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Abstract

Facial expression recognition (FER) is a problem of pattern recognition that in-

vites the attention of computer vision researchers for the last three decades. How-

ever, the problem is still alive due to challenges such as – blurring, illumination

variation, pose variation, face image captured in the unconstrained environment,

and so on. In the beginning, hand-crafted features followed by classical classi-

fication mechanism through a classifier have been studied for various features

as well as various classifiers. The hand-crafted features that are associated with

changes in expression are hard to extract due to the individual distinction and

variations in emotional states. With the induction of deep neural network (DNN)

and convolution neural network (CNN), a change in the techniques of facial ex-

pression recognition is observed both in terms of efficiency and handling various

challenges mentioned above. The modular approach presented here mimics the

capability of the human to identify a person with a limited facial part. Facial parts

like eyes, nose, lips, and forehead contribute more to the expression recognition

task. In this thesis, we have addressed classical feature-based approaches to deep

learning techniques.

This thesis presents approaches for Facial Expression Recognition (FER). Firstly,

we propose two dimensional Taylor expansion for the facial feature extraction

as well as to handle the local illumination. Most procedures just used the ar-

rangement with global illumination varieties and thus yielded more unsatisfac-

tory recognition performances within the case of natural illumination variations

that are usually uncontrolled within the globe. Hence, to address the brighten-

ing variety issue, at that point we presented the (LL) Laplace-Logarithmic area

in this article for further improving the exhibition. We applied the proposed 2D
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Taylor expansion theorem in the facial feature extraction phase and formulated

the 2DTFP method.

In our second FER approach, we propose a histogram of second-order gradi-

ents (HSOG) for the feature extraction. Most of the popular local image descrip-

tors in the literature, such as SIFT, HOG, DAISY, LBP and GLOH, only use the

first-order gradient information related to slope and elasticity, e.g., length, area,

etc. of a surface, and therefore partly characterize the geometric properties of

an image. We exploit the local image descriptor that extracts the histogram of

second-order gradients (HSOG), which capture the local curvatures of differen-

tial geometry, i.e., cliffs, ridges, summits, valleys, basins, etc. That gives us a

different shape index. The shape index is computed from the curvatures, and its

different values correspond to different shapes. That different shape corresponds

to different expressions of the face.

Much work has been done in this field where local texture, features have been

extracted and used in the classification. Due to the very local nature of this in-

formation, the dimension of the feature vector achieved for the full image is very

high, posing computational challenges in real-time expression recognition. In re-

cent times, Dimensionality Reduction methods have been successfully used in

image recognition tasks. Here we propose two Dimensionality Reduction meth-

ods E-PCA (Euler Principal Component Analysis) and CS-ONPP (Orthogonal

Neighborhood Preserving Projection with Class Similarity-based neighborhood).

It proved to be gaining huge margin in terms of feature vector length while main-

taining the same recognition accuracy.

Classical FER methods do well in certain well-controlled cases. The funda-

mental issue with hand-crafted features based arrangement approaches is that

they require space learning and not generalize well like in the complex dataset.

Deep learning is fast becoming a go-to tool for many artificial intelligence prob-

lems due to its ability to overcome other approaches and even humans in many

problems. DNN has millions of parameters. To get an optimal set of parameters,

we need to have a lot of data to train. Even if we have a lot of data, training gen-

erally requires multiple iterations, and it takes a toll on the computing resources.
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The task of fine-tuning a network is to tweak the parameters of an already-trained

network so that it adapts to the new task at hand. Here we propose two deep

learning-based methods. The first method is DNNFG (DNN based on Fourier

transform followed by Gabor filtering), where we used pre-trained model VGG16

with fine tuning for extracting the facial features. VGG16 is chosen due to the

fact of its effective performance in visible detection and speedy convergence. It’s

concerning 138 million parameters and contains 13 convolutional layers, followed

by 3 fully-connected layers (FCs). Since the VGG framework not designed for the

FER tasks, so we modified the framework according to our requirements. And the

second is 2DNN (Double-channel based Deep Neural Network). Where we uti-

lized VGGFace architecture, VGGFace is trained on 2.6M face images from 2.6k

different people. VGGFace architecture is the same as VGG16. Input images are

just different in VGGFace other architecture is the same as VGG16. Adapt VG-

GFace to FER problem, VGGFace is fine-tuned. It easily utilized local and global

information about the expressions. DNN based methods improved recognition

accuracy compared to classical approaches.

Facial expression recognition (FER) experiments are performed on a number

of the benchmark FER databases. Here experiments performed on the four bench-

mark databases, which are JAFFE, VIDEO, CK+, OULU-CASIA. Basically thesis

addresses the classical facial expression recognition approaches and its shortcom-

ings, then moved to deep learning-based approaches to handle these shortcom-

ings. It performed well compared to handcrafted methods. Also, experimentally

proved in the thesis that a modular approach is to perform better than holistic

approach.

Keywords: LBP, 1D Taylor expansion, 2D Taylor expansion, SVM, K-NN, HOG,

HSOG, Facial Expression Recognition, PCA, KPCA, e-PCA, Dimensionality Re-

duction, ONPP, CNN, DNN, VGG16, VGGFace, TAYLOR SERIES.
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CHAPTER 1

Introduction

Meaningful communicating with each other is utmost important for human be-

ing. Spoken language is the best means of communication. However there are

other means also. One such is facial expression which is a visual communication.

So What is Facial Expression? A facial expression produced by the movement of

muscles below the face. Usually, human facial expressions are direct and natu-

ral means of representing their feelings and intentions. Facial expressions are the

salient features of non-verbal communication.

Humans have always had the innate ability to recognize and distinguish the

faces of fellow′s faces. With the exception of fingerprints, the facial expression is

one of a person’s most distinctive and distinguishable visible features. Emotions

allow humans to perceive what they feel for something. Recently, there has been

a growing interest in improving human-computer interaction (HCI) using natural

modalities. Indeed, it is argued [147] that in order to achieve effective intelligent

human-computer interaction, computers must be able to interact naturally with

the user, similar to the way humans interact with each other. Human beings inter-

act mainly through the speech, but the interaction also takes place through single

or both hands gesture and even the gesture of the whole body [157] (to emphasize

some parts of the speech or convey the sign language, for example) and through

the visualization of emotions [13]. Emotions can be displayed visually or verbally

through the speech, and one of the most important ways in which humans show

emotions is through facial expressions. For example, humans can clearly identify

fear and disgust in the voice, joy, and surprise in facial expressions. Therefore, the

recognition of facial expressions, in particular, to convey emotions, has aroused
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considerable interest in the scientific community, with conveying applications in

HCI, computer animation (virtual characters that transmit emotions), surveillance

and security, medical diagnosis, law enforcement, and awareness systems. and

therefore, it has been an active research topic in multiple areas such as psychology,

cognitive science, human-computer interaction, and the recognition of models in

image processing [149].

Common uses of facial expression recognition are: 1. Intelligent entertain-

ment systems for children; 2. Interactive computers; 3. Intelligent sensors; 4.

Social robots. In the field of HCI based on language and language technology,

recognition of emotional speech is also a challenge. A related interdisciplinary

area is affective computing, which studies the development of systems and de-

vices capable of recognizing, processing, and simulating human affections. Affec-

tion and emotion are not the same but are deeply connected. Affective qualities

include beauty, shape and structure, characteristics that evoke emotions, while

emotions include the different feelings that a human being can have, such as

anger, fear, disgust, sadness, happiness, and surprise. A system capable of rec-

ognizing and understanding emotions, through the recognition of facial expres-

sions, in the Human-Computer Interaction (HCI) process, would facilitate inter-

action with users: it should be able to "perceive, interpret, express and regulate

emotions " [124]. Therefore, recognizing the user’s emotional state is "one of the

main requirements for computers to successfully interact with humans" [18]. It

would also enable "distinguish between user satisfaction and dissatisfaction of

the user in a given computer-aided task" [171]. The range of potential applica-

tions is wide: "emotional and paralinguistic communication, clinical psychology,

psychiatry, neurology, pain assessment, lie detection, intelligent environments"

[171]. For example, an affective system could "calm a crying baby or prevent a

strong feeling of loneliness and negative emotion." [181] and an emotion recog-

nition system could be used to help "autistic children learn and elicit emotional

responses. And they could also help autistic children learn to distinguish between

emotions ".

Facial expressions can be described at different levels, and two of the main
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Figure 1.1: Basic emotions as identified by Ekman and Friesen [32]

methods are facial affect (emotion) and facial muscle action (action unit) [171].

The leading study by Ekman and Friesen [32] identified six basic emotions: anger,

disgust, fear, happiness, sadness, and surprise, as well as a neutral state, as shown

in Fig. 1.1. Their studies suggest that each of these emotions bases corresponds to

basic prototypical facial expressions recognized universally.

1.1 Motivation

Although recognizing facial expressions is a relatively easy task for the majority of

people, it is a very challenging task for a computer. One reason is that it has been

observed that the variations between the images representing the same terms are

almost always larger than variations in the facial expressions due to the change

in lighting and viewing directions. These fluctuations are compounded by addi-

tional factors such as occlusion, gender, and even ethnic origin. Such appearance

variations make it difficult to locate facial regions and extract the inherent facial

expression features. In unrestricted environments, these variations are even more

difficult to model than in well-controlled environments.

The ultimate goal of this work is to study facial expression detection algo-

rithms is restricted and unconstrained environments. Despite the researcher’s

efforts over a few decades, this problem has remained largely unresolved. To

achieve the goal, the objectives of this work can be divided into three parts, which

are pursued separately.

The first goal is to investigate novel methods for feature extraction. Because

of the large differences between classes and similarities between classes, effective

feature extraction is critical for facial expression recognition. The extracted fea-

tures should represent different types of facial expressions in a manner that is not

materially affected by the subject’s age, gender, or appearance. It is also desirable
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to have features that are robust to localization errors and occlusions.

The second goal is the investigation of feature selection and combination meth-

ods for the recognition of facial expressions. It is generally accepted that facial

expression recognition performance can benefit from a combination of multiple

features. However, there is often no obvious way to select and combine different

types of features.

The last objective is to deal with the problem of lacking training data. The

majority of the existing facial expression datasets were collected under controlled

environments, which can not represent the diverse set of variations found in the

real world. Since it is often costly to collect a large amount of training examples.

They also suffer from common limitations of being small in terms of both the

number of human subjects and images which can lead to over-fitting problems

in many learning algorithms and result in poor recognition performance. In this

thesis, we increase the number of images of the dataset using the Data Augmen-

tation approach. Then apply the DNN (Deep Neural Network), which can train a

system with more than 2 or 3 nonlinear hidden layers. DNN has achieved success

in fields such as computer vision, natural language processing, and automatic

speech recognition. One of the main strengths of using DNN techniques is that

there is no need to feature engineering. Algorithms can learn the features them-

selves on the basic representations. For example, in image recognition, it is possi-

ble to feed a DNN with representations of images in pixels. Then, the algorithm

will determine whether a certain combination of pixels represents a particular fea-

ture, which is repeated throughout the image. As the data is processed through

the levels, the characteristics will change from very abstract forms to meaningful

representation of facial expressions.

1.2 Thesis contributions

Having provided a brief introduction to Facial Expression Recognition (FER), we

now summarize the important contributions of this thesis, the details of which are

discussed in the subsequent chapters. We also highlight how these contributions
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Figure 1.2: Extraction of four facial parts of the given face image

are different from other works. The thesis is to study and implement classical

handcrafted approaches and deep learning techniques. Humans have the capa-

bility to identify a person with a limited facial part. To extract these facial parts

from the face, we have used the Facial Landmark Detection algorithm offered by

Dlib which is an open-source machine learning library provided by King [75] The

facial landmark detection algorithm offered by Dlib is an implementation of the

Ensemble of Regression Trees. It utilizes the technique of pixel intensity differ-

ence to directly estimate the landmark positions. The algorithm has a very fast

response rate and detects a set of 68 landmarks on a given face. As shown in Fig.

1.2.

The landmarks (key points) of our interest are those that describe the eyes,

nose, lips, and eyebrows. Using the landmarks of the eyes, eyebrows, and nose,

we find the upper patch between two eyes which we have called the forehead,

using the landmarks of the eyes we have extracted the eye region and similarly the

nose and lips. These patches are cropped out for each face image and saved. These

regions are selected as they give most of the information about the expressions, as

proved in [169].

Chapter wise major accomplishments of the thesis are listed down:

1. We developed the facial expression features extraction technique, namely

2DTFP (Two dimensional Taylor Feature Pattern). In this system (FER), the

Logarithm-Laplace (LL) is used to handle illumination variation present in

the face image. We introduce 2D Taylor Feature Pattern (TFP) in light of the

proposed Two Dimensional Taylor Expansion. 2DTFP strategy technique

will acquire an efficient facial features feature vector from the given face
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images and work efficiently for recognition tasks.

2. We proposed the local image descriptor that extracts the histogram of second-

order gradients (HSOG), which capture the local curvatures of differential

geometry. The shape index is computed from the curvatures, and its dif-

ferent values correspond to different shapes. An attempt has been made to

replicate the same on machines by only considering some of the informative

regions of the face like eyes, nose, lip, and forehead. It is observed that the

combination of these regions is useful enough to distinguish facial expres-

sions of different persons or the same persons in most of the cases.

3. Due to the very local nature of this information, the dimension of the fea-

ture vector achieved for the full image is very high, posing computational

challenges in real-time expression recognition. In recent times, Dimension-

ality Reduction methods have been successfully used in image recognition

tasks. Though being high dimensional data, natural images such as face im-

ages lie in low dimensional subspace, and Dimensionality Reduction meth-

ods try to learn this underlying subspace to reduce the computational com-

plexity involved in the classification stage of image recognition task. We

propose E-PCA (Euler Principal Component Analysis) and CS-ONPP (Class

Similarity-based Orthogonal Neighborhood Preserving Projection) for ex-

pression recognition. Local Features based methods have been successfully

applied to Facial Expression Recognition problems; the resulting feature

vector lengths usually are of order 105, which slows down the classification

process.

4. Classical FER methods a do well in certain well-controlled cases. The fun-

damental issue with hand-crafted features based arrangement approaches

is that they require space learning and not generalize well like in the com-

plex dataset. Fortunately, Deep Neural Network (DNN) is giving a satis-

factory solution to these issues which were not able to deliver by the hand-

crafted techniques. So proposed DNNFG (DNN based on Fourier trans-

form followed by Gabor filtering) where the input images are processed
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by VGG16_ft and 2DNN (Two-channel based Deep Neural Network) easily

utilized the local and global information about the expressions. Two pre-

processing approaches, Histogram equalization (handle the illumination)

and Data Augmentation (increase number of facial images), is implemented

to restrain the regions used for Facial expression recognition (FER). Double

channel architecture used for the implementation, one channel takes input

as a grayscale facial image, processed by VGGFace_ft, and other channel

takes input as Taylor feature pattern (TFP) facial image, processed by pro-

posed CNN model and extract the features accordingly. DNN based meth-

ods improved recognition accuracy compared to classical approaches.

1.3 Thesis Organization

The contents of this thesis are organized as follows. The literature review is pre-

sented in .chapter 2. Where we discussed about the existing hand-craft based

FER and deep neural network based FER techniques. In chapter 3 , We introduce

2D Taylor Feature Pattern (TFP) in light of the proposed Two Dimensional Tay-

lor Expansion. In this facial expression recognition system (FER), the Logarithm-

Laplace (LL) is used to handle illumination variation present in the face image.

Ding Yuanyuan [30] deals with one dimensional Taylor series approximation for

images however digital images which is considered as a two dimensional signals

where each pixel is having dependencies in neighbouring pixels in both horizon-

tal and vertical directions. With this aim in mind we formulated two dimensional

Taylor series approximation for digital images. In this formulation we derived

how the pixel in concern can be approximated from its neighbours pixel in both

horizontal and vertical direction, to the best of our knowledge the Two dimen-

sional Taylor series approximation for digital image is not in the literature. Here,

we newly proposed Two dimensional Taylor series approximation for the modu-

lar FER as well as holistic FER.

Other hand-craft based feature extraction technique is furnished in chapter 4.

We proposed the feature extraction technique which is based on Histogram of
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second order gradients of the Image. HSOG is variant of the HOG (Histogram

of oriented gradient). HOG [23] is a local image descriptor for feature extraction,

which is mainly used for object recognition. This proposed method characterizes

the local shape changes of face (that is called the facial expression) by encoding the

second oder gradient from the first order oriented gradient. First order gradient

delivers the slope where as Second order gradients compute the curvature at the

point, that curvature gives shape index and different shape index corresponds to

different local shapes. Proposed HSOG is applied on most informative regions of

the face i.e. eyes, nose, lip and forehead. It is observed that combination of these

regions are useful enough to distinguish facial expressions of different persons or

same persons in most of the cases.

Much work has been done in this field where local texture, features have been

extracted and used in the classification. Due to the very local nature of this infor-

mation, the dimension of the feature vector achieved for the full image is very

high, posing computational challenges in real-time expression recognition. In

last decade it has been observed that dimensionality reduction for face and FER

tasks attain maximum attention from the researchers. In the same direction we

proposed two dimensionality reduction techniques in chapter 5. First method is

based on the Euler Principal Component Analysis (EPCA). of helpful details ob-

tainable within the collected face images. Euler Principal Component Analysis

uses a difference live to extend the variations between objects although the face

images area unit below the influence of visual variation. Other dimensionality we

proposed is CS–ONPP (Class Similarity-based Orthogonal Neighbor- hood Pre-

serving Projection) for expression recognition. Proposed methods are tested on

benchmark databases and proved to be gaining huge margin in terms of feature

vector length while maintaining same recognition accuracy.

Starting from conventional feature based approach researchers in the current

era are mostly relying on deep and convolutional neural network for the men-

tioned task. In the same direction we proposed a couple of Deep Neural Networks

techniques in chapter 6. DNN has millions of parameters. To get an optimal set

of parameters, we need to have lot of data to train. Even if we have a lot of data,
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training generally requires multiple iterations and it takes a toll on the comput-

ing resources. The task of fine-tuning a network is to tweak the parameters of an

already trained network so that it adapts to the new task at hand. As explained

here, the initial layers learn very general features and as we go higher up the net-

work, the layers tend to learn patterns more specific to the task it is being trained

on. Thus, for fine-tuning, we want to keep the initial layers intact (or freeze them)

and train the later layers for our task. Original VGG16 has been trained on the

IMAGE NET dataset, but for the better classification we need to train the network

in our datasets. This has been be efficiently done by the VGG16 with fine-tuning.

So Our first method is proposed DNNFG (DNN based on Fourier transform fol-

lowed by Gabor filtering) which utilized VGG16_ft. And other method 2DNN

(Two-channel based Deep Neural Network) easily utilized the local and global

information about the expressions. For this task we utilized VGGFace, which is

trained on 2.6M face images from 2.6k different people. VGGFace architecture is

the same as the VGG16. To adapt VGGFace to FER problem, the VGGFace fine-

tuned (denoted as VGGFace_ft) by freezing four blocks of VGGFace and tuning

the parameter of the last block. DNN based methods improved recognition accu-

racy compared to classical approaches.

Finally, in chapter 8 we conclude the thesis by summarizing the main contri-

butions and by listing out future research directions.
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CHAPTER 2

Literature Survey

Most traditional methods have used handcrafted features or shallow learning

(e.g., Local Binary Patterns (LBP) [150], LBP in three orthogonal planes (LBP-

TOP) [212], non-negative matrix factorization (NMF) [215]) and sparse learning

[216]) for FER. However, since 2013, emotion recognition competitions such as

FER2013 [43] and Emotion Recognition in the Wild (EmotiW) [27] have collected

relatively sufficient training data from real world scenarios, which implicitly pro-

mote the transition of FER from laboratory controlled environments to in-the-wild

settings. Meanwhile, due to the significant increase in chip processing capabili-

ties (for example, GPU units) and a well-designed network architecture, studies

Figure 2.1: The evolution of facial expression recognition in terms of datasets and
methods. [88]

10



in various fields have begun to transfer to deep learning methods, which have

achieved the state-of-the-art recognition accuracy and exceeded previous results

by a large margin. Similarly, more effective data on facial expression training,

deep learning techniques have been increasingly implemented to manage stim-

ulating factors for the recognition of emotions in wild. Fig. 2.1 illustrates this

evolution of FER in the aspect of algorithms and data sets.

So In this chapter, we provide a review of the literature for Hand-crafted fea-

tures extraction and Deep learning based Facial Expression Recognition Tech-

niques, highlighting insights into the current state of research in these areas. We

first looked at the literature for Hand-craft features techniques in section 2.1, fol-

lowed by the Deep Learning based techniques in section 2.2.

2.1 Hand-Crafted Based FER Approaches

Facial expression is one of the most powerful, natural and universal signals for hu-

man beings in transmitting their emotional states and their intentions [24], [172].

Numerous studies have been conducted on automatic facial expression analysis

due to its practical importance in social robotics, medical treatment, monitoring

driver fatigue and many other human-computer interaction systems. In the field

of machine vision and machine learning, various facial expression recognition

systems (FER) have been explored to encode information about expressions from

facial representations. As early as the 20th century, Ekman and Friesen [35] de-

fined six basic emotions based on intercultural study [33], indicating that humans

perceive certain basic emotions in the same way, regardless of culture. These pro-

totypical facial expressions are anger, disgust, fear, happiness, sadness and sur-

prise. Contempt was subseqequently added as one of the basic emotions [107].

Recently, advanced research in neuroscience and psychology has argued that the

basic six emotion model is culture specific and not universal [56].

Although the basic model of emotion-based affectivity is limited in the abil-

ity to represent the complexity and subtlety of our daily affective displays [202],

[139], [106] and other models of emotion description, such as facial action coding
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system (FACS) [34] and the continuous model that uses the dimensions of affect

[45], considered to represent a wider range of emotions, the categorical model that

describes emotions in terms of discrete basic emotions remains the most popular

for FER, thanks to its pioneering research combined with the direct and intuitive

definition of facial expressions. The FER systems can be divided into two main

categories based on the feature representations: static image FER and dynamic se-

quence FER. In static-based methods [150], [95], [112], the feature representation is

encoded with only spatial information from the current single image, whereas dy-

namic based methods [212], [62], [214] consider the temporal relationship between

contiguous frames in the facial expression input sequence. Based on these two

vision-based methods, other modalities, such as physiological and audio chan-

nels, have also been used in multi modal systems [14] to facilitate the recognition

of expressions.

The Facial Expression Recognition (FERA) [179] evaluated the detection of Ac-

tion Unit (AU) and the classification of discrete emotions for four basic emotions

and one non-basic emotion. The Audio / Visual Emotion Challenges (AVEC)

[145] , [144], [178] evaluated dimensional affect models. FERA demonstrated the

substantial progress made in subject-dependent emotion recognition and high-

lighted open issues in subject-independent emotion recognition; while the chal-

lenges of AVEC have highlighted the limitations of existing techniques when it

comes to spontaneous affective behavior. Most traditional methods have used

handcrafted features or shallow learning (e.g., Local Binary Patterns (LBP) [150],

LBP in three orthogonal planes (LBP-TOP) [212], non-negative matrix factoriza-

tion (NMF) [215] and sparse learning [216]) for Facial Expression Recognition.

Low-level histogram representations first extract local features and encode them

into a transformed image, then group local features into uniform regions, and fi-

nally pool the features of each region with local histograms. The representations

are obtained by concatenating all the local histograms. Low-level representations,

especially local binary models (LBP) [2] and local phase quantification (LPQ) are

very popular. LBP was used by the winner of the word-level challenge AVEC

[141] and FERA AU the detection challenge [148], LPQ was used by prominent
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systems in FERA [194] and AVEC [19]. The LPQ descriptor was proposed for the

classification of blur-insensitive textures through the local Fourier transformation

[120]. Similar to an LBP, an LPQ describes a local neighborhood with an integer

at [1, 256]. Local histograms simply count LPQ patterns and the dimensionality

of each histogram is 256 [120]. The Histogram of Gradients (HoG) approach [23]

represents images based on the directions of the edges contained in them. HoG

extracts local features by applying gradient operators across the image and encod-

ing their output in terms of gradient magnitude and angle. HoG has been used

by a prominent system in the emotional challenge FERA [20].

Another low-level histogram representation is Quantized Zernike Local Mo-

ments (QLZM), which describes a neighborhood by calculating its local Zernike

moments [140]. Each moment coefficient describes the variation on a unique scale

and orientation and the information transmitted by different moment coefficients

does not overlap [170]. The QLZM descriptor is obtained by quantifying all the

coefficients of the moment in an integer and the local histograms count the inte-

gers QLZM.

Low-level representations can be compared from various perspectives. LBP

and HoG are compared in terms of sensitivity to registration errors and the re-

sults suggest that LBP histograms are generally less sensitive [44]. LBP and LPQ

are compared in terms of overall affect recognition performance in various stud-

ies and LPQ generally exceeds LBP [59], [60], [178], [194]. This may be due to the

size of the local description, as LBPs are usually extracted from smaller regions

with 3 pixel diameter [150], whereas LPQs are extracted from larger regions of

7× 7 pixels [2], [59], [60]. LBPs cause information to be lost when extracted from

larger regions, as they ignore the pixels that remain within the circular region. In

contrast, LPQ integers describe the regions as a whole. The QLZM also describe

the local regions as a whole and the larger regions as 7× 7 were more useful, in

particular for recognizing the naturalistic effect [140]. Another comparison that

can be useful for low level representations is dimensionality. While the local his-

tograms of LBP and LPQ are relatively higher dimensional (due to their pattern

size), QLZM and HoG can be adjusted to obtain smaller histograms that have
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been successful respectively on AVEC data [140] and FERA challenge [20].

Another feature-based low-level representation is the Gabor representation,

which is used by various systems, including the winner of the FERA AU [90],

[186] and AVEC [42] detection challenge. A representation of Gabor is obtained

by convolving the input image with a set of Gabor filters of various scales and

orientations[81], [184]. Gabor filters encode component information and, depend-

ing on the registration scheme, the general representation can implicitly convey

configuration information. The high dimensionality of the convolution output

makes a phase of reduction of dimensionality essential. As the pixels in the im-

ages filtered with Gabor contain information about the neighboring pixels, it is

possible to use simple dimensional reduction techniques such as minimum, max-

imum and average pooling. Gabor filters are differential and localised in space,

providing tolerance to illumination variations to a degree [65], [184]. Similar to

the representations of low-level histograms, Gabor’s representation suffers from

identity distortions, in that it favors clues rather than expressions [166]. It is ro-

bust for registration errors to some extent, since the filters are uniform and the size

of the filtered images is robust for small translations and rotations [44], [81]. The

robustness of registration errors can be further enhanced by pooling. The Gabor

filter is computationally expensive due to the convolution with a large number of

filters [184].

The Bag-of-Words (BoW) representation used in the FER [156] describes lo-

cal neighborhoods by extracting local features (ie SIFT) densely from fixed po-

sitions and then measuring the similarity of each of these featureswith a set of

features(for example visual words) in a data set (for example, visual vocabulary)

using linear coding with position limitation [156]. The representation inherits

the robustness of the SIFT features against illumination variations and minor reg-

istration errors. The representation uses spatial pyramid [83] a technique that

performs the pooling of histograms and increases the tolerance for registration

errors. This matching scheme encodes the information on the components on

various scales and the layer that does not divide the image into subregions trans-

mits holistic information. This representation can have a very high dimensionality
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and, therefore, its generalization to spontaneous data requires further validation.

Although the SIFT descriptors are computationally simple, the visual word count

is based on a search for the visual vocabulary and, depending on the size of the

vocabulary and the search algorithm used, it can be computationally expensive.

Vocabulary training also has a one-off training cost.

So far we describe the local texture. Implicitly or explicitly, its features en-

code the distribution of the edges. Instead, recent approaches aim to obtain rep-

resentations based on higher level data to encode features that are semantically

interpretable from the point of view of the recognition of expressions. Two meth-

ods that generate these representations are NMF [117], [215] and sparse coding

[17], [139], [199]. Alternatively, various features learning approaches can also be

used [135]. NMF methods decompose a matrix into two non-negative matrices.

Decomposition is not unique and can be designed to have multiple semantic inter-

pretations. An NMF-based technique is the NMF conservation graph (GP-NMF)

[215], which divides the faces into spatially independent components through a

spatial sparseness constraint [52]. The decomposition into independent parts en-

codes the information on the components and possibly the configural informa-

tion.

Another NMF-based approach is the subclass discriminant NMF (SD-NMF)

[117], which represents an expression with a multimodal projection (rather than

assuming that an expression is distributed unimodally). Unlike GP-NMF, SD-

NMF does not explicitly impose decomposition into spatially independent com-

ponents. The basic images provided [101] suggest that the encoded information

may be holistic, modular or configurational.

NMF creates several basis images and the features of the NMF-based repre-

sentations are the coefficients of each basis image. The method performs the

minimization to calculate the coefficients, therefore its computational complex-

ity varies according to the optimization algorithm and the number and size of

the basis images. Since NMF depends on training, its tolerance against illumina-

tion variations and registration errors depends on training data; the NMF’s ability

to handle both issues NMF concurrently is limited as NMF is a linear technique
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[174]. NMF-based representations can address identity bias by learning identity

free basis images. This depends on the number of identities provided during

the training, as well as on the ability of the technique to deal with interpersonal

variations. The dimensionality of NMF-based representations is low: their per-

formances are saturated with less than 100 [215] or 200 features [117].

In addition, another feature extraction method used is the vertical backward

time (VTB) which also extracts the texture features from the facial images. The

moments descriptor extracts the features relating to the shape of the significant

facial components. Both VTB and moments descriptor are effective on the spa-

tiotemporal planes [58]. Weber Local Descriptor (WLD) is a feature extraction

technique that extracts highly discriminating texture features from segmented

face images [16]. Feature extraction is performed in three stages using the su-

pervised descent method (SDM). Initially, the main facial positions are extracted.

Next, the related positions are selected. Finally, estimate the distance between the

various components of the face [138]. Weighted projection based LBP (WPLBP)

is also a feature extraction, but is based on the instruction regions extracted from

LBP features. Subsequently, depending on the significance of the instructive re-

gions, these features are weighted [79]. DCT (Discrete Contour Transformation)

extracts the texture features that can be performed by decomposition with two

key stages. The stages are Laplacian Pyramid (LP) and Directional Filter Bank

(DFB) used in the transformed domain. In the LP stage, partitions the image into

low-pass, band-pass and limits the position of the discontinuities. The DFB stage

processes the band transition and forms the linear composition that associates the

position of the discontinuities [8].

Descriptors that extract features based on edge-based methods are, Line Edge

Map (LEM) descriptor that is a facial expression descriptor that improves the ge-

ometric structural features using the dynamic two-stripe algorithm (Dyn2S) [41].

Based on the analysis of motion, two types of facial features are extracted, such

as non-discriminatory and discriminatory facial features [118]. The Active Shape

(GASM) model based on the Graphics processing unit is the feature extraction

method that can be performed with edge detection, enhancement, local appear-
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ance model matching. After that the image ratio features are extracted from the

expressed face images [161].

Descriptors that extract features based on global and local features based meth-

ods are, Principal Component Analysis (PCA) method that is used for feature

extraction. Extract global and low dimensional features Independent compo-

nent analysis (ICA) is also a feature extraction method that extracts local features

using multichannel observations [155]. Stepwise Linear Discriminant Analysis

(SWLDA) is the feature extraction technique that extracts localized features with

back and forth regression models. Depending on the class labels, the F test values

are estimated for both regression models [154]. Descriptors that extract features

based on methods based on geometric features based methods are, Local Curvelet

Transformation (LCT) is a feature descriptor which extracts the geometric features

that depend on the wrapping mechanism. The extracted geometric features are

mean, entropy and standard deviation [176]. In addition to these geometric fea-

tures are energy, kurtosis are extracted through the use of a three-stage steerable

pyramidal representation [105].

Descriptors that extract features based on patch-based methods are, Facial

movement features are extracted as patches based on distance characteristics.

These are done through the use of two processes, such as patch extraction and

patch matching. Patch matching is performed by translating the extracted patches

into distance characteristics [205]. The texture Feature descriptors are a more

useful feature extraction method than others because it extracts the appearance-

related texture features provided by important feature vectors for FER. Also Local

Directional Number (LDN) [128], Local Ternary Directional model (LDTP) [137],

KL Transform Extended LBP(K-ELBP) [46] and (DWT) [116] texture feature based

descriptors are used as feature descriptors in recent years FER. Several extracted

features have high dimensional vectors. In general, these feature vectors are re-

duced using various dimensionality reduction algorithms such as PCA, linear dis-

criminant analysis, Whitened Principle Component Analysis and important fea-

tures are also selected with different algorithms such as Adaboost and similarity

scores.
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2.2 Deep Learning Based FER Approaches

Existing FER approaches based on hand-crafted features demonstrate a limited

recognition performance. Efforts should be made to manually extract effective

features related to expression changes. Many studies have recently studied FER

issues based on deep learning consideration of FER’s great success in pattern

recognition, particularly with the development of the Emotion recognition in Wild

Challenge (EmotiW) [26]. A complete review of deep learning is beyond the scope

of this study; however, readers can refer to [85], [142]. Here we only deals with

some deep networks that can be used to implement FER tasks.

We have divided the works presented in the literature into two main groups

based on the type of data: Deep FER networks for static images and Deep FER

networks for dynamic image sequences.

2.2.1 Deep FER networks for static images

A large volume of existing studies conducted image-based static expression recog-

nition activities without considering temporal information due to the convenience

of data processing and the availability of relevant training and test material. We

first introduce specific pre-training and fine-tuning skills for FER, then review the

novel deep neural networks in this field.

Pre-training and Fine-Tuning

Direct training of deep networks in relatively small facial expression data sets is

prone to overfitting. To mitigate this problem, many studies have used additional

activity-oriented data to pre-train their self-built networks from scratch or fine-

tunined pre-trained models (e.g., AlexNet [78], VGG [160], VGG-face [123] and

GoogleNet [167]). Kahou et al. [64], [67] have indicated that the use of addi-

tional data can help to obtain models with high capacity without overfitting, thus

improving the performance of FER. To select the appropriate auxiliary data, large-

scale face recognition data set (FR) (e.g., CASIA WebFace [196], Celebrity Face in

the Wild (CFW) [209], FaceScrub data set [114]) or Relatively large FER datasets
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(FER2013 [43] and TFD [165]) are adequate. Kaya et al. [69] suggested that VGG-

Face, which was trained for Face Recognition overwhelmed ImageNet, which

was developed for objected recognition. Another interesting result observed by

Knyazev et al. [76] is that pre-training on larger FR data positively affects the ac-

curacy of emotion recognition and further adjustment with additional FER data

sets can help improve performance. Instead of directly using pre-trained or fine-

tuned models to extract features in the target data set, a multi-stage fine tuning

strategy [113] can achieve better performance: after the first stage fine-tuning with

FER2013 in pre-trained models, a second stage fine-tunung based on the training

portion of the target data set (EmotiW) is used to refine the models to fit a more

specific data set (i.e. the target data set).

Although pre-training and fine-tuning on external Face Recognition data can

indirectly avoid the problem of small training data, the networks train separately

from the FER and the information dominated by the face remains on the learned

features which can weaken the ability of networks to represent expressions . To

eliminate this effect, a two-phase training algorithm FaceNet2ExpNet has been

proposed [28]. The fine-tuned face net serves as a good initialization for the ex-

pressions net and is used to guide learning only of the convolutional layers. And

the fully connected layers are trained from scratch with expression information to

regularize the training of the target FER net.

Diverse network input

Traditional practices commonly use the entire aligned face of RGB images as net-

work inputs to learn FER features. However, these raw data lack important in-

formation, such as homogeneous or regular textures and invariance in terms of

image scaling, rotation, occlusion and illumination, which can be confounding

factors for FER. Some methods have used various hand-craft features and their

extensions as network inputs to alleviate this problem.

The low-level representations encode the features of small regions in the given

RGB image, then cluster and pool these features together with the local histograms,

which are robust for illumination variations and small registration errors. A novel
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mapped LBP feature [86] for FER invariant illumination has been proposed. in-

variant feature transform (SIFT) [98] features which are robust against image scal-

ing and rotation are employed [208] for multi-view FER activities. The combina-

tion of different descriptors in outline, texture, angle and color as input data can

also help improve the deep network performance [201], [102].

Part-based representations extract features based on the target activity, which

removes the non-critical parts of the entire image and exploit key parts that are

sensitive to the activity [11] indicated that three regions of interest (ROI), namely

eyebrows, eyes and mouth, are strongly correlated to changes in facial expression

and have cut these regions as input for DSAE. Other research has proposed to

automatically learn the key parts of facial expression. For example, [108] used a

deep multilayer network [15] to detect the saliency map that put intensities on

parts that required visual attention. And [185] applied the near center difference

vector (NCDV) [100] to obtain characteristics with more intrinsic information.

Auxiliary blocks & layers

Based on the basic architecture of CNN, several studies have proposed the addi-

tion of well-designed auxiliary blocks or layers to improve the expression-related

representation capability of the learned features. A novel CNN architecture, HoloNet

[195], was designed for FER, where CReLU [152] was combined with the power-

ful residual structure [51] to increase the depth of the network without reducing

efficiency and an initial residual block [168], [166] has been uniquely designed

for FER to learn multi-scale features to capture variations in expressions. An-

other CNN model, the Supervised Scoring Ensemble (SSE) [53], was introduced

to improve the degree of supervision for FER, in which three types of supervised

blocks were embedded in the early hidden layers of mainstream CNN for shallow,

intermediate and deep supervision, respectively. And a feature selection network

(FSN) [213] was designed by embedding a feature selection mechanism within

AlexNet, which automatically filters out irrelevant features and emphasizes re-

lated features according to learned feature maps of facial expression. . Interest-

ingly, Zeng et al. [201] noted that inconsistent annotations between different FER
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databases are inevitable, which would damage performance when the training

set is expanded by merging multiple data sets. To address this problem, the au-

thors proposed a framework of Inconsistent Pseudo Annotations to Latent Truth

(IPA2LT) . In IPA2LT, an end-to-end trainable LTNet is designed to discover the

latent truths of human annotations and machine annotations trained by different

datasets maximizing the log-likelihood of these inconsistent annotations.

The traditional softmax loss layer in CNN simply forces the features of differ-

ent classes to remain separate, but the FER in real world scenarios suffers from

not only a high inter-class similarity, but also high intra-class variation. There-

fore, several works have proposed novel loss layers for FER. Inspired by the cen-

ter loss [183], which penalizes the distance between the deep features and their

corresponding class centers, two variants have been proposed to assist the su-

pervision of the softmax loss for the most discriminative features for FER: (1) the

loss of the island [9] was formalized to further increase the pairwise distances be-

tween the different class centers and (2) locality-preserving loss (loss of LP) [89]

was formalized to bring locally neighboring features of the same class together so

that the intra-class local clusters of each class are compact. Furthermore, based on

the triplet loss [143], which requires a positive example to be closer to the anchor

than a negative example with a fixed gap, two variants have been proposed to

replace or assist the supervision of the softmax loss: (1) exponential triplet-based

loss [47] has been formalized to give difficult samples more weight when updat-

ing the network and (2) (N + M)-tuples cluster loss [96] has been formalized to

alleviate the difficulty in selecting the anchor and validating the threshold on the

loss of a triplet for an invariant of identity- invariant FER. In addition, a feature

loss has been proposed [200] to provide complementary information for the deep

feature during the initial training phase

Network ensemble

Previous research has suggested that assemblies of multiple networks may out-

perform a single network [12]. Two key factors should be taken when implement-

ing network ensembles: (1) sufficient diversity of networks to ensure comple-
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mentarity and (2) an appropriate ensemble method that can effectively aggregate

committee networks.

In terms of the first factor, different types of training data and various net-

work parameters or architectures are considered to generate various committees.

Various preprocessing methods [72], such as deformation and normalization, and

the methods described can generate different data to train various networks. By

changing the size of the filters, the number of neurons and the number of lay-

ers of the networks and applying more random seeds for the initialization of the

weight, the diversity of the networks can also be improved [73], [126]. In addition,

different network architectures can be used to improve diversity.

Multitask networks

Many existing FER networks focus on a single activity and learn features that are

sensitive to expressions without considering interactions between other latent fac-

tors. However, in the real world, FER is interwined with several factors, such as

head posture, illumination and subject identity (facial morphology). To solve this

problem, multitasking learning is introduced to transfer knowledge from other

relevant tasks and to disentangle nuisance factors. Reed et al. [132] built a higher-

order Boltzmann machine (disBM) to learn manifold coordinates for relevant fac-

tors of expressions and the proposed training strategies to dis- entangling so that

hidden units related to expression are invariant to face morphology. Other works

[25], [127] have suggested that FER performed concurrently with other activities,

such as identifying facial landmarks and facial AU’s [36] detecting, could jointly

improve FER performance.

Furthermore, several works [110], [204] used multitasking learning for identity

invariant FER. In [110], an identity-aware CNN (IACNN) with two identical sub-

CNNs was proposed. One sequence used expression-sensitive contrastive loss to

learn the discriminating features of the expression and the other sequence used

identity sensitive contrast Loss of to learn identity features for identity invariant

FER. In [204], a multi-signal CNN (MSCNN) was proposed, which was trained

under the supervision of FER and face verification activities, to force the model
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to focus on expression information. In addition, an all-in-one CNN model [131]

has been proposed to simultaneously solve a diverse set of face analysis tasks,

including smile detection. The network was initially initiated using pre-trained

weight on face recognition, so activity-specific subnetworks branched out from

several layers with domain-based regularization by training on multiple datasets.

In particular, since smile detection is a subject independent activity that relies

more on local information available from the lower layers, the authors proposed

to combine the lower convolutional layers to form a generic representation for

smile detection. Conventional supervised multitasking learning requires labeled

training samples for all activities. To relax this, [210] proposed a novel attribute

propagation method that can leverage the inherent correspondences between fa-

cial expression and other heterogeneous attributes despite disparate distributions

of different data sets.

Cascaded networks

In a cascade network, different modules for different tasks are combined sequen-

tially to bulid a deeper network, in which the outputs of the former modules are

used by the subsequent modules. Related studies have proposed combinations of

different structures to learn a hierarchy of features through which variation factors

unrelated to expressions can be gradually filtered out. Very often, different net-

works or learning methods are combined sequentially and individually and each

of them contributes differently and hierarchically. In [103], DBNs were trained to

first detect faces and areas related to expression. These analyzed facial compo-

nents were then classified by a stacked autoencoder. In [133], a multi-scale con-

tractive convolutional network (CCNET) was proposed to obtain Local Transla-

tion Invariant (LTI) representations. Then, contractive autoencoder was designed

to hierarchically separate the emotional related factors from subject identity and

pose. In [91], [92], excessively complete representations were first learned using

the CNN architecture, so a multilayer RBM was used to learn higher level fea-

tures for FER. Rather than simply concatenating different networks, Liu et al. [95]

introduced a boosted DBN (BDBN) which performed iteratively feature represen-
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tation, feature selection and construction of classifiers in a unified loopy state.

Compared to concatenation without feedback, this loopy framework propagates

backward the classification error to start the process of selecting the feature al-

ternately until convergence. Therefore, the discriminatory ability of RES can be

significantly improved during this iteration.

Generative adversarial networks (GANs)

Recently, GAN-based methods have been used successfully in image synthesis

to generate extraordinarily realistic faces, numbers and a variety of other types

of images, useful for training data augmentation and corresponding recognition

activities. Numerous works have proposed novel GAN based models for pose-

invariant RES and identity invariant RES. For post-invariant FER, Lai et al. [82]

proposed a face frontalization frame based on GAN, in which the generator frontalises

the images of the input face while preserving the identity and expression charac-

teristics and the discriminator distinguishes the real images from the generated

frontal face images. And Zhang et al. [203] proposed a GAN-based model capable

of generating images with different expressions in arbitrary poses for multi-view

FER. For identity invariant FER, Yang et al. [193] proposed a Adaptive-Generation

(IA-gen) model with two parts. The upper part generates images of the same sub-

ject with different expressions using cGAN, respectively. The lower part then

leads FER for each individual identity subspace without involving other individ-

uals, so identity variations can be well alleviated. Chen et al. [10] proposed a

Privacy Preserving Learning Variational GAN (PPRL-VGAN) that combines VAE

and GAN to learn an identity invariant representation that is explicitly disentan-

gled from the identity information and generative for the expression-preserving

face image synthesis. Yang et al. [192] proposed an De-expression Residue learn-

ing (DeRL) procedure to explore expressive information, which is filtered out dur-

ing the de-expression process, but still integrated into the generator. Then the

model extracted this information from the generator directly to mitigate the influ-

ence of subject variations and improve FER performance.
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2.2.2 Deep FER networks for dynamic image sequences

Although most of the previous models focus on static images, the recognition of

facial expressions can benefit from the temporal correlations of consecutive frames

in a sequence. First, we introduce the existing frames aggregation techniques

that strategically combine the deep features learned from static-based FER net-

works. So, taking into account the fact that in a videostream people usually show

the same expression with different intensities, let’s review the methods that use

images in different expression intensity states for for intensity invariant FER. Fi-

nally, we present deep FER networks that consider the spatio-temporal movement

patterns in the video frames and the learned features derived from the temporal

structure.

Frame aggregation

Since the frames in a given video can vary in expression intensity, direct mea-

surement of the error per frame does not produce satisfactory performance. Var-

ious methods have been proposed to aggregate the network output for frames in

each stream to improve performance. We divide these methods into two groups:

aggregation of frames at the decision level aggregation and feature-level frame

aggregation.

For decision-level frame aggregation, the n-class probability vectors of each

frame in a sequence are integrated. The most convenient way is to directly con-

catenate the output of these frames. However, the number of frames in each se-

quence can be different. Two aggregation approaches were considered to generate

a fixed length feature vector for each sequence [64], [63]: average of the frames and

expansion of the frames. An alternative approach whose dose does not require a

fixed number of frames in the applying statistical coding. The average, max, av-

erage of square, the average of maximum suppression vectors, etc. they can be

used to summarize the probabilities per frame in each sequence.

For feature-level frame aggregation, the learned features of frames in the se-

quence are aggregate. Many statistics-based coding modules can be applied in

this scheme. A simple and effective way is to concatenate the mean, variance,
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minimum and maximum of features over all frames [6]. Alternatively, matrix-

based models such as eigenvector, covariance matrix and multidimensional Gaus-

sian distribution can also be used for aggregation [29], [94]. Furthermore, multi-

instance learning has been explored video-level rendering [188], in which the cen-

ters of the cluster are calculated from auxiliary image data and therefore bag-of-

words representation for each bag in video frame is obtained.

Expression Intensity network

Most of the methods focus on recognizing the peak high expression and ignore

the subtle expressions of lower intensity. Here, we present expression intensity

invariant networks that take training samples with different intensities as inputs

to exploit the intrinsic correlations between the expressions of a sequence that

varies in intensity. In expression intensity invariant network , image frames with

intensity labels are used for training. During the test, data that vary in expression

intensity are used to verify the intensity-invariant ability of the network. Zhao et

al. [214] proposed a Deep Peak Piloted Network (PPDN) that captures a pair of

peak and non-peak images of the same expression and the same subject as input

and uses the loss L2 norm to minimize the distance between two images. During

back propagation, a peak gradient suppression (PGS) was proposed to drive the

learned feature of non- peak expression towards that of peak expression while

avoiding the inverse. Thus, the network discriminat ability on lower intensity

expressions can be improves. Based on PPDN, Yu et al. [74]proposed a deeper

cascaded peak-pilot network (DCPN) which used a deeper and large architecture

to improve the discriminative ability of the learned features and used an integra-

tion training method called cascade fit-tuning to avoid an excess of adaptation. In

[198] more intensity states were used (onset, onset to apex transition, apex, apex

to offset transition and offset) and five loss functions were adopted to regulate

the training of the network by minimizing the error of expression classification,

variation of intra-class expression, intensity classification error and intra-intensity

variation and encoding of intermediate intensity, respectively.
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Deep spatio-temporal FER network

Although frame aggregation can integrate frames into the video stream, crucial

time dependency is not explicitly exploited. By contrast, the spatio-temporal FER

network takes a series of frames in a temporal window as a single input without a

prior knowledge of the expression intensity and uses both textural and temporal

information to encode more subtle expressions.

RNN and C3D: RNN can robustly derive information from sequences by tak-

ing advantage of the fact that feature vectors for subsequent data are semantically

connected and are therefore interdependent. The improved version, LSTM, is

flexible to manage variable length sequential data with lower computation costs.

Derived from RNN, an RNN composed of ReLUs and initialized with Identity

Matrix (IRNN) [84] has been used to provide a simpler mechanism for dealing

with vanishing and exploding gradient problems [64]. And bidirectional RNNs

(BRNNs) [146] have been used to learn temporal relationships in both the origi-

nal and inverse directions [204], [191]. Recently, a Nested LSTM was proposed in

[197] with two sub-LSTM. That is, T-LSTM models the temporal dynamics of the

learned features and C-LSTM integrates the outputs of all T-LSTMs to encode the

multilevel features encoded in the intermediate layers of the network.

Compared to RNN, CNN is more suitable for computer vision applications;

hence, its derivative C3D [173], which uses 3D convolutional kernels with shared

weights along the time axis instead of the traditional 2D kernels, has been widely

used for dynamic FER(for example [1], [37], [122]) to capture the spatiotemporal

features. Based on C3D, many derived structures have been designed for FER.

In [93], 3D CNN was incorporated with the DPM-inspired [38] deformable fa-

cial action constraints to simultaneously encode dynamic movements and dis-

criminations part-based representations. In [62], a deep temporal appearance net-

work (DTAN) was proposed that used 3D filters without sharing the weight along

the time axis; hence, each filter can vary in importance over time. Similarly, a

weighted C3D [180] has been proposed, in which several consecutive frame win-

dows of each sequence have been extracted and weighted based on their predic-

tion scores. Instead of using C3D directly for classification, [115] employed C3D
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for spatiotemporal feature extraction and then cascaded with DBN for prediction.

In [125], C3D was also used as a feature extractor, followed by a NetVLAD layer

[4] to aggregate the temporal information of the movement features by the centers

of the learning cluster.

Facial Landmark Trajectory:

Related psychological studies have shown that expressions are invoked by dy-

namic motions of some parts of the face (eg. Eyes, nose and mouth) which contain

the most descriptive information to represent the expressions. To obtain more ac-

curate facial actions for FER, facial landmark trajectory models of the facial refer-

ence point have been proposed to capture dynamic variations of the facial compo-

nents from consecutive frames. To extract the representation of the landmark tra-

jectory, the most direct way is to concatenate facial landmark points from frames

over time with normalization to generate a one-dimensional trajectory signal for

each sequence [62] or to form an image-like map as the input of CNN [191]. Be-

sides, relative distance variation of each landmark in consecutive frames can also

be used to capture temporal information [74]. In addition, the part-based model

that divides the facial landmarks into various parts based on the physical struc-

ture of the face and then feeds them separately into networks hierarchical has

proven effective in both local low-level and global high level feature encoding

[204]. Instead of extracting the trajectory features separately and then insert them

into the networks, Hasani et al. [49] incorporated the trajectory features by re-

placing the shortcut in the residual unit of the original 3D Inception-ResNet with

element-wise multiplication of the facial landmarks and the input tensor of the

residual unit. Therefore, the landmark based network can be end-to-end trained.

Cascaded networks:

By combining the powerful perceptual vision representations learned by CNN

with the strength of the LSTM for variable length inputs and outputs, Donahue et

al. [31] have proposed a both spatially and temporally deep model that cascades

CNN outputs with LSTM for various vision tasks involving time-varying inputs

and outputs. Similar to this hybrid network, many cascade networks have been

proposed for FER (eg [74], [37]).
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Instead of CNN, [5] used a convolutional sparse autoencoder for sparse and

shift invariant features; then, an LSTM classifier was trained for temporal evolu-

tion. [122] used a more flexible network called ResNet-LSTM, which allows nodes

in the lower layers of CNN to contact LSTM directly to acquire spatio-temporal

information. In addition to concatenating LSTM with the fully connected layer

of CNN, a hypercolumn-based system [68] has extracted the latest convolutional

layer features such as LSTM input for long-range dependencies without losing

overall consistency. Instead of LSTM, the conditional random fields (CRFs) model

citelafferty2001conditional which is effective in recognizing human activities in

[50] has been used to distinguish temporal relationships from input sequences.

Network ensemble:

A two-stream CNN for action recognition in videos, which trained one stream

of the CNN on the multi-frame optical flow for temporal information and the

other CNN stream on still images for appearance features and then combined

outputs of two streams, was presented by Simonyan et al. [159] Inspired by

this architecture, various network ensemble models have been proposed for FER.

Sun et al. [164] proposed a multichannel network that extracted spatial infor-

mation from faces expressing emotions and temporal information (optical flow)

from changes between emotional and neutral faces and investigate three feature

fusion strategies: score average fusion , SVM-based fusion and neural network-

based fusion.Zhang et al. [204] combined the temporal network PHRNN and the

spatial network MSCNN to extract partial-complete, geometry-appearance and

static-dynamic information for FER. Instead of combining network outputs with

different weights, Jung et al. [62] proposed a joint fine-tuning method that co-

trained the DTAN, the DTGN and the integrated network, which outperformed

the weighted sum strategy.

Having discussed the current research status in Facial Expression Recognition,

we present our first FER approach in the following chapter 3.
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CHAPTER 3

2DTFP: Two Dimensional Taylor Feature Pat-

tern

In any successful facial expression system, the most critical aspect is to locate the

proficient features of the given face image or image sequences. The extracted

facial feature may be regarded as an efficient representation, Which aims to maxi-

mize changes between class and reduce the within-class variations of expressions.

In literature, LBP is a good feature method that is widely accepted collectively of

the most straightforward options to capture the natural form and edge data. The

brief description of the LBP is given in the next subsection.

3.1 Local Binary Pattern (LBP)

At first, LBP was planned to be applied for texture evaluation [119]. Later it was

applied in many other fields. Overview of LBP and its coding process is given in

Fig .3.1. In each pixel of a given image/image sequences, LBP allots a label within

N-neighborhood with the aid of thresholding its value with the center pixel value

(pc), at that point changing over these thresholded values into the decimal number

by Eq. 3.1. N is similarly separated pixel esteem inside the range R and meant as

(pn).

LBPN,R(Xc, Yc) =
N−1

∑
n=0

S(pn − pc)2n (3.1)
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S(pc, pn) =

 1; if pc ≥pn

0; if pc <pn

Figure 3.1: Overview of Local Binary Pattern (LBP)

LBP has the capability of strong texture discrimination so it can quickly ob-

tain impressive accuracy in the fields of pattern recognition. However, real time

applications of LBP have some limitations, so if we are talking about facial expres-

sion recognition, LBP is sensitive to local illumination variations. It also cannot

correctly identify the texture of facial muscles and other types of local deforma-

tions. That is why we are moving towards the other patterns for recognizing facial

expression.

3.2 Taylor Series Theorem

A function f on [c,d], is n times differentiable. Let φ and ψ be distinct points on

[c,d] ans we define,

R(t) =
n−1

∑
k=0

f (k)(φ)
k!

(t− φ)k (3.2)

Then some point x exists in between φ and ψ such that

f (ψ) = R(ψ) +
f (n)(x)

n!
(ψ− φ)n (3.3)

Taylor’s theorem is regularly truncated through a limited maximum point of

confinement for the summation that is based on the specific scenario in which

the Taylor expansion is being implemented. Taylor’s expansion is utilized per-

vasively in all fields to help take care of issues in a compliant manner. Taylor’s
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hypothesis demonstrates that the function f can be an estimation of degree n poly-

nomial.

In writing Taylor’s theorem has been viewed as the proficient apparatus for

contemplating the SAR images [134]. In 2017 Ding Yuanyuan [30] came with the

theory of one dimensional Taylor expansion for FER (facial expression recogni-

tion) related tasks. The detail description about the one dimensional Taylor ex-

pansion is given in the next section.

3.3 One Dimensional Taylor Expansion

Ding Yuanyuan [30] used one dimensional Taylor expansion for feature extrica-

tion for the FER tasks. In the feature extrication stage, per pixel feature is ex-

panded into various term accordance to Taylor’s theorem to generate a strong

description of a given image. It used some expanded term to portray the feature

of an individual pixel, named as Pixel Taylor feature.

3.3.1 Pixel Taylor Feature

Let fn(pc) be the nth− order Taylor pixel feature whose focal pixel is pc. According

to Taylor’s theorem as given in eq. (3.2) and (3.3), fn(pc) is outlined as:

fn(pc) =
n−1

∑
k=0

f (k)(φ)(pc − φ)k

k!
+

f (n)(φ)(pc − φ)

n!
(3.4)

Fig 2 shows the TU (Texture unit) with 3× 3 of 1storder Taylor pixel feature

f1(pc) and 5× 5 of the 2nd order Taylor pixel feature f2(pc). Grey implies the first

layer of texture unit, and dark grey indicates the second layer of the texture unit.

According to Eq. 3.4 1st order taylor pixel feature f1(pc) is expressed as:

f1(pc) ≈
f (0)(φ)(pc − φ)0

0!
+

f (1)(φ)(pc − φ)1

1!
(3.5)
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Figure 3.2: (a) 1st order Pixel taylor feature f1(pc) (Texture1 (T1) with 3× 3 pixels)
(b) 2nd order Pixel taylor feature f2(pc) (Texture2 (T2) with 5× 5 pixels)

where

f (1)(φ) =

 1; if pc − φ ≥0

−1; if pc − φ <0

Here, f (0)(φ) is communicated as the average of all the pixels value 1st order

Texture1(T1), while φ is the average of all the pixels value which comes under the

1st layer (noted as grey) of T1 (as shown in Fig .3.2(a).

2ndorder taylor pixel feature f2(pc) can be expressed as:

f2(pc) ≈
f (0)(φ)(pc − φ)0

0!
+

f (1)(φ)(pc − φ)1

1!

+
f (2)(φ)(pc − φ)2

2!
(3.6)

where

f (1)(φ) =

 1; if pc − φ ≥0

−1; if pc − φ <0

f (2)(φ) =

 1; if (pc − φ1)(pc − φ2) ≥0

−1; if (pc − φ1)(pc − φ2) <0

Here, f (0)(φ) is additionally characterized as the average of all the pixels value

2nd order Texture2(T2). while φ1 is the average of all the pixels value which comes

under the 1st layer (noted as grey) of T2, φ2 is the average of all the pixels value

of the 2nd layer in the T2 (noted as dark grey) and φ is the average of all the pixels
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Figure 3.3: (a) Texture with 3× 3 pixels in an image I (b) Same Texture in TFM
(Taylor feature map)

value that comes in the 1st layer and 2nd layer of T2 (as shown in Fig .3.2(b)).

Similarly, we can get Pixel Taylor feature of higher-order fn(pc), n > 2. After

every pixel of given face images is mapped to Pixel Taylor feature space, we get

the TFM (Taylor Feature Map) for further analysis.

3.3.2 Taylor Feature pattern (TFP)

In order to contemplate any real application, we need to reduce the dimension of

the feature. Hence, we compute Taylor Feature Pattern (TFP) of Taylor Feature

Map (TFM). As shown in Fig. 3.3(a) that is Texture with 3× 3 in the given image

and Fig. 3.3(b) texture in the TFP (Taylor Feature map). The TFP of fn(pc) is

expressed as:

TFP =
8

∑
j=1

S( fn(pc), fn(pj).2j−1 (3.7)

S( fn(pc), fn(pj)) computed the same as defined in LBP.

Finally, a feature vector of the given facial image using Taylor Feature Pat-

tern (TFP) histogram of the TFM (Taylor feature map) was constructed. 2nd order

Taylor Feature Pattern with one dimensional provided a satisfactory result. But

we tried to find a more accurate result compared to LBP and 2nd order one di-

mensional Taylor expansion. So we moved forward towards the 2nd order two

dimensional Taylor theorem expansion. In the subsequent section, we discuss the

proposed two dimensional Taylor expansion.
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3.4 Proposed Two Dimensional Taylor Expansion

In this segment, we essentially depict the premise of our technique and propose

the expansions to the Taylor series approach, which improves the efficiency and

accuracy of the facial expression recognition. This paper is influenced by the LBP

and Taylor expansion [30] and utilizes some theory of these two image descriptor

in its way, which is beneficial for the FER (Facial Expression Recognition) appli-

cation. Based on the above analysis of LBP and Taylor expansion we describe the

Two Dimensional Taylor expansion for the facial expression recognition.

Proposed 2D Taylor expansion can extract the advantageous features from

the given face image and be utilized for the facial expression recognition task.

But it may be possible that the recognition rates of these techniques vary a lot

with changing illuminations. To handle the illuminations variations, Logarithm-

Laplace (LL) strategy was proposed. In Logarithm-Laplace (LL), initially, the in-

put face image is transferred to LL space. That Logarithm-Laplace (LL) space is

the invariable illumination space. So in the first step, the raw face image/ image

sequences are transferred to the LL domain. After that process, the 2D Taylor ex-

pansion of the converting LL domain image into R blocks to induce the natural

features of the face image. R is associated with the recognition rate and the time

of the recognition step. Here, R is set to 6× 6, 8× 8, 12, 16× 16 respectively. Fi-

nally, the sub Taylor feature pattern (TFP) histogram of each block in the resulting

image are computed. Then the long histogram was made by concatenating all

the sub histograms. That long histogram acts as the Taylor Feature Pattern (TFP)

feature vector of the input face image. The procedure works in three overlays for

computing the descriptor. The overview of the process is given in Fig 3.4. The

means are talked about in the accompanying subsections.

Step 1: Converting in Logarithm-Laplace (LL) Domain The proposed 2D Tay-

lor expansion can get excellent outcomes for FER applications compared with dif-

ferent state-of-art hand-craft based feature extrication methods. In some uncon-
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Figure 3.4: Overview of the proposed 2D Taylor Expansion for extracting the facial
features

trolled environment like varying illuminations, postures, and noise, FER frame-

works performance is drastically influenced. Considering the influence of the illu-

mination variations and different challenges within the real applications, Logarithm-

Laplace (LL) is further proposed to assist in inducing an additional strong facial

expression related feature. As we know LL space is an invariable illumination

space, so the details description of this LL space is given below:

Input image I at point (x1, y1) in reflectance model can be defined as:

I(x1, y1) = H(x1, y1).K(x1, y1) (3.8)

Here, H(x1, y1) is reflectance segment which is managed by the qualities of

the object. K(x1, y1) demonstrates the illumination segment; it depends upon the

lighting (brightening) source. As a rule, there is a typical suspicion [136, 207] that

differs gradually while H fluctuates unexpectedly. Firstly, this model transformed

to logarithmic space to get the illumination invariant features. The logarithmic

domain is computed as:

logI(x1, y1) = logH(x1, y1) + logK(x1, y1) (3.9)
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Eq. (3.9) can be also written as:

i(x1, y) = h(x, y) + k(x, y) (3.10)

Here i(x1, y1) = logI(x1, y1), h(x1, y1) = logH(x1, y1) and k(x1, y1) = logK(x1, y1)

We know that the Laplace space, takes advantage of the connections among

component points in a neighborhood may get new facial expression than the pixel

domain. Thus, i(x, y) is then remodeled into the Laplace domain:

52i(x1, y1) = 52
xi(x1, y1) +52

yi(x1, y1) (3.11)

Here52
xi(x1, y1) and52

yi(x1, y1) indicate Laplacian value of i(x1, y1) in each x

axis and y axis. By using the Laplace transformation Eq. 3.11 can be communi-

cated as:

52i(x1, y1) = i(x1 + 1, y1) + i(x1 − 1, y1) + i(x1, y1 + 1) + i(x1, y1 − 1)− 4.i(x1, y1)

So Eq. 3.10 substitute the into the Eq. 3.11. k(x1 + 1, y1), k(x1− 1, y1), k(x1, y1 +

1) and k(x1, y1) are practically equivalent since K differs gradually. Along these

lines, Eq. 3.12 is adjusted as:

52i(x1, y1) ≈ j(x1 + 1, y1) + j(x1 − 1, y1) + j(x1, y1 + 1) + j(x1, y1 − 1)− 4.j(x1, y1)

So we can say that52i(x1, y1) is only dependent on the reflectance part in Eq.

3.8, it is viewed as illumination-invariable space of given face image and space is

called a “LL domain”. After transferring the raw image/image sequences into the

LL domain, the Taylor 2D expansion is applied on it to get the powerful features

from it. Subsequent stage depicts the Taylor 2D extension in detail.

Step 2: Two Dimensional (2D) Taylor Expansion Of Image In this section, we

suggest the FER (facial expression recognition) technique. It is much like the 2nd

order one dimensional Taylor expansion. As shown in Fig 3.5 T1 (Texture 1) with

3 × 3 of 1storder Pixel taylor feature f1(pc) and T2 (Texture 2) with 5 × 5 pix-

els of the 2D 2nd order Texture . So 2D 2nd order Texture feature extraction is

37



Figure 3.5: Illustration of the proposed 2D 2nd order Taylor feature extraction.
T1(Texture 1) with 3× 3 pixels of the 2D 1st order Pixel taylor feature f1(pc) , T2
(Texture 2) with 5× 5 pixels of the 2D 2nd order Texture. So 2D 2nd order Texture
feature extraction is f2(pc) = T1 + T2

f2(pc) = T1 + T2. Detail about the Computation of 2D Pixel taylor feature is

given below.

2D Pixel taylor feature extraction Suppose 1st order 2D Pixel taylor feature of

the focal pixel pc is f1(pc). As indicated by one dimensional Taylor theorem ex-

pansion Eqs. 3.4 and 3.5, Two dimensional may be or so outlined as:

f1(pc) ≈ f (φ, ψ) + [(pc − φ)
∂ f
∂x

+ (pc − ψ)
∂ f
∂y

] (3.12)

where

φ =

1√
2

p8 + p7 +
1√
2

p6 +
1√
2

p4 + p3 +
1√
2

p2

4√
2
+ 2

This p8, p7, p6, p4, p3, p2 are the pixels of T1 which are in x direction. As shown in

Fig 3.5.

ψ =

1√
2

p8 + p1 +
1√
2

p2 +
1√
2

p4 + p5 +
1√
2

p6

4√
2
+ 2
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This p8, p1, p2, p4, p5, p6 are the pixels of T1 which are in y direction. As appeared

in Fig 3.5.

f (φ, ψ) =
φ + ψ

2

∂ f
∂x

=

 1
2 ; if pc − φ ≥0

−1
2 ; if pc − φ <0

∂ f
∂y

=

 1
2 ; if pc − ψ ≥0

−1
2 ; if pc − ψ <0

2ndorder pixel taylor feature f2(pc) can be expressed as:

f2(pc) ≈ f (φ, ψ) + [(pc − φ)
∂ f
∂x

+ (pc − ψ)
∂ f
∂y

] +
1
2
[(pc − φ)2 ∂2 f

∂x2

+2(pc − φ)(pc − ψ)
∂2 f

∂x∂y
+ (pc − ψ)2 ∂2 f

∂y2 ] (3.13)

In the computation of φ and ψ there are some term like φ1, ψ1, φ2, ψ2 used.

These terms defined as

φ1 =

1√
2

p8 + p7 +
1√
2

p6 +
1√
2

p4 + p3 +
1√
2

p2

4√
2
+ 2

.

These p8, p7, p6, p4, p3, p2 are the pixels of T2 which are in x direction. As

shown in Fig 3.5.

ψ1 =

1√
2

p8 + p1 +
1√
2

p2 +
1√
2

p4 + p5 +
1√
2

p6

4√
2
+ 2

These p8, p1, p2, p4, p5, p6 are the pixels of T2 which are in y direction. As ap-

peared in Fig .3.5.

φ2 =
1

10
[p24 + p23 + p22 + p21 + p20 + p16 + p15 + p14 + p13 + p12]

Here, φ2 is the average of all the pixels value of the 2nd layer in the T2 which

are in x direction. Pixels p24, p23, p22, p21, p20, p16, p15, p14, p13, p12 will came here.
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ψ2 =
1

10
[p24 + p9 + p10 + p11 + p12 + p16 + p17 + p18 + p19 + p20]

Here, ψ2 is the average of all the pixels value of the 2nd layer in the T2 which

are in y direction. Pixels p24, p9, p10, p11, p12, p16, p17, p18, p19, p20 will came here.

Finally compute the φ and ψ like

φ =
φ1 + φ2

2
and ψ =

ψ1 + ψ2

2

Then, compute

f (φ, ψ) =
φ + ψ

2

Here, evaluate the derivative of x and y like

∂ f
∂x

=

 1
2 ; if pc − φ1 ≥0

−1
2 ; if pc − φ1 <0

∂ f
∂y

=

 1
2 ; if pc − ψ1 ≥0

−1
2 ; if pc − ψ1 <0

∂2 f
∂x2 =

 1
4 ; if (pc − φ1) (pc − φ2)≥0

−1
4 ; if (pc − φ1) (pc − φ2) <0

∂2 f
∂y2 =

 1
4 ; if (pc − ψ1) (pc − ψ2)≥0

−1
4 ; if (pc − ψ1) (pc − ψ2) <0

∂2 f
∂x∂y

=

 1
4 ; if (pc − φ2) (pc − ψ2)≥0

−1
4 ; if (pc − φ2) (pc − ψ2) <0

Likewise, we are able to get the Pixel Taylor feature fn(pc) (when n > 2) as

indicated by previously mentioned equations. At the point when every one of the

pixels of given face images is mapped to Pixel Taylor feature space, we get the

TFM (Taylor Feature Map) for any analysis. After that, we move towards the last

step.
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Step 3: Taylor Feature Pattern Generation After all the face images are mapped

to Pixel Taylor feature space, then the resulting image was divided into R blocks to

induce the natural features of the face image. Here, R is set to 6× 6, 8× 8, 10× 10,

12× 12 respectively. Experiment section demonstrates the effect of different block

numbers on the algorithm’ s performance on various datasets. Subsequently, Tay-

lor Feature Pattern of the Taylor feature map was computed. Description of the

Taylor Feature Pattern are given below:

2D Taylor Feature Pattern (2DTFP) Here, compute the Taylor Feature Pattern

of each Pixel Taylor Feature fn(pc) in each block of the TFM (Taylor feature map).

Computation of Two Dimensional TFP (2DTFP) is same as the one dimensional

TFP. The 2DTFP of fn(pc) is characterized as

2DTFP =
8

∑
j=1

S( fn(pc), fn(pj).2j−1 (3.14)

S(pc, pj) =

 1; if pc ≥pj

0; if pc <pj

By the above mentioned equation, 2D Taylor Feature Pattern of each pixel of

each block in the Taylor Feature map is computed. Then concatenate all the his-

togram of each block to make a long feature vector. Finally, a feature vector of the

given facial image using 2D Taylor Feature Pattern (2DTFP) histogram of the TFM

(Taylor feature map) was constructed. Summarization of our Technique given in

Table 3.1.

3.4.1 Effect of the 2D Pixel Taylor Feature Order

Higher-order fn(pc) will extract a lot of essential texture data from the given

face image, and this is the main reason behind the enhancement of the recog-

nition accuracy. But it is not always necessary that the recognition rate would

not increase all the time alongside the order. Here,we also compare the 1storder

2DTFP, 2ndorder 2DTFP, 3rdorder 2DTFP as well as 4thorder 2DTFP recognition

rates. Recognition rates on the JAFFE data shown in Table 3.2. Experimental con-
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Table 3.1: 2DTFP (Two Dimensional Taylor Feature Pattern )

Input: Face image I, the block size R× R for the 2DTFP
Output: 2DTFP histogram for the given input face image I

1: Compute TFM (Taylor feature map) of the input face image I as given
in Eq. (6.5).

2: Divide the TF map into R× R blocks
3: for Every block within the TFM (Taylor Feature Map)
4: for Pixel Taylor Feature fn(pj) in each block
5: Calculate 2DTFP operator of fn(pj) as Eq.(3.14)
6: end for
7: Every block in TFM built the sub-2DTFP histogram
8: end for
9: Then generate a feature vector by concatenation of all sub-2DTFP his-

togram
10: Return Histogram OF 2DTFP feature of given face image I

sequences demonstrate that the 2ndorder 2DTFP (92.78%) accomplishes the most

effective recognition rate. In this article, 2D Taylor expansion order n are contin-

ually fixed to 2 within the accompanying experiments to induce the best perfor-

mance.

Table 3.2: Comparison recognition rates of 2DTFP with various order of JAFFE
dataset (In %)

1st Order 2nd Order 3rd Order 4thOrder
2DTFP 2DTFP 2DTFP 2DTFP

Recognition
rate 87.78 92.78 89.87 87.90

3.5 Experiments and Results

Facial expression recognition (FER) experiments are performed on a number of

the benchmark FER databases. Face images are in extremely high dimensions.

Dealing with such extensive information turns out to be exceptionally trying for

the machines. Hence the modular approach is applied where only some infor-

mative regions of the face are considered. Facial expressions offer cues of the

emotional state of the person even while not communicating verbally. Eyes are

the most communicative part of someone’s face and reveal sufficient information

regarding the sentiments. Aside from the eyes, forehead, nose, lips, and so forth
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additionally are instructive locales. Throughout the task of expression analysis,

we discovered that apart from the eyes, forehead, nose, lips/mouth additionally

plays a significant role as far as expressions are involved [169]. Now, most of the

facial expression recognition technique was applied to full-face images. This pa-

per focuses on only some informative regions of the face, as discussed.

To approve the hypothetical conclusion Two Dimensional Taylor expansion, ex-

periments were performed on the some real datasets. For the classification we

used SVM [182] and K nearest-neighbor (K=1,2,3) [70] classifier with various dis-

tance measures. Euclidean distance, Chi-square distance, as well as histogram

intersection (HI) are utilized in our experiments. Which are defined as in Eq. 6.7,

6.8 and 6.9

d(x1, y1) =

√
n

∑
i=0

(x1i − y1i)2 (3.15)

χ2 = ∑
i,j

(x1i,j − y1i,j)
2

(x1i,j − y1i,j)
(3.16)

DHI(x1, y1) = −∑
i,j

min(x1i,j, y1i,j) (3.17)

Always SVM gives better results compare to K-NN with different distance

measures on 8× 8 block size. So the given tables in next section shows the com-

parison between the holistic approach and modular approach only on the SVM

as the classifier because SVM is performed better than other classifiers. Similarly

graphs of all datasets show the comparison of the results with different classifiers.

Experiments on the datasets are below:

3.5.1 JAFFE Dataset [104]

JAFFE dataset consists 213 face images of seven facial expressions presented by

10 Japanese female models. All the face images are of size 256× 256 which are cut

as appeared in Fig 3.6. The sizes of informative areas are : forehead 54× 44, eyes

39× 117, nose 46× 55, lips 28× 74. Out of 213 images, random 70% images were
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chosen for training and the remaining 30% were used for testing. Table 3.3 reports

average recognition result of 20 such iterations. The results of the comparison

between all the above mentioned classifier is shown in Fig 3.7.

Figure 3.6: Examples of facial expressions from JAFFE dataset: (a) angry (b) dis-
gust, (c) fear, (d) happy, (e) neutral, (f) sad, (g) surprise

Table 3.3: Comparison of the 1D Taylor Expansion with the 2D Taylor Expansion
(Hoslistic Vs Modular (both ways)) in the light of SVM as a classifier for JAFFE
dataset

JAFFE Database
1D Taylor Expanison 2D Taylor Expansion

Block size Holistic Modular Holistic Modular
TF TFP TF TFP TF 2DTFP TF 2DTFP

Map Map Map Map
With out blocking 75.07 79.68 76.59 80.68 78.59 83.02 78.07 83.97

6× 6 78.65 80.12 82.12 85.79 80.78 85.71 85.21 90.41
8× 8 80.17 83.72 85.76 88.78 82.67 88.78 88.07 92.78

10× 10 78.65 73.76 76.75 86.68 75.23 78.76 80.78 88.08
12× 12 75.62 78.67 80.65 86.08 78.93 80.68 83.79 89.08

Figure 3.7: Compare the results of SVM and K-NN with different distance mea-
sures on JAFFE database
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3.5.2 VIDEO (DA-IICT) Dataset [153]

Video (DA-IICT) dataset has been made within which videos of eleven subjects

are recorded. Each video contains four different expressions: Normal, Smiling,

Angry, and Open mouth, as shown in Fig 3.8. The sizes of informative areas are :

forehead 51× 60, eyes 40× 126, nose 49× 38, lips 40× 60. Out of 6668 images, 70%

images were indiscriminately chosen for training and rest images were utilized for

testing. Average and best recognition results of 20 such iterations are reported in

Table 3.4. The results of the comparison between all the above˘mentioned classi-

fier are shown in Fig 3.9.

Figure 3.8: Examples of facial expressions from VIDEO database: (a) Normal (b)
Smiling (c) Angry (d) open mouth.

Table 3.4: Comparison of the 1D Taylor Expansion with the 2D Taylor Expansion
(Hoslistic Vs Modular (both ways)) in the light of SVM as a classifier for VIDEO
dataset

VIDEO Database
1D Taylor Expanison 2D Taylor Expansion

Block size Holistic Modular Holistic Modular
TF TFP TF TFP TF 2DTFP TF 2DTFP

Map Map Map Map
With out blocking 75.06 81.35 80.28 87.78 85.65 85.78 85.76 89.08

6× 6 78.79 82.18 83.79 89.88 87.79 88.09 88.78 88.78
8× 8 80.79 87.78 85.79 90.08 88.79 90.08 90.08 94.86

10× 10 81.35 85.28 82.18 87.78 87.79 88.08 90.08 92.86
12× 12 82.58 80.35 81.59 85.69 86.78 89.65 88.78 90.78

3.5.3 CK+ Dataset [66]

There are 593 sequences across 123 persons giving 8 facial expressions. All se-

quences are captured from the neutral face to the peak expression. Participants

were eighteen to fifty years of age, 81%, Euro-American, 13% Afro-American, 69%
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Figure 3.9: Compare the results of SVM and K-NN with different distance mea-
sures on VIDEO dataset

female and 6% other groups. Image sequences for frontal views and 30-degree

views.

Figure 3.10: Examples of facial expressions from CK+ dataset: (a) sad, (b) happy,
(c) fear, (d) surprise, (e) disgust, (f)neutral, (g) angry

For experiment we uses image sequences of 99 subjects with 7 facial expres-

sions. So out of 921 images 70% images were indiscriminately chosen for training

and rest images were utilized for testing. The face images of CK+ are cut into four

informative regions, as shown in Fig 3.10.

Table 3.5: Comparison of the 1D Taylor Expansion with the 2D Taylor Expansion
(Hoslistic Vs Modular (both ways)) in the light of SVM as a classifier for CK+
dataset

CK+ Database
1D Taylor Expanison 2D Taylor Expansion

Block size Holistic Modular Holistic Modular
TF TFP TF TFP TF 2DTFP TF 2DTFP

Map Map Map Map
With out blocking 80.15 85.12 83.25 87.78 83.25 87.78 85.76 89.08

6× 6 83.25 87.78 85.76 89.02 87.79 88.67 87.78 90.08
8× 8 85.12 89.76 88.12 90.08 88.67 90.12 89.02 93.78

10× 10 84.76 87.78 88.12 88.12 87.79 89.02 88.12 91.68
12× 12 81.25 85.12 85.12 87.78 86.78 88.67 87.78 90.78
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Figure 3.11: Compare the results of SVM and K-NN with different distance mea-
sures on CK+ dataset

3.5.4 Oulu - Casia Dataset [211]

Oulu-Casia has 6 facial expressions (anger, happiness, surprise, fear, disgust and

sad) form 80 different subjects between 23 to 58 years of age. 73.8% of the persons

are males. Out of 3360 images randomly 70% images were chosen for training

and remaining 30% images used as testing. Table 3.6 reports average recognition

result of 20 such iterations. The results of the comparison between all the above

mentioned classifier is shown in Fig 3.12.

Table 3.6: Comparison of the 1D Taylor Expansion with the 2D Taylor Expansion
(Hoslistic Vs Modular (both ways)) in the light of SVM as a classifier for Oulu-
Casia dataset

Oulu-Casia Database
1D Taylor Expanison 2D Taylor Expansion

Block size Holistic Modular Holistic Modular
TF TFP TF TFP TF 2DTFP TF 2DTFP

Map Map Map Map
With out blocking 82.51 87.34 85.43 89.90 85.25 89.67 87.42 90.18

6× 6 84.12 88.69 87.94 90.41 89.10 90.10 89.86 91.42
8× 8 86.21 90.78 90.42 91.27 90.89 91.42 91.00 96.87

10× 10 87.68 88.45 90.48 90.32 89.98 90.41 90.90 93.86
12× 12 83.52 86.14 87.43 88.68 87.46 89.98 89.45 91.52

We also did some experiments that is based on combination of proposed method

and existing hand-craft based features methods as reported in Table.3.7. Where as

Table .3.7 reported the the existing methods which are the combination of different

hand crafted features.
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Figure 3.12: Compare the results of SVM and K-NN with different distance mea-
sures on Oulu-Casia dataset
Table 3.7: Results of Combination of proposed method with other existing hand
craft features based methods in the light of SVM as a classifier

Methods JAFFE CK+
LBP+1DTFP 85.93 80.45
LBP+2DTFP 88.38 84.45

1DTFP+2DTFP 89.93 87.45

3.6 Conclusion

In our designed system, we proposed two dimensional Taylor expansion for the

facial feature extraction as well as to handle the local illumination. Most pro-

cedures just used the arrangement with global illumination varieties and thus

yielded more unsatisfactory recognition performances within the case of natural

illumination variations that are usually uncontrolled within the globe. Hence, to

address the brightening variety issue, we at that point presented the (LL) Laplace-

Logarithmic area in this article for further improving the exhibition. We applied

the proposed 2D Taylor expansion theorem in the facial feature extraction phase

and formulated the 2DTFP method. Results in experimental section demonstrate

that the proposed 2DTFP method can obtain an effective facial expression feature

vector from the facial images which work best compared with some other state-

of-the-art methods.
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CHAPTER 4

HSOG: Histogram Of Second Order Gradients

for Feature Extraction

In chapter 2, we have discussed the conventional feature extraction technique for

facial expression recognition. Local image descriptors is a Scale Invariant Feature

Transform (SIFT) proposed by Lowe [99]. SIFT has been widely studied and has

played a dominant role in expression recognition. Its descriptor is represented by

a 3D histogram of the gradient locations and orientations whose contributions are

weighted by their gradient magnitudes. Mikolajczyk and Schmid [40] extended

SIFT to the Gradient Location and Orientation Histogram (GLOH) descriptor to

increase both distinctiveness and robustness. Dalal and Triggs [23]presented the

Histogram of Oriented Gradient (HOG) descriptor. HOG combines both the prop-

erties of SIFT and GLOH. This method that was initially developed for person de-

tection is used in more general object detection algorithms. Using the concept of

HOG Mohamed Dahmane and Jean Meunier [21] comes with HOG for emotion

detection. But in the facial expressions, HOG not give a good result as compare.

It may be possible the main reason behind this is HOG is working on the 1st or-

der oriented gradient, which only computes the slope, but in the case of facial

expression need to compute other factors too.

In this chapter, we discuss the feature extraction technique based on a His-

togram of second-order gradients of the image. HSOG is a variant of the HOG

(Histogram of the oriented gradient). HOG [23] is a local image descriptor for

feature extraction, mainly used for object recognition. HOG counts the appear-

ance of gradient orientation in the local region of the image. HOG gives better
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results compared to other existing image descriptors like SIFT [99], GLOH [40]

etc. HOG performs better in each stage of implementation; it gives fine gradients,

coarse spatial binning, and fine orientation binning, high-quality normalization

in each overlapping block of the descriptor.

4.1 Histogram of Oriented Gradients (HOG)

HOG [23] is a local image descriptor for feature extraction, which is mainly used

for object recognition. HOG counts the appearance of gradient orientation in the

local region of the image. HOG gives better results compared to other existing im-

age descriptors like SIFT, GLOH, etc. HOG performs better in each stage of imple-

mentation; it provides fine gradients, coarse spatial binning, and fine orientation

binning, high-quality normalization in each overlapping block of the descriptor.

Overview of feature extraction technique by HOG is given in Fig 4.1.

Figure 4.1: Overview of HOG Image descriptor

HOG mainly focuses on the normalized local histogram of the gradient ori-

entation of the image is a dense grid. The key idea is that image gradients or

edge directions characterize any object present. This is implemented by dividing

the image window or detection window into small connected regions called cells.

Each cell computes a histogram of gradient directions or edge orientations for the

cell’s pixels. We discretized each cell into angular bins according to the gradient

orientation. Each cell’s pixel contributes a weighted gradient to its correspond-

ing angular bin. Groups of adjacent cells are considered as spatial regions called
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blocks. The grouping of cells into a block is the basis for grouping and normal-

ization of histograms. A normalized group of histograms represents the block

histogram. The set of these blocks histograms represents the descriptors.

The use of orientation histograms has many precursors [109], but reached ma-

turity only in combination with the local spatial histogram and normalization in

Lowe’s Scale Invariant Feature Transformation (SIFT) approach to the broad cor-

respondence of the baseline image matching [99], where the description of the

image patch below is provided to match the scale-invariant key points. The SIFT-

style approaches the extraordinary application well in this application [99][111].

The Shape Context [7] work was studied as an alternative to cells and blocks.

Initially, it was used only as an edge pixel count without the orientation histogram

that makes the representation so effective. The success of these scattered repre-

sentations has, in any way, overshadowed the power and simplicity of HOG as a

dense image descriptors. Dalal and Triggs presented the Histogram of Oriented

Gradient (HOG) descriptor. HOG combines the properties of SIFT and GLOH be-

cause it is also represented by the 3D histogram of the positions and orientations

of the gradient and uses both rectangular and log-polar grids. The main difference

between HOG and SIFT is that HOG is calculated on a dense grid of equidistant

cells, with overlapping local contrast normalization.

We focus on the discriminatory power of local image descriptors and study

a new one based on second-order gradient clues, i.e., second-order gradient his-

tograms (HSOG), capable of simulating the visual characteristics perceived by

the human being. Indeed, some more recent studies on human vision suggest

that the neural image is a landscape or a surface, made up of elements such as

cliffs, ridges, peaks, valleys or basins, whose geometric properties can be uniquely

and accurately characterized by the local curvatures of the differential geometry

through the information related to the second-order gradient. While the gradi-

ents of the first order measure only the slope of the luminance profile at each

point and, therefore, give the amount of elasticity of a surface, e.g., length, area.

In the theory of differential geometry, slope and curvature are different geometric

traces that can be measured at each point on a 1D curve. As we know, the first-
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order gradient calculated at a point delivers the slope or velocity of the curve at

that point that encodes the metrics, for example, the length of that curve, whereas

the second-order gradient at that point is the quantity relative to the local cur-

vature or how much the curve bends. Now the retinal image is a landscape or

surface embedded in 3D space and the local shape around a point. On a smooth

2D surface embedded in a 3D space, one can compute the two principle curva-

tures, i.e., the maximum and minimum curvatures, which can be calculated from

the second fundamental form, which is closely related to the second-order gra-

dient cue. Their joint variations, example, through the value of the shape index,

define various local shapes.

Following the insights conveyed by recent research on human vision, as well

as the existing differential geometry tools, we hypothesize that local image de-

scriptors calculated on a point should exploit the second-order gradient informa-

tion to account for its local shape attributes of a retinal image in curvature terms

and therefore provide additional discriminating power with respect to their first

order gradient based counterparts. However, since first-order gradients are quan-

tities related to surface metrics, such as length, angle and area, while second-order

gradients correspond to curvatures, these two categories of quantities must have

some complementarity in the description of a local surface shape. Here we imple-

mented a local image descriptor, namely Histograms of Second Order Gradients

abbreviated as HSOG, to characterize local shape changes for images. HOG im-

age descriptor is unable to find the local shape changes because it is only working

on the 1st order oriented gradient. But for the facial expressions it is needful to

find out local shape changes of images. We computes the second order gradient

that gives the curvature at point, helps to find the local shape changes of image.

That shapes basically corresponds to different facial expression images. In the

following section proposed image descriptor defined in detailed.
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4.2 Proposed HSOG (Histogram of second order gra-

dients) Image Descriptor

Histogram of Oriented Gradients (HOG) is a window-compatible feature descrip-

tor that uses the gradient filter. The extracted features are based on the informa-

tion on the edges of the registered face images. It extracts the visual features;

for example, a smile expression means curved eyes. The Histogram of Gradients

(HOG) approach represents images based on the directions of the edges contained

in them. HOG extracts local features by applying the gradient operators on the

image and encoding the output in terms of gradient magnitude and angle. First,

local magnitude – angle histograms are extracted from the cells, then these lo-

cal histograms are combined into larger entities (blocks): the dimensionality in-

creases when the blocks are overlapping [31]. HOG has been used by a prominent

system in the FERA emotional challenge [20]. HOG features capture global and

detailed information from facial images and, therefore, reflect an individual’s ex-

pression. However, these features are drawn from the whole facial region, and

local regions that are closely related to changes in expression, such as eyes, nose,

and mouth, are ignored. Therefore, the geometric features, represented by the ge-

ometric relationships of the facial landmarks detected from local regions that are

closely related to changes in expression, are used for FER tasks. Furthermore, the

combination of different features is a promising trend.

The FER system introduced by Yan [190] is one of the most recent methods that

has used both visual and audio information. They proposed a new collaborative

discriminative multimeric learning (CD-MML) to recognize facial expressions in

videos. For the visual feature, there were two types of functionality: 3D-HOG and

geometric wrap feature. By extending the traditional 2D HOG and obtaining three

orthogonal planes, a HOG feature was extracted from each block located on each

plane. These HOG functions were then combined to form a descriptor for each

frame, and a high-dimensional feature vector finally described the whole face.

The extensions of HOG can be found in Co-occurrence histograms of oriented

gradients (CoHOG [129]) and Coherence Vector of Oriented Gradients (CVOG
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[130]).

Our proposed method is inspired by the HOG, which characterizes the local

shape changes of the face (called the facial expression) by encoding the second-

order gradient from the first order oriented gradient. The first order gradient

delivers the slope, whereas Second-order gradients compute the curvature at the

point that curvature gives shape index, and different shape index corresponds to

different local shapes. In the concept of differential geometry, slope and curva-

ture are distinct geometric cues that can be measured at each point in the one-

dimensional curve. It can be observed that first-order gradient computed at each

point of the curve, which gives the slope or can say that velocity of the curve at

that point, that encodes the matrices, that delivers, for example, length of that

curve. Whereas second-order gradient at that point measures the amount by

which a geometric object such as surface deviates from being a flat plane or how

much the curve bends that is called curvature at that point. To find the local

shape around a point, it needs to compute the minimum and maximum curva-

tures, which can be calculated by the second-order gradient cue. Their joint varia-

tions give a different shape index; its different values correspond to different local

shapes.

After computing the second-order gradient, a simple concatenation strategy is

applied, like other image descriptors also do. We divide the image into different

block sizes like 8×8, 12×12, 16×16 that enables the slight displacement in the

second-order gradients in the neighborhood at the point. The process works in

three-fold for computing the descriptor. The overview of the process is given

in Fig .4.2 for a face image. Details of these steps are available in [54]. We are

redefining a few steps and mainly the pooling strategy. The steps are discussed in

the following subsections.

4.2.1 Computation Of First Order Oriented Gradient Maps (OGMs)

Image descriptor starts from computing the 1st order oriented gradient maps

(OGMs). For a given image region I, there are specific gradient maps G1, G2, ...., GM

for each pixel (x,y) in one of the quantized direction. The Gi OGMs is defined as:
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Figure 4.2: Overview of the proposed method for computing HSOG for face image

Gi = (
∂I
∂i
)+; i = 1, 2, ..........M (4.1)

Here, ′+′ sign indicate that only the positive values are considered, While ′−′

values set to 0. Positive values sufficient to retain the local information that is

needed for the methodology. Negative values are automatically considered in the

filter rotated by 180◦.

Each G describes the gradient norms of I region in a direction ′i′ for each pixel

location. After that the convolution of these gradient maps G with the Gaussian

kernal G is performed, denoted by

ρ = Gi ∗ G (4.2)

A crucial issue to be dealt with when computing the second order gradients

is the sensitivity of the resultant local image descriptor with respect to noise. The

fact of using the Gaussian kernel to simulate human simple cells and smooth first

order gradients by 4.2.1 gives descriptor a desirable robustness to noise.

The purpose of convolving Gaussian kernal is to shift the gradient to its neigh-

borhood without any unexpected changes. Collect all the values of convolved

gradient maps at each pixel (x,y) in M quantized directions and build a vector ρr
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of these values.

ρr = [ρr
1(x, y), ρr

2(x, y)..........., ρr
M(x, y)]T (4.3)

In this ρr vector, further unit normalization is performed, that is denoted by as

ρr. For example

ρr
1
(x, y) = (

ρr
1(x,y)
‖ρr(x,y)‖ )

For each given image I, the First Order Oriented Gradient Maps (OGMs) Ji for

each orientation i is computed and is defined as

Ji(x, y) = ρr
i
(x, y) (4.4)

Due to the processing of all these steps, OGMs are having to invariant affine

lighting transformations property. According to equation 4.2.1 OGMs Ji is con-

volved normalized gradient map at each quantized direction i. Any brightness

change not affected by the gradient computation only adds a constant intensity

value. Change in the image contrast in which the intensity values are multi-

plied by the constant will result in the multiplication of the gradient computation.

Change of image contrast will be canceled by the normalization of the response

vector ρr. These properties will be necessary for implementing the image descrip-

tor for facial expression recognition. Using those 1st order OGMs compute the 2nd

Order Gradient in the next step.

4.2.2 Computation Of Second Order Gradient

Once the 1st order OGMs is computed in each quantized directions i, they are

used as inputs to the 2nd order gradient calculation over the image region I. For

each OGMs Ji(x, y), i = 1, 2, ..........M, calculate the gradient magnitude Magi and

gradient orientation Φi at each pixel location, Defined Magi and Φi defined as
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follows

Magi(x, y) =

√
(

∂Ji(x, y)
∂x

)2 + (
∂Ji(x, y)

∂y
)2 (4.5)

Φi(x, y) = arctan(
∂Ji(x, y)

∂y
/

∂Ji(x, y)
∂x

) (4.6)

where i=1,2,..........M

∂Ji(x, y)
∂x

= Ji(x + 1, y)− Ji(x− 1, y) (4.7)

∂Ji(x, y)
∂y

= Ji(x, y + 1)− Ji(x, y− 1) (4.8)

Each orientation (denoted as Φi ) is then mapped from the range of [−π\2, π\2]

to that of [0, 2π], then quantize into M orientation which are persistent with the

number of 1st oriented gradient maps. The value of ni in each quantized direction

is computed as

ni(x, y) = mod(b(Φi(x, y)
2π/M

) +
1
2
c, M) (4.9)

4.2.3 Concatenation

Here we implements a concatenation in which given image/image sequence is di-

vided into different block size with 50% overlapping. Block sizes i.e 8×8, 12×12,

16×16.

Let total number of divided blocks in a given image be D. With in each block D,

j= 1, 2,..........,D and each 1st order oriented gradient maps (OGMs) Ji, i=1,2,..........,M

and second order gradient histogram hij is formulated by assembling gradient

magnitude Magi of all pixels with same quantized orientation entry ni.

hij(k) = ∑
(x,y)∈Dj

f (ni(x, y) == k) ∗Magi (4.10)
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where k=1,2,........M-1, i=1,2,.........M, j=1,2........D

f (p) =

 1; if p is true

0; otherwise
(4.11)

For each 1st order OGMs, its second order gradient histogram hi is computed

by concatenating all the histogram from D blocks.

hi = [hi1, hi2, ........, hiD]
T (4.12)

where i is number of quantized orientation direction i = 1, 2, .........., M. The

descriptor H is obtained by concatenating all M histograms of second order of

gradients as

H = [h1, h2, .........., hM]T (4.13)

4.3 Experiments and Results

Descriptor H has been used for the extracting the facial expression features. The

second-order gradient histogram technique applied to some of the informative re-

gions of the face image taken instead of full face. Face images generally comprise

of very high dimensions. Handling such large data becomes very challenging for

the machines; hence, the modular approach is applied where only some of the

face’s informative regions are considered like eyes, nose, lips, forehead. Till now,

most of the facial expression recognition techniques applied for full-face images.

It seems that eyes, nose, lips, and forehead are more informative for identifying a

person. By having a look at only one of these face parts or a combination of these

parts, the facial expression can be identified. The extraction of these facial regions

is already described earlier. Descriptor H is applied to these regions, and classifi-

cation using these different parts is carried out. Experiments using separate parts

are performed on three databases having different facial expressions.

To approve the hypothetical conclusion of the proposed framework, experi-

ments were performed on the four facial datasets. 1) JAFFE database [104] 2) The
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Video database [153] 3) In CK+ [101] 4) Oulu-CASIA [211] and the same classifier

as we used in chapter 2.

The current work is more emphasized for extracting the strong features in dif-

ferent datasets rather than classification. After evaluation found results of NN

and SVM in different datasets is presented in Table 4.1. It is clearly seen on the

table accuracy of KNN is keep high in most of the cases. The confusion matrix of

the jaffe database using 8*8 block size is given in Table 4.2. For the VIDEO, CK+

and Oulu-casia is given in Table 4.3 4.4 4.5. A comparison of the recognition rates

achieved by proposed second order histogram method with existing Histogram

of Oriented Gradient (HOG) for facial expressions recognition is depicted at Ta-

ble 4.6. Comparison of HSOG with previously implemented 2DTFP is reported in

Table 4.7.

Table 4.1: Comparison The Performance Of SVM and KNN in different datasets

Database Blocksize 1-NN 2-NN 3-NN SVM

JAFFE
8 94.15 90.41 87.67 90.41
12 90.41 87.67 89.04 89.04
16 91.78 84.93 86.32 89.04

VIDEO
8 95.98 95.32 94.94 91.49
12 94.89 95.30 95.14 88.24
16 92.80 93.33 93.80 86.46

CK+
8 93.89 82.78 82.40 82.50
12 82.14 76.07 76.07 70.35
16 80.00 75.30 74.64 67.14

Oulu-
CASIA

8 97.00 85.86 85.04 84.50
12 92.61 86.05 84.07 80.15
16 92.89 88.43 87.34 77.33

Table 4.2: confusion matrix of JAFFE database (Block size 8*8)(In%)

Label Happy Disgust Fear Angry Sad Surprise Neutral
Happy 81.81 0.0 0.0 0.0 9.09 0.0 9.09
Disgust 0.0 100 0.0 0.0 0.0 0.0 0.0

Fear 0.0 8.3 91.66 0.0 0.0 0.0 0.0
Angry 0.0 0.0 0.0 100 0.0 0.0 0.0

Sad 9.09 0.0 9.09 0.0 81.81 0.0 0.0
Surprise 0.0 0.0 0.0 0.0 0.0 100 0.0
Surprise 0.0 0.0 0.0 0.0 0.0 0.0 100
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Table 4.3: confusion matrix of Video database (Block size 8*8) (In%)

Label Angry Normal Smile Open Mouth
Angry 94.83 2.58 0.0 2.58

Normal 2.55 96.16 1.27 0.0
Smile 0.63 0.63 95.36 3.36

Open Mouth 2.17 0.24 1.45 96.12

Table 4.4: confusion matrix of CK+ database (Block size 8*8) (In%)

Label Angry Disgust Fear Happy Sad Surprise
Angry 86.79 5.66 1.88 1.88 1.88 1.88

Disgust 6.25 79.16 2.08 8.33 0.0 4.16
Fear 0.0 7.14 71.42 7.14 0.0 14.28

Happy 0.0 0.0 1.49 91.04 0.0 7.46
Sad 0.0 5.5 0.0 0.0 83.33 11.11

Surprise 2.5 7.5 3.75 7.5 2.5 76.25

Table 4.5: confusion matrix of Oulu-Casia database (Block size 8*8) (In%)

Label Happy Disgust Angry Fear Sad Surprise
Happy 98.00 0.00 0.00 0.00 0.00 2.00
Disgust 0.00 96.00 1.00 2.00 1.00 0.00
Angry 0.00 1.00 98.00 1.00 0.00 0.00
Fear 0.00 1.00 0.00 97.00 2.00 0.00
Sad 0.00 1.00 1.00 1.00 97.00 0.00

Surprise 3.00 1.00 0.00 0.00 0.00 96.00

Table 4.6: Results of HOG in different datasets

DataBase 1-NN 2-NN 3-NN SVM
JAFFE 84.93 79.45 80.82 70

VIDEO 90.25 88.79 87.67 87.09
CK+ 78.21 74.64 76.07 76.78

Oulu-CASIA 88.21 86.74 86.07 84.76

Table 4.7: Compare HSOG with 2DTFP (Two dimensional Taylor Feature Pattern)

DataBase 2DTFP [chapter 3] HSOG
JAFFE 92.78 94.15

VIDEO 94.86 95.98
CK+ 93.78 93.89

Oulu-CASIA 96.87 97.00
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4.4 Conclusion

Here we present an effective local image descriptor, namely HSOG, using his-

tograms of the second-order gradient to capture local geometric properties re-

lated to curvature. These experimental results were achieved on four benchmark

datasets. This descriptor has the ability of the histogram of the second-order gra-

dient descriptor (HSOG) to recognize a person using partial information from the

entire face image. Furthermore, the information transmitted by HSOG is comple-

mentary to that acquired by local image descriptors based on the state-of-the-art

first-order gradient, for example, HOG, SIFT, CS-LBP, and DAISY. A comparison

of HSOG with previously implemented 2DTFP is reported in Table 4.7.
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CHAPTER 5

Dimensionality Reduction Based Feature Ex-

traction Techniques

Facial expression recognition is a big problem in the field of Human behavioral

analysis. Much work has been done in this field where local texture, features have

been extracted and used in the classi- fication. Due to the very local nature of this

information, the dimension of the feature vector achieved for the full image is

very high, posing computational challenges in real-time expression recognition.

In recent times, Dimensionality Reduction methods have been successfully used

in image recognition tasks. Though being high dimensional data, natural im-

ages such as face images lie in low dimensional subspace, and Dimen- sionality

Reduction methods try to learn this underlying subspace to reduce the computa-

tional complexity involved in classification stage of image recognition task. Here

we proposes the Euler Principal Component Analysis (e-PCA) and Orthogonal

Neighborhood Preserving Projection with Class Similarity-based neighborhood

(CS-ONPP) for expression recognition.

5.1 PCA and KPCA

Principal component analysis (PCA), is a very prominent technique for dimen-

sionality reduction and feature extraction. Fundamental thought of PCA is to dis-

cover the vector which best account for distribution of face images with in whole

image space as stated in [175] . In PCA the faces are basically represented as a

linear combination of weighted eigen vectors that is called as eigen faces. These
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eigen faces are nothing but the dissemination, of faces or can state the eigen vec-

tors of covariance matrix of the set of facial images, where image size is m×n is

considered as a point in the mn dimensional space.

Principal component Analysis (PCA) is that the most well liked technique.

The most advantage of PCA is in a position to capture the direction of the train-

ing images with most variance by selecting and manufacturing the orthonormal

eigenvectors, however, the PCA coefficients within the subspace don’t seem to be

associated. During this manner, it will simply hold the global structure. Addi-

tionally PCA cannot catch the most straightforward invariance except if the data

is explicitly fed to the training system [187]. Likewise, the l2-norm among the

quality PCA is barely best for the case of independent and identically distributed

Gaussian noise. it’s additionally not sturdy to outliers, like illumination variations

and occlusions [97] because of the linear transformation. So as to handle the a lot

of sophisticated structure among the data, Kernel Principal Component Analysis

(KPCA) is employed. KPCA turn out the non-linear kind of PCA.

In order to reveal a lot of difficult structure at intervals the information, Kernel

Principal Component Analysis (KPCA) is employed. KPCA speaks the non-linear

kind of PCA. It comes the non-linear feature vector into a high dimensional space

to separate the features linearly seperable. Therefore, it will reveal the non-linear

structure at intervals the images, and encodes higher order statistics [187]. Still,

despite the very fact that KPCA is in a position to beat the constraints of linear

transformation, it doesn’t contemplate the outliers issues.

5.2 Proposed Euler-PCA based Facial Expression Ex-

pression

e-PCA is as late planned by [97] to resolve the outlier issues. It’s primarily kernel

PCA that has complex number using Euler representation. It utilizes l1-norm [39]

rather than l2 -norm [175]. This methodology has closely connected with stan-

dard PCA thanks to the mapping of the dissimilarity measure between the pixel
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Figure 5.1: Generic pipeline for the proposed facial expression recognition using
e-PCA

intensities and the feature space by using the complex number. It retains all the

fascinating properties of PCA such as the in-class variations, efficiency and the

rotational invariance.

5.2.1 Data preparation for modular expression recognition

Appearance based DR methods consider an M×M image as a data point in M2-

dimensional space where each image is vectorized either by columns or by rows.

Let x1, x2, ...., xM be the M data points of given training images, so the data ma-

trix X can be defined as X = [x1, x2, ...., xM] ∈ RM2×M. It is proven in [169] that

area between eye-brows, eyes, area containing nose and lips plays major role in

expressing emotions while the rest of the facial area does not provide any sig-

nificant information for expression recognition. The modular approach considers

only these areas while recognizing expressions, thus the each data vector xi cor-

responding to image i is prepared considering above mentioned four areas from

the image. Each significant area is cropped from the whole image and vectorized,

these four vectors of facial region are then concatenated to make l-dimensional

vector xi as shown in Fig. 5.1. Note that the size of these regions across all face
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images should be same so that the resulting vector representation be a point in

Rl.

5.2.2 Proposed e-PCA

Euler-PCA could be a Kernel PCA that utilizes the robust dissimilarity. It’s addi-

tionally work on the Euler illustration of of complex numbers. A set of n images

Bk ∈ Rp , (k = 1, ......., n), of p pixels. Where p = m× n (each image size). Each

image Bk initial remodeled into vector kind, Ik ∈ Rp. (k = 1, ............n). Assuming

that n images I ∈ Rp×k are provided to the system at the start and every image

is in vectorized kind. Then I is normalized to [0,1] vary to get X ∈ Rp×k. Then

the pixel intensities in X are mapped on the complex representation, X ∈ Cp×k.

The specialty of e-PCA utilize the cosine based dissimilarity measure [39] which

replaces the l2 -norm in normal PCA.

Zk =
1√
2


eiαπXk(1)

.

.

eiαπXk(p)

 =
1√
2

eiαπXk (5.1)

α here may be a real positive issue. It presents the frequency of the cosine

function and is optimized to get rid of the values caused by the outliers. It permits

the registration of non-rectangular objects. As the estimation of α expands, the

massive distance impact caused by the outliers decreases. Compute the Zk shaped

the matrix of transformed data Z = [Z1, ........., Zn] ∈ Cp×n. This can be followed

by kernal matrix K, which is computed as

K = ZHZ ∈ Cn×n (5.2)
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and eigendecomposition of K is computed as

K = U ∧UH (5.3)

Where U is a complex square matrix of size n × n whose kth column corre-

sponds to the eigenvectors of K and ∧ is a square matrix whose diagonal elements

corresponds to the eigenvalues of K. The eigenvectors area unit positioned dur-

ing a descendant order in line with their eigenvalues due to the explanation that

lowest eigenvalue corresponds to the smallest amount variance [189]. Therefore

r reduced set, Ur ∈ Cn×r and ∧r ∈ Rr×r. Then the principle subspace Q is com-

puted as

Q = ZUr∧
−1
2

r (5.4)

Fig. 5.2(a) and Fig. 5.2(b) is showing the some samples of the expression im-

ages and its eigen faces. For the recognition of facial expression the feature vectors

is built as

V = Q′Z (5.5)

But these feature vectors are in the complex domain. For the further computation

we need to go back to the pixel domain. Conversion of complex domain to pixel

domain follows as

V = abs(V) (5.6)

Where ’abs’ is the absolute value of the complex domain features.

Table 5.1 presents procedure to find feature vector based on e-PCA and mech-

anism to recognize expression of the test image.
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Figure 5.2: (a) Some expression images from the JAFFE database, (b) Eigen faces
of these expression images

Table 5.1: Procedure for expression recognition using e-PCA

Input: A set of n images Ij, j = 1, .........n of p pixels, facial expression
images in modular format and number of reduced dimension r and
parameter α
Output: Lower dimension representation V ∈ Rr×n

1: Represent Ik in the range[0, 1] and obtain Xk by writing Ik in lexico-
graphic ordering

2: Compute Zk using eq.(5.1)
3: Compute kernel matrix K by eq.(5.2) and eigenvalue decomposition

by eq.(5.3)
4: Find the k reduced set, Uk ∈ Cn×r

5: Compute principle subspace Q by eq.(5.4)
6: Compute Embedding on lower dimension by eq.(5.5) and (5.6)
7: Project test facial expression image represented as modular vector Xt

on learned epca space to get low dimensional representation Vt
8: Use 1-NN classifier to identify the class label for test image

5.2.3 Experiments and Results

Experiments performed on three well-known facial expression databases: JAFFE,

Video, CK+ and Oulu-Casia datasets. As a classifier 1-NN is used because of its

simplicity. The purpose of this method is to prove suitability of DR based method

for FER, thus sophisticated classifiers are not employed here. Table 6.2 reports

average recognition rate for the holistic (where full face considered) and modu-

lar (only eyes, nose, lips and forehead considered) approach both by using the

proposed e-PCA. Where as Fig. 5.3 [a][b][c][d] compares the results of modular

approach by using PCA, KPCA, and proposed e-PCA with different reduced di-

mensions.
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Table 5.2: Accuracy of e-PCA on JAFFE, Video and CK+ with best reduced dimen-
sions (r) [In %]

Holistic Modular
DataBases PCA KPCA Proposed PCA KPCA Proposed

e-PCA e-PCA
JAFFE (r=50) 78.25 83.72 85.42 83.20 85.43 89.01

VIDEO (r=700) 87.95 89.43 93.47 87.23 93.25 96.05
CK+ (r=200) 81.23 85.62 88.93 78.32 89.75 91.72

Oulu-Casia (r=300) 89.43 90.12 94.12 86.39 94.09 95.32

Figure 5.3: Recognition Accuracy (%) with varying number of dimensions (r) for
(a) Jaffe (b) Video (c) CK+ (d) Oulu- Casia datasets

Though, Local Features based methods have been successfully applied to Fa-

cial Expression Recognition problems. The results we achieved is satisfactory but

we want more. So we move some other dimensionality reduction method.

5.3 CS-ONPP: Class Similarity based Orthogonal Neigh-

borhood Preserving Projection

In conventional ONPP [77], the neighbors of data point xi are selected based on

Euclidean distance (in unsupervised method) or based on class label information
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(in supervised method). In [206], authors have proposed a Enhanced Supervised

LLE where the Euclidean distance is simply modified by adding a constant for the

pairs of data that belongs to different class, keeping others unchanged. Let ∆(i, j)

be the euclidean distance between data points xi and xj. Class similarity based

distance denoted by ∆′(i, j) can be defined by

∆′(xi, xj) = ∆(i, j) + α max(∆)(1− S(i, j)) (5.7)

where, α ∈ [0, 1] is a tuning parameter. max(∆) indicates maximum pair-wise

distance or data diameter. S(i, j) is class similarity between xi and xj, which is

defined as,

S(i, j) =

1; xi = xj

p(xi)
Tp(xj); xi 6= xj

(5.8)

We used Logistic Discrimination (LD) to find probability of each data point xi

belonging to class ci. Performing LD on high dimensional data causes huge com-

putational burden, thus lower dimensional representation is sought using PCA.

Let zi be a lower dimensional representation of xi, to find probability vector p(xi).

The cth element of p(xi) corresponding to class c can be computed by

pc(xi) =
π(zi; αc, βc)

∑C
c=1 π(zi; αc, βc)

(5.9)

where the function, π(zi; αc, βc) =
exp(αc + βc

Tzi)

1 + exp(αc + βc
Tzi)

The neighbors for each data point xi will be chosen based on class similarity

based distance given in equation (5.7).

Step 2: Calculating Reconstruction Weight: In this step, the neighborhood Nxi

is expressed as a linear combination of neighbors with reconstruction weight wijs

as ∑k
j=1 wijxj. The weight wij are computed by minimizing the reconstruction error

69



i.e. error between xi and linear combination of xj ∈ Nxi .

arg min E(W) = arg min
W

N

∑
i=1
‖ xi −

k

∑
j=1

wijxj ‖2 (5.10)

subject to ∑k
j=1 wij = 1

For each data point xi, optimization problem given in (5.10) can be modeled

as a least square problem (XNi − xieT)wi = 0 with a constraint eTwi = 1. Here,

XNi is a matrix having xj as its columns, where xj ∈ Nxi . Note that XNi includes

xi as its own neighbor making it a matrix of dimension l× k + 1. Solving the least

square problem results in a closed form solution for wi given by equation (5.11).

wi =
G−1e

eTG−1e
(5.11)

Here, e is a vector of ones having dimension k× 1 same as wi. G ∈ Rk×k is a

Gramiam matrix, each entry of G is given by gpl = (xi− xp)T(xi− xl), f or ∀ xp, xl ∈

Nxi .

Step 3: Finding Projection Matrix: Last step is dimensionality reduction or

finding the projection matrix V that explicitly maps l-dimensional data point xi

to d-dimensional representation yi assuming that the neighborhood relationship

among Nxi with corresponding weights wij will be preserved in lower dimen-

sional space, too.

The optimization problem to achieve such mapping can be formed as min-

imization of the sum of squares of reconstruction errors in lower dimensional

space. The cost function is given by

arg minF (Y) = arg min
Y

N

∑
i=1
‖ yi −

k

∑
j=1

wijyj ‖2 (5.12)

subject to orthogonality constraint, VTV = I

Solving the optimization problem results in eigenvalue problem XMXTV =

λV. Here, columns of V are eigen-vectors that corresponding to the smallest d

eigen-values. The matrix M = (I−W)(I−WT). Note that XMXT is symmetric
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Table 5.3: Procedure for expression recognition using Class-Similarity based
ONPP

Input: Dataset X ∈ Rl×N representing N facial expression im-
ages in modular format and number of reduced dimension d
Output: Lower dimension representation Y ∈ Rd×N

1: Find low dimensional representation zi of data by projecting on
dpca dimensional space using PCA (zi = VT

pcaxi)
2: Use Logistic Regression on zi to find class probability vector pi
3: Calculate modified distance for all data point pairs ∆′(xi, xj) us-

ing equation (5.7)
2: Compute NN Nxi with modified distance∆′(xi, xj)
3: Compute the weight W for each neighbor data point xj ∈ Nxi as

given in equation (5.11)
4: Compute Projection matrix V ∈ Rl×d whose column vectors are

smallest d eigen-vectors of matrix XMXT

5: Compute Embedding on lower dimension by Y = VTX
6: Project test facial expression image represented as modular vec-

tor xt on learned ONPP space to get low dimensional representa-
tion yt

7: Use 1-NN classifier to identify the class label for test image

and positive semi-definite. ONPP explicitly maps X to Y, which is of the form

Y = VTX, i.e. each test sample xt can now be projected to lower dimension by

just a matrix-vector product yt = VTxt.

Considering the under-sampled size issue where the number of samples N

is less than dimension l. In such situation, the matrix XMXT ∈ Rl×l will have

maximum rank N − c, where c is number of classes. To ensure that the resulting

matrix M be non-singular, one may utilize an initial PCA projection that reduces

the dimensionality of the data vectors to N− c. If VPCA is the projection matrix of

PCA, then on performing the ONPP the resulting dimensionality reduction matrix

is given by V = VPCAVONPP. Note that the PCA projection is most common

pre-processing applied in many dimensionality reduction methods and in this

article we are using it in our advantage to define new distance measure for local

neighborhood. Table 5.3 gives procedure to find Class-similarity based ONPP

subspace and mechanism to recognize expression of the test image.
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5.3.1 Experiments and Results

Class-similarity based approach applied to ONPP and MONPP, and recognition

performance of both the approaches are compared with respective algorithm on

some well-known face database and handwritten numerals databases. Table 5.4

reports average and best recognition result of 20 such iterations. Comparison of

performance of ONPP [77] and CS-ONPP on facial expression databases in the

light of recognition score (in %) with corresponding subspace dimensions are re-

ported in Table 5.5. Where as Table 5.6 reported the comparison between the

MONPP [3] and CS-ONPP. CS-ONPP are reported along with tuning parameter

Alpha and PCA dimension (d_pca). Table 5.7 repeats the comparisons given in

[80] for Local features based Facial Expression Recognition methods along with

the dimensions of feature vectors for the given method.

Table 5.4: Best recognition Accuracy (%) achieved with proposed method of three
benchmark databases along with related parameters: PCA subspace dimension
(dpca), Number of Nearest Neighbors (k), tuning parameter α and ONPP sub-
space dimensions

Database Recognition ONPP dpca alpha Number of
Accuracy (%) dimensions α Nearest Neighbors(k)

JAFFE 94.54 100 24 0.25 7
Video 94.76 110 20 0.50 13
CK+ 86.76 510 22 0.25 5

Table 5.5: Comparison of performance of ONPP and CS-ONPP on facial expres-
sion databases in the light of recognition score (in %) with corresponding sub-
space dimensions. CS-ONPP are reported along with tuning parameter Alpha
and PCA dimension (d_pca).

Databases ONPP CS-ONPP
RecAcc Subspace dim RecAcc Subspace dim d_pca Alpha NN_k

JAFFE 93.62 155 94.54 100 24 0.25 7
VIDEO 94.12 175 94.76 110 20 0.5 13

CK+ 85.66 705 86.76 510 22 0.25 5
Oulu-casia 91.09 810 92.89 670 26 0.25 10
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Table 5.6: Comparison of performance of MONPP and CS-ONPP on facial expres-
sion databases in the light of recognition score (in %) with corresponding sub-
space dimensions. CS-ONPP are reported along with tuning parameter Alpha
and PCA dimension (d_pca).

Databases MONPP CS-ONPP
RecAcc Subspace dim RecAcc Subspace dim d_pca Alpha NN_k

JAFFE 93.76 145 95.35 85 20 0.25 9
VIDEO 94.4 170 95.66 105 20 0.5 14

CK+ 87.14 675 87.88 485 18 0.5 9
Oulu-Casia 93.23 710 94.34 600 20 0.5 9

Table 5.7: Comparison of proposed method with Local feature based methods in
the light of Feature vector length for JAFFE dataset for 256× 256

Holistic Approaches
Method Feature Length Recognition

Accuracy (%)
Local Binary Pattern (LBP) 65536 89.42
Local Gradient Code (LGC) 65536 90.38
Histogram of Gradients (HOG) 20736 85.71
Local Directional Pattern (LDP) 14337 85.20

Modular Approaches
Method Feature Length Recognition

Accuracy (%)

Histogram of 2ndOrder Gradient (HSOG) 38582 94.15
Proposed ONPP with CS 11541 94.54

5.4 Conclusion

Though, Local Features based methods have been successfully applied to Facial

Expression Recognition problems, the resulting feature vector lengths usually are

of order 105 which slow down classification process. The article proposes a Di-

mensionality Reduction based method which can be employed in FER. Basically,

state-of-the-art DR methods PCA and ONPP are used. Euler -PCA (e-PCA) and a

novel approach of neighborhood selection based on class similarity are proposed

to suit FER application. Proposed methods is tested on four benchmark databases

and proved to be gaining huge margin in terms of feature vector length while

maintaining same recognition accuracy.

Till now we worked on feature based approaches, they can do well in certain

well-controlled cases. The fundamental issue with hand-crafted features based
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arrangement approaches is that they require space learning and not generalize

well like in the complex dataset. So we implemented the deep learning models

for the FER tasks. Table. 6.3 reported the comparison between dimensionality

reduction methods and the previously proposed methods.

Table 5.8: Compare HSOG ,2DTFP , E-PCA and CS-ONPP

DataBase 2DTFP [chapter 3] HSOG [chapter 4] E-PCA CS-ONPP
JAFFE 92.78 94.15 89.01 94.54

VIDEO 94.86 95.98 96.05 95.66
CK+ 93.78 93.89 91.72 87.88

Oulu-CASIA 96.87 97.00 95.32 93.15
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CHAPTER 6

Deep Learning Based Feature Extraction Tech-

niques

A huge volume of existing techniques conducted facial expression recognition

that is supported on image/image sequences while not considering temporal data

due to the convenience of data handling and the easy accessibility of training and

testing material. As mentioned earlier, small FER datasets which directly train the

deep neural networks are inclined to overfitting. To moderate this issue, several

studies used further task-oriented information to pre-train their networks from

fine-tuned or scratch on existing pre-trained models like VGG [160], VGG-face

[123], GoogleNet [167] and AlexNet [78]. Kahou et al. [64], [67] demonstrated that

the utilization of extra information could get models with high capacity without

overfitting, accordingly may improve the FER execution.

The objective of this is more basic, but also more general, namely: can recur-

ring connectivity from associative areas to perceptive areas be useful for classify-

ing expressive events? Our hypothesis is that the deep connectivity of the neural

network offers an advantage in recognizing and anticipating more ambiguous ex-

pressions. For example, at the beginning of a sequence composed of expressions

of neutral with higher intensity. To validate this very general hypothesis using

computational models, we compare the simplest and comparable types of deep

neural networks to test the importance of recurrent connections, with everything

as similar as possible (ie identical learning rate, synaptic weight correction, pro-

cedure of training / test, etc.). So we implemented two types methods which are

given below:
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6.1 DNN based on Fourier transform followed by Ga-

bor filtering

In this segment, we discusses the premise of our technique and proposed frame-

work which improves the efficiency and accuracy of the facial expression recog-

nition. As mentioned earlier in the modular approach, now onward we only con-

sider forehead, eyes, nose, and lips regions. Fig. 6.13 demonstrates the procedure

of the proposed framework which is divided into three phases - 1) Preprocessing

2) Feature extraction 3) Classification using SVM and KNN.

6.1.1 Preprocessing

We used the little similar preprocessing as in the EMPATH model given by Dailey

et al. [22]. Before the facial recognition, some image preprocessing need to be

done first. Our preprocessing starts with the transformation of the input facial

image to grayscale. This process minimized the variation of face images. This is a

necessary step because CNN depicted later expects 3 channel input facial image,

this grayscale facial image is depicted within the 3 channel. Subsequently, we run

two procedures, Fourier transforms followed by Gabor filters (improve the speed

and encodes the edges ) and Data Augmentation (increase number of face images

in the database). The subsequent section describes each of those steps in details.

Fast Fourier Transform (FFT) and Gabor filtering

Fast Fourier transform can speed up our procedure very smoothly. Computation

of the 1 Dimensional (1D) Fourier transformation of N points specifically requires

the order of N2 addition/multiplication operations. Whereas Fast Fourier Trans-

form (FFT) fulfills the same task in NlogNoperations. 2D Fourier transform is

computed by the given equation-

F(p, q) =
1

MN

M−1

∑
r=0

N−1

∑
s=0

f (r, s)e−j2π(
pr
M+

qs
N ) (6.1)

The face images are transformed in the Fourier domain and filtered by 48
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Gabor filters (GFs) corresponding to 6 spatial frequencies, with one octave be-

tween the focuses of two continuous spatial frequency channels that are fi =

5.41; 10.77; 21.60; 43.20; 86.40; 172.8 cycles per face image and eight exclusive ori-

entations that are θ = 0, π
8 , 2π

8 , 3π
8 , 4π

8 , 5π
8 , 6π

8 , 7π
8 in radians.

GF can effectively express the characteristics of the texture. It captures the

most exceptional visual properties and has very positive results in facial recogni-

tion. GF cores that contain the real part and the imaginary part. GF kernels are

similar to the profiles of the receptive field in simple cortical cells, characterized

by localization, selective orientation and frequency selectivity. An image is pro-

cessed by the kernel element and, then, to produce its corresponding frequency

images, which are further employed to compute to obtain Gabor features for the

image.

Different experiments have demonstrated that the use of GFs impacts in a pin-

nacle estimation of the responsive fields of the primary cells of the imperative

visible cortex [55]), given that the applied math analysis of the residual error be-

tween the distinction within the response profiles of V1 easy cells and Gabor filters

aren’t distinguishable from probability [61].

The face images transferred in the Fourier space to boost the speed and ease the

Figure 6.1: Illustration of the proposed Framework
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mathematical processes and GFs were applied to every thumbnail by means that

of multiplication within the spectral domain (which is resembling a convolution

of the Gabor receptive fields within the spatial domain) is:

G(p, q) = exp[−( (uθ − fi)
2

2σ2
v

+
v2

θ

2σ2
u
)] (6.2)

where pθ =p cos θ + q sin θ and qθ =q cos θ - p sin θ. σu and σv are standard

deviations (SD’s) of the Gaussian enfold in the pθ and qθ (for example orthogonal

to θ). The yields of Gabor channels were the provincial vitality spectra that are

multiplied by the kernel of the GF. The GF were applied to the images acquired

from the Fourier domain. So now we getting 48 images of each given image from

the 6 spatial frequency and 8 Gabor channels.

Data Augmentation

CNN needs massive data so to have the option, to sum up to a given issue. How-

ever, publically available FER databases do not have sufficient images to handle

the problem. Simard et al. [158] suggested data augmentation (DA) procedure ex-

tend the databases through the creation of synthetic face images for every original

face image. Inspired by this procedure, the following activities had been utilized

as the data augmentation: 1) flipping image vertically and horizontally 2) Rotate

each database image, rotate it at right angles if image is square and rotate it as

1800 if image is rectangular 3) Add the random noise to the landmarks so as to

introduce little deformations to faces.

6.1.2 Feature Extraction From Given Facial Images

Our proposed framework utilizes DNN (deep neural networK) for feature extrac-

tion for FER is relies on VGG network of Simonyan and Zisserman [160]. They

come up with two versions of VGG: VGG-16 and VGG-19 (i.e. sixteen and nine-

teen layers, respectively). VGG16 is chosen due to the fact of its effective perfor-

mance in visible detection and speedy convergence. It’s concerning 138 million

parameters and contains 13 convolutional layers, followed by 3 fully-connected
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layers (FCs). The initial two fully connected layers (FCs) have 4,096 outputs and

the last layer has 2,622 outputs. Since the VGG framework not designed for the

FER tasks so we modified the framework according to our requirements. Fig. 6.9

demonstrates the essential module of the framework. Compared with the original

VGG16, our VGG16_ft (where “ft”means fine-tuning) is simplified by doing away

with two dense layers.

Figure 6.2: Framework for the modified VGG16_ft network, used for extraction of
the expression features from the given facial images

Table 6.1: Parameters set for fifth block

conv5_1 conv5_2 conv5_3 Maxpool5
_ft _ft _ft _ft

Filters 512 512 1024
size 7×7 5×5 3×3 2×2

stride 1 1 1 2
pad 3 0 0 0

The dimension of the input data for forehead is 54× 48, for eyes is 39× 117

, for nose is 50× 55 and for lips is 48× 74. At that point, we fix the structures

of the initial four conv (convolution) blocks of the VGG16_ft. But we change the

structure of fifth conv block of VGG16_ft and also change the names of each layer

just by adding “ft”at the end of the original layer name. So now layer name of

fifth conv block is like conv5_1_ft. The parameters whose change the structure of

the layer is shown in Table. 6.4. Based on experiments last dense layer preserved

and set its dimension to 1× 1024. That dimension is actually the extracted feature

of input image denoted as feature vector “fv _1” for the forehead, “fv _2” for the

eyes, “fv_3” for the nose and “fv_4” for the lips. We decline the learning rates

of layers that have a place with the fifth conv block by 10 times (learning rate
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for fifth conv block is .001 ) of other block learning rate (.01 used for other conv

blocks) to ensure that that they’ll learn more positive information. At last, the

initial portion of the system is initialized with the VGG16 model weights which

are trained on the Imagenet dataset. ReLu (Rectified Linear Unit) is applied after

every convolutional layer.

6.1.3 Concatenation of Different Outputs and Classification

Fig. 6.13 shows our proposed framework. Expression features fv is the concatena-

tion of the feature vector came from forehead (fv_1), eyes (fv_2), nose (fv_3) and

lips (fv_4). After getting the feature vector next step to do the classification. In the

classification process, the similarity between extracted features of the display set

and the probe set is evaluated by the SVM and K nearest-neighbor (K=1,2,3) clas-

sifier with various distance measures. Euclidean distance, Chi-square distance, as

well as histogram intersection (HI) are utilized in our experiments. As we also

did in previous chapters.

For the computation loss, we used the MSE (mean square error) till now it is

best for the SVM and KNN classification, Which is defined as

Loss =
1
N

N

∑
1
‖ Oi −O

′
i ‖

2
(6.3)

Where N is the total numbers of input images, Y and Y’ the true and predicted
outputs, respectively.

6.1.4 Experimental Results and Analysis

The convergences of the proposed methodology are assessed in four benchmark

datasets, and the outcomes are delineated in Figs. 6.3, 6.4, 6.5 and 6.6. Each sub-

figure demonstrates the trends of accuracy and loss with the rise in iterations.

Table 6.2 shows the Comparison between the Holistic and Modular approach in

our proposed framework in the light of SVM and KNN as the classifier for all

datasets.
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Figure 6.3: Curves of Accuracy and Loss during training and testing phases for
JAFFE dataset

Figure 6.4: Curves of Accuracy and Loss during training and testing phases for
VIDEO (DA-IICT) dataset
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Figure 6.5: Curves of Accuracy and Loss during training and testing phases for
CK+ dataset

Figure 6.6: Curves of Accuracy and Loss during training and testing phases for
OULU-CASIA dataset
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Table 6.2: Comparison between the Holistic and Modular approach in our pro-
posed framework in the light of SVM and KNN as the classifier for all datasets (In
terms of average accuracy (%) reported for 50 iterations)

Holistic Modular
Datasets SVM KNN SVM KNN

Euclidean Chi Histogram Euclidean Chi Histogram
SquareIntersection SquareIntersection

JAFFE 93.02 90.32 82.42 80.02 95.96 93.42 90.32 87.27
VIDEO 92.47 88.23 80.98 78.02 96.67 92.50 89.41 85.49

CK+ 91.45 88.71 86.41 83.54 96.78 91.24 87.79 89.64
OULU-CASIA 91.40 87.30 79.89 76.20 96.08 89.56 85.64 83.20

Table 6.3: Compare all proposed methods

DataBase 2DTFP HSOG E-PCA CS-ONPP DNN-FG
[chapter 3] [chapter 4] [chapter 5] [chapter 5]

[Section 5.1] [Section 5.3]
JAFFE 92.78 94.15 89.01 94.54 95.96

VIDEO 94.86 95.98 96.05 95.67 96.67
CK+ 93.78 93.89 91.72 87.88 96.78

Oulu-CASIA 96.87 97.00 95.32 93.15 96.08

In Table 6.10 we compared all our proposed methods. We have worked on the

one channel architecture, which gives us excellent results compared to feature-

based methods as we compared in Table. 6.3. But we want to improve the archi-

tecture by adding more than one channel in the architecture. In the next section,

we implemented double channel-based architecture where we utilized VGGFace

[123] instead of VGG16 [160] as we used in this section. VGG16 is trained on mil-

lions on images, whereas VGGFace is trained on a large face dataset, it might help

increase our FER accuracy.

6.2 Double Channel Based Deep Neural Network

Preprocessing, such as histogram equalization (HE) and data augmentation (DA)

are needed for the given facial images. HE is an easy but effective technique in

image processing, which might build the distribution of the gray values in numer-

ous images more uniform and decrease interference caused by illumination. CNN
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needs massive sets of data to be able to generalize to a given problem. However,

publically available FER databases do not have sufficient images to handle the

problem. Simard et al. [158] suggested data augmentation procedure to extend

the databases through the creation of synthetic face images for every original face

image. After the preprocessing, we able to extract facial features from the given

facial regions. Appearance and Geometric features extraction techniques are gen-

erally used. In earlier research, the region of various facial points are extricated

and combined it and made into a feature vector which encodes the geometric

information of face like distance, angle, and location [57]. Appearance-based fea-

tures are utilized to demonstrate the appearance variations of a selected face by

way of spatial evaluation [155]. Motion’s information features are being used for

facial expression recognition in given facial images [177]. Finally, the suitable clas-

sifier is used for expression recognition on the extracted features.

Here we primarily depicted the premise of our technique and proposed the

framework, which improves the efficiency and accuracy of the facial expression

recognition. As mentioned earlier here, we used the modular approach where we

only take forehead, eyes, nose, and lips. So from onwards, we worked on these

four facial regions. The proposed FER technique utilized in this paper is based

on the double channel architecture that can do expression recognition efficiently.

Fig. 6.13 demonstrates the procedure of the proposed framework, which is sep-

arated into three phases - 1) Preprocessing, 2) Double channel feature extraction

technique 3) Classification using SVM and KNN.

6.2.1 Preprocessing

Before the facial recognition, some image preprocessing need to be done first. Our

preprocessing begins with the transformation of the input face image to grayscale.

This process minimized the variation of face images. This preprocessing is a nec-

essary step because CNN depicted later expects 3 channel input face image and

received grayscale face image can be represented within the 3 channel. Subse-

quently, we run two procedures, which are Histogram Equalization (illumina-

tion handling) and Data Augmentation (increase number of the face image in the
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database). The subsequent section describes each of those steps in details.

Histogram equalization

In the face images, some issues should also be considered. Due to the different

illumination conditions, while taking images, the segments of the face will show

in various brightness, which may cause massive interference on facial recognition

results. Thus, we tend to conduct histogram equalization (HE) earlier than recog-

nition. The histogram equalization is the distribution of a particular type of data.

By equalizing the histogram we can improve the contrast and appearance of an

image. The entire pixel spectrum (0-255) will be extended by the histogram equal-

ization. A histogram that covers all possible values which is used by gray scale is

determined as a good histogram. A good histogram tends to have good contrast

and the details of an image that can be easily observed. After the histogram equal-

ization, the gray value of each image uniformly covers the entire gradation range,

the image contrast is improved and the gray distribution of the different images

becomes more unified as shown in Fig .6.8. We can conclude that the histogram

equalization is effective in reducing the interference caused by different lighting

conditions. There are many methods for the illumination normalization like, but

due to simplicity and effectiveness of Histogram equalization we used it.

Figure 6.7: (a) Original Image with its histogram (b) Equalized image with its
corresponding histogram
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Some times no need to have histogram equalization step after TFP. However

due to illumination condition the range of TFP images many not have full range

(0-255). Hence we suggested the step of histogram equalization after TFP. Note

that if TFP images of full range then no use of histogram equalization step. We car-

ried out experiments with and without histogram equalization step. It has been

observed that the results with histogram equalization step is slightly improved,

not significantly.

Data Augumentation

CNN needs massive sets of data to be able to generalize to a given problem. How-

ever, publicly available FER databases do not have sufficient images to handle the

problem. Simard et al. [158] suggested data augmentation procedure to extend

the databases through the creation of synthetic face images for every original face

image. Inspired by this procedure, the following operations had been utilized as

data augmentation: 1) flipping image vertically and horizontally 2) Rotate each

database image, rotate it at right angles if image is square and rotate it as 1800 if

image is rectangular 3) Add the random noise to the landmarks so as to introduce

little deformations to faces as shows in Fig .6.8.

Figure 6.8: Original Image with (a) Flipped Image (b) Rotate Image (c) Noisy
Image

So the resulting face image is different from the non-processed face (original

face) the ones that used with CNN for the pre-train. These difference between

processed and non processed data could affect the results, It may be because of
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network learned the features from the original face image, and it may not be able

to extract features from the processed face images. So, we additionally provide

results with a network trained with original face images.

6.2.2 Feature Extraction From Gray Scale Facial Images

Absence of adequate training samples constrains the execution of CNN-based Fa-

cial expression recognition approach.

Figure 6.9: Framework for the modified VGGFace_ft network, used for extraction
of the expression features from the given face images

Data augmentation can partially handle the issue exposure of over-fitting. Hence,

fine-tuning is utilized to the extraction of facial expression related features from

the given input face image by way of referring to the deep neural network (DNN)

that attained excessive success in similar kind of tasks.

Our proposed framework utilizes DNN for feature extraction for FER, which

relies on VGGFace network [123]. VGGFace is chosen as the basic model, which

has the same architecture of VGG16 [160] and has been trained on large-scale

face dataset. Due to the similarity between face recognition and facial expres-

sion recognition, the transfer learning of features is facilitated via fine-tuning VG-

GFace (VGGFace_ft). In VGGFace, the first few layers capture universal features
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like blobs and edges, which are also relevant to other similar tasks. It has 138

million parameters and 13 convolutional layers, followed by 3 fully-connected

layers (FCs). The initial two fully connected layers (FCs) have 4,096 outputs, and

the last layer has 2,622 outputs. Thus, the parameters of the first four convolu-

tion blocks are frozen and the parameters of the fifth convolution block are fine-

tuned. This allowed us to make use of the more general features that these layers

were already trained to extract while performing fine-tuning on some of the lay-

ers that extract more specific features of facial expressions. Fig. 6.9 demonstrates

the essential module of the framework. Compared with the original VGGFace,

our VGGFace_ft (where “ft”means fine-tuning) is simplified by doing away with

two dense layers. The dimension of the input data for forehead is 54× 48, for eyes

is 39× 117 , for nose is 50× 55 and for lips is 48× 74.

At this point, we fix the structures of the initial four CONV (convolution)

blocks of the VGGFace_ft. But we change the structure of fifth CONV block of

VGGFace_ft and also change the names of each layer just by adding “ft”at the

end of the original layer name. So now layer name of fifth CONV block is like

CONV_5_1_ft. The parameters whose change the structure of the layer is shown

in Table. 6.4. Based on experiments, the last dense layer preserved and set its

dimension to 1× 1024. That dimension is actually the extracted feature of input

image denoted as feature vector “fv _1” for the forehead, “fv _2” for the eyes,

“fv_3” for the nose and “fv_4” for the lips. We decline the learning rates of lay-

ers that have a place with the fifth CONV block by 10 times (learning rate for

fifth CONV block is .001 ) of other block learning rate (.01 used for other CONV

blocks) to ensure that that they’ll learn more positive information. At last, the ini-

tial portion of the system is initialized with the VGGFace model weights, which

is trained on the large scale face dataset. ReLu (Rectified Linear Unit) is applied

after every convolutional layer.
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Table 6.4: Parameters set for fifth block

CONV_5_1_ft CONV_5_2_ft CONV_5_3_ft POOL_5_ft
Filters 256 256 512

size 7×7 3×3 3×3 2×2
stride 1 1 1 2
pad 3 0 0 0

Figure 6.10: (a) 1st order Pixel taylor feature f1(pc) (Texture1 (T1) with 3× 3 pixels)
(b) 2nd order Pixel taylor feature f2(pc) (Texture2 (T2) with 5× 5 pixels)

6.2.3 Feature Extraction From 2DTFP (Taylor Feature Pattern ) Fa-

cial Images

To the best of our knowledge, there is no model trained on the TFP images. So

here first compute the TFP facial images.

Calculating 2D Taylor Feature Pattern Facial Images

Here, Ding Yuanyuan [30] used one dimensional Taylor expansion for facial ex-

pression recognition. Induced by this, we are trying to implement the two di-

mensional (2D) Taylor expansion as full detail about this is already discussed in

Chapter .3. Here we are only discussed only some required steps.

2D Taylor pixel feature extraction Based on the one dimensional (1D)Taylor ex-

pansion, we describe the Two Dimensional Taylor expansion for the facial expres-

sion recognition. Let f1(pc) be the 1st order 2D Taylor pixel feature of the central
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pixel pc . According to the one dimensional Taylor expansion, Two dimensional

f1(pc) can be approximately defined as:

f1(pc) ≈ f (φ, ψ) + [(pc − φ)
∂ f
∂x

+ (pc − ψ)
∂ f
∂y

] (6.4)

where

φ =

1√
2

p8 + p7 +
1√
2

p6 +
1√
2

p4 + p3 +
1√
2

p2

4√
2
+ 2

These p8, p7, p6, p4, p3, p2 are the pixels in the first layer (marked in grey) of TU1

in x direction. As shown in Fig. 6.10(a) .

ψ =

1√
2

p8 + p1 +
1√
2

p2 +
1√
2

p4 + p5 +
1√
2

p6

4√
2
+ 2

These p8, p1, p2, p4, p5, p6 are the pixels in the first layer (marked in grey) of TU1

in y direction. As appeared in Fig. 6.10(a).

f (φ, ψ) =
φ + ψ

2

∂ f
∂x

=

 1
2 ; if pc − φ ≥0

−1
2 ; if pc − φ <0

∂ f
∂y

=

 1
2 ; if pc − ψ ≥0

−1
2 ; if pc − ψ <0

2ndorder taylor pixel feature f2(pc) can be expressed as:
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f2(pc) ≈ f (φ, ψ) + [(pc − φ)
∂ f
∂x

+ (pc − ψ)
∂ f
∂y

]

+
1
2
[(pc − φ)2 ∂2 f

∂x2 + 2(pc − φ)(pc − ψ)
∂2 f

∂x∂y

+(pc − ψ)2 ∂2 f
∂y2 ] (6.5)

In the computation of φ and ψ there are some term like φ1, ψ1, φ2, ψ2 used.

These terms defined as

φ1 =

1√
2

p8 + p7 +
1√
2

p6 +
1√
2

p4 + p3 +
1√
2

p2

4√
2
+ 2

.

These p8, p7, p6, p4, p3, p2 are the pixels in the first layer (marked in grey) of

TU2 in x direction. As shown in Fig. 6.10(b).

ψ1 =

1√
2

p8 + p1 +
1√
2

p2 +
1√
2

p4 + p5 +
1√
2

p6

4√
2
+ 2

These p8, p1, p2, p4, p5, p6 are the pixels in the first layer (marked in grey) of

TU2 in y direction. As appeared in Fig. 6.10(b).

φ2 =
p24 + p23 + p22 + p21 + p20 + p16 + p15 + p14 + p13 + p12

10

Here, φ2 is the mean of the gray value in the second layer (pixels are marked in

dark grey and furthermore which are in x direction). Pixels p24, p23, p22, p21, p20, p16,

p15, p14, p13, p12 will came here.

ψ2 =
p24 + p9 + p10 + p11 + p12 + p16 + p17 + p18 + p19 + p20

10

Here, ψ2 is the mean of the gray value in the second layer (pixels are marked

in dark grey and also which are in y direction). Pixels p24, p9, p10, p11, p12, p16,

p17, p18, p19, p20 will came here. Finally compute the φ and ψ like

φ =
φ1 + φ2

2
and ψ =

ψ1 + ψ2

2
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Then, compute

f (φ, ψ) =
φ + ψ

2

Here, evaluate the derivative of x and y like

∂ f
∂x

=

 1
2 ; if pc − φ1 ≥0

−1
2 ; if pc − φ1 <0

∂ f
∂y

=

 1
2 ; if pc − ψ1 ≥0

−1
2 ; if pc − ψ1 <0

∂2 f
∂x2 =

 1
4 ; if (pc − φ1) (pc − φ2)≥0

−1
4 ; if (pc − φ1) (pc − φ2) <0

∂2 f
∂y2 =

 1
4 ; if (pc − ψ1) (pc − ψ2)≥0

−1
4 ; if (pc − ψ1) (pc − ψ2) <0

∂2 f
∂x∂y

=

 1
4 ; if (pc − φ2) (pc − ψ2)≥0

−1
4 ; if (pc − φ2) (pc − ψ2) <0

2D Taylor Feature Pattern (2DTFP) Taylor Feature Pattern of fn(pc) is expressed

as:

2DTFP =
8

∑
j=1

S( fn(pc), fn(pj).2j−1 (6.6)

S(pc, pj) =

 1; if pc ≥pj

0; if pc <pj

Figure 6.11: Illustration of calculating facial 2DTFP image.
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Fig. 6.11 demonstrates a 2DTFP facial image of a given facial image. Expres-

sions associated facial regions, such as eyes, nose, lips are remarkable in 2DTFP

images to compare to grayscale images.

According to our knowledge of so far, no existing model is trained on the TFP

images. So, we construct two layer CNN model that automatically extracts the

features from the 2DTFP facial images.

Fig. 6.12 illustrates the proposed CNN structure, which consists input layer,

two convolution layers C_1 and C_2 and two sub-sampling layers S_1 and S_2. 64

filters utilized in the first convolution layer C_1 for the input 2DTFP facial images,

which target the exhaustive information of the facial expression. This layer uses a

convolution kernel of 7× 7 and outputs is 64 images. This layer is accompanied

via a sub-sampling layer S_1, which uses max pooling with kernel size 2× 2. That

sub-sampling layer reduces the image to half its size. Next convolution layer C_2

performs 256 filters with 3× 3 kernel to map the preceding layer and is followed

through some other S_2 sub-sampling layers with a 2× 2 kernel. All parameters

utilized in the proposed CNN are listed in Table 6.5.

At this point, the output is given to the fully connected layer (Dense layer)

with the 1024 neurons. From here extract the feature vector (fv_2) of size 1× 1024.

To handle the nonlinear data, add the “Relu” activations after the S_1 and S_2

layers. Data augmentation is employed to increase the number of 2DTFP facial

images synthetically. In this manner, over-fitting can be taken care of by utilizing

the “dropout” operation [162] sub-sampling layer and fully connected layer.

Figure 6.12: Framework for the proposed CNN used for extraction of the expres-
sion features from the TFP facial images

93



Table 6.5: parameter set for the proposed CNN

C_1 S_1 C_2 S_2
Filters 64 256

size 7×7 2×2 3×3 2×2
stride 1 2 1 2
pad 3 0 0 0

Figure 6.13: Illustration of the proposed Framework

6.2.4 Concatenation of Different Outputs and Classification

Fig. 6.13 shows our proposed framework. Expression features fv_1 is a concate-

nation of the feature vector coming from the forehead (fv_1_1), eyes (fv_1_2), nose

(fv_1_3) and lips (fv_1_4). It is the features that came from the grayscale images

using VGGFace_ft with fine-tuning technique. Similarly feature vector features

fv_2 is a concatenation of the feature vector coming from the forehead (fv_2_1),

eyes (fv_2_2), nose (fv_2_3) and lips (fv_2_4). These fv_2 features coming from

the 2DTFP facial images using proposed CNN architecture. Finally, we get full

feature vector “fv” that is the combination of the fv_1 and fv_2. Will go in Next

step for classification.

In the classification process, the similarity between extracted features of the

display setting and the probe set is evaluated by the SVM and K nearest-neighbor
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(K=1,2,3) classifier with various distance measures.

The Support Vector Machine (SVM) algorithm is applied to classification. When

all local image descriptors are transformed to a fixed length feature vector, dis-

tance is computed to measure the similarity between each pair of the feature vec-

tors. Finally, each image for the test is classified into an object class with the max-

imum SVM output decision value. We tune the parameters of the classifier on the

training set, and obtain the recognition accuracy on the test set.

Other classifier is K nearest-neighbor (K=1,2,3) classifier with various distance

measures. Euclidean distance, Chi-square distance, as well as histogram intersec-

tion (HI) are utilized in our experiments. Which are defined as in Eq. 6.7, 6.8 and

6.9

d(x, y) =

√
n

∑
i=0

(xi − yi)2 (6.7)

χ2 = ∑
i,j

(xi,j − yi,j)
2

(xi,j − yi,j)
(6.8)

DHI(x, y) = −∑
i,j

min(xi,j, yi,j) (6.9)

SVM classifier predict the class which has highest value directly. On the other

hand softmax layer predict the probability of classes. One can predict the class

which has highest probability. Softmax is an integral part of DNN used for class

prediction. We do not have control over this prediction. In case the input data

is very complex in nature the softmax which is part of DNN might not predict

the class label accurately. Instead researchers many times prefer a strong classifier

to be used in place of softmax. Note that we have also used a simpler classifier

such as KNN in place of SVM. Hence another motivation of using sophisticated

classifier such as SVM and simpler classifier such as KNN is to show suitability of

the features coming out the convolution layer of DNN.

For computation of the loss, we used the MSE (mean square error) till now it
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is best for the SVM and KNN classification, Which is defined as

Loss =
1
M

M

∑
1
‖ Yi −Y

′
i ‖

2
(6.10)

Where M is the total numbers of input images, Y and Y’ the true and predicted

outputs, respectively.

6.2.5 Experiment Results and Analysis

To See the efficiency of our method, our FER methodology work on the Keras

framework on the macOS Mojave system platform. To do the correct and effec-

tive evaluations, 4 benchmarks datasets which we also have been previously used,

which are made out of facial images. For the JAFFE dataset, Fig .6.14 the results of

one person expression of Jaffe data after the first convolution layer in VGGFace_ft.

Whereas Fig .6.15 shows the trends of accuracy and loss during the training and

testing with the increase in iterations. Whereas Fig. 6.16 shown the comparison

of accuracy with different architectures. Table 6.6 shows reported the average ac-

curacy in the Holistic as well as modular approach both. In the JAFFE dataset

average accuracy is 97.16% and the best is reported as 99.35%. Table 6.17 shows

the accuracies individual expression for the JAFFE dataset. “Neutral” accuracy is

highest as “1.00”. Other expressions accuracies is around the “.96” . The recog-

nition is not perfectly done due to the fact that the “JAFFE” dataset are hard to

distinguish even by manually.

Figure 6.14: Results of 36 filters out of 60 after the 1st Conv2D layer in VGGFace_ft
to the given modular input jaffe image

Similarly, for VIDEO dataset Fig. 6.18 shows the trends of accuracy and loss
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Figure 6.15: Curves of Accuracy and Loss during training and testing phases for
jaffe dataset

during the training and testing with the increase in iterations, whereas Fig. 6.19

shown the comparison of accuracy with different architectures. Table 6.7 shows

reported the average accuracy in the Holistic as well as modular approach both. In

the VIDEO dataset average accuracy is 98.07%, and the best is reported as 99.70%.

Confusion matrix for VIDEO dataset shown in Fig .6.20.

Fig. 6.21 shows the trends of accuracy and loss during the training and testing

Table 6.6: Comparison between the Holistic and Modular approach in our pro-
posed framework in the light of the classifiers for JAFFE dataset (In terms of av-
erage accuracy (%) reported for 50 iterations)

JAFFE
HOLISTIC MODULAR

Architectures SVM KNN SVM KNN
Eucli- Chi HI Euclidean Chi- HI
dean -Square dean -Square

VGGFace 66.90 64.38 59.14 58.45 70.79 66.84 65.16 65.14
VGGFace_ft 88.90 86.34 79.23 72.12 93.98 90.25 88.47 79.60

VGGFace_ft+HE+DA 89.01 90.56 81.03 78.34 94.89 93.17 90.36 86.01
(Module 1)

ProposedCNN+HE+DA 78.56 91.25 74.24 76.67 92.97 88.48 85.12 79.95
(Module 2)

Ours (Module1+Module2) 93.45 91.78 80.35 78.89 97.12 94.27 92.16 88.99
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Figure 6.16: compare the ability of each architecture for Jaffe dataset

Figure 6.17: Expression wise recognition accuracies for the Jaffe dataset

with the increase in iterations. Whereas Fig. 6.22 shown the comparison of accu-

racy with different architectures. Table 6.8 shows reported the average accuracy

in the Holistic as well as modular approach both. In the CK+ dataset, average

accuracy is 96.76%, and the best is reported as 98.5%. Confusion matrix for CK+

dataset shown in Fig .6.23.

For the Oulu-Casia dataset, Fig. 6.24 shows the trends of accuracy and loss

during the training and testing with the increase in iterations, Fig. 6.26 shown the

comparison of accuracy with different architectures. Table 6.9 shows reported the

average accuracy in the Holistic as well as modular approach both. In the CK+
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Figure 6.18: Curves of Accuracy and Loss during training and testing phases for
VIDEO dataset

Table 6.7: Comparison between the Holistic and Modular approach in our pro-
posed framework in the light of the classifiers for VIDEO dataset (In terms of
average accuracy (%) reported for 50 iterations)

VIDEO
HOLISTIC MODULAR

Architectures SVM KNN SVM KNN
Eucli- Chi HI Euclidean Chi- HI
dean -Square dean -Square

VGGFace 69.90 66.74 66.28 62.32 75.02 67.67 55.89 52.87
VGGFace_ft 91.23 85.90 83.12 81.43 95.42 91.43 87.54 84.56

VGGFace_ft+HE+DA 91.89 89.12 85.28 83.72 96.30 92.89 90.43 87.38
(Module 1)

ProposedCNN_ft+HE+DA 87.36 82.17 79.13 75.26 93.78 88.86 86.49 80.15
(Module 2)

Ours (Module1+Module2) 93.87 90.19 85.45 83.47 98.07 94.42 91.39 90.47

dataset, average accuracy is 96.3%, and the best is reported as 97.9%. Confusion

matrix for CK+ dataset shown in Fig .6.23.

Expressions at different intensity rate

There are many different models of the nature of expression and how it is char-

acterized in the brain and in the body. The work lies in determining the different

99



Figure 6.19: Compare the ability of each architecture for VIDEO dataset

Figure 6.20: Expression wise recognition accuracies for the VIDEO dataset

Table 6.8: Comparison between the Holistic and Modular approach in our pro-
posed framework in the light of the classifiers for CK+ dataset (In terms of average
accuracy (%) reported for 50 iterations)

CK+
HOLISTIC MODULAR

Architectures SVM KNN SVM KNN
Eucli- Chi HI Euclidean Chi- HI
dean -Square dean -Square

VGGFace 80.19 78.16 71.08 68.8 71.07 82.42 80.14 75.67
VGGFace_ft 90.99 87.27 82.16 80.04 93.84 88.17 89.14 84.72

VGGFace_ft+HE+DA 92.74 90.54 84.00 83.14 94.38 92.15 91.19 89.12
(Module 1)

ProposedCNN_ft+HE+DA 89.72 85.17 80.14 79.54 92.78 89.21 87.24 81.12
(Module 2)

Ours (Module1+Module2) 94.75 91.47 89.24 87.50 96.76 95.12 93.17 91.17
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Figure 6.21: Curves of Accuracy and Loss during training and testing phases for
CK+ dataset

Figure 6.22: Compare the ability of each architecture for CK+ dataset

degree of expressions. Through this proposed method, we are not only finding the

dominant expression, but also the percentages of all the expressions presented on

the face. Here we analyze the degree of expression by our proposed approach

while moving from one stage of expression to the next higher state. There are

some other expressions that are affected by changes within a time interval, which
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Figure 6.23: Expression wise recognition accuracies for the CK+ dataset

Figure 6.24: Curves of Accuracy and Loss during training and testing phases for
Oulu-Casia dataset

Figure 6.25: Expression wise recognition accuracies for the Oulu-Casia dataset

are clearly shown in the graphs below in Fig. 6.27, 6.28, 6.29 and 6.30. For some

basic expressions, percentage variations with different time intervals are also rep-

resented. Our approach is very useful for exploring micro expressions. In a par-

102



Table 6.9: Comparison between the Holistic and Modular approach in our pro-
posed framework in the light of the classifiers for Oulu-Casia dataset (In terms of
average accuracy (%) reported for 50 iterations)

OULU-CASIA
HOLISTIC MODULAR

Architectures SVM KNN SVM KNN
Eucli- Chi HI Euclidean Chi- HI
dean -Square dean -Square

VGGFace 79.25 75.13 70.12 68.18 81.10 79.00 76.69 76.10
VGGFace_ft 89.79 88.20 86.17 84.01 95.16 90.79 86.97 89.30

VGGFace_ft+HE+DA 91.30 90.12 88.21 87.27 96.058 91.48 91.90 91.00
(Module 1)

ProposedCNN+HE+DA 85.10 86.35 83.19 79.12 94.09 88.00 83.07 80.30
(Module 2)

Ours (Module1+Module2) 93.10 92.17 90.92 89.42 97.67 94.72 92.10 90.56

Figure 6.26: Compare the ability of each architecture for Oulu-Casia dataset

ticular face, for the series of the same expression, the highest level of expressions

gives us more attention. Therefore, among the series of the same expressions, the

highest degree of expression can be considered the ground-truth.

Qualitative Evaluations

To assess the qualitative execution of the proposed framework, facial images have

gathered from the Internet for evaluation. In each facial image, the detected four

region eyes, nose, lips, and forehead is represented by red, green, orange, and
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Figure 6.27: (a) (b) (c) (d) Shows the expression of the Happy face from the lower
level to the extreme level, and (e)Graphical representation of expression percent-
ages and how other expressions influence while the expression level changes from
low to high.

Figure 6.28: (a) (b) (c) (d) Shows the expression of the Sad face from the lower level
to the extreme level, and (e)Graphical representation of expression percentages
and how other expressions influence while the expression level changes from low
to high.

yellow rectangle. The recognition accuracy is shown on the top right of the facial

image. Red characters show the ground truth of the given facial image, whereas

the green characters show the recognized expression using the proposed frame-

work with recognition accuracy. Fig. 6.31 has interpreted the successful expres-

sion recognition for some Internet images. By seeing Fig. 6.31 expressions, such as
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Figure 6.29: (a) (b) (c) (d)Shows the expression of the Surprise face from the lower
level to the extreme level, and (e)Graphical representation of expression percent-
ages and how other expressions influence while the expression level changes from
low to high.

Figure 6.30: (a) (b) (c) (d) Shows the expression of the angry face from the lower
level to the extreme level, and (e)Graphical representation of expression percent-
ages and how other expressions influence while the expression level changes from
low to high.

“Happy”, “Surprise”, “Disgust”, “Sad ”, and “Angry ”are smooth to recognize in

the frontal face images. This result somehow similar to the result illustrated by the

confusion matrix Fig. 6.17, 6.20, 6.23, 6.25. Where as Fig. 6.32 failed recognition

of expression. Sometimes, our framework not easily recognize the facial regions

due to the poor illuminations, occlusions or some deviation from the frontal face.
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Figure 6.31: Successful recognition of Internet facial expression images

Figure 6.32: Unsuccessful recognition of Internet facial expression images

6.2.6 Conclusion

In this chapter we implement two versions of the Deep Neural Network (DNN)

techniques. In the first technique, Deep neural network VGG16_ft, is proposed

to automatically extricate features from the given facial images. Fine-tuning is

very fruitful to the FER (Facial Expression Recognition) with pre-trained mod-

els, if sufficient facial images are not collected. Two preprocessing approaches,

Fourier transform followed by Gabor filters and Data Augmentation (DA), are

implemented to restrain the regions used for Facial expression recognition (FER).

The features from four facial regions are concatenated and classification is done

using SVM and KNN (with different distance measure).

Whereas in the second technique, that is primarily based on double channel

architecture that processes the grayscale facial image and TFP facial image at the
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same time. Both image channels which are utilized are complementary, and it

captures local and global information from the given grayscale and TFP facial

image. It can enhance the recognition capacity. Concatenation strategy is pro-

posed to completely use the features that are extracted from both image channels

(VGGFace_ft and proposed CNN). VGGFace_ft has automatically extracted the

features from the given grayscale face images. Fine-tuning is utilized for training

the system with the initial parameters got from the Imagenet. A proposed CNN is

built to automatically extracts the features from the TFP facial images because of

the pre-trained model is not trained on TFP facial images. Furthermore, concate-

nated features have been classified using SVM and KNN classifier with different

distance measures. Capability of our proposed method is to recognize a facial

expressions using partial information from the given whole face image. The pro-

posed method is applied to the most informative regions of the face, i.e., forehead,

eyes, nose, and lips. It is observed that a combination of these regions is useful

enough to distinguish facial expressions of different persons or the same persons

in most of the cases. The evaluation did in three datasets (JAFFE, VIDEO and,

CK+) to check the effectiveness of our framework by recognizing the basic ex-

pressions. This proposed framework is the combination of the two types of deep

neural networks, so it is easily utilized the local and global information about the

expressions. In Table 6.10 we compared all our proposed methods.

Table 6.10: Compare all proposed methods

DataBase 2DTFP HSOG E-PCA CS-ONPP DNN-FG 2DNN
[chapter 3] [chapter 4] [chapter 5] [chapter 5] [chapter 6]

[Section 5.1] [Section 5.3] [Section 6.1]
JAFFE 92.78 94.15 89.01 94.54 95.96 97.12

VIDEO 94.86 95.98 96.05 95.67 96.67 98.07
CK+ 93.78 93.89 91.72 87.88 96.78 96.76

Oulu-CASIA 96.87 97.00 95.32 93.15 96.08 98.12
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CHAPTER 7

Conclusions and Future Research Directions

In this chapter, we provide the conclusions by summarizing our main contribu-

tions and also indicate future research directions.

7.1 Conclusions

For the last three decades, researcher are exploring various algorithms to recog-

nize a face and facial expression recognition. The thesis contributed in the same

direction. In particular, the thesis contributed to facial expression recognition us-

ing a set of benchmark datasets. Here experiments performed on the four bench-

mark databases, which are JAFFE, VIDEO, CK+, OULU-CASIA. With the increas-

ing constraints in the sensors accruing face images, the increment in challenges

of the face and facial expression recognition is explored. The modular approach

presented here mimics the capability of the human to identify a person with a

limited facial part. Facial parts like eyes, nose, lips, and forehead contribute more

to the expression recognition task. This thesis we have addressed classical feature

based approaches to deep learning techniques. This includes following works:

• Two Dimensional (2D) Taylor Expansion for feature extraction

• Histogram of second order gradient (HSOG) for feature extraction

• E-PCA (Euler Principle Component Analysis) for reducing feature length

• CS-ONPP: Class Similarity based Orthogonal Neighborhood Preserving Pro-

jection: A new approach to find neighbors to reduce the dimension of fea-

tures.
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• DNN based on Fourier transform followed by Gabor filtering

• Double channel based deep neural network

Starting from the conventional feature-based approach researchers in the cur-

rent era are mostly relying on deep and convolutional neural network for the

mentioned task. In the same line thesis contributed a couple of feature based ap-

proaches and the CNN (Convolution Neural Networks) approaches as well for

FER. For conventional feature based approach, researchers in the past explored

various techniques of feature extraction assuming the input signal is one dimen-

sional. However, image is a two-dimensional signal, hence the thesis proposed

a couple of two-dimensional feature extraction approach unlike existing one di-

mensional approaches for the FER task. In last decade it has been observed that

dimensionality reduction for face and FER tasks attain maximum attention from

the researchers. Following the same direction, thesis contributed an approach us-

ing the recent technique of dimensionality reduction for FER tasks. Each of the

proposed method mentioned in the thesis is compared with the state of the art

results. It has been observed that result of proposed methods is among the top-

performing algorithms for the FER tasks.

In this thesis, we have proposed different frameworks for automatic recogni-

tion of facial expressions. We address the shortcomings of the previously pro-

posed framework. Our proposed structures is discussed in general. We achieve

results that exceed state-of-the-art methods for expression recognition. Secondly,

they are computationally efficient and simple as they process only perceptually

salient region(s) of face for feature extraction. By processing only perceptually

salient region(s) of the face, reduction in feature vector dimensionality and reduc-

tion in computational time for feature extraction is achieved. We are thus making

them suitable for real-time applications. Note that the processing time of extract-

ing the salient region, either manually or automatically, is not considered while

computing on the processing time of the facial expression recognition algorithms.

To handle the local illumination variation in the image (LL) Laplace-Logarithmic

algorithm is used in the two-dimensional Taylor feature pattern (2DTFP). Most

procedures just used the arrangement with global illumination varieties. They

109



thus yielded more unsatisfactory recognition performances within the case of

natural illumination variations that are usually uncontrolled within the globe.

Hence, to address the brightening variety issue, we at that point presented the

(LL) Laplace-Logarithmic area in this article for further improving the exhibition.

We applied the proposed 2D Taylor expansion theorem in the facial feature ex-

traction phase and formulated the 2DTFP method.

HSOG is inspired by the human visual system, thus extract features only from

perceptual salient regions Capability of Histogram of second-order gradient (HSOG)

descriptor to recognize a person using partial information from the whole face

image. Work proposed the local image descriptor that extracts the histogram of

second order gradients (HSOG), which capture the local curvatures of differential

geometry. The shape index is computed from the curvatures, and its different val-

ues correspond to different shapes. In case of facial expression recognition using

full-face images, if any portion of the face image is distorted, it may reflect on the

recognition performance.

Much work has been done in this field where local texture, features have been

extracted and used in the classification. Due to the very local nature of this in-

formation, the dimension of the feature vector achieved for the full image is very

high, posing computational challenges in real-time expression recognition. In re-

cent times, Dimensionality Reduction methods have been successfully used in im-

age recognition tasks. Though being high dimensional data, natural images such

as face images lie in low dimensional subspace, and Dimensionality Reduction

methods try to learn this underlying subspace to reduce the computational com-

plexity involved in the classification stage of image recognition task. Proposed

E-PCA and CS-ONPP performed well and proved to be gaining a huge margin in

terms of feature vector length while maintaining the same recognition accuracy.

Classical FER methods do well in certain well-controlled cases. The funda-

mental issue with hand-crafted features based arrangement approaches is that

they require space learning and not generalize well like in the complex dataset.

Fortunately, Deep Neural Network (DNN) is giving a satisfactory solution to

these issues which were not able to deliver by the hand-crafted techniques. DNNs
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should consider many training parameters, such as size (number of layers and

number of units per layer), learning rate, and initial weights. They are sweeping

through the parameter space for optimal parameters due to the cost in time and

the calculation resources. Numerous tricks, such as batch processing (calculating

the gradient in several training examples simultaneously instead of individual ex-

amples) speed up the calculation. So proposed DNNFG (DNN based on Fourier

transform followed by Gabor filtering) which utilized VGG16_ft.and 2DNN (Two-

channel based Deep Neural Network) easily utilized the local and global informa-

tion about the expressions. For this task we utilized VGGFace, which is trained

on 2.6M face images from 2.6k different people. VGGFace architecture is the same

as the VGG16. To adapt VGGFace to FER problem, the VGGFace fine-tuned (de-

noted as VGGFace_ft) by freezing four blocks of VGGFace and tuning the pa-

rameter of the last block. DNN based methods improved recognition accuracy

compared to classical approaches.

Table 7.1: Compare all proposed methods

DataBase 2DTFP HSOG E-PCA CS-ONPP DNN-FG 2DNN
[chapter 3] [chapter 4] [chapter 5] [chapter 5] [chapter 6 [chapter 6

[Section 5.1] [Section 5.3] [Section 6.1] [Section 6.2]
JAFFE 92.78 94.15 89.01 94.54 95.96 97.12

VIDEO 94.86 95.98 96.05 95.67 96.67 98.07
CK+ 93.78 93.89 91.72 87.88 96.78 96.76

Oulu-CASIA 96.87 97.00 95.32 93.15 96.08 98.12

Overall conclusion is that the thesis addresses the classical facial expression

recognition approaches and its limitations, then moved to deep learning-based

approaches to handle these limitations. All the new proposals are tested on bench-

mark data-sets of facial expression recognition. In all cases, the new proposals

outperform the conventional method in terms of recognition accuracy as men-

tioned in Table. 7.1. All the proposed methods compared witrh state of art meth-

ods incorporated in Table. 7.2.
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Table 7.2: Comparison with Recognition Accuracy reported in some State-of-the-
Art facial expression methods

DataBase Methods Network Additional Accuracy
Type Classifiers

CK+

Ouellet [121] CNN (AlexNet) SVM 94.40%
Li et al. [87] RBM - 96.08 %

Liu et al. [95] DBN Adaboost 96.7%
Liu et al. [91] CNN, RBM SVM 92.05%

Khorrami et al. [71] zero-bias CNN - 95.7%
Ding et al. [28] CNN with fine-tune - 96.8%

Zeng et al. [201] DAE - 93.78%
Cai et al. [9] CNN+loss layer - 94.39%

Meng et al. [110] CNN 95.37%
Liu et al. [96] CNN+loss layer - 97.1%

Yang et al. [192] GAN -] 97.3%
shan et al. [151] CNN - 80.303 %
Su et al. [163] zero-bias CNN - 95.12%

Yang et al. [192] WMDNN - 97.02%
Ours 2DNN SVM 96.76%

JAFFE

Liu et al. [95] DBN Adaboost 93.0%
Hamester et al. [48] CNN, CAE 95.8%
Hamester et al. [48] CNN, CAE 94.1%

shan et al. [151] CNN 76.74 %
Su et al. [163] zero-bias CNN 97.6%

Yang et al. [192] WMDNN 92.21%
Ours 2DNN SVM 97.12%

OULU-CASIA

Ding et al. [28] CNN with fine-tune 87.71%
Cai et al. [9] CNN+loss layer 85.58%

Yang et al. [192] GAN 88.0 %
Yang et al. [192] WMDNN 92.89%

Ours 2DNN SVM 98.12%

7.2 Future Research Directions
This thesis has presented novel approaches for Facial Expression Recognition

(FER) based on hand-crafted features and deep learning-based techniques. In the

process of this work, however, we identified related problems that one may con-

sider worth pursuing. These are briefly described as follows.

• Towards Facial Expression Recognition in the Wild Recognizing facial ex-

pression in a wild setting has remained a challenging task in computer vision.

The World Wide Web is a good source of facial images in which most of them are
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captured in uncontrolled conditions. The Internet is a Word Wild Web of facial im-

ages with expressions. So in the future, we will focus on applying our proposed

methods in the wild dataset.

• Speed up the Algorithm

Our future work will focus on simplifying the network used to speed up the

Algorithm. Furthermore, we plan to focus on other channels of facial images that

can be used to further improve the fusion network.

• Recognize the emotions using the fusion of the face and the speech

Till now, we recognized the expressions using the face images only. So in the

future, we can recognize the emotions using the fusion of the features came from

the face and the speech because both are having an equal contribution to showing

the emotion. That may be done by adding more channels in the Neural Network.

• Context-Aware Emotion Recognition Networks

Existing techniques for emotion recognition have focused on facial expression

analysis only. Thus we can provide limited ability to encode context that compre-

hensively represents the emotional responses. In the future, we can implement

the networks that exploit not only human facial expression but also context infor-

mation in a joint and boosting manner.

The future direction mentioned are very recent and hence most of them are

not included within the scope of the thesis. The thesis only addressed the prob-

lem of facial expression recognition and suggested couple of handcrafted feature

based methods as well as methods using DNN techniques which is the state of

the research in this domain.
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