Given a

pair of oriented tetrahedrons with correspondence between vertices, a unique

orientation-preserving affine transformation exists transforming one tetrahedron

into the other. (2) Additionally, given a fixed ordering of vertices of the tetrahe-

dron, a unique decomposition in the proposed representation exists. These two

properties allow us to represent any tetrahedron, or any orientation-preserving

affine transformation, uniquely with the proposed framework. These results are

discussed in the following subsection.
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2.3.3 Existence and Uniqueness

We will represent a tetrahedron in R3 via its vertices (u0, u1, u2, u3), and we will

collect the coordinates of the vertices as column vectors in a matrix. The ordering

of vertices is assumed to be fixed, and with a little abuse of notation, we will use

the same symbol to denote a tetrahedron, and the matrix (of size 4× 4) containing

its homogeneous vertex coordinates, wherever required.

Theorem 2.3.1. Let ΔX and ΔY represent two tetrahedrons in R3 with correspondence

between vertices given, and vertices placed in a fixed order. Let T denote an invertible

orientation-preserving affine transformation. Then the following is true:

1. For any pair of non-degenerate tetrahedrons ΔX and ΔY with the same orientation, a

unique orientation-preserving affine transformation T exists such that TΔX = ΔY.

2. For a given orientation-preserving affine transformation T, a pair of non-degenerate

tetrahedrons ΔX and ΔY exist such that TΔX = ΔY. If the transformation T

and one of the two tetrahedrons are given, the other tetrahedron can be computed

uniquely.

3. Given an orientation-preserving affine transformation T between tetrahedrons ΔX

and ΔY, T can be uniquely decomposed into components (E, A, S) such that T =

ASE.

Proof. Refer to Appendix A.2.

Part (1) and (2) of Theorem 2.3.1 together show that there exists a bijection

between the set of orientation-preserving affine transformations and the set of

pairs of non-degenerate tetrahedrons (with one of the tetrahedrons fixed). With

the decomposition given by part (3) of Theorem 2.3.1, a unique decomposition

(corresponding to a fixed ordering of vertices) of the transformation T is possible.

2.4 Interpolation Algorithm & Properties

Given a 3D orientation-preserving affine transformation T, let p = (E, A, s) ∈ M
be its proposed Lie group representation. We propose to interpolate each of these
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three components on their respective Lie groups using appropriate exponential

and logarithm maps, and combine the resultant components to obtain an interpo-

lation of the given affine transformation. Note that the exponential and logarithm

maps are known in closed form for each of the three components, but not for the

group of general orientation-preserving affine transformations. Thus, the inter-

polated affine transformation is given as

Tt = exp(t log A) exp(t log S) exp(t log E), (2.2)

where log A, log S and log E are logarithms of the matrices A, S and E respec-

tively. The Lie group representation of the interpolated transformation between

the identity I and transformation T at time t ∈ [0, 1], is given by

p(t) = exp(t log p). (2.3)

Note that for A and S, the exponential and log maps are considered in the form

of matrices of compatible size. Closed-form expressions of these maps are given

in Appendix A.3. Similarly, let Δp, Δq be two non-degenerate tetrahedrons in R3

with given vertex correspondence and vertex order to be interpolated, and let

Δ represent the canonical tetrahedron. Let p, q ∈ M be the Lie group elements

representing the tetrahedrons Δp, Δq respectively. The representation of the inter-

polated tetrahedron between Δp and Δq is given by

p exp(t log p−1q), t ∈ [0, 1] (2.4)

For an intuitive explanation refer Figure A.1 (Appendix A.1).

In [72], the interpolation of an affine transformation T is defined to be steady

if Tt = Tt, t ∈ R. The following result specifies conditions under which our

interpolation is steady, whose proof is given in Appendix A.2.

Lemma 2.4.1. (Steady interpolation) If the given transformation T consists either of only

one of the three components: A, S or E, or a combination of A and S, then the proposed

interpolation is steady.
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The interpolation scheme proposed in [72] is always steady, but does not exist

in cases of large rotation and shear. Our solution, although not always steady,

always exists. One can thus think of our scheme as a decomposition of the given

affine transformation into the specified components, followed by a steady inter-

polation in each of the components, concluding with a composition of the compo-

nents.

In the following lemmas, we provide a set of properties preserved by our in-

terpolation algorithm. The proofs are given in Appendix A.2. These properties

are essential in order to get intuitive interpolation paths.

Lemma 2.4.2. (Volume Preservation) If the given transformation T is volume-preserving,

i.e., det(T) = 1, then the interpolated transformations Tt, 0 ≤ t ≤ 1 defined in Equation

(2.2) are also volume-preserving.

Lemma 2.4.3. (Monotonic variation of volume) If the given transformation T increases

(decreases) the volume, i.e., det(T) > 1 (det(T) < 1), then the interpolated transforma-

tions Tt, 0 ≤ t ≤ 1 monotonically increase (decrease) the volume.

Lemma 2.4.4. (Isometric Transformations) Assuming that the transformation T is iso-

metric, i.e., ||T(x − y)|| = ||x − y||, ∀x, y ∈ R3, all the interpolated transformations

Tt, 0 ≤ t ≤ 1 are also isometric.

Lemma 2.4.5. (Reversibility) Let Δp and Δq be two tetrahedrons. Let Δq
p(t), t ∈ [0, 1]

represent the interpolated tetrahedron at time t considering tetrahedron Δp as source, and

tetrahedron Δq as target. Then Δq
p(t) = Δp

q (1 − t), ∀t ∈ [0, 1].

Intuitively, this rests on the fact that geodesics are reversible, which is the key

construct of our interpolation algorithm.

2.4.1 Smooth Interpolation of Multiple 3D Affine Transforma-

tions

It is often required to interpolate a sequence of affine transformations Ti, i =

0, . . . , n smoothly. Using the interpolation algorithm given in the previous sec-

tion for each consecutive pair of transformations from the given sequence will
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produce a continuous but not differentiable interpolation. Lack of smoothness

produces less appealing interpolations.

We summarize the algorithm proposed in [59] in order to obtain a C1 interpo-

lation, and refer the reader to this chapter for higher-order smoothness. Let the

decomposition of each Ti be given by Ti = AiSiEi, i = 0, . . . , n. We first compute

a C1 interpolation of individual components in the respective Lie group. We will

present the algorithm for a smooth (C1) interpolation in the Lie group GA; the

algorithm for interpolation in the other Lie groups remain the same.

Let NA
i (t), t ∈ [0, 1], i = 0, . . . , n − 1 denote the ith segment of the C1 interpo-

lating curve in GA. The constraints that ensure a C1 interpolation are:

NA
0 (0) = A0, NA

n−1(1) = An

NA
i (1) = NA

i+1(0) = Ai+1, i = 0, . . . , n − 2

d
dt

NA
i (1) =

d
dt

NA
i+1(0), i = 0, . . . , n − 2

These constraints represent the continuity conditions for the curve and derivative

of the curve. In order to ensure that a solution to these constraints exists, we

define the curve as a quadratic curve in terms of two free variables Bi, Ci ∈ gA, i =

0, . . . , n − 1, as NA
i (t) = Ai exp(tBi) exp(t2Ci), i = 0, . . . , n − 1. The constraints on

the curve yield a set of equations that the free variables must satisfy:

Ci = log
�

exp(−Bi)A−1
i Ai+1

�
, i = 0, . . . , n − 1, (2.5)

Bi+1 = A−1
i+1AiBi A−1

i Ai+1 + 2Ci, i = 0, . . . , n − 2, (2.6)

while B0 ∈ gA is a free variable. In our experiments we set B0 = log(A−1
0 A1).

Using appropriate exponential and logarithm maps, one can similarly determine

C1 curves NS
i (t), NSE(3)

i (t) in the Lie groups GS and SE(3) respectively. The

C1 affine transformation curve is then obtained by composing these individual

curves: Ti(t) = NSE(3)
i (t) · NS

i (t) · NA
i (t), i = 0, . . . , n − 1, t ∈ [0, 1].

One can also use a subdivision scheme on a curve interpolating the given n

transformations. The given curve can be first sampled to obtain mn transforma-
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tions with m > 1, followed by the interpolation procedure described above to

produce a smoother interpolation. This is demonstrated via experiments in Sec-

tion 2.6.

In the next section, we discuss the invariance properties of the proposed inter-

polation scheme with respect to the choice of the canonical tetrahedron and choice

of vertex ordering.

2.5 Choice of Canonical Tetrahedron and Re-Ordering

We first show that the proposed approach is invariant to the choice of canonical

tetrahedron, followed by an investigation of the effects of change in vertex order-

ing.

2.5.1 Effect of Changing the Canonical Tetrahedron

In the proposed Lie group representation of a tetrahedron, the shear component

assumes that the tetrahedron is aligned in a particular manner by the rigid compo-

nent. In case a different canonical tetrahedron is chosen, the assumption on align-

ment may be violated. Rather than changing the structure of the shear matrix,

we use the same rigid component used with the original canonical tetrahedron

in the representation with respect to the new canonical tetrahedron. Thus, for a

tetrahedron Δp, if the representation in terms of the usual canonical tetrahedron

is (Ep, Ap, sp), then its representation with respect to a new canonical tetrahedron

Δ1 is (Ep, Ap1 , sp1), while the actual affine transformation between Δp and Δ1 is

T1 = E−1
Δ1

Ap1Sp1 Ep, (2.7)

where EΔ1 is the rigid component in the representation of Δ1 with respect to Δ.

Theorem 2.5.1. (Invariance to Canonical tetrahedron): Let Δ1 and Δ2 be two arbi-

trary canonical tetrahedrons, and Δp and Δq be two tetrahedrons to be interpolated. Let

(Ep, Api , spi) and (Eq, Aqi , sqi), i = 1, 2 denote the Lie group representations of tetra-

hedrons Δp and Δq with respect to canonical tetrahedrons Δi, i = 1, 2 respectively. Let
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(Eci , Aci , sci), i = 1, 2 be the interpolated Lie group elements obtained using canonical

tetrahedrons Δi, i = 1, 2, respectively. Then, (Eci , Aci , sci), i = 1, 2 represent the same

tetrahedron.

Proof. Refer to Appendix A.2.

Intuitively, this is analogous to interpolation between two points in an n-dimensional

Euclidean space En. Once an origin is fixed, the points can be represented as vec-

tors in Rn and interpolation can be carried out using the familiar convex combi-

nation of the vectors representing the points. With a different choice of origin, the

representation of the two points and the interpolated point will change, but the

points themselves remain the same. In our case, we interpolate between points

of a manifold instead of a vector space, using a generalization of the convex com-

bination operation in terms of the exponential and log maps. In effect, what we

show is that the choice of canonical tetrahedron is analogous to the choice of ori-

gin in a Euclidean space, and therefore it does not affect the interpolation process.

2.5.2 Effect of Reordering

The Lie group representation of a tetrahedron in the proposed framework de-

pends on the choice of the first face and edge (ordering of vertices in the face-

list), since the rigid transformation is chosen to align the first face and edge. Let

Oi, i = 1, 2 represent two distinct orderings of vertices of any tetrahedron. Let

pOi , i = 1, 2 and qOi , i = 1, 2 denote the Lie group elements representing the

tetrahedrons Δp and Δq, in the vertex orderings Oi, i = 1, 2, respectively. Let

Vp
Oi

, i = 1, 2 and Vq
Oi

, i = 1, 2 denote the 4 × 4 matrices of vertices of the tetrahe-

drons Δp and Δq in homogeneous coordinates in column order Oi, i = 1, 2.

Isometric Transformations & Uniform Scaling

Under the assumption that tetrahedrons Δp and Δq exhibit only isometric trans-

formation and/or uniform scaling, there exists an GS × SE(3) element, say (s, E)

27



such that Vq
Oi

= SEVp
Oi

, i = 1, 2. Thus the Lie group elements of the source and tar-

get tetrahedrons under different orderings are related by qOi = pOi(E−1, I3, 1
s ), i =

1, 2. The tangent vectors for both orderings is then log((pOi)
−1qOi) = log((E−1, I3, 1

s )), i =

1, 2. Hence, the interpolation process remains invariant to re-ordering if the un-

derlying transformation is Isometric and/or uniform scaling.

Non-isometric Transformations

In cases where the source and target tetrahedrons exhibit shear transformation

other than rigid and uniform scaling, the interpolation path depends on the choice

of the first face and edge. Let T
O1
t and T

O2
t be the interpolated transformations at

time t ∈ [0, 1] corresponding to two different orderings of the tetrahedron vertices

given by

T
Oi
t = exp (t log AOi) exp (t log SOi) exp (t log EOi), i = 1, 2,

where (EOi , AOi , sOi) are the corresponding Lie group representations, and we

have assumed the canonical tetrahedron from Section 2.3. The change in the in-

terpolated path can be represented by the change in the corresponding transfor-

mations i.e. uO1,O2 = maxt∈[0,1] ||TO1
t − T

O2
t ||F. We use the maximum and median

of u over all orderings in order to capture the amount of change in interpolation

paths under vertex re-orderings. In Figure 2.8, we empirically demonstrate that

the change in path depends on the amount of shear component. A theoretical

analysis of dependence of interpolation path on vertex ordering in the presence

of shear needs to be carried out, so that users can make an informed choice of a

particular vertex ordering.

We now provide details of the experiments and their results using the pro-

posed framework and a comparison with other state-of-the-art approaches.

2.6 Results

In what follows, we will refer to the interpolation approach in [72] as SAM (Steady

Affine Morph). Once we have the interpolated affine transformations, the re-
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sults can be shown on different 3D objects. We present results using tetrahedrons

and cuboids. The source code is available at ��������������������������������

�������������������.

Methods Example 1 Example 2 Example 3 Example 4 Example 5

Shoemake1992

Alexa2002

Sumner2005

Rossignac2011

Proposed

Figure 2.2: Examples of planar interpolation between triangles in R3. Row-
wise (top-down) Interpolation results using method proposed in Shoemake1992
& Alexa2000 ([77] [4]), Alexa2002 [1], Sumner2005 [84], SAM [72] and pro-
posed approach, for 5 different examples (column-wise). Triangles in green
denote the source and target triangles. Interpolated results are produced for
t = 0.25, 0.5, 0.75.

2.6.1 Comparison with the State-of-the-art

We begin with focusing on planar affine transformations. Such an affine transfor-

mation can be used as a map between triangles in R2. In Figure 2.2, we show re-

sults of planar interpolation on several cases for the following existing methods of

interpolation: Shoemake1992 & Alexa2000 ([77] [4]), Alexa2002 [1], Sumner2005

[84] and SAM [72]. Translation is present in all examples. In addition, examples 2

and 4 have only rotation and shear component respectively, while examples 1, 3

and 5 have varying degrees of rotation and shear components. It can be seen that

the results produced by the proposed approach and SAM produce very similar
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Figure 2.3: A comparison between SAM and the proposed approach. An example
with a constant rotation about the z axis, while the shear (of x coordinate by y
coordinate) component is gradually increased from top to bottom in Rows 1 to 4,
and left to right. While the source and target tetrahedrons are shown in green,
the interpolated tetrahedrons produced by SAM are shown in red and those pro-
duced by the proposed algorithm are shown in yellow. As expected, when the
shear component becomes large, the SAM interpolation does not exist (Row 4,
right). (Bottom row): 6 of the above 12 interpolations for SAM and proposed
approach are superimposed in order to compare the difference in the obtained
interpolations as the shear component increases. The trajectory corresponding to
SAM changes considerably due to the steadiness requirement before it fails to pro-
duce an interpolation, while the proposed method does not produce significantly
different interpolations.
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and intuitive results. Also note that example 5 consists of a large shear and ro-

tation transformation, in which case the SAM interpolation approach fails, while

the proposed approach is able to produce an intuitive interpolation.

Moving onto 3D affine transformations, in Figure 2.3, we produce interpola-

tions for affine transformations with constant rotation about the z-axis, and grad-

ually increasing degree(top to bottom, left to right) of shear, using SAM and the

proposed approach. When the shear component becomes large, SAM fails to pro-

duce an interpolation (Row 4, Column 3 in Figure 2.3). One can also observe in the

bottom row of Figure 2.3 that the trajectory corresponding to SAM changes con-

siderably before it fails to produce an interpolation, while the proposed method

does not alter drastically, and produces an interpolation for all cases.

Table 2.1: Comparison of ARA measure proposed in [72], with the proposed ap-
proach for examples from Figure 2.2. ARA is computed by taking a grid sampled
at an interval of .01 and for 50 intermediate poses.

Approaches SAM Proposed
Example 1 9.0282e-05 1.1218e-04
Example 2 2.7515e-06 2.3321e-06
Example 3 3.1247e-06 1.3392e-05
Example 4 6.9723e-05 6.9486e-05
Example 5 - 3.8634e-05

The Average Relative Acceleration (ARA) measure is used in SAM, to quan-

tify the steadiness of the interpolation path. It is defined in [72] as: the average

magnitude (over space and time) of the acceleration vector by which the relative velocity

expressed in the moving frame changes over time. The ideal value of ARA is zero, and

by construction, SAM achieves an ARA of 0. Since our algorithm does not pro-

duce steady interpolation in cases other than those mentioned in Lemma 2.4.1, we

include an empirical comparison of the ARA measure of the proposed approach

with SAM for the examples from Figure 2.2, in Table 2.1. The step size for the grid

and the number of intermediate poses used in computing the ARA are .01 and

50, respectively. Although the proposed approach is not steady in all cases, the

ARA measures are at most a magnitude off from those obtained by SAM for the

corresponding discretization.
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Figure 2.4: Extrapolation and interpolation. Source and target tetrahedrons are in
green. Results using SAM(Row 1), the proposed approach (Row 2), comparison
of SAM and the proposed approach (Row 3) and edge lengths corresponding to
the edges of the interpolated base triangles and distance of fourth vertex from the
base triangle (Row 4: SAM in red, proposed approach in yellow). The affine trans-
formation used is: Column 1- Rotation, scale and translation, Column 2- shear and
translation, and Column 3- Rotation, shear and translation. Results are produced
for t ∈ [−0.75, 1.75] with a sampling interval of 0.05.
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2.6.2 Extrapolation

Rather than restricting the computation of Tt for t ∈ [0, 1], we can extrapolate the

transformation by computing Tt for t beyond this range. In Figure 2.4, we show

results of extrapolating the given 3D affine transformation using our approach

and SAM. The two approaches produce the same result in case the transforma-

tion is a combination of shear and translation (refer to Figure 2.4, center column),

while the translation component differs in case the transformation consists of ro-

tation, scaling and translation (refer to Figure 2.4, left). This is evident from the

last row in Figure 2.4, where we plot the edge lengths of one triangle (base) and

the distance of the fourth vertex from the base triangle for each tetrahedron ob-

tained. The edge lengths for tetrahedrons produced by SAM are shown in red,

while those using our approach are shown in yellow. We emphasize the difference

in the two approaches in case the transformation consists of rotation, shear, and

translation. As can be seen in Figure 2.4 (right), a regular tetrahedron is rotated,

translated and sheared to make it non-regular. When our approach is used to ex-

trapolate this transformation, it yields more irregular tetrahedrons, while SAM

reproduces a regular tetrahedron at some time t > 1, as can be observed from

plots of lengths of tetrahedron sides in Figure 2.4 (bottom row, right). The lengths

in the first two examples of each tetrahedron are same for both approaches (Figure

2.4, bottom row: left, center).

2.6.3 Smooth Interpolation

In Figure 2.5, smooth variations in the interpolation are shown. Interpolations and

extrapolations between two pair of 3D affine transformations (shown in blue) are

computed (shown in green). Each pair of interpolated/extrapolated transforma-

tions are then interpolated/extrapolated. The time parameter values used in all

cases are t = −.2, .2, .4, .6, .8, 1.2. The result shows that the interpolated transfor-

mation varies smoothly in each direction. If, instead of generating interpolations

row-wise and then column-wise, we first interpolate column-wise and then row-

wise to generate the grid, the results only differ slightly. A theoretical analysis
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needs to be performed to analyze this behaviour.

Figure 2.5: Smooth interpolation using the proposed method is shown.
Firstly, affine transformations between cuboids given in blue are inter-
polated/extrapolated to generate cubes shown in green for time t =
−0.2, 0.2, .4, .6, .8, 1.2. Then affine transformations between corresponding green
cubes are interpolated/extrapolated.

2.6.4 Interpolating Multiple Affine Transformations

We demonstrate our algorithm to interpolate multiple affine transformations as

discussed in Section 2.4.1. In Figure 2.6, we show two examples of a smooth inter-

polation between multiple 3D affine transformations containing scale, rigid and

shear components. In order to demonstrate the subdivision scheme, we begin

with continuous (but not necessarily differentiable) curves that interpolate the

given affine transformations as shown in the left column of Figure 2.7. By adding

transformations obtained at t = 0.5 to the set of given affine transformations fol-

lowed by a smooth interpolation yields a smoother trajectory as shown in the

right column of Figure 2.7.
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Figure 2.6: Smooth Interpolation of multiple affine transformations. A sequence
of affine transformation is provided (shown in red). Each pair of consecutive
affine transformations is interpolated for a time step of dt = .05 (shown in blue).

Figure 2.7: Subdivision scheme for smooth interpolation of multiple affine trans-
formations. A sequence of affine transformation is provided (shown in red). Left
column: Each pair of consecutive affine transformations sequence are interpo-
lated for a time step of dt = .05 (shown in blue). Right column: In addition to the
initial sequence of transformations additional intermediate transformation from
column 1 (shown in green) are provided for interpolation. Each pair in the new
affine transformation sequences are interpolated for a time step of dt = .1 As can
be seen, the interpolation becomes smoother after providing additional transfor-
mations.
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2.6.5 Effect of Reordering

To demonstrate the effect of reordering, we provide a comparison of the inter-

polation paths obtained with different vertex orderings as discussed in Section

2.5 by taking examples under two scenarios. In both scenarios, we use a regular

tetrahedron inscribed in a unit sphere as the source tetrahedron. In the first case,

the target tetrahedron is obtained by keeping two vertices of the source tetrahe-

dron fixed and moving the third and fourth vertex along circles on orthogonal

planes, lying on the unit sphere. For the second case, the third and the fourth

vertex of the source tetrahedron are moved along the lines given by x = constant

and y = constant respectively. Row 1 in Figure 2.8 demonstrates these deforma-

tions. The actual difference in any two orderings, say O1 and O2 is captured by

maxt∈[0,1] ||TO1
t − T

O2
t ||F. Since there are 12 different orderings for a tetrahedron,

we plot the maximum (Row 2) and median (Row 3) of differences of interpola-

tion paths defined above, for each deformation, over all orderings in Figure 2.8.

As can be observed from the figure, as the shear component increases (moving

away from center of plot), the maximum and median deviation in path difference

also increases. Actual interpolation paths for two instances of both the cases are

included in Figures 2.9 (Case 1) and 2.10 (Case 2). It again points to the fact that

higher the shear component in the affine transformation, higher is the difference

in the paths obtained due to different re-orderings.
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Figure 2.8: (Row 1): The target tetrahedron is obtained by (left) rotating vertex v2
along the circle on the sphere in the plane of vertices v0, v1, v2, and (right) trans-
lating vertices v2 and v3 along the x and y axis respectively. These deformations
were chosen to directly affect the shear component in the representation. (Row
2) Norm of maximum path change for each deformation over all vertex reorder-
ings for the two cases of deformations. (Row 3) Norm of median path change for
each deformation over all vertex reorderings for the two cases of deformations.
The maximum and median, both increase with the increase in the shear compo-
nent. The x-axis and y-axis represent the change in moving vertices for each case
(angles in radian along the orthogonal circles in case 1).
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Figure 2.9: Interpolations corresponding to three vertex orderings(row-wise) for
two deformations obtained by varying vertices on the circle. The two columns
demonstrate results for transformations containing decreasing degree of shear.
Interpolated transformations are shown for t = .25, .5, .75. It is evident that the
path change is higher for a higher shear component. More results are provided in
the supplementary material.

Figure 2.10: Interpolations corresponding to three vertex orderings(row-wise) for
two deformations obtained by translating vertices on the coordinate axes. The two
columns demonstrate results for transformations containing decreasing degree of
shear. Interpolated transformations are shown for t = .25, .5, .75. It is evident
that the path change is higher for a higher shear component. More results are
provided in the supplementary material.
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2.7 Conclusion and Discussion

In this chapter, we propose a framework to interpolate an orientation-preserving

affine transformation, based on a Lie group representation of the transforma-

tion. The proposed framework always provides a solution, contrary to some prior

work, while preserving several important properties of the original transforma-

tion, like isometry and volume preservation. The approach is invariant to the

choice of canonical tetrahedron, while the degree to which vertex ordering affects

the interpolation has been analyzed in detail.

Volumetric mesh deformation and interpolation methods can be developed

based on our interpolation method. Our method can be applied on each pair of

constituent tetrahedrons in case of mesh interpolation. This will in general not

guarantee a valid volumetric mesh. An appropriate stitching process that binds

individual tetrahedrons to form a valid volumetric mesh needs to be worked out.

Similarly, for interactive volumetric mesh deformation, a blending process has to

be developed in order to appropriately transform all tetrahedrons of the mesh.

In coming chapters, we discuss the mesh representation and it’s use for several

applications related to shape deformations.
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CHAPTER 3

Interactive Shape Deformation

In last chapter, we discussed a Lie group representation for a tetrahedron. The

proposed representation is used to define an interpolation framework for affine

transformations. In this chapter we extend the proposed Lie group representation

of tetrahedron for triangular meshes. Based on the new mesh representation, a

framework for interactive shape deformation is provided.

Interactive shape deformation deals with algorithms and tools for deforming

existing 3D models using minimum user input in a realistic or plausible manner.

In this chapter, we present a one step algorithm based on a Lie group representa-

tion of triangular meshes. The user provides deformations for certain triangular

faces of the mesh, based on which deformations for other triangles are interpo-

lated. We show that our algorithm provides intuitive results in most large de-

formation scenarios, and in some cases better than some of the state-of-art meth-

ods. In most cases, the number of handles required is fewer than several other

algorithms. We prove and analyse the invariance of our algorithm with respect

to certain choices underlying the proposed framework. We also show the wide

applicability of the proposed framework by demonstrating data driven deforma-

tions. While the framework in this chapter is discussed for triangular meshes,

same framework is also applicable to tetrahedral meshes.

3.1 Introduction

Interactive shape deformation provides ways to deform 3D models with minimal

user intervention. To interactively deform a mesh, a user chooses a subset of the
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mesh, called handles, and provides desired positions/deformations for elements

of this set. A subset of the handles may be required to be fixed to their original po-

sition, while the rest are moved in space to deform the mesh. Given the positions

of the handles in the new mesh (also known as the modeling constraints), the rest

of the mesh is computed such that it has geometric properties as close as possible

to the original mesh while satisfying the modeling constraints. Computing the

desired deformation for a smooth surface is not difficult, the major challenge lies

in preserving and correctly deforming the geometric details.

In this chapter, the proposed Lie group representation for tetrahedron is mod-

ified to represent triangular meshes and used for interactive shape deformation.

The proposed framework is built on such tools that the nonlinearity does not

pose any issues that plague deformation models like Linear Blend Skinning, or

other surface deformation schemes that make local approximations and use vec-

tor space counterparts.

The proposed framework uses triangles as the atomic elements of the mesh;

modeling constraints are defined over triangles. Triangles are a local 2D approx-

imation to the underlying surface, and defining the overall surface deformation

using triangles as handles is an alternative to vertex/point based handles. We

also demonstrate possible extensions of the framework to the data driven defor-

mations in this chapter. The proposed model achieves large deformations in one

step, without having to break up the large deformations into a series of smaller

deformations. Moreover, the only iterative component in the implementation is

for solving a linear least square system.

To summarize,

• We propose a framework for interactive shape deformation which is based

on Lie group mesh representation.

• The proposed algorithm is a one-step process; the only iterative component

in the implementation is used to solve a linear least square system, which

runs only once for computing the desired deformation. The algorithm is

able to handle large deformations in a single step, without breaking it up

into a series of small deformations.
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• The algorithm is amenable to massive parallelization and thus is expected

to produce real-time deformations, even for high resolution meshes. In its

current serial implementation, it takes about a second to process a mesh with

40K vertices, refer to Table 3.1.

• The modeling constraints are imposed as hard constraints, and we provide

several examples where fewer triangle based handles are able to achieve the

deformation compared to vertex based handles.

• We discuss the invariance of the proposed framework with respect to the

choice of canonical triangle and analyze the invariance under vertex re-

indexing.

• The proposed framework is also amenable to possible extensions to data

driven deformations. We discuss elementary (and not necessarily state of

the art) algorithms for such deformations.

In the next section, we give an overview of related work on interactive shape

deformation, followed by the proposed Lie group mesh representation and in-

teractive shape deformation algorithm in Section 3.4. Section 3.5 discusses an

algorithm to constrain the space of deformations by learning from a collection of

deformed versions of an object. Various experiments are discussed in Section 3.6,

and we conclude the chapter in Section 3.7.

3.2 Related Work

Interactive shape deformation is a crucial tool for applications like animation and

object designing. The key issues are the computational efficiency of the algorithm

to produce real-time and realistic results.

As discussed in Chapter 1, Linear methods are fast but fails in the case of large

deformations. Refer the survey by Botsch & Sorkine [18] for more details. Rota-

tion invariant mesh representations based on Linear Rotation-invariant (LRI) co-

ordinates [60] and Discrete surface equations [90] were proposed, where relation
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between adjacent local frames was captured. A linear mesh deformation algo-

rithm is given which solves for the unknown mesh vertices (frames followed by

vertices in the former) that satisfy the modeling constraints, such that the relation

between adjacent local frames is preserved. While both these methods are unable

to handle large deformations in a single step, the LRI method is also translation

insensitive. While non-linear approaches produce better results, the computa-

tional requirement is usually heavy. The existing state-of-the-art basically tries

to mix the advantage of both linear and non-linear methods. The As-Rigid-as-

Possible(ARAP) [79] is a popular framework in which every vertex is equipped

with a local rotation. The algorithm explains every deformation by a set of rigid

transformations, as far as possible. A regularized version, Smooth Rotation en-

hanced ARAP (henceforth SR-ARAP) encourages smoother rotation fields has been

shown to be superior [57].

Linear blend skinning (LBS) is a very popular scheme for shape deformation

due to the support it has in a graphics pipeline. But it suffers from defects like

candy-wrapper effect. On the other hand, non-linear approaches based on mini-

mizing ARAP (as-rigid-as-possible) energy produce appealing results but do not

yield an interactive performance. A skinning based approach is given by Jacobson

et al.[46] computes the skinning transformations by minimizing the ARAP energy.

Bounded biharmonic weights [47] are used. To reduce the computations, vertices

going through similar deformations are clustered. In the rest of the chapter, we

refer to this approach with the acronym FAST (Fast Automatic Skinning Transforma-

tion). For computational efficiency, authors in [89] restricts the deformations to a

smaller subspace by minimizing a smoothness based energy. The basis of the sub-

space is interpreted as weights used in blending while accepting the possibility of

having negative weights. This approach of computing deformations by restricting

the ARAP energy to a linear subspace is henceforth denoted by LS-ARAP in this

chapter. While LS-ARAP allows vector-valued weights, weights used in FAST are

scalars, non-negative and result in a partition of unity. Both these approaches are

iterative in nature and are sensitive to the number of pseudo-handles. Moreover,

these approaches produce non-intuitive results for large deformations.
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Our proposed mesh representation is similar to the one used by Freifeld &

Black [34], in which, a given mesh is represented with respect to a template mesh

by encoding the set of transformations (rotation, scaling and 2D affine) required

to deform each triangle of the template mesh to the corresponding triangle of the

given mesh. These set of transformations form a Lie group on which manifold

statistics are computed which relate to shape variations in a dataset. We refer to

their mesh representation as the Lie bodies.

The representation used in the Lie bodies framework is insensitive to transla-

tion; we cannot afford such a characteristic, since the position of the mesh being

deformed needs to be reproduced time and again. The proposed representation

use 3D rigid transformations in place of 3D rotations used in the Lie bodies frame-

work. Also, instead of encoding transformations between triangles of a given

mesh and a template mesh, we encode transformations between triangles of the

given mesh and a fixed canonical triangle, as discussed in Section 3.3. In trian-

gular meshes, each triangle locally approximates the sampled surface, and hence

to manipulate surfaces we use triangles as handles. The proposed algorithm is a

one-step1 procedure, and produces deformations with quality comparable against

state-of-the-art methods like FAST, LS-ARAP and SR-ARAP in most situations. In

fact, in most of the cases, our approach is able to handle larger deformations with

fewer handles, as can be seen in Figure 3.6, and experiments provided in Section

3.6.

In the next section, we show that a triangle can be represented as a special case

of the proposed representation for tetrahedron, which is then extended to obtain

a Lie group representation of a triangular mesh.

3.3 Lie Group Representation of a Triangle

The triangle representation can be seen as a special case of the tetrahedral repre-

sentation, where in addition to the three vertices of the triangle, a fourth vertex

1By one-step, we mean any deformation produced requires one iteration of the algorithm de-
scribed in the chapter. We ignore implementation details such as the iterations that may be re-
quired for solving a least square problem and others.
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Figure 3.1: Triangle representation as a special case of tetrahedron representation.

along the normal of the triangle at a unit distance is assumed (Figure 3.1).

While the rigid and scale components of the original tetrahedron representa-

tion remain unchanged, shear component changes to

GA =








1 α1 0

0 α2 0

0 0 α5


 | αi ∈ R, i = 1, 2, 5, α2, α5 > 0





Since the z-component of the vertex coordinates is not needed to compute the

planar shear transform, the shear transformation is given by 2× 2 matrix GA (Fig-

ure 3.2).

GA =






 1 α1

0 α2


 | αi ∈ R, i = 1, 2, α2 > 0





When composing the GA with other components, GA is embedded into upper left

block of the identity matrix.

Figure 3.2: Triangle representation with out redundant parameters.

We are now ready to represent tetrahedral and triangular meshes as elements

of a higher dimensional Lie group, as explained in the next subsection.
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3.3.1 Lie Group Representation of a Mesh

Let P be a mesh with n faces (i.e. tetrahedral or triangular elements). Then, using

the proposed representation, mesh is represented by concatenating the represen-

tations for all the tetrahedral (or triangular) elements, i.e. (EP, AP, sP) ∈ Mn,

where n is the number of tetrahedral ( or triangular) elements in the mesh.

EP =




EP,1

EP,2

. . .

EP,n




, AP =




AP,1

AP,2

. . .

AP,n




, sP =




sP,1

sP,2

. . .

sP,n




where (EP,j, AP,j, sP,j) represent the proposed representation for the jth element of

the P mesh. Using the fact that direct product of Lie groups is also a Lie group,

Mn forms a Lie group. The Lie algebra of the Lie group Mn is similarly given by

mn = (se(3)× gA × gS)
n. Given an element from this Lie group, a mesh can be re-

constructed by solving a least square system formed using the mesh connectivity

graph [7]. The energy/cost to be minimized for the mesh reconstruction is given

by
n

∑
i=1

||TiXi − Y||2

where Ti is the affine transformation corresponding to the Lie group representa-

tion of the ith face in the mesh given by Ti = AiSiEi , Xi represents the coordinates

of vertices in the ith face and Y represents corresponding vertex coordinates on

the canonical triangle /tetrahedron. Each Ti, Xi, and Y are represented by ma-

trices of size (4 × 4), (4 × 3), and (4 × 3) respectively. Equations corresponding

to all the faces of mesh can be collected in a larger system of the form TX = B,

where T, X and B are of sizes (12n × 4m), (4m × 1) and (12n × 1) with n and

m being the number of mesh faces and vertices, respectively. Note that T is a

sparse matrix. Solving the resulting system of equations provides the vertices of

the reconstructed mesh.

In what follows, MP ∈ Mn will denote the Lie group representation of a mesh

P with n faces (tetrahedrons or triangles), while MP,i will denote the Lie group
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representation of face i in mesh P. Elements of the Lie algebra m will be denoted

by small letters such as d. We use exp and log to denote the exponential and

logarithm map, both, for the Lie group M as well as for Mn. The Lie group

under consideration will be clear from the context.

Given two meshes, say P0 and P1, represented by MP0 and MP1 in the pro-

posed representation, the log map on the Mn manifold is defined as DMP0 ,MP1
=

logMP0
(MP1), where logMP0

(MP1) = (logMP0,1
(MP1,1), . . . , logMP0,n

(MP1,n)). The

log map between the ith faces is logMP0,i
(MP1,i) = log((MP0,i)

−1(MP1,i)), which is

in turn a concatenation of log maps in the three components: E, A and s. The vec-

tor DMP0 ,MP1
is a tangent vector in Lie algebra mn. Similar to the log map, the expo-

nential map (exp map) on the Mn manifold at point MP0 is given by concatenating

the exp map for individual faces, i.e., expMP0
(D) = (expMP0,1

(d1), . . . , expMP0,n(dn)),

where D = (d1, . . . , dn) denotes a tangent vector in Lie algebra mn, and di is the

tangent vector corresponding to the ith face belonging to Lie algebra m. The ex-

ponential map expMP0,i
(di) at point MP0,i, which is ith face of the mesh P0, is com-

puted by taking exponential of vector di and then applying the left (or right) trans-

lation to point MP0,i i.e. expMP0,i
(di) = MP0,i exp(di).

Lie Bodies Mesh Representation

The Lie bodies representation [34] was proposed to capture shape variations for

triangular meshes and it is not defined for tetrahedral meshes. Lie bodies can be

seen as a special case of the proposed Lie group mesh representation. There are

two important points where Lie bodies differ from the proposed representation:

(1) The translation component of the deformation is ignored in the Lie bodies rep-

resentations, i.e. in place of rigid transformation, only rotational component of the

transformation is used; (2) A canonical mesh is used in place of a canonical trian-

gle. Because Lie bodies was proposed to capture shape variations with respect to

a mean shape, the underlying assumptions were made. But for other applications,

as will be shown in coming sections, these assumptions are not always desirable.
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3.4 Interactive Deformation

To interactively deform a triangular mesh P with n faces, a user selects a set of h

handles (each handle is a triangle) on the given mesh. These handles are then fixed

or moved in space. Let P� be the mesh with updated handle positions that needs

to be computed. We compute the Lie group representations of meshes P and P�,

i.e. MP and MP� . Here, we assume that the faces are ordered such that the first h

faces correspond to the handles. The deformation of MP,i to MP�,i, i = h + 1, . . . , n

is then computed by propagating the deformations of the handles on the rest of

the mesh. In other words, we blend the deformation prescribed on the handles

to compute the deformation on non-handle faces. To model handle deformations,

we propose to use deformation vector between MP,k and MP�,k, k = 1, . . . , h.

In order to ensure a smooth weight function across the mesh corresponding

to a particular handle, we use the bounded biharmonic weights proposed in [47].

These weights are minimizers of the Laplacian energy, non-negative, with con-

straints that the weight function should be 1 at the given handle (and zero at

other handles), and the sum of weights of all handles at any vertex of the mesh

should be 1. These constraints for weights, wj, can be formalized as follows:

arg min
wj, j=1,...,k

k

∑
j=1

1
2

�

Ω
||Δwj||2dV

subjected to : wj|Hi = δji, i = 1, . . . , k
k

∑
j=1

wj(p) = 1, j = 1, ..., k ∀p ∈ Ω

0 ≤ wj(p) ≤ 1, j = 1, ..., k ∀p ∈ Ω

where k is the number of handles, represented by Hi, used over the space Ω, while

p is any point in Ω. Since our approach is based on computing deformations of

each triangle, we first compute the dual graph of the mesh wherein each triangle

is a vertex and triangles that share a side are connected via an edge. Biharmonic

weights wij are then computed on this graph, where wij is the weight of handle

j = 1, . . . , h for triangular face i.
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Figure 3.3: Deforming the ith face in a mesh with two handles (index 1 and 2).
The vectors d1 = log((MP,1)

−1MP�,1), d2 = log((MP,2)
−1MP�,2) ∈ m are treated as

tangent vectors of geodesics joining MP,1, MP�,1 and MP,2, MP�,2 respectively. The
deformation tangent vector di is computed as a weighted average of d1 and d2,
and deformed face i is given by MP�,i = expMP,i

(tdi)|t=1. The proposed algorithm
tries to preserve the relation between handle and non-handle faces of the original
mesh, in the deformed mesh.

To model handle deformations, we propose to use geodesics connecting MP,k

and MP�,k, k = 1, . . . , h. The log map defined in the previous section can be used to

derive the necessary deformation vector dk = log((MP,k)
−1MP�,k) in the Lie alge-

bra m. Such a choice is intuitive since the log map provides the group geodesics2

connects MP,k with MP�,k. The vector dk can thus be interpreted as the direction

along which triangle k in mesh P deforms to triangle k in mesh P�, on the manifold

M. Once the weights wij and deformation vectors dk, k = 1, . . . , h are computed

the next task is to blend them to obtain deformation vectors at non-handle mesh

triangles. Note that all vectors dk, k = 1, . . . , h belong to the same vector space m

making the task of blending simple.

For every non-handle face represented with Lie group element MP,i, i = h +

1, . . . , n, a weighted average of these tangent vectors is computed using the bounded

biharmonic weights wik discussed above: di = ∑h
k=1 wikdk ∈ m. The Lie group el-

ement for the corresponding deformed triangle face i in the new mesh is then

computed as MP�,i = expMP,i
(di). This is repeated for every non-handle mesh

2It is also possible to directly specify dk ∈ m, instead of providing MP�
k
. As an example, twisting

the bar by rotating a handle by an angle of 3π and 2π is shown in Figure 3.8.
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Figure 3.4: An interactive shape deformation example using two handles. Handle
in black is fixed, while handle in red is moving. (From left to right) Row-1: Initial
and final position of the selected handles on the original and deformed mesh i.e.
(MP,1, MP,2) and (MP�,1, MP�,2). Row-2: Deformation vectors for handles (d1, d2),
the deformation vector di at ith face is computed as a weighted average of d1 and
d2. The Lie group element MP�,i is computed by taking the exponential of the vec-
tor di at the point MP,i. A mesh reconstruction from the Lie group representation
gives the deformed mesh.

face, and the mesh P� is reconstructed using the least square process mentioned

earlier. An instance of deformation blending is shown in Figure 3.3 and Figure 3.4

and the process is summarized in Algorithm 1.

Note that our algorithm differs from that proposed in [2] in more than one

way. The authors in [2], blend log(MP�,k), k = 1, . . . , h compared to dk in our

work. Moreover, the log map that we use differs from the log map used in [2] as

our log map is defined as the concatenation of log maps over a specific decompo-

sition of a given transformation (T �→ (E, A, s) ∈ M). For a subset of orientation

preserving affine transformations in R3, a log map can be computed as shown

in [72]. However, it does not exist for affine transformations consisting of large

shear and large rotation. This is an advantage of decomposing the affine trans-
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formation, for example in the Lie group M: T �→ (E, A, s) ∈ M. The log map

exists for all component transformations individually, thus implying that it exists

for any affine transformation.

Algorithm 1 Interactive Deformation Algorithm

Require: Initial mesh P with n faces.
1: Compute the Lie group representation MP.
2: Choose handle faces, re-order faces with handles being first h faces.
3: for all k ∈ (1, . . . , h) do
4: Move or fix the handle to get the desired deformation.
5: Compute the Lie group representation of deformed handles: MP�,k.
6: Compute the tangent vector between initial and final position of the han-

dles: dk = log((MP,k)
−1MP�,k) ∈ m.

7: end for
{Compute tangent vector for the non-handle faces, and Lie group representa-
tion of the deformed face.}

8: for i ∈ (h + 1, ..., n) do
9: Blending: di = ∑h

k=1 wikdk, where wik is the bounded biharmonic weight of
handle k for face i.

10: MP�,i = expMP,i
(di).

11: end for
{Reconstruct the deformed mesh using the mesh tangent vector}

12: Reconstruct P� from MP�,i, i = 1, . . . , n.
13: return P�

3.5 Data-driven Interactive Shape Deformation

In this section, we explore possibilities with our Lie bodies framework for guided

shape deformation and shape interpolation/extrapolation. The aim is not to com-

pete with state-of-art methods for these applications, but to show the wide ap-

plicability of the proposed framework. A collection of m meshes will be denoted

by Pj, j = 1, . . . , m, while the corresponding Lie group representation will be de-

noted by MPj , j = 1, . . . , m. Elements of the Lie algebra mn will be denoted by

capital letters such as D.

Although Algorithm 1 can help attain a wide variety of deformations, one may

want to restrict the plausible deformations due to the nature of the object and the

environment. For example, in the case of humanoids realistic deformations are

rather limited. With the availability of data, deformation sequences, a constrained
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interactive deformation is feasible. In one of the popular approaches [84], a new

pose is formed as a result of a nonlinear blend of the rotational deformation com-

ponent and a linear blend of the shear component. By combining a discrete shell

based mesh deformation with example driven deformation, Fröhlich and Botsch

[35] are able to obtain visually pleasing deformations even when the modeling

constraints deform the original mesh out of the span of provided mesh examples.

A scale and topology independent data driven mesh deformation framework is

proposed in [103].

Given the deformed meshes of an object, we learn the space of natural defor-

mations using PCA on the deformation vectors, or what is also known as Prin-

cipal Geodesic Analysis (PGA) in some fields [33, 67]. The idea is to capture the

deformation between the source mesh and the given deformed meshes by prin-

cipal deformation vectors. The proposed learning based approach is depicted in

Figure 3.5. Given a source mesh P and deformed meshes Pj, j = 1, . . . , m, com-

Figure 3.5: (left) PCA on the Lie algebra mn, principal deformation directions
E1, . . . , En. (right) Constraining the deformation to one principal direction. The
vector D̃E1 (red) is obtained by projecting the vector D̃ = D − µ onto the principal
direction E1, and the projected mesh is generated by using the deformation vector
µ + D̃E1 shown in blue, and is given by MP exp(µ + D̃E1).

pute the corresponding deformation vectors Dj = log((MP)
−1MPj), j = 1, . . . , m.

Next, PCA is carried out on the set {Dj, j = 1, . . . , m} in the Lie algebra mn.

Given the handle deformations of mesh P, we compute the deformation vector

D corresponding to the deformed mesh using Algorithm 1. Let µ denote the

mean of the vectors {Dj, j = 1, . . . , m}. The projection of vector D̃ = D − µ

onto n principal deformation directions E1, . . . , En is Π(D̃) = ∑n
i=1 D̃Ei Ei, where

D̃Ei = �D̃, Ei� = Tr(D̃TEi), where Tr(·) denotes the trace operator. The Lie group

representation of the deformed mesh is then computed as MP exp(µ + Π(D̃)),
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and the final mesh can be computed by the least square based reconstruction pro-

cess mentioned earlier. Figure 3.5 demonstrates the algorithm with projection on

the first principal deformation direction, and the algorithm is summarized in Al-

gorithm 2. A disadvantage of this procedure is that the projection may violate the

modeling constraints.

Algorithm 2 Interactive deformation algorithm using learning

Require: Source mesh P and learning data meshes Pj, j = 1, ..., m.
1: Find the tangent vector between MP and MPj .
2: for all j = 1, ..., m do
3: Compute Dj = log((MP)

−1MPj) ∈ mn.
4: end for
5: Compute principal directions: Ei = PCA({D1, . . . , Dm}), i = 1, . . . , q.
6: Using Algorithm 1, find the deformation vector D.

{ Project the computed tangent vector to the learned PCA space.}
7: Π(D̃) = ∑

q
i=1 D̃Ei Ei, where D̃Ei = �D − µ, Ei�.

8: MP� = MP exp(µ + Π(D̃)).
9: Reconstruct P� from MP� .

10: return P�.
.

3.6 Results and Discussion

Several experiments are performed on standard meshes (Armadillo, Cactus, Bar,

Cylinder) provided in [17, 79], the Cigar mesh from [46], and Octopus mesh from

[60], and high resolution Armadillo and Dragon meshes from the Stanford 3D

scanning repository. For data driven interactive shape deformation, we have used

humanoid meshes provided by Pons-Moll et al. [68]. All simulations were carried

out on the Libigl framework [49], running on an Intel5 8GB RAM, 1.6 GHz sys-

tem. The mesh resolution and timing details of each experiment are provided

at the end of this section in Table 3.1. Some of the MATLAB figures for results

shown in this section, along with real-time video recordings of interactive defor-

mation on simple meshes, are provided at ��������������������������������

���������������������������.

Justifying mesh representation: The choice of the Lie group SE(3) in place

of SO(3) as proposed in the Lie bodies framework is to incorporate the transla-
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Figure 3.6: Folding the Cigar. (Top Row) Left: Original Cigar mesh, fixed handle
(one) in shown in black and moving handle (one) is shown in red. Right: The
moving handle is rotated about the y axis with origin being the fixed point by an
angle of upto 180 deg. Results of the following algorithms used are shown from
left to right: LRI, FAST, LS-ARAP, SR-ARAP and proposed approach. (Center
row) Folding is achieved by breaking down the complete rotation of 180 deg in to
5 steps of 36 deg each. LRI and LS-ARAP produce a smooth and intuitive defor-
mation, but fail in the last step for achieving a deformation of 180 deg; note the
cigar collapsing in the x − y plane in the last step. FAST and SR-ARAP are un-
able to keep the cigar from twisting, possibly due to insufficient handles. (Bottom
row) Results of rotation of 180 deg in a single step. While LRI produce the same
result (collapsed cigar) as earlier, FAST, LS-ARAP and SR-ARAP produces a dif-
ferent result as compared to the last incremental step from the center row. Here
too the cigar collapses. Using our algorithm the cigar does not twist through the
incremental rotation sequence, and produces the same result even in the one-step
180 deg deformation. For comparison on other deformations of the Cigar mesh,
refer to Figures 3.10,3.11,3.12.

tion component in the process of mesh deformation. The information about the

position of the mesh is not captured in the representation (SO(3)× GA × S)F of

a mesh in the Lie bodies framework. One may alleviate this particular problem

with the Lie bodies representation by imposing handle positions as hard or soft

constraints. When using hard constraints, the rest of the mesh still has an un-

known translational component, thereby producing spikes and discontinuities,

refer to Figure 3.7 (left), while soft constraints may lead to modeling constraints

being not satisfied. With a large penalty on violating these constraints, the model-

ing constraints may be satisfied to a desired degree of accuracy, but it may lead to

unpleasant shape distortion as shown in Figure 3.7 (center). Since the proposed

framework explicitly captures the position of the mesh, it has no such issues, refer
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Figure 3.7: Deformation of the Cactus mesh by a rotation and translation of han-
dles using the (left) Lie bodies framework with hard constraints for handles, (cen-
ter) Lie bodies framework with soft constraints for handles with weight on handle
constraints set to 1000, (right) proposed framework.

to Figure 3.7 (right).

Large deformation on standard datasets: The results of interactive shape de-

formations using Algorithm 1 on standard datasets are shown in Figure 3.8. These

deformations are achieved with a small number of handles (typically less than

10), and no intermediate moving handle positions have been provided. As can

be seen, the deformations obtained are intuitive. In the Armadillo case, we rotate

the handle on the forehead by 180 deg which produces intuitive result with only

3 handles. Similarly for the Dragon mesh, with 4 handles (one on each foot) an

intuitive result can be seen for a large deformation. The results of applying ro-

tations of angle 3π and 2π are shown on the Bar mesh with only 2 handles (one

each on top and bottom). Note that for applying a rotation of more than π deg,

in place of giving the final handle position, a deformation vector for the handle is

provided as discussed in the footnote of Section 3.4. Another example of a large

deformation is shown in Figure 3.9, wherein one of the arms of the octopus has

been rotated by approximately 145 deg about the arm centroid. Observe that the

arm does not exhibit any folding.

Comparison with State-of-art: Next, we compare deformations produced by

our algorithm with those produced using LRI [60], FAST [46], LS-ARAP [89] and

SR-ARAP [57] algorithms. We use the planar cigar mesh as a test case. We select

two triangles (6 vertex handles for the other algorithms) lying near opposite ends

as handles. In addition to the results provided in Figure 3.6, we provide results of

a one-step deformation by rotating the moving handle by an angle of 144 deg in

Figure 3.10, (out of the plane containing cigar, same as in Figure 3.6). Again, FAST
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Figure 3.8: Deformation on Armadillo, Dragon, Bar & Cactus mesh. (Row 1) Orig-
inal meshes, (Row 2) Deformed meshes. For Armadillo, 3 handles (one on each
foot, one on the forehead) are used and deformation is achieved by rotating the
handle on the forehead by 180 deg. We use 4 handles for the Dragon mesh to gen-
erate the large deformation. For the Bar mesh, results of applying rotations by 3π
and 2π (col. 3 and 4) using only two handles (one on top and one on bottom) are
shown, while the Cactus mesh is bent by 60 deg using 5 handles.

and SR-ARAP twist the cigar, and moreover, the result depends on the amount of

deformation. The proposed algorithm yields intuitive results and does not vary

with the amount of deformation. Instead of an out of the plane rotation, we next

rotate the moving handle in the x − y plane by different amounts (the handles are

the same as used in the earlier case). Results are given in Figure 3.11. When ro-

tated by an angle of 144 deg, the LRI produce a shrinking in the Cigar, while FAST,

LS-ARAP SR-ARAP and the proposed algorithm produce intuitive results. When

rotated by an angle of 180 deg, the LRI, FAST, and LS-ARAP produce undesirable

effects in the Cigar, while even the SR-ARAP produces a counter-intuitive global

rotation in the Cigar. While in some of these algorithms a better result can be

expected by introducing more handles/pseudo-handles, our algorithm is able to

achieve intuitive deformations using only two handles. In order to further com-

pare our algorithm with SR-ARAP, we try to induce a twist deformation in the

Cigar mesh, by rotating the moving handle by an angle of 180 deg about its own

centroid. As can be observed in Figure 3.12, our algorithm produces a nice sym-

metrical twist, while with just two handles, SR-ARAP is not able to produce the
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Figure 3.9: Large deformation on Octopus mesh. One of the arms (shown in red)
of the octopus is rotated by approximately 145 deg about the arm’s centroid. The
arm does not exhibit any folding. Black denotes fixed handles, while yellow de-
notes moving handles.

Figure 3.10: Cigar one-step deformation by rotating the moving handle out of
the plane by an angle of 144 deg. (left to right) LRI, FAST, LS-ARAP, SR-ARAP,
Proposed. While LRI produce intuitive results, FAST, LS-ARAP and SR-ARAP
twists the cigar. The proposed algorithm yields intuitive results and does not vary
with the amount of deformation. Results for FAST and LS-ARAP are computed
with 80 auxiliary handles.

twist. Instead due to the desired smoothness in the rotations, it produces a dis-

continuity around the handle, leaving the rest of the mesh as it is. This situation

can be alleviated by introducing extra handles, but the algorithm still struggles to

produce a symmetrical twist.

Handle selection & translation insensitivity: Typically, interactive deforma-

tion algorithms rely on point based handles. Since the proposed algorithm uses

face based handles, we analyze the effect of handles for translation and rotation

deformations on the Spiky plane mesh. In Figure 3.13, different types of defor-

mations are shown using different combination of transformations on handles.

Here, the rotation of a handle (triangle) is with respect to its centroid. The han-

dles shown in red and black are moving and fixed respectively. In cases where the

deformation are performed with fixed and translated handles, some of the geo-

57



Figure 3.11: Deformation achieved by rotating moving handle by 145 deg (cen-
ter row) and 180 deg (bottom row). (left to right) Deformation produced by LRI,
FAST, LS-ARAP, SR-ARAP and proposed approach. When rotated by an angle
of 180 deg, the LRI, FAST and LS-ARAP produce undesirable effects in the Cigar,
while the SR-ARAP produces a counter-intuitive global rotation in the Cigar. Note
that all deformations have been obtained in a single step, i.e., no intermediate
handle positions have been used. Fixed handle marked in black, moving handle
marked in red. Note that results included for FAST and LS-ARAP are chosen from
a set of results with 40, 60 and 80 auxiliary handles.

Figure 3.12: Twisting of Cigar about x-axis by 180 deg about the centroid. (left
to right): Result using proposed method and results by SR-ARAP with different
number of handles. Fixed handle marked in black, moving handle marked in red.
The proposed method produces a nice symmetrical twist with just two handles,
while with same handles SR-ARAP is not able to produce the twist. By introduc-
ing extra handles SR-ARAP is able to produce the twist but the algorithm still
struggles to produce a symmetrical twist.

metric details are not deformed appropriately. This is visible in the results shown

in Figure 3.13(e), where the algorithm fails to capture local rotations. We deal

with this issue by introducing two additional handles as shown in 3.13(f). Since

our framework uses the Lie group SE(3), the translation and rotation components

are treated independently. Thus a translation fails to induce any local rotations on

the triangles, which leads to translation insensitivity.

Data driven deformations: A part of humanoid mesh sequence (hand mo-

tion sequence) is used to demonstrate the data driven interactive deformation

suggested in Algorithm 2. Meshes from vertical and sideways hand motion se-

quences are used to learn the space of deformation vectors, as shown in Figure

3.15. The mean µ and the principal deformation vectors E1, . . . , En are then com-
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Figure 3.13: (Clockwise from top left.) (a) Original Mesh (b) Global rotation us-
ing both, handle translation and rotation, (c) Bending using handle rotations, (d)
Lifting from a side using fixed handles and handle translations and rotations, (e)
Lifting from a side using fixed handles and handle translations only, (f) Realis-
tic lifting from a side using combination of fixed handles, handle rotations and
translations, with 2 additional handles.

puted as discussed in Section 3.5. Once the handles are specified, Algorithm 1

is used to compute the deformation vector D. D is then used by Algorithm 2 to

produce constrained deformations. Figure 3.15 shows the results for two train-

ing sets: (1) Vertical motion sequence, and (2) Vertical and sideways motion se-

quences. In both cases, the deformations correspond to the first principal defor-

mation vectors. The user is given the flexibility to choose a weighted average

of the deformation vector D and constrained deformation vector µ + Π(D̃), to

produce a deformed mesh as shown in Figure 3.16. The trade-off, as mentioned

earlier is that the modeling constraints may be violated due to the PCA projection.

Effect of change of resolution: In the cylinder mesh, we alter the resolution

in random contiguous areas and perform the same handle deformations. Figure

3.14 shows the deformations of the cylinder obtained with three variations in res-

olution: the original mesh, and both higher and lower resolution in chosen areas

relative to the rest of the mesh. The handle deformations are the same in all three

cases. It is evident from the example that the change of resolution does not quali-

tatively alter the deformation.

Computational performance: We provide the details of time taken by our al-

gorithm for various results discussed above in Table 3.1. The total time taken
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Figure 3.14: Effect of change in resolution. Row 1 shows original meshes, while
Row 2 provides deformed meshes obtained via same handle deformations. The
number of handles used is 2, shown in yellow (moving) and black (fixed). The left
column demonstrates the deformation on the original cylinder mesh, while the
center and right column demonstrates the deformation for the mesh with larger
and smaller resolution in selected areas, respectively. The number of vertices and
faces in these meshes from left to right is (1212, 2420), (2022, 4036), (997, 1990).

is broken down into: (a) Time taken to convert a mesh into its Lie group repre-

sentation, time taken for computing (b) Log maps and (c) Exponential maps on

the Lie groups, (d) pre-processing for reconstruction which involves setting up

a least squares system, and (e) Solving the least squares system. Note that the

given total time includes time taken by other components not mentioned in the

table, since it is negligible. We would like to emphasize the following: Note that

computing the Lie group representation of the given mesh takes approximately

50% of the total time. Thus, once the Lie group representation has been com-

puted (which can be done offline), the time taken for the actual deformation re-

duces drastically. Secondly, except for the final reconstruction, each triangle face

can be treated independently in every computation (including computing the Lie

group representation), our framework is a candidate for a massive parallelization.

Our current implementation is serial in nature, with no explicit parallelization in-

volved. Therefore, we expect our algorithm to yield real time deformations on

high resolution meshes once the parallel nature of computations is exploited to its

fullest.

3.7 Discussion and Conclusion

Translation insensitivity is an issue which we currently deal with by introducing

additional handles. We are working towards an iterative algorithm to address
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Table 3.1: Computational time for the proposed algorithm in seconds. Observe
that about 50% time is spent in obtaining the Lie group representation, thus the
time spent in mesh deformation is much less and this time increases approxi-
mately linearly with the number of faces in the mesh. Note that for the Octopus
mesh, the resolution is given for only the deformed arm.

Mesh Cactus Cigar Octopus Spiky
Plane

Armadillo Dragon

Vertices 1856 3566 6508 24320 43243 50000
Faces 3708 6894 12924 47800 86482 100000
Lie Group Rep-
resentation

0.0277 0.0466 0.1775 0.3477 0.6145 0.7466

Log Map 0.0060 0.0119 0.0365 0.0783 0.1498 0.1660
Exp Map 0.0112 0.0148 0.0320 0.0584 0.1070 0.1206
Reconstruction
(Pre-processing)

0.0036 0.0066 0.0193 0.0456 0.0912 0.1100

Reconstruction
(Linear system)

0.0011 0.0025 0.0095 0.0186 0.0594 0.0670

Total 0.0658 0.1065 0.3901 0.6780 1.2351 1.4673

this issue. We intend to implement the proposed approach in a more efficient

manner by exploiting the obvious parallelism that exists by treating each triangle

independently. With this improvement, the proposed algorithm should yield real

time performance even for high resolution meshes. We are also working on incor-

porating better data-driven deformation schemes for our Lie group based mesh

representation.

To conclude, we propose a Lie group representation for triangular meshes and

use the same for interactive shape deformation. The proposed algorithm is able to

achieve large deformations of comparable quality with state-of-art methods, often

performing better, and with fewer handles. It is noteworthy that the algorithm is

a one step process as compared to iterative state-of-art methods. Algorithm 1 al-

lows for elastic stretching, and at the same time produces deformations that meet

constraints imposed by the handle positions. The algorithm is invariant to choice

of canonical triangle thus making it reliable. Also under the assumption that the

user performs a rigid transformation and/or uniform scaling to obtain the de-

formed handle triangle, the algorithm is also invariant to vertex re-ordering (refer

to Section 2.5). We also demonstrate the applicability of the proposed framework

to data driven deformations.
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Figure 3.15: Example of Deformation Learning: (Column 1) The two deformation
sequences used for learning the deformation space. (Column 2-4 Top and Bottom
row) Mesh to be deformed is shown in red and deformed mesh produced by Al-
gorithm 1 is shown in green. The deformed mesh corresponding to the projection
on first principal direction generated by Algorithm 2 using only one deformation
sequence (Column 1,Top row) is shown in yellow, while the deformed mesh cor-
responding to the projection on first principal direction using both deformation
sequences is shown in blue. This example uses only two handles. The top row
gives a side-view of the meshes, while the bottom row gives a front-view of the
same results. Some sideways motion can be clearly seen in the blue mesh.

Figure 3.16: Trade off between handle constraint and training sequence subspace.
The mesh in green is obtained using Algorithm 1 and the mesh in yellow is ob-
tained using Algorithm 2. Using notations from Figure 3.5, the intermediate
meshes are produced using a convex combination of the deformation vector D ob-
tained using Algorithm 1 and the projected deformation vector µ+ D̃E1 computed
using Algorithm 2. The meshes on the left are obtained using the first training se-
quence, and the meshes on the right are obtained using both training sequences
given in Figure 3.15.
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CHAPTER 4

Deformation Transfer

In computer animation, different objects may have to undergo similar deforma-

tions. Deformation transfer tries to mimic the deformation given for a source

object, for a given target. In this chapter, we propose a deformation transfer ap-

proach based on the Lie bodies representation of triangular meshes. The approach

does not assume that the target and source meshes are of the same resolution or

are registered. Due to the Lie bodies representation, the non-linearity in the space

of transformations is accurately modeled which enables the framework to handle

large deformations. Furthermore, under certain assumptions stated in this chap-

ter, the approach can also be used for the task of pose transfer.

4.1 Introduction

Computer animation of 3D models can be a lengthy and complicated task for

an artist, if not supported by algorithms that either partially or fully automate

this task. One particular framework to assist the animator, called deformation

transfer, generates different shapes of a given target model by mimicking the de-

formation between given shapes of a source model. The need for deformation

transfer arises naturally in many domains, for example, character animation, fa-

cial expressions modeling in computer graphics and anatomy transfer in medi-

cal applications [5, 82]. Typically, for deformation transfer, deformation between

source example meshes are transferred to the target reference mesh. In a similar

scenario, known as pose transfer, deformation between source and target reference

meshes are used to generate a example meshes for target shape using example
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source meshes. Usually, algorithms addressing deformation transfer are not able

to transfer poses, and vice-versa.

The proposed method uses the Lie bodies representation for triangular meshes

and is able to handle larger deformations for deformation transfer compared to

some of the state-of-the-art methods in the literature. This is mainly due to the Lie

group/ algebra modeling of the mesh and deformation. The non-linearity in the

space of local transformations, in order to deform meshes, is accurately handled

via Lie groups and associated tools. In some cases where the source and target

meshes do not differ too much, the approach can be used for pose transfer also.

An example of a deformed pose constructed using deformation transfer and pose

transfer from the given meshes in shown in Figure 4.1.

Figure 4.1: Example of (left) deformation transfer (DT) and (right) pose transfer
(PT). M0, M1 represent given poses from one class, F0 is the reference pose for
the second class, while F1 represents the mesh reconstructed using deformation
transfer and pose transfer.

In the next section, we provide a brief review of the existing techniques in

the domain of deformation transfer. Then we discuss the proposed approach for

deformation transfer. In Section 4.4, we demonstrate the applicability of the pro-

posed approach along with a comparison with some existing techniques. Finally,

we conclude with limitations and future direction for the proposed work in Sec-
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tion 4.5.

4.2 Related Work

Deformation transfer methods can be classified based on the shape representa-

tion and the mathematical framework for representing deformation. Broadly, de-

formation transfer can be grouped into surface based and space based approaches

[28]. Typically, triangular meshes are used in surface based approaches [82], while

cage based control structure[26], and skeletons [24] are some popular examples of

space based approaches. Examples of deformation models used are As-Rigid-

As-Possible (ARAP) deformations [63], affine transformations on triangular faces

[82], scaling and rotations of markers propagated via blending [99].

Sumner and Popović [82] describe the deformation between the source meshes

via affine transformations. A set of markers are picked and deformation for these

markers are transferred to the target mesh subject to a smoothness constraint.

Zhou et al.[102] adapt this method for multi-component objects. In Zayer et al.[99],

a dense correspondence between source and target mesh is obtained by using a

sparse set of markers on source and target. Laplacian weights corresponding to

these markers are computed and matched to compute the correspondence. De-

formation between the source meshes on markers are decomposed into scaling

and rotations, which are then transferred on the target mesh using the dense cor-

respondence, followed by a reconstruction process involving a discrete Poisson

equation. Deformation transfer using the ARAP model and rigidity control is

proposed in [63]. Lévy and Bruno [58] use the spectral representation of a mesh,

wherein low frequency components of the deformed source model and high fre-

quency components of the target model are combined to obtain a deformed tar-

get model. One needs to compute common spectral bases[55, 97] for this pur-

pose. A semantic deformation transfer scheme is proposed by Baran et al. in [13],

wherein shape spaces for source and target models is built from a given set of

example shapes. Deformation transfer is achieved by finding, for any new source

mesh represented in source shape space, a corresponding point in the target shape
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space. The efficiency of the framework depends on the number of example poses,

and how good the reconstruction process from shape space to the 3D model is.

Shabayek et al.[75] use the Lie bodies [34] representation of triangular meshes, and

transfer only the rotation (orientation) component of the deformation between the

two source meshes to the target mesh. It also assumes a face-to-face bijective cor-

respondence between the source and target meshes. In all of these approaches the

correctness and denseness of the available correspondence between the source

and target mesh is an important factor contributing towards the quality of results.

Typically, it is either assumed that (dense) correspondence is available, or, sparse

marker correspondences are used to obtain denser correspondences. For a survey

on shape correspondence, refer [87].

In space based approaches, the deformation is modeled in a low dimension

space defined by a control structure such as a cage[26, 15] or a skeleton[8]. Space

based approaches dominate over surface based approaches in terms of simplic-

ity of the modeling process, while the surface based approaches allow direct se-

lection of markers making it easier to work with compared to cages and skele-

tons. Depending on the resolution of the cage/skeleton, space based deformation

approaches may fail to capture and transfer fine-scale details. Moreover, such

approaches will typically fail to transfer poses, especially in the case where the

cage/skeleton are similar for both source and target models.

We propose a deformation transfer approach based on the Lie bodies mesh

representation [34]. This enables the framework to handle large deformations

in comparison with other approaches. We also suggest a mesh correspondence

method based on the Bounded Biharmonic weights [47] to be used along with the

deformation transfer procedure, which may be substituted by other methods of

obtaining mesh correspondence.

4.3 Proposed Method

To begin with, we will assume that the source and target triangular meshes have

the same number of vertices and are registered, and discuss a way to compute
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dense correspondence in Section 4.3.2.

4.3.1 Deformation transfer

Let P0, P1 and Q0 denote the two example source meshes and the target mesh,

each with n faces, respectively. We use the mesh P0 as the reference mesh for both

source and target meshes, in order to compute the representation in the Lie group

Mn (refer Section 3.4 ). Again MPi and MQi , i = 0, 1 are used to denote the Lie

group representation.

The deformation between the source meshes is captured via the log map DMP0 ,MP1

on the Mn manifold. The tangent vector DMP0 ,MP1
is then used to compute the

geodesic at identity, which is then translated to MQ0 to get the Lie group repre-

sentation of Q1 i.e. MQ1 .

The actual target mesh Q1 is generated from its Lie bodies representation using

a least-square approach, as mentioned earlier. This process is demonstrated in

Figure 4.3 and summarized in Algorithm 3.

Figure 4.2: Pose transfer for similar shapes. (Left to Right) Reference pose and
example pose of Dino model, Reference Camel pose and Camel pose generated
using Pose transfer.

One may also compute the deformation vector DMP0 ,MQ0
= logMP0

(MQ1) that

captures the difference in the geometry between the source and target meshes

and use the deformation vector appropriately so as to provide a deformation of

MP1 into MQ1 . This pose transfer approach can be used to produce the desired

target pose MQ1 as MQ1 = expMP1
(D̃MP0 ,MQ0

). In practice, this approach produces

the desired pose, as far as the source and target meshes are in a bijective and

meaningful(semantic) correspondence, and the geometry is not too different, see

Figure 4.2.
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Figure 4.3: Deformation transfer. Compute the deformation vector D between
MP0 and MP1 . Use the deformation vector to generate MQ1 corresponding to MQ0 .

As far as there is a bijective correspondence between the source and target

meshes which is semantically meaningful, this deformation transfer approach

works well. In the next subsection, we describe a method for obtaining a cor-

respondence map (not necessarily bijective) between the source and target mesh,

using which our deformation transfer can produce the unknown target mesh.

4.3.2 Correspondence Map Using Bounded-Biharmonic Weights

In order to estimate a dense correspondence between the source and target meshes

P and Q (we drop the subscript indicating reference and desired pose in this sub-

section to simplify notations), we assume a sparse set of face correspondences

provided by the user. On the dual mesh, treating the vertices as markers, we

compute Bounded-Biharmonic weights proposed in [47] for each marker. Given

a set of k markers on both the dual source and target meshes with n and m ver-

tices respectively, weight vectors are computed at each vertex and are denoted as

wP
i ∈ Rk, i = 1, . . . , n and wQ

i ∈ Rk, i = 1, . . . , m. A matching is done in the weight

space in order to obtain a correspondence map. For every target face Qi, let Ci be

the index set of corresponding faces from the source mesh to be computed, and

let MP,Ci denote the Lie group representations of the corresponding faces. This

set is obtained using the rule : j ∈ Ci iff ||wP
j − wQ

i ||2 ≤ �i, where �i is a thresh-

old given by �i = minj=1,...,n{||wP
j − wQ

i ||2}. This ensures that none of the sets

Ci, i = 1, . . . , m is an empty set, and thus each face in the target mesh has at least
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Algorithm 3 Deformation Transfer Algorithm

Require: Source reference and deformed meshes P0, P1, and target reference mesh
Q0 with n faces.

1: Compute the Lie group representation of P0, P1 and Q0, i.e. MP0 , MPi , and
MQ0 .

2: if Correspondence is available then
3: Compute deformation as:

DMP0 ,MP1
= logMP0

(MP1).
4: else
5: Compute Correspondence. {Algorithm 4}
6: Compute target deformation vector: DMP0 ,MP1

= (d̃1, ..., d̃n) {Section 4.3.2}
7: end if
8: MQ1 = expMQ0

(DMP0 ,MP1
). {Compute Lie group element representation of

Q1.}
expMQ0

(D) = (expMQ0,1
(d̃1), . . . , expMQ0,n

(d̃n))

9: Reconstruct the target mesh Q1. {Using Least square reconstruction.}
10: return Q1

one corresponding face in the source mesh. Refer Algorithm 4. Once the corre-

spondence map is available, the previous deformation transfer algorithm can be

used.

Let MQ0,i denote the Lie group representation of the ith face of the reference

target mesh, with a set of corresponding faces on the reference source mesh P0,

whose Lie group representation is denoted by MP0,Ci . Let dj = logMP0,j
(MP1,j), j ∈

Ci denote the deformation (tangent) vector on the Lie group element MP0,j for the

jth face of the reference source mesh. These deformation vectors can be trans-

lated to the point MQ0,i giving us d̃j = lMQ0,i(dj). In case the set Ci is singleton,

the Lie group element of face i on deformed target mesh is obtained as MQ1,i =

expMQ0,i
(d̃j), while if the set contains more than one element, an average of the

deformation vectors in computed: ai = 1
|Ci| ∑j∈Ci

d̃j, which then gives MQ1,i =

expMQ0,i
(ai). The least square reconstruction process gives the deformed target

mesh Q1. Note that any other registration process can be used in place of the one

suggested here, and the quality of the deformation transfer is expected to improve

with better registration of meshes.
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Figure 4.4: Deformation transfer on kids data. Correspondence is available be-
tween the two models. Top row: Reference and example poses of source model.
Middle row: Ground truth for the target class. Bottom row: Results using pro-
posed deformation transfer method.

4.4 Results

In this section, we validate our approach by performing deformation transfer on

several datasets of triangular meshes, some with ground truth registration data

available, while others without ground truth registration information and possi-

bly of different resolutions. We then compare results of our approach with re-

sults from two methods from the class of surface deformation methods: Sumner

& Popovic [82], and Shabayek et al.[75]. We also demonstrate the possibility of

obtaining the deformed target mesh as a result of pose transfer.

1. Registered meshes: We demonstrate our algorithm on the Kids [70] and the

FAUST [16] dataset. Both these datasets contain registered meshes with a

resolution of approximately 120k and 14k faces, respectively. These datasets

also contain the target meshes in the desired poses, which can be treated as

ground truth. Some examples of deformation transfer obtained using our

algorithm for both these datasets and corresponding ground truth meshes
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Algorithm 4 Compute Dense Correspondence

Require: Source and target reference meshes P, Q, with n and m faces respec-
tively.

1: Compute dual meshes of P, Q. {Dual source and target meshes contain n and
m vertices. }

2: Select marker pairs (HP
i , HQ

i ), i = 1, . . . , k, on the dual source and target
meshes.

3: wP = BBW(P, HP),wP
i ∈ Rk, i = 1, . . . , n

wQ = BBW(Q, HQ), wQ
i ∈ Rk, i = 1, . . . , m.

{Compute bounded biharmonic weights (BBW) corresponding to the selected
markers.}

4: for i ∈ (1, . . . , m) do
5: Ci = j, iff ||wP

j − wQ
i ||2 = �i,

where �i = minj=1,...,n{||wP
j − wQ

i ||2}.
6: end for
7: return C {Set of correspondences for each face in the target mesh to source

mesh.}

Figure 4.5: Marker based deformation transfer. Top row: Reference and example
poses of source model. Middle row: Results using state-of-the-art[82]. Bottom
row: Results using proposed deformation transfer method.

are shown in Figures 4.4 (Figure 2 in the supplementary material). As can

be seen from these figures, our approach is able to produce visually reliable

results even for large deformations. A comparison with the results from [82]

and [75] on the FAUST dataset is given in Figure 4.7. For example, note

that Sumner’s approach misses out on body details (for example chest re-

gion) (Column 3). By selectively transferring only the rotation component,

Shabayek’s approach misses out on an important details of the deformation

as shown in Figure 4.8. Also, as can be seen in the figure, our approach

is able to mimic the deformation of the source examples more accurately.
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Figure 4.6: Deformation transfer on TOSCA data. Correspondence is not avail-
able. Top row: Reference and example poses of source model. Bottom row: Re-
sults using proposed deformation transfer method.

Videos of deformation transfer for a set of action sequences are provided at

�����������������������������������������������������������������,

which clearly demonstrate the advantage of the proposed method.

2. Meshes with different resolution: In case the source and target meshes have a

different resolution, we first obtain a correspondence map followed by de-

formation transfer, as described in Section 4.3.2 and 4.3.1. Note that in this

case Shabayek’s approach is not applicable as they assume that the meshes

have the same resolution and are in correspondence. Figure 4.5 gives the re-

sult of our approach and the approach in [82] for transferring deformations

of the horse mesh onto the camel mesh. The quality of results using both ap-

proaches is similar. Note that in our approach, we compute the correspon-

dence between the two meshes only once, and use the same correspondence

for generating all poses shown in the figure. We also provide results of our

approach for transferring deformations of the cat mesh onto the dog mesh

Figure 4.6. The meshes used in this experiment are taken from the TOSCA

dataset[21].

3. Pose transfer: As desribed in Section 4.3.1, we can use the deformation DM0,F0

between the reference source and target poses to generate the desired de-

formed target pose, in case the meshes have the same resolution and a mean-

ingful correspondence available. In Figure 4.7, the proposed approach is

compared with Sumner’s and Shabayek’s approaches. While the arm of

the model undergoes thinning using Sumner’s approach, Shabayek’s ap-

proaches fails to transfer the body-mass.
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Figure 4.7: Comparison of deformation transfer (column 3-5) and pose transfer
(column 6-8) using different methods. Correspondence is available. (Left to right
column-wise) Source and Target reference poses(Column 1), Source examples,
DT using Sumner’s method, DT using Shabayek’s method, DT using proposed
method, PT using Sumner’s method, PT using Shabayek’s method, PT using pro-
posed method (For larger images, refer supplementary material).

Figure 4.8: Limitation of Shabayek’s method. (Left to Right) Reference and ex-
ample mesh for source cactus model (Note that the deformation consists of both
bending and stretching), Target cactus model (a scaled version of the source cactus
model), Result of deformation transfer using Shabayek’s method and Proposed
method. As can be seen that Shabayek’s fails to transfer the affine component of
the deformation.

4.5 Discussion and Conclusion

We proposed a framework which is able to handle large deformations and work

for both deformation and pose transfer. We propose to use a weight space to find

a dense correspondence in case where its not available already. The availability

of the correspondence or a successful registration algorithm is one of the keys to
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the success of the deformation transfer algorithm. Overall, the proposed method

is able to achieve better or comparable results as compared to some of the other

popular approaches. A serial implementation of the proposed method on Libigl

framework [49], running on an Intel5 8GB RAM, 1.6 GHz system, for a mesh of

100k faces, took 1.5 sec, which involves computing log map (0.16 sec), exponential

map (0.12 sec), pose reconstruction (.18 sec) and Lie body mesh representations (1

sec).
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CHAPTER 5

Interpolation and Morphing

Interpolation and morphing algorithms aim to support an animator by automat-

ing animation in two scenarios. While morphing algorithms generate interme-

diate objects given two (or more) objects belonging to different classes, interpo-

lation generates intermediate objects given two deformations of the same object.

We propose a framework for morphing and interpolation based on the Lie bod-

ies representation of triangular meshes. Without any physics based constraints

on allowable deformations, the Lie group of transformations involved are able to

handle both, morphing as well as interpolation. However, it does fails in case of

large deformations. In such cases, we propose to segment the mesh and use the

Lie bodies framework on individual components. Our segmentation scheme is

based on detecting parts of meshes undergoing large deformations. The Lie bod-

ies framework is thus able to handle large deformations, is able to produce any

intermediate interpolation result directly, and is efficient due to the independent

treatment of triangles in the mesh. We provide several interpolation and morph-

ing results in support of our framework.

5.1 Introduction

Morphing and interpolation deals with algorithms that automate the process of

producing visually appealing intermediate shapes between a pair of source and

target shapes, while preserving some intrinsic properties of the shapes.

Morphing refers to the task of gradually deforming a source shape into a target

shape, both belonging to different classes of object. On the other hand, Interpola-

75



Figure 5.1: Twisting of a bar - An example of Interpolation and Extrapolation.
From left to right, the meshes correspond to time t = −.25, 0, .25, .5, .75, 1, 1.25,
where mesh at t = 0 corresponds to the initial mesh and mesh at t = 1 corre-
sponds to the final mesh. Note that without the proposed segmentation based
interpolation approach, this particular large deformation interpolation example
will not produce intuitive results. Also, note that our approach is able to extrapo-
late the deformation.

tion refers to the process of generating intermediate shapes for source and target

shapes belonging to the same class. Morphing and Interpolation can be thought

of as computing geodesics between given points in an appropriate shape space.

The difference arises in the choice of the given shapes. From this perspective,

interpolation and morphing should be addressed via a common framework.

In this chapter, a unified non data-driven framework for morphing and inter-

polation, which is able to handle large deformations and is efficient in term of

computational time is proposed. The proposed approach is applicable to triangu-

lar meshes and is based on the Lie bodies representation [34]. Since the meshes are

represented as elements of a Lie group, the framework is able to work with the

non-linear space of transformations with closed-form computational tools. For

mesh interpolation, the framework is able to handle large deformations based on

a segmentation of the mesh into components with small and large deformations.

An example of a large deformation interpolation and extrapolation result of our

framework is shown in Figure 5.1.

This chapter is organized as follows. We begin with a summary of related work

in Section 5.2. The proposed common framework for morphing and interpolation

and related algorithms is described in Section 5.3. Results of various experiments

performed are provided in Section 5.4, followed by some concluding remarks in

Section 5.5.
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5.2 Related work

Morphing and Interpolation can be seen as special cases of interpolation between

points on appropriately defined shape spaces. A correspondence map between

the source and target meshes is needed in order to generate an intermediate ob-

ject. The quality of morphing and interpolation depends on the quality of avail-

able/computed correspondence map (usually bijective). Based on the correspon-

dence map, a non-rigid deformation framework between the source and target

meshes is defined.

Many approaches are based using local rotations [4] or affine transformations

[84] to model deformation and then interpolating these transformations. Linear/

affine transformations are usually decomposed into, translation, rotational, and

scale/shear components, where translation, scale/ shear components are inter-

polated linearly, while the rotational component is interpolated in the intrinsic

space either via the exponential map on rotation matrices or via quaternions. In

approaches based on interpolating dihedral angles and edge lengths [35] of the

mesh, interpolated mesh has to be reconstructed which is a computationally ex-

pensive process. In some cases, patch based interpolation is used, where the mesh

is clustered into patches under going similar deformations. Each patch is interpo-

lated independently and the final mesh is reconstructed via stitching the interpo-

lated patches together [85].

Approaches based on energy minimization framework [54, 9, 101, 41], involve

solving of differential equations at a very fine time step and are also computation-

ally expensive. An approach for computing discrete-time geodesics in discrete-

shell shape space is proposed in [41], while Brandt et al.[20] generalize this for

shape spaces. The geodesic is iteratively computed via a curve smoothing/fairing

method and thus is not real-time. A multi-resolution approach has been used to

reduce the computational cost.

The authors in [56] propose a framework that carries out registration, statis-

tical analysis and deformation tasks based on the spherical wavelet-based multi-

resolution representation of Square-root normal fields (SRNF). Although interpo-
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lation in this representation is trivial (since it is a vector space), the reconstruction

of the mesh from the representation is still computationally expensive even for

low resolution meshes. While we acknowledge that computing correspondence

map between models is a challenging problem, in this chapter, we assume that the

correspondence map between the models is available, or can be computed using

various registration algorithms, for example [96, 45]. For an exhaustive survey on

various existing approaches for shape correspondence refer [87].

We propose a non data-driven framework for mesh interpolation and morph-

ing for triangular meshes based on the Lie bodies [34] representation of meshes.

The representation scheme is summarized in Section 3.3.1. We propose a segmen-

tation based interpolation that is able to handle larger deformations than tradi-

tional non data-driven approaches and is amenable to real time performance.

Algorithm 5 LieBodyInterpolation/Morphing

Require: Source and target meshes P0, P1 with n faces. {Source mesh is treated as
reference mesh}

1: Compute Lie bodies representation of meshes P0, P1 i.e. MP0 ,MP1 .
2: DMP0 ,MP1

= LogMP0
MP1 . {Tangent vector representing deformation.}

3: for t ∈ [0, 1] do
4: c(t) = ExpMP0

(tDMP0 ,MP1
) {Lie bodies representation of intermediate mesh.}

5: Pt = MeshReconstruction(c(t)).
6: end for
7: return Pt

5.3 Proposed Approach

We begin by describing our framework for mesh interpolation and morphing un-

der the assumptions that source and target shapes exhibit a small deformation.

We describe a segmentation-based approach that caters to the case of large defor-

mation in the following section.
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5.3.1 Framework for Morphing and Interpolation

Given a pair of meshes P0 and P1, with n faces and same face connectivity, to

be either interpolated or morphed, Lie bodies representations of both meshes are

computed. Interpolation or Morphing between P0 and P1 reduces to computing

geodesics between the Lie group elements MP0 and MP1 , which in turn are ob-

tained by concatenating geodesics between MP0,i and MP1,i, i = 1, . . . , n.

Figure 5.2: Multi component morphing.

The direction to move from MP0 to MP1 along the geodesic in the Lie group

Mn is given by the Log map between MP0 and MP1 : DMP0 ,MP1
= LogMP0

(MP1). An

intermediate mesh, for interpolation or morphing, is then obtained via sampling

the geodesic given by c(t) = ExpMP0
(tDMP0 ,MP1

), t ∈ [0, 1], followed by the least

square mesh reconstruction process as mentioned earlier.

One can use this algorithm for morphing between multiple meshes also. Let

P0, P1, and P2 be the given meshes. In order to morph the mesh P0 into a combina-

tion of meshes P1 and P2 we compute tangent vectors D1 and D2 corresponding to

geodesic joining MP0 to MP1 and MP2 respectively, using Log map. For intermedi-

ate meshes, a weighted average of the tangent vectors D1, D2 is taken and points

on geodesic corresponding to the new tangent vector are computed using the Exp

map. This procedure is demonstrated in Figure 5.2.
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Figure 5.3: Incorrect direction of bending of the little finger due to large deforma-
tion between source and target hand meshes. The source and target mesh are the
same as used in Figure 5.7. Front-view(left), side-view(center), and close-up of
the little finger, of the interpolation result at time t = 0.5.

Algorithm 6 Shape Interpolation For Large Deformation

Require: Source and target meshes P0, P1 with n faces. {Source mesh is treated as
reference mesh.}

1: Compute the face normals N0, N1 of meshes P0, P1.
2: for i ∈ {1, . . . , n} do
3: if dot( N0(i), N1(i) ) < 0 then
4: i ∪ N1−ring(i) → LargeDefTriangles
5: end if
6: end for
7: BaseMesh = {1, . . . , n}\ LargeDefTriangles
8: YBaseMesh = LieBodiesInterpolation(P0, P1, BaseMesh) {Algorithm 5.}
9: for j ∈ ConnectedComponent(LargeDefTriangles) do

10: Yj = LieBodiesInterpolation(P0, P1, j) {Align and compute the interpolated
mesh for jth component using Algorithm 5.}

11: YBaseMesh = Merge(YBaseMesh, Yj) {Find a suitable rigid transformation
for merging component Yj to base mesh YBaseMesh.}

12: end for
13: return YBaseMesh

5.3.2 Large Deformation Interpolation

The Lie bodies framework [34] was proposed for statistical analysis of small shape

variations. The Log map on manifolds is a key component in this analysis. It is

well known that the Log map on some manifolds is only a local diffeomorphism

[37]. The 3D rotation Lie group SO(3) which is a key component in the Lie bodies

representation is a prime example where such a scenario occurs. Specifically, the

Log map between two points in SO(3) will always give a tangent vector corre-

sponding to the shortest geodesic between them. In terms of the mesh triangles,
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if a triangle is rotated by more than 180 deg, the interpolation result will yield

intermediate triangles rotated in the opposite direction by a total angle less than

180 deg. For an example of this phenomenon, refer Figure 5.3.

To address this issue, we segment the meshes into different components based

on the amount of deformation in the faces from source to the target mesh. The

segmentation process is based on locating triangles with large deformation. We

say that a triangle is undergoing a large deformation from the initial to the final

mesh if the unit normal (outward) of the two triangles have an angle difference

of more than 90 deg. Connected components (based on adjacency relation) are

formed on this set of triangles, and each component is treated individually. In

practice, each triangle with large deformation is also extended to all triangles in

its 1-ring to deal with very small connected components if any. The rest of the

mesh containing triangles with small deformations is referred to as the Base mesh

and is also segmented into connected components.

Our process of segmenting the mesh into components is different from the one

used for deriving patch-based LRI [13], wherein a mesh is segmented into distinct

patches based on the difference in deformation (rotation in particular) in triangles

of the mesh compared to a given rest pose, irrespective of the amount of defor-

mation. The patch-based LRI coordinates have also been used by Gao et al.for

data-driven shape interpolation in [39], but the number of patches is typically

large. For all experiments in this chapter, the number of the segments is less than

10 in our framework. In their framework, the number of patches is a parameter

determined by the user. While Gao et al.[39] are able to handle large deformations

using additional example poses, to some extent, we can handle the large defor-

mations with our segmentation scheme without relying on additional examples.

This is demonstrated using interpolation on two different hand poses, as shown

in Figure 5.4, and can be qualitatively compared with Figure 1 in [39]. It is evi-

dent from this comparison that our framework can handle the large deformation

present, while the patch-based LRI interpolation could not.

Next, for components undergoing large deformations, we perform a rigid align-

ment between corresponding components in the source and target meshes. Then,
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Figure 5.4: Large deformation mesh interpolation example. Row 1: (left to right)
Initial pose (red), Target pose (green), Segmentation result with large deformation
components shown in yellow, Base mesh component for source and target pose.
Row 2: (left to right) large deformation components(yellow), One large deforma-
tion component (yellow) extended into neighboring component (black), Extended
large deformation component on source pose (yellow), Corresponding compo-
nent on target pose shown in blue, Rigidly aligned extended large deformation
components on source and target poses. Row 3: Interpolation of the aligned ex-
tended large deformation component, for (left to right) t = 0, .25, .5, .75, 1. Row
4: Interpolation of the BaseMesh component, for (left to right) t = 0, .25, .5, .75, 1.
Row 5: Final interpolation result, after interpolation and stitching independent
components, for (left to right) t = 0, .25, .5, .75, 1. For a comparison with patch-
based LRI approach refer Figure 1 in [39].

for all components, including components with small deformations, interpolation

is performed independently of each other using Algorithm 5. The last step is to
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stitch small and large deformation interpolated components. This process may

introduce discontinuities on the boundary. To alleviate this problem, we extend

all large deformation components to include triangles from surrounding small

deformation components within the 3-ring neighborhood of all large deforma-

tion component boundary triangles. Since the overlap between small and large

deformation components is known, the interpolated components are stitched via

a rigid alignment computed only on the overlapping 3-ring neighborhood. The

rigid transformation is applied on the entire large deformation component inter-

polation result, while the stitching is done by selecting the overlapping region

from the interpolated small deformation component, and ignoring the same from

the aligned large deformation component. This segmentation based interpolation

is summarized in Algorithm 6 and is demonstrated in Figure 5.4.

5.4 Results

In this section we provide results of our experiments on morphing and interpola-

tion. Results have been computed for datasets from [96, 85, 68]. Morphing refers

to computing intermediate deformations between two objects belonging to differ-

ent classes. For all morphing related experiments, we do not use our segmentation

based framework, while all interpolation results have been computed using our

segmentation based framework.

1. Morphing results: Results for morphing between Humanoid meshes, Fandisk-

Cube, Cat-Bunny, Bunny-Rabbit, and Head-Venus is shown in Figure 5.6.

The correspondence used for the Head-Venus example is the one provided

by [96]. We sample the geodesic at t = 0.25, 0.5, 0.75 and generate the cor-

responding intermediate meshes shown in this figure. Note that the hu-

manoid example shows that our approach can simultaneously handle mor-

phing (thin-fat) as well as the interpolation (position of hands).

2. Multiple model morphing: In Figure 5.5, we show the morphing of a source

model (Camel) into multiple target models (Horse and Dinosaur).
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Figure 5.5: Morphing using multiple models.

3. Large deformation interpolation and extrapolation: Interpolation and ex-

trapolation results for deformations of Horse and Elephant meshes are shown

in Figure 5.7. In addition to intermediate meshes shown at t = 0.25, 0.5, 0.75,

we extrapolate the deformation for the Horse and Elephant meshes and pro-

vide results for t = −0.25 and t = 1.25. These interpolations have been pro-

duced using our segmentation algorithm based on detecting large deforma-

tion triangles. It is important to note that the Lie bodies framework without

our segmentation approach will produce effects similar to those shown in

Figure 5.3. Similarly, results of interpolation and extrapolation of large scale

deformations for the Bar are shown in Figure 5.1, while those for Cylinder

and Helix meshes are shown in Figure 5.8. With this segmentation, the pro-

posed approach is able to interpolate and extrapolate over multiple twists.

As discussed in the previous section, interpolation results for the large de-
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Figure 5.6: Morphing of different models. First column and last column show
source and target models. Column 2-4 show morphing results by sampling the
geodesic at t = 0.25, 0.5, 0.75. Notice the simultaneous interpolation and morph-
ing in Row 1.

formation of hand poses is given in Figure 5.4, while results using patch-based

LRI on similar examples can be found in Figure 1 in [39], where it is shown

to fail.

The results produced using the proposed approach is visually comparable
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Figure 5.7: Mesh interpolation of Horse, Elephant and Hand meshes. Extrapola-
tion results for Horse and Elephant meshes are included. (Row 1 & 2) Column-
wise: Mesh at t = −.25, 0, 0.25, 0.5, 0.75, 1, 1.25. t = 0, 1 represent source and target
mesh respectively, in all cases.

Figure 5.8: Example of mesh interpolation and extrapolation over large defor-
mations of Cylinder and Helix mesh. Column-wise from left to right, meshes at
t = −.25, 0, .25, .5, .75, 1, 1.25. t = 0 and 1 represent source and target mesh re-
spectively. Note that both scaling and bending of the cylinder are captured in the
interpolation and extrapolation.

to state-of-the-art approaches presented in [20, 101, 41, 85], though in these ap-

proaches, in order to generate intermediate mesh at some t ∈ [0, 1], one needs to

compute the mesh at t − Δt for a small Δt. Hence, the interpolation process is se-

rial in nature and ends up being computationally expensive. Our method, on the

other hand, can sample the geodesic at an arbitrary parameter t without comput-

ing the mesh at parameter t − Δt. Computationally, our framework is thus faster.

To give an idea of the computational time required for our framework, we provide

the time required for our segmentation process and the average time required to

interpolate one pose for several models in Table 5.1. Note that the interpolation

time includes time for the least-square mesh reconstruction. Our current imple-

mentation use Libigl [49], runs on an Intel5 8GB RAM, 1.6 GHz system, without
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Table 5.1: Computational time (in seconds) for the proposed algorithm for various
meshes. Note that the interpolation time provided includes the time required
for mesh reconstruction and no parallelization has been employed in our current
implementation. For morphing results no segmentation process is used.

Mesh Vertices Faces Segmentation Segments
(count)

Interpolation
(per pose)

Cylinder 2442 4880 0.001 2 0.07
Bar 2882 5740 0.001 2 0.05
Helix 1212 2420 0.002 3 0.02
Hand 6094 12184 0.02 6 0.09
Horse 8431 16843 0.007 7 0.26
Elephant 39969 79946 0.22 5 0.35
Human 6890 13776 - - 0.14
Cube 6583 13162 - - 0.13
Cat 5618 11232 - - 0.11
Rabbit 5618 11232 - - 0.11
head 7702 15400 - - 0.20
Camel 6013 12022 - - 0.11

using any parallelization.

The robustness of our framework is based on how well each large deformation

component can be stitched together. While, we have extended the large deforma-

tion component into its neighborhood components to achieve this robustness, the

underlying assumption is that deformation between the shapes is smooth and not

abrupt. This assumption is valid for most natural objects but there can exist cases

where this assumption is not valid. For all the examples we have worked on, the

framework has produced satisfactory results.

5.5 Conclusion

A unified framework for mesh interpolation and morphing is proposed, which

models both these problems as finding geodesics between points in an appropri-

ate shape space. With the proposed algorithms for segmentation based on large

deformation components, the framework is able to handle interpolation between

large deformations of objects, and is computationally efficient.
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CHAPTER 6

Future Work and Discussion

A lot of research is taking place to develop a robust and efficient pipeline for pro-

cessing 3D data, form content generation (3D reconstruction) and shape editing

to rendering & visualization of 3D data.

There are several aspects of the work presented in this thesis, which need a

more closer look and can be explored further. (1) Issues with Lie group mesh

representation: (a) Handling topology changes. In applications where more than

one shape is involved, all the shapes are assumed to share same topology, which

is a very restrictive constraint. Specifically, for applications involving learning,

fixing topology restrict the amount of data which can be used for learning. (b)

Each element has an independent representation. While this gives an advantage

in form of computational efficiency, treating each element independently does not

fully exploit the neighborhood information. Furthermore, one possible implica-

tion of this, as shown in interactive shape deformation, is translation insensitivity,

where the framework fails to represent the pure translation component of the de-

formation using local rotations. Finding a mesh representation which can be used

without any constraint on the topology of the mesh and which captures neigh-

borhood information could yield better performance. (2) Geodesics on Lie group:

The proposed framework uses group geodesics which are defined in closed form

on Lie groups under consideration. Again, while this makes the framework fast,

a comparison with Remannnian geodesics is needed to fully justify the choice.

(3) Data driven approaches for proposed representation and applications: As al-

ready shown in Chapter 3, the proposed framework is amenable to data driven

techniques giving more realistic results. Data driven approaches can possibly be
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used to provide rigidity control in shape deformation by restricting the deforma-

tions to a shape space or to provide a realistic interpolation in shape space.

Apart from traditional mathematical modeling of geometry processing tasks,

the focus is now shifting to data driven geometry processing. Till recently the

data-driven techniques were not very practical for geometry processing tasks.

This was mostly due to non-availability of 3D data and lack of computational

power needed for data-driven geometry processing. With developing technolo-

gies for camera sensors, we now have cheap sensors which can produce a huge

amount of 3D data. As in the field of image and signal processing, deep learning

based methods have become popular in order to process 3D geometric data. This

area, with its set of learning based tools and algorithms is called geometric deep

learning [22]. The use of deep learning frameworks on geometric data, which is

not regular, is not straightforward. There are two main issues: (1) Non-availability

of the operators such as convolutions and pooling on geometric data. Existing

approaches in geometric deep learning are based on generalizing classical defi-

nitions of convolution and pooling [30, 62]. (2) The representation of geometric

data and topological inconsistency in it. While topological variations are not triv-

ial to handle even for traditional geometry processing algorithms, more efforts are

needed to fully leverage the power of deep learning [22].

6.1 Summary

To summarize, in this thesis, we proposed a Lie group representation of a tetrahe-

dron. The proposed representation is used to interpolate affine transformations.

The interpolation framework has several nice properties, which along with in-

variance properties have been analyzed in detail. It is shown that the tetrahedron

representation can be used to represent triangles and in turn tetrahedral and tri-

angular meshes. As applications of the proposed framework we contributed to-

wards interactive shape deformation, deformation transfer, shape interpolation

and morphing. The representation can be parallelized and, thus, is computation-

ally efficient.
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CHAPTER A

Appendix

A.1 Mathematical Background

The space of shape deformations is non-linear. Most of the time, either shape

representations or deformation representations used in several of the state-of-the-

arts methods for deformation modeling, use components from non-linear spaces.

While almost all the representations for shape deformation use some form of ro-

tation transformation, usually additional components are used which also come

from non-linear spaces.

In this thesis most of the mathematical presentation is based on Lie groups,

specifically, linear Lie groups which are also known as matrix Lie groups. Lie

groups lie at the intersection of groups and manifolds, i.e, a Lie group G is a

group (G, ·) and a smooth manifold, such that the group multiplication and in-

version operations are smooth.

Intuitively, a manifold is a space such that a small neighborhood around each

point of this space can be mapped to a Euclidean space. In more technical terms, a

subset M of RN is a manifold, if ∀p ∈ M ∃U ⊆ M and ω ⊆ RN, such that φ(ω) =

U , where φ : ω → U is a smooth homeomorphism. The map φ is called coordinate

chart (chart in short). Generally, many such charts are needed to cover the entire

manifold. In case two charts have some overlapping region, it is possible to have

two different representations of the same region though these charts. A transition

map is used to move between different representations. For smooth manifolds,

the transition maps are infinitely differentiable (smooth) [37].

Lie groups. A subset G of RN is a Lie group if:
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1. G is a group.

2. G is a manifold in RN.

3. The group operation and inverse map defined as . : G × G → G and i : G →
G are smooth.

Although, it is not a trivial task to prove that a set is a Lie group, but in case

of linear Lie groups, using the Theorem by Von Neumann and Carton (theorem

4.8 [37]) the task reduces to proving that the set is a closed subgroup of GL(n, R).

GL(n, R) is the group of all n × n real-valued invertible matrices.

Theorem (Von Neumann and Carton): A closed subgroup G of GL(n, R) is a

linear Lie group. Furthermore the set g defined as

g = {X ∈ Mn(R)|etX ∈ G for all t ∈ R}

is a non-trivial vector space equal to the tangent space TIG at the identity I. Mn(R)

is the set of all n × n real-valued matrices.

Lets take a look at some linear Lie groups. (1) The special linear group de-

fined as SL(n, R) = {X ∈ GL(n, R)|det(X) = 1} is a Lie group. It is easy to

show that SL(n, R) is a subgroup of GL(n, R). The det(X) = 1, for X ∈ SL(n, R).

Using the fact that det() can be shown to be a group homomorphism between

GL(n, R) and R∗, where R∗ be the multiplicative group of nonzero real numbers,

the SL(n, R) turn out to be a normal subgroup of GL(n, R). (2) Orthogonal group

defined as the group of distance-preserving transformations O(n, R) = {X ∈
GL(n, R)|XTX = XXT = I}, where I is the identity matrix, is a Lie group. Fol-

lowing simple definition of the subgroup, it can be shown that the O(n, R) is a

closed subgroup to the GL(n, R). Other popular examples are special orthogonal

group SO(n, R) and group of symmetric positive definite matrices.

Lie algebra. Let G be a matrix Lie group with dimension m as a manifold. Then,

the tangent space at identity e ∈ G, denoted by TeG can be identified with the Lie

algebra. The Lie algebra is denoted by g and is defined as g = {X ∈ Mn(R) | exp(X) ∈
G}, where Mn(R) denotes the set of all n × n real matrices, and exp denotes the
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matrix exponential: exp(X) = ∑∞
i=0

Xi

i! . Note that g is an m-dimensional vector

space, and one can think of g as a linearized approximation of G around the point

e. The tangent space at an arbitrary point p ∈ G is defined using left (or right)

translation as TpG = {pX | X ∈ g}.

Exponential and log maps. The Lie algebraic exponential and log maps coincide

with the matrix exponential and log map (which is the inverse of the exponential

wherever possible) for matrix Lie groups, and can be used to go back and forth

between G and g: exp : g → G and log : G → g. The Lie algebraic exponential

map is a smooth map between g and G, such that it maps an element v ∈ g to

the element γ(1) = exp(v) ∈ G, where γ : R → G is the unique integral curve1

generated by the left-invariant vector field generated by v. In what follows, both

Lie algebraic and matrix exponential and log maps will be referred to simply as

exponential and log maps.

Geodesics. A geodesic curve between e and an element p ∈ M is given by

exp(t log(p)), while that between two points p, q ∈ M is given by first left trans-

lating the two points with p−1, computing the geodesic between the resulting

points e and p−1q and left translating the geodesic again by p, i.e., c(t) = p exp(t log(p−1q)),

refer Figure A.1.

Figure A.1: Exponential & Log map on a matrix Lie group G. The vector v =
log(p−1q) ∈ g shown in red, can be used to compute the geodesic between p and
q as c(t) = p exp(tv), shown as a red curve with dashes.

1An integral curve of a vector field is a curve whose tangent vector at any point of the curve is
equal to the given vector field at the corresponding point.
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A.2 Proofs of Theorems & Lemmas

This appendix includes proofs of the statements, theorems and lemmas from Chap-

ter 2.

A.2.1 GA is a Lie group.

Proof. Using the fact that GA is a subgroup in GL(3) and Definition 4.6 in [37],

GA =







1 α1 α3

0 α2 α4

0 0 α5


 |α2, α5 ∈ R+, α1, α3, α4 ∈ R




is linear Lie group as: ∀A ∈ GA, φ : GA → R5 given by φ(A) = (α1, α2, α3, α4, α5) ∈
R5, (φ, GA) is a smooth manifold in R5.

A.2.2 (Theorem 2.3.1)

1. An affine transformation T can be decomposed into a translation and a lin-

ear component, T = [L | d]. The translation part d aligns the two centroids

and is thus uniquely determined. The linear part can then be written as a

map of the difference vectors of vertices with the centroid from one tetrahe-

dron to corresponding difference vectors in the other tetrahedron. Since the

tetrahedrons are non-degenerate, these two sets of difference vectors are lin-

early independent, implying the uniqueness of L. Moreover, since the two

tetrahedrons have the same orientation, det(T) > 0.

2. The translation part is invertible, while the linear part is invertible as far as

the tetrahedrons are non-degenerate. Hence T−1 exists. Fixing tetrahedron

ΔY, tetrahedron ΔX is given by ΔX = T−1ΔY or fixing tetrahedron ΔX, tetra-

hedron ΔY is given by ΔY = TΔX.
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3. We will first prove the statement for the case where ΔY is assumed to be the

canonical tetrahedron, and later generalize it for any arbitrary tetrahedron.

In order to write the affine transformation T as a unique product of elements

from SE(3), GS and GA, we show that the three components are unique. To

begin with, there exists a unique SE(3) element E that does the rigid align-

ment of the tetrahedron to the tetrahedron with vertices (0, v1, v2, v3) (refer

to Figure 2.1), since there exists a unique rotation matrix that aligns two or-

thogonal vectors, and a unique translation vector that aligns two points in

R3. Then, a unique uniform scaling (in R3) that aligns the second vertex,

say v1 = (v1x , 0, 0) to the vector (1, 0, 0) is given by s =
1

v1x

. Let the third

and fourth vertex coordinates after the uniform scaling be (w2x , w2y , 0) and

(w3x , w3y , w3z), respectively. The shear component can be computed by solv-

ing the linear system of equations: A[w2 w3] = [(1 1 0)T (0 0 1)T]. The

solution is uniquely given by,

α1 =
1 − w2x

w2y

, α2 =
1

w2y

,

α3 = −
(1 − w2x)w3y + w3x w2y

w2y w3z

, (A.1)

α4 = −
w3y

w2y w3z

, α5 =
1

w3z

. (A.2)

Note that since the tetrahedron has been assumed to be non-degenerate

and has the same orientation as the canonical tetrahedron, w2y > 0 and

w3z > 0. Thus, the orientation-preserving affine transformation T can be

decomposed into components (E, A, S) uniquely, and T = ASE.

For the case where ΔY is not the canonical tetrahedron, let Δ represent the canon-

ical tetrahedron. As discussed earlier, there exist unique orientation-preserving

affine transformations TX and TY such that TXΔX = TYΔY = Δ. Since TΔX = ΔY

is unique, T = (TY)
−1TX, and thus T also maps the tetrahedron (TX)

−1TYΔ to

Δ, thus getting us back to the previous case.
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A.2.3 (Lemma 2.4.1 - Steady Interpolation)

In the case where the affine transformation consists of a single component, from

Equation (2.2) and the identity exp(t log M) = exp(log(Mt)) = Mt, it is clear that

Tt = Tt. When T = AS for some A ∈ GA and s ∈ GS, since A and S commute,

Tt = exp(t log A) exp(t log S) = AtSt = (AS)t

Hence Tt = Tt.

A.2.4 (Lemma 2.4.2 - Volume Preservation)

Let det(T) = 1. Since T = ASE, we have det(ASE) = det(A)det(S)det(E) = 1.

Using the fact that det(E) = det(R) = 1, det(S) = s3 and det(A) = α2α5, we get

α2α5s3 = 1. For any t ∈ [0, 1],

det(Tt) = det (exp(t log A) exp(t log S) exp(t log E))

= det(exp(t log A))det(exp(t log S))det(exp(t log E))

= exp(t(log α2 + log α5)) exp(t log s3)

= (α2α5s3)t = 1,

where the penultimate equation is obtained using the relation

det(exp(Q)) = exp(tr(Q)), with tr(·) denoting the trace operator, the form of

log A given in Appendix A.3, and the fact that tr(t log E) = 0.

A.2.5 (Lemma 2.4.3 - Monotonic variation of volume)

In order to show monotonicity of the change of volume effected by the interpo-

lated transformations, it is enough to show that the sign of d
dt det(Tt), 0 < t < 1,

remains constant. Using the relation det(Tt) = (α2α5s3)t (derived in Lemma 2),
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we get

d
dt

det(Tt) =
d
dt
(α2α5s3)t, 0 < t < 1

= (α2α5s3)t log(α2α5s3).

Since α2, α5, s and t are positive real numbers and det(T) = α2α5s3, we get sign( d
dt det(Tt)) =

sign(log(α2α5s3))

= sign(log(det(T))). Thus ∀t ∈ (0, 1), d
dt det(Tt) > 0(< 0) if det(T) > 1(< 1).

A.2.6 (Lemma 2.4.4 - Isometric Transformations)

Since T is an isometry, it is a rigid transformation, i.e. T = E ∈ SE(3). The rigid

transformation consists of a rotation R ∈ SO(3) and a translation vector d ∈ R3.

The interpolated transformation Tt, t ∈ [0, 1] computed using Equation (2.2) is

also a rigid transformation denoted by Tt = Et ∈ SE(3) with a corresponding

rotation Rt and translation vector dt ∈ R3. It is easy to see that ||Tt(x − y)|| =
||Rt(x − y)|| = ||x − y||, proving that Tt is also an isometry, as required.

A.2.7 (Lemma 2.4.5 - Reversibility)

Let the Lie group representations of the tetrahedrons Δp, Δq, Δq
p(t) be p, q, rq

p(t),

respectively. Then

rq
p(t) = p exp(t log(p−1q)), and

rp
q (1 − t) = q exp

�
(1 − t) log(q−1p)

�

= q exp
�

log(q−1p)
�

exp
�
−t log(q−1p)

�

= p exp
�

t log(p−1q)
�
= rq

p(t).

Thus, our algorithm is reversible.
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A.2.8 (Theorem 2.5.1 - Invariance to Canonical tetrahedron)

Let Δp, Δq be the tetrahedrons to be interpolated, and let Δ, Δ1, Δ2 be the original

and two arbitrary canonical tetrahedrons.

Let (E1, A1, s1) represent tetrahedron Δ1 with respect to Δ2, and let (E2, A2, s2)

represent tetrahedron Δ2 with respect to Δ1. Let Δci , i = 1, 2 be the interpo-

lated tetrahedrons at some time t obtained when using canonical tetrahedrons

Δi, i = 1, 2, with Lie group representations (Eci , Aci , sci), i = 1, 2, respectively. We

now prove that the two representations (Eci , Aci , sci), i = 1, 2 represent the same

tetrahedron. In the proposed framework (refer to Equation (2.4)), the components

Eci , Aci , sci , i = 1, 2 are given as:

Eci = Epi exp(t log(E−1
pi

Eqi)),

Aci = Api exp(t log(A−1
pi

Aqi)),

sci = spi exp(t log(s−1
pi

sqi)). (A.3)

Since the rigid transformation component does not depend on the choice of canon-

ical tetrahedron, Ep1 = Ep2 = Ep and Eq1 = Eq2 = Eq. Then, one can conclude that

Ec1 = Ec2 . Let lp, lq, l1, l2 denote the lengths of the first edge vectors of tetrahedrons

Δp, Δq, Δ1 and Δ2 respectively. Then, s−1
p1

sq1 =
lp
l1

l1
lq
=

lp
l2

l2
lq
= s−1

p2
sq2 .

Similarly by working out the shear matrices Api , i = 1, 2 and Aqi , i = 1, 2 in

general, it can be shown that (Api)
−1Aqi , i = 1, 2 both depend only on the coordi-

nates of the tetrahedrons Δp and Δq, and hence are equal. The above facts show

that the tangent vector at identity between Lie group representations of tetrahe-

drons Δp and Δq is invariant to the choice of canonical tetrahedron.

The transformations between Δp and Δ1, Δ2 are

(E−1
1 Ap1Sp1 Ep)Δp = Δ1

(E−1
2 Ap2Sp2 Ep)Δp = Δ2,
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respectively. Using

(E−1
2 A1S1E1)Δ1 = Δ2, (A.4)

in the equation above gives us

A1S1Ap1Sp1 = Ap2Sp2 .

Similarly, the transformations between the two interpolated tetrahedrons and their

respective canonical tetrahedrons are

(E−1
1 Ac1Sc1 Ec1)

−1Δ1 = Δc1 (A.5)

(E−1
2 Ac2Sc2 Ec2)

−1Δ2 = Δc2 . (A.6)

Substituting Equation (A.4) in Equation (A.6) above yields

(E−1
1 S−1

1 A−1
1 Ac2Sc2 Ec2)

−1Δ1 = Δc2 . (A.7)

Since Ec1 = Ec2 , in order to prove Δc1 = Δc2 , it remains to show that

A1S1Ac1Sc1 = Ac2Sc2 . (A.8)

Using the definitions of the transformations from Equations (A.3) on the left hand

side, and the fact that the diagonal scaling matrices S commute with the shear

matrices A (both embedded in 4 × 4 matrices), we get the desired result:

A1S1Ac1Sc1

= A1S1Ap1 exp(t log(A−1
p1

Aq1)) Sp1 exp(t log(S−1
p1

Sq1))

= A1S1Ap1Sp1 exp(t log(A−1
p1

Aq1)) exp(t log(S−1
p1

Sq1))

= Ap2Sp2 exp(t log(A−1
p1

Aq1)) exp(t log(S−1
p1

Sq1))

= Ap2 exp(t log(A−1
p2

Aq2)) Sp2 exp(t log(S−1
p2

Sq2))

= Ac2Sc2
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Hence both representations (Ec1 , Ac1 , sc1) and (Ec2 , Ac2 , sc2) are representation of

the same tetrahedron and the interpolation process remains invariant to the role

of canonical tetrahedron.
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A.3 Matrix Exponential and Logarithm maps for SE(3), GA

and GS

This section contains formulas for Exponential and Logarithm maps for Lie groups
SE(3), GA and GS.

A.3.1 Exponential map on SE(3)

Let A =


Ω t

0T
3 0


 ∈ se(3). If ||Ω||F = 0 then exp(A) =


 I3 t

0T
3 1


, else exp(A) =


exp(Ω) Vt

0T
3 1


, where exp(Ω) =

I3 +
sin θ

θ Ω + (1−cos θ)
θ2 Ω2 and V = I3 +

(1−cos θ)
θ2 Ω + (θ−sin θ)

θ3 Ω3, with θ =
�
− 1

2 Tr(Ω2).

A.3.2 Logarithm map on SE(3)

Let A =


 R t

0T
3 1


 ∈ SE(3). log(A) =


log(R) V−1t

0T
3 0


, where log(R) =

θ

2sinθ

�
R − RT� and V = I3 +

(1−cos θ)
θ2 R +

(θ−sin θ)
θ3 R3, with θ = acos

�
Tr(R)− 1

2

�
.
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A.3.3 Exponential map on GA

Let A =




0 ᾱ1 ᾱ3

0 ᾱ2 ᾱ4

0 0 ᾱ5


 ∈ gA.

Exp(A) =








1 ᾱ1
ᾱ1ᾱ4 exp(ᾱ5) + ᾱ3ᾱ5 exp(ᾱ5)− ᾱ1ᾱ4ᾱ5 − ᾱ1ᾱ4 − ᾱ3ᾱ5

ᾱ5
2

0 1
ᾱ4(exp(ᾱ5)− 1)

ᾱ5

0 0 exp(ᾱ5)




, if ᾱ2 = 0 and ᾱ5 �= 0




1
ᾱ1(exp(ᾱ2)− 1)

ᾱ2

ᾱ1ᾱ4 exp(ᾱ2)− ᾱ1(1 + ᾱ2)ᾱ4 + ᾱ2
2ᾱ3

ᾱ2
2

0 exp(ᾱ2)
ᾱ4(exp(ᾱ2)− 1)

ᾱ2

0 0 1




, if ᾱ5 = 0 and ᾱ2 �= 0




1 ᾱ1 ᾱ3 +
ᾱ1ᾱ4

2
0 1 ᾱ4

0 0 1




, if ᾱ2 = 0 and ᾱ5 = 0




1
ᾱ1(exp(ᾱ2)− 1)

ᾱ2

((ᾱ1ᾱ4 + ᾱ3)ᾱ2 − ᾱ1ᾱ4) exp(ᾱ2) + ᾱ1ᾱ4 − ᾱ2ᾱ3

ᾱ2
2

0 exp(ᾱ2) ᾱ4 exp(ᾱ2)

0 0 exp(ᾱ2)




, if ᾱ2 = ᾱ5 �= 0




1
ᾱ1(exp(ᾱ2)− 1)

ᾱ2

(−ᾱ2(ᾱ1ᾱ4 − ᾱ2ᾱ3 + ᾱ3ᾱ5)exp(ᾱ5) + ᾱ1ᾱ4ᾱ5 exp(ᾱ2) + (ᾱ2 − ᾱ5)(ᾱ1ᾱ4 − ᾱ2ᾱ3))

(ᾱ2ᾱ5(ᾱ2 − ᾱ5))

0 exp(ᾱ2) ᾱ4
(exp(ᾱ2)− exp(ᾱ5))

(ᾱ2 − ᾱ5)

0 0 exp(ᾱ5)




, otherwise.
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A.3.4 Logarithm map on GA

Let A =







1 α1 α3

0 α2 α4

0 0 α5





 ∈ GA.

log(A) =








0 α1
log(α5)(α3α5 − α3 + α1α4)

(α5 − 1)2 − α1α4

(α5 − 1)

0 0
α4 log(α5)

(α5 − 1)

0 0 log(α5)




, if α2 = 1 and α5 �= 1




0
α1 log(α2)

α2 − 1
α1α4 log(α2)

(α2 − 1)2 − (α3 − α2α3 + α1α4)

(α2 − 1)

0 log(α2)
α4 log(α2)

(α2 − 1)

0 0 0




, if α5 = 1 and α2 �= 1




0 α1 α3 −
(α1α4)

2
0 0 α4

0 0 0




, if α2 = α5 = 1




0
α1 log(α2)

α2 − 1
α3 log(α2)

(α2 − 1)
+

α1α4

α2(α2 − 1)
− α1α4 log(α2)

(α2 − 1)2

0 log(α2)
α4

α2

0 0 log(α2)




, if α2 = α5 �= 1




0
α1 log(α2)

α2 − 1
α1α4 log(α2)

(α2 − α5)(α2 − 1)
− (α1α4 − α2α3 + α3α5) log(α5)

(α2 − α5)(α5 − 1)

0 log(α2)
α4 log(α2)

(α2 − α5)
− α4 log(α5)

(α2 − α5)

0 0 log(α5)




, otherwise

A.3.5 Exponential and Logarithm map on GS

Note that GS = R+ and gS = R, therefore exponential and logarithm maps coin-

cide with usual scalar exponential and logarithm maps.

A.3.6 Note

Exponential and Logarithm maps for A and s are converted into 4× 4 matrices by

embedding them in the top-left 3 × 3 block of the 4 × 4 identity matrix, whenever

required to be composed with other transformations.
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