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Abstract

The hyperspectral imaging opens the broad possibilities for remote sensing data

analysis with it’s rich spectral information. However, this has a trade-off with

limited spatial details due to the presence of several hardware constraints. Hence,

due to the low spatial (ground) resolution, more than one material is generally

mixed in a single pixel (location) of acquired scene data. The process of identify-

ing and then quantifying the materials present in a scene, pixel-by-pixel, is called

spectral unmixing. This has three steps, 1) estimating the number of endmembers

(pure pixels), 2) extracting endmembers, i.e., spectral signatures of the constituted

materials, and, 3) estimating abundances, i.e., fractional contribution of each end-

member across all locations in a scene. With the passive remote sensing and to

achieve mathematical tractability, endmembers are considered as non-negative

while abundances are constrained to non-negative as well as sum-to-one at ev-

ery location. To improve the performance, one should employ regularization that

captures the prior information about data.

Abundance maps are used to infer the proportions of endmembers with the

given endmember signatures and reflectance value at each location. In this the-

sis, we begin with an algorithmic approach to estimate fractions (abundances) of

materials (endmembers) in a pixel by considering linear mixture model (LMM)

and where the endmembers are known. We propose the use of Inhomogeneous

Gaussian Markov random field (IGMRF) as a prior on abundances that captures

the smoothness as well as preserves the discontinuities among the abundance val-

ues. We obtain the IGMRF parameters using the initial estimate of abundances.

Both the abundances and IGMRF parameters are refined by optimizing an energy

function. A two-step iterative approach is proposed to obtain the final estimates
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of both the abundance maps and their prior parameters. In order to demonstrate

the efficacy of the proposed approach, we conduct experiments on the synthetic

hyperspectral images (HSIs) with different noise levels as well as on the real HSIs

and compare our results with other state-of-the-art approaches.

The IGMRF prior captures the smoothness and preserves discontinuities among

abundance values locally. Besides, abundance maps exhibit redundancy which

can be taken into account by another prior called sparsity-induced prior. We then

build upon our first work and include sparsity-induced prior along with IGMRF

prior. Here, we calculate IGMRF parameters at every pixel location, learn a dic-

tionary and the sparse representation for abundances using the initial estimate in

phase one; while the final abundance maps are estimated in the phase two. In

order to learn the sparsity, we use the approach based on K- singular value de-

composition (K-SVD). Both the IGMRF and sparseness parameters are initialized

using an initial estimate of abundances and refined using the two-phase iterative

approach. The experiments are conducted on the synthetic HSIs with different

noise levels as well as on two real HSIs. The results are qualitatively and quanti-

tatively compared with state-of-the-art approaches. Experimental results demon-

strate the effectiveness of the proposed approach.

We note that the abundance maps contain spatial information of the HSI. Hence,

we seek to use abundance maps to enhance the spatial resolution of the HSI. We

transfer the mapping from the low-resolution (LR) and high-resolution (HR) nat-

ural images learnt by a deep convolutional neural network (CNN) to get the initial

estimates of the super-resolved abundance maps where the input corresponds to

LR abundances maps. To get the better estimates of abundances and in turn im-

prove the super-resolution (SR) of HSIs, we use a regularization framework in

which both the LR and HR abundances are modelled as IGMRF that serves as the

prior. Finally, the SR HSIs are obtained by using a linear mixing model that uses

the SR abundances and the endmembers estimated using an appropriate tech-

nique. Experiments on synthetic as well as on real HSIs show that the proposed

method performs better when compared to other existing SR approaches. One can

see that the method do not require auxiliary image as used in many of the existing
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SR methods and, the spectral details are better preserved since the SR is carried

out in abundance domain. Moreover, computational complexity is reduced since

the SR is carried out on abundances which are a few in number when compared

to the number of hyperspectral band images.

Finally, we propose a novel approach for jointly estimating endmembers and

abundances based on unsupervised learning using autoencoder with IGMRF as

prior for regularization. The decoder part of proposed autoencoder has linear

weights making it a LMM. The weights represent the endmember matrix that

makes the hidden units of autoencoder as abundances. IGMRF is used to apply

spatial regularization on abundances that also preserves the discontinuities. To

incorporate the spectral regularization, we use IGMRF priors on endmembers.

In addition, we also apply the spatial and spectral regularizations on the given

HSI. IGMRF parameters at every pixel location are calculated using initial esti-

mates of endmembers and abundances. We obtain both the endmembers and

their abundances by optimizing the energy function that consists of a data term

and IGMRF prior terms. Experiments are performed with different noise levels on

the synthetic data and on two real data (Jasper ridge and Urban). The results of

the proposed approach are better when compared to the existing state-of-the-art

approaches.

Keywords:

Abundance estimation, Autoencoder, Deep learning, Inhomogeneous Gaussian

Markov random field (IGMRF), Hyperspectral image (HSI) super-resolution, K-

singular value decomposition (K-SVD), Regularization, Sparse representation, Spec-

tral unmixing, Transfer learning.
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CHAPTER 1

Introduction

The term remote sensing refers to the process of monitoring and detecting scene

that has no or limited direct exploration without direct contact of it. It collects the

physical characteristics of the scene by measuring radiance emitted or reflected

by it. There are two types of sensing techniques and they correspond to active

and passive [1]. An active sensor has an external source of energy and captures

the reflectance from the object while the passive sensor do not require the exter-

nal energy source. Every material has the characteristics to react to each spectrum

range differently. In remote sensing, multispectral sensors capture reflectance in 4

to 6 visible and infrared wavelength bands, while the hyperspectral sensors cap-

ture the reflectance in hundreds of contiguous bands in visible and near-infrared

range, each with a narrow bandwidth. Hence, they provide rich spectral details

that make the signatures (reflectance) distinguishable. Such sensors are airborne

to capture the selected area. To capture larger area, sensors can be mounted on the

spaceborne platform. In the case of hyperspectral images (HSI), the reflectance

value at a pixel represents the average of the material’s reflectance within the in-

stantaneous field of view (IFOV). Due to this, the spatial resolution depends on

IFOV. The spectral resolution of sensors is determined by the spectral width of

each band and the number of spectral bands [2].

Hyperspectral imaging emerges to identify new landcover classes remotely

that are difficult to identify with lower spectral resolution images. Researchers

successfully used hyperspectral images to identify minerals and map vegetation

species [3, 4], measure water vapour in the atmosphere [5], geological mapping

[6] and many more. Hyperspectral imaging is not only used in remote sensing but
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also explored for lab-scale applications such as food safety [7, 8], quality control

in the pharmaceutical industry [9], biomedical [10], forensic [11] etc.

Many signal processing techniques are used or developed for hyperspectral

imaging to better understand the hyperspectral data. Dimensionality reduction,

target detection, change detection, classification and spectral unmixing are the

most investigated techniques in the domain of hyperspectral imaging [12]. Since

the hyperspectral data has high spectral dimension, dimensionality reduction is

often explored to reduce the same that aids in succeeding processing tasks. Target

or anomaly detection techniques locate pixels in the scene with specific known

or unknown spectral signature. The HSI data recorded for a particular scene at

different acquisition times gives the temporal dimension to the HSI data which

can be used to detect changes in specific region. Classification and spectral un-

mixing techniques are developed to identify and analyse the hyperspectral data

at a pixel location [13]. In classification, the goal is to assign the class to each

pixel, whereas spectral unmixing gives the fractions (abundances) of the materi-

als (endmembers) present at the pixels. A spectral unmixing technique gives the

sub-pixel information that helps in better analysis of the remotely sensed data.

Hence, the researchers continue to explore the spectral unmixing area to improve

the performance of the various remote sensing applications [14–17].

1.1 Hyperspectral data

Hyperspectral data is recorded in hundreds of contiguous bands with very nar-

row bandwidth. HSI sensors are mounted on airborne or spaceborne craft to cap-

ture the reflected light energy of the sun from the scene (passive remote sens-

ing). These sensors have a number of filter banks to capture images in the visible,

near-infrared, and shortwave infrared spectral bands. Hence, the HSI imaging is

also referred to as the imaging spectroscopy, which combines both imaging and

spectroscopy. Spectroscopy gives detail properties of the material by using the

interaction between material and electromagnetic radiation as a function of the

wavelength. One may note that, the term hyperspectral is used due to the large

2



Table 1.1: Hyperspectral datasets

Datasets
Parameter

Altitude Spatial Spectral Spectral Number
of vehicle (km) resolution (m) resolution (nm) range (µm) of bands

HYDICE [18] 1.6 0.75 7-14 0.4-2.5 210
AVIRIS [19] 20 20 10 0.4-2.5 224
HYPERION [20] 705 30 10 0.4-2.5 220
EnMAP [21] 653 30 6.5-10 0.4-2.5 228
PRISMA [22] 614 5-30 10 0.4-2.5 238
CHRIS [23] 556 36 1.3-12 0.4-1.0 63
HyspIRI [24] 626 60 4-12 0.38-2.5 217

number of spectral bands for a single pixel location. Few of the hyperspectral

datasets with their specifications are shown in Table 1.1.

HSIs data can be seen as a stack of images registered for the same scene area

where each image represents radiance in the respective bands. HSI data can be

visualized as HSI cube, as shown in Figure 1.1. The scene shown in Figure 1.1

consists of four materials, and these are: soil, water, rock and vegetation. To bet-

ter understand, the plots of reflectance vectors of pure and mixed pixels are also

shown in the same figure. There are hardware, signal-to-noise ratio (SNR) as well

as recording time constraints that limit the IFOV of the HSI sensor resulting in

low spatial resolution. HSI data is spectrally smooth and has the spatially piece-

wise smoothness similar to the natural images. Hence, the analysis tools used for

natural data can also be employed for HSIs [13, 25].

1.2 Linear mixing model

HSI has a low spatial resolution, and hence the value of each pixel represents

more than one material rather than a specific material. In order to take care of this,

spectral unmixing techniques analyze both pure and mixed spectrums. Here, the

pure spectrum is reflectance caused due to interaction with one material while

the mixed spectrum has reflectance having interaction with more than one ma-

terial. In the study of the spectral unmixing, both linear and non-linear mixture

models have been used to model hyperspectral data [12]. In the checkerboard

type scene, reflectance received at sensor has undergone single reflection, and

hence reflectance can be modelled as a linear mixture. In other scenarios such as

3



Figure 1.1: Hyperspectral data cube and pure and mixed pixels reflectance [26].

multilayer structure or an intimate mixture of materials, reflectance received at

the sensor has undergone multiple reflections, leading to the non-linear mixture.

Non-linear mixing model is too complex since mimicking a complete physical

phenomena is challenging. In addition to this, it relies on scene parameters mak-

ing it too difficult to solve the unmixing problem [13]. On the contrary, LMM is

mathematically tractable and can represent hyperspectral data accurately. Hence,

LMM is widely used in hyperspectral data analysis when compared to the non-

linear model.

In LMM, the data forms a simplex with endmembers as a vertex of it and

the reflectance represented as linear combination of endmembers [27]. In this

model, the reflectance value at each pixel can be considered as a linear combina-

tion of endmembers present in the data. A mixed data for single input vector of

reflectance can be modeled as,

r = Mα + η, (1.1)

where, r ∈ Rl×1 denotes the spectral measurement, M ∈ Rl×p is the endmember

matrix, α ∈ Rp×1 is called the abundance vector. Here, l represents the number

of spectral bands, p is the number of endmembers and η ∈ Rl×1 corresponds to

4



independent and identically distributed (IID) white Gaussian noise.

1.3 Thesis contribution

In this section, we discuss contribution of the thesis in brief and the details of the

same are discussed in the subsequent chapters.

The mixed pixel problem is caused by the lower spatial resolution of the data

in which each pixel may represent more than one endmember. In this connection,

to start with, in the chapter on literature review, we discuss various spectral un-

mixing techniques. Abundance estimation refers to estimation of the fraction of

endmembers at every pixel location given the endmembers and HSI data. Abun-

dance maps have spatial information about the data that is smooth with limited

discontinuity. In our first work, we use Inhomogeneous Gaussian Markov ran-

dom field (IGMRF) regularization to capture this spatial information to obtain

better estimate of the abundance maps. Abundance maps also have spatial re-

dundancy. Taking this into account, we use sparsity induced prior in addition to

IGMRF for improving the abundance estimation in our next work. We used the

K- singular value decomposition (K-SVD) [28] algorithm to learn sparsity in the

abundance maps.

We know that HSI data has low spatial resolution due to various constraints.

Many researchers have developed algorithms to super-resolve HSI image using

the available high-resolution auxiliary image of the same scene. Since the spa-

tial details are contained in abundances and the auxiliary image is rarely avail-

able, one may super-resolve abundances and use them in obtaining the super-

resolution of HSIs. Hence, in our next work, we use transfer learning based ap-

proach to super-resolve HSIs where we use super-resolution of abundances. To

improve the solution, we use spatial regularization on the abundance maps.

An autoencoder compresses higher dimensional data to lower dimension rep-

resented by hidden units as encoder and reconstructs back using the decoder.

Spectral unmixing can be formulated in an autoencoder framework where hid-

den units represent abundance values and the decoder weights correspond to the
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endmembers. By making use of autoencoder, we perform unsupervised spectral

unmixing as our final contribution. Here, both the endmembers and the abun-

dances are unknown. We use autoencoder framework with spatial and spectral

regularization that results in better estimates of abundances and endmembers. In

all, our thesis includes following contributions:

• Given the HSI and endmembers present in the data, abundances (material

maps) are estimated using IGMRF as prior using an optimization frame-

work..

• Given the HSI and endmembers, abundances are estimated using IGMRF

and sparsity induced priors.

• Super-resolution (SR) of HSI is obtained using the transfer learning with

spectral unmixing and IGMRF regularizer, where we use the input as the

given low resolution HSI data.

• Both the endmembers and their abundances are estimated using an autoen-

coder framework with spatial and spectral regularizations with the input as

low resolution HSIs where the number of endmembers is known.

1.4 Thesis organization

The contents of this thesis are organized as follows. The literature review is pre-

sented in chapter 2. Use of modified IGMRF parameters for abundance estimation

is discussed in chapter 3. We extend the work on abundance estimation in chapter

4 using the regularization framework in which we make use of IGMRF and spar-

sity induced priors. In chapter 5, we discuss the HSI SR using transfer learning,

spectral unmixing and IGMRF regularizations. We then discuss an autoencoder

framework with spatial and spectral regularizations for simultaneous estimation

of endmembers and abundances in chapter 6. Finally, we conclude the thesis in

chapter 7.

6



CHAPTER 2

Literature Review

Hyperspectral camera (HSC) gives advantage of capturing the broad electromag-

netic spectrum covering near-infrared, shortwave infrared with visible bands of a

scene. HSCs help us to introduce the spectroscopic analysis in imaging to enable

material identification. However, HSCs mounted on the spaceborne/airborne

have hardware constraints that lead to reduction in spatial ground resolution of

resultant hyperspectral images (HSIs). Hence, spectra measured by the HSCs can

be the mixture of spectral signatures of materials present in the scene. To address

this mixed pixel phenomena and to better analyse the HSI data, researchers are

exploring HSI unmixing since past three decades. The process of decomposing

pixel spectra into a set of pure spectral signatures (endmembers) and their frac-

tions (abundances) is referred to as spectral unmixing. This is a challenging in-

verse ill-posed problem due to mixing characteristics, correlations among the hy-

perspectral signatures, endmember variability, size of the data, noise; and hence

it is difficult to find a suitable model to find inverse for getting the unknowns.

Mixing of spectra depends on how incident light interacts with the materials.

In case incident light interacts with only one material, reflected light is not mixed

and has only one material signature within a pixel resolution. However, due to

hardware limitations of the sensors, mixing of spectra occurs at the sensors. In

such cases, abundances (fractions) represent the amounts of endmembers in each

pixel and hence can be modelled as a linear mixture [29]. However, there are

possibilities of incident light interacting with more than one material when the

surface has a multilayered structure or intimate mixture of materials. In order to

replicate these physical conditions of the surface, the non-linear mixing model can
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Figure 2.1: Spectral unmixing process.

be used to solve for the unmixing. In [30], the authors proposed a model to ad-

dress multilayer scattering by representing the reflectance as an infinite sequence

of power of products of pure spectra. However, only first-order terms of this in-

finite series referred to as the bilinear mixing model are enough for the spectral

unmixing. The Hapke model is used to address microscopic or intimate mixing,

which is a too complex ill-posed problem since it relies on the scene parameters.

These two mixing scenarios (multilayered and microscopic) have a different phys-

ical structure, and hence both cannot be modelled using the same modelling tech-

nique. In addition to that, non-linear models generally require prior knowledge

of endmembers. Most of the real scenario suggests macroscopic mixing and hence

mathematically tractable linear mixing model (LMM) is explored to a great extent

compared to the non-linear models.

Remotely sensed hyperspectral data requires atmospheric correction as the ra-
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diance since the HSC is affected by the scattering of light. Radiance received at

sensors is converted to reflectance for atmospheric corrections. HSI data is then

presented for further preprocessing and analysis. HSI unmixing can be classically

illustrated as the three-step process after considering atmospheric corrections and

preprocessing of data. The unmixing process is shown in Figure 2.1. In the figure,

we have shown HSI cube with dimension x× y× d where each pixel is recorded

in d spectral bands. The first step in unmixing is the estimation of number of pure

signatures (endmembers) p present in the scene. The second step would be the

extraction of endmembers m1, m2 and m3. To better understand, a single pixel is

illustrated by using a small rectangular box. The final step corresponds to the

estimation of abundances of each endmembers in a scene. Here, for the selected

mixed pixel, we have shown abundance values as α1, α2 and α3 for endmembers

m1, m2 and m3, respectively. The abundance values have to satisfy the condition

that αi > 0, i = 1, 2, 3 (non-negativity constraints) and ∑3
i=1 αi = 1 (sum-to-one

constraints).

2.1 Estimation of number of endmembers

Hyperspectral data is recorded at hundreds of spectral bands, and the number of

endmembers present in a scene is often less than the number of bands. Hence,

if a linear mixing model is used, the data can be conveniently represented by

lower-dimensional linear subspace [12]. This is also the accurate representation

of a spectral vector since it helps to decrease the computational complexity and

enhance signal-to-noise ratio (SNR) [12]. This makes the signal subspace identi-

fication as the first processing step in hyperspectral data analysis as depicted in

Figure 2.1. It also is the number of endmembers present in HSI [31].

Band selection based techniques are developed for unsupervised subspace

identifications that select higher SNR bands to represent the data [32]. Also,

projection-based dimensionality reduction techniques can find subspace of the

data in an unsupervised way [33]. In [34], a real-time system measures angle met-

ric between every new pixel spectra with already defined pure pixel spectra and
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if it is sufficiently different, then add them into a pure pixel set. In another similar

work, the authors extract pure pixels using orthogonal projections by the modi-

fied Gram-Schmidt procedure [35]. The eigenvalues of sample correlation and the

covariance matrices are used to estimate the number of endmembers in the data

in [36]. Along with this, the virtual dimensionality (VD) method [37] includes

noise covariance as a noise-whitening step. Recently, VD based methods have

been proposed to control false discovery rate and to avoid false estimation of the

number of endmembers [38, 39]. The fully automatic and unsupervised HySime

algorithm estimates the signal and noise correlation matrices and then performs

eigen decomposition [31]. HySime selects a subset of eigenvalues that represent

best signal subspace. In the case of non-linear mixing, linear subspace is replaced

with low dimensional manifold to estimate the number of endmembers [40].

2.2 Endmember extraction

The second step in the spectral unmixing process is the extraction of endmem-

bers. Researchers have used geometry based approaches to solve linear spectral

unmixing by representing HSI data as simplex and hence vertices of a simplex

represent endmembers of the data. Few of these approaches assume that pure

pixel spectra for each endmember is present in the data. This assumption makes

them computationally less taxing. The pixel purity index (PPI) [41, 42] is an end-

members extraction algorithm that finds the pure pixels from the data. It uses

maximum noise fraction (MNF) dimensionality reduction technique as prepro-

cessing step to improve the SNR of the spectral vector. After that, it projects each

spectral vector of the data on a large set of random vectors known as skewers. The

spectral vectors marked as extreme for each skewer direction highest number of

times are considered as pure pixels. The simplex form by the purest pixels (end-

members) represents the maximum volume. Using this fact, N-FINDER in [43]

finds a set of pixels from the data that form the largest volume simplex. The ver-

tex component analysis (VCA) proposed by the authors in [44] iteratively projects

data onto a direction orthogonal to the subspace spanned by already estimated
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endmembers. Here, The new endmember signature corresponds to the extreme

of the projection, and algorithm iterate till it exhausts all the endmembers. The

HSI data is represented as the convex cone, sequential maximum angle convex

cone (SMACC) in [45] which starts with the first endmember (brightest pixel in

the image) and identifies the new endmember that has a maximum angle with

the existing cone. The algorithm keeps increasing the dimension of the cone till it

covers all the data points with some tolerance.

Non-negative matrix factorization (NMF) is widely used method to analyse

high dimensional data [46]. The minimum volume constrained -Non-negative

matrix factorization (MVC-NMF) [47] is the NMF based method used to extract

endmembers. MVC-NMF, minimum volume simplex analysis (MVSA) [48] and

the simplex identification via variable splitting and augmented Lagrangian (SISAL)

[49] use the minimum volume of the simplex concept for extracting endmembers.

These geometric methods do not require pure pixel assumption.

Geometric methods fail when the data is highly mixed. In such cases, statis-

tical methods perform better; however at a higher computational cost [12]. As

spectral unmixing is the problem of blind source separation, independent com-

ponent analysis (ICA) [50] also can be used for the same. However, ICA requires

independent sources as a condition which is not the case in hyperspectral data

[51]. To overcome this limitation a dependent component analysis is proposed in

[52]. Other statistical methods are proposed in [53, 54] use Bayesian approaches

to take care of endmember variability.

2.3 Abundance estimation

Abundance estimation refers to obtaining the fractions of endmembers at every

pixel location given the endmembers. These endmembers are known apriori or

can be obtained using endmember extraction algorithms. Number of researchers

have developed statistical and geometric approaches for abundance estimation

[12]. Most of the statistical approaches are constrained least-squares sense based.

Unconstrained optimization methods using orthogonal subspace projection gives
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a solution with negative abundance value or total abundance as higher than 100%

[55]. However, we know that the abundances cannot be negative, and their sum at

each pixel should be one. Hence, partially constrained solutions with sum-to-one

constrained least square (SCLS) [56] and non-negative constrained least square

(NCLS) [57] are proposed for the same. SCLS has a closed form solution and hence

computationally effective when compared to NCLS, but the solution provided

by NCLS is practically acceptable than that given by SCLS. A fully constrained

least squares (FCLS) [58] is a well-known algorithm that yields most acceptable

solution using quadratic programming. It imposes both non-negativity and sum-

to-one constraints while solving the problem. In [59], a maximum entropy-based

algorithm is proposed which represents the geometric version of FCLS. One of

the other geometric-based algorithms i.e., simplex projection unmixing (SPU) [60],

uses orthogonal projection and yields computationally efficient solution when the

number of endmembers is relatively less.

The semi-supervised spectral unmixing algorithms estimate the fractions as

a linear combination of a subset of spectral signatures from the spectral library.

Here, the number of endmembers is much smaller than spectral signatures avail-

able in a spectral library [61]. Hence, techniques such as linear sparse regression

techniques based on sparsity-inducing regularizers are used to estimate abun-

dances [62]. Few researchers have developed sparse unmixing algorithms by im-

posing spatial regularization on abundances leading to better accuracy and ro-

bustness [63–65]. The Tikhonov regularization within the total least square (TLS)

estimation framework is proposed for abundance estimation when outliers are

present in the data [66]. In [67], Huber Markov random field is used to apply

spectral regularization on abundance. The abundance estimation problem is also

explored in the wavelet domain, where the smoothness prior is imposed to im-

prove the solution [68].
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2.4 Complete spectral unmixing

Researches also have attempted complete spectral unmixing where they perform

all the three steps of unmixing [69]. However, this unmixing performed by three

steps chain process struggled with error propagation at each stage, inconsistent

estimation of the number of endmembers and computational complexity [35]. A

New Fast Algorithm for Linearly unmixing referred to as FUN [35] is based on

orthogonal projection using the modified Gram-Schmidt method and it performs

the estimation of the number of endmembers and also extracts them. NMF is used

for joint estimation of endmembers and abundances in [70]. Multilayer NMF uses

successive layers to decompose endmembers and abundance matrices by apply-

ing sparsity on these matrices [71]. Robust collaborative NMF uses collaborative

regularization to perform complete unmixing by removing redundant endmem-

bers [72]. In [73], complete spectral unmixing is performed using temporal hyper-

spectral data by modelling temporal variation in abundance maps.

Statistical-based approaches are more suitable than those based on geometry

for highly mixed data and hence Bayesian framework is explored for joint estima-

tion of endmembers and abundances. In [74], Bayesian model and Markov Chain

Monte Carlo are used to estimate endmembers and their abundances. Here, au-

thors used subspace rather than observational space and iteratively maximized

the negative log-posterior distribution. A hierarchical Bayesian model is pro-

posed in [75] which incorporates non-negativity constraint by applying Gamma

prior on endmembers. Dependent component analysis used in [76] uses Dirichlet

density to enforce the non-negativity and sum-to-one constraints on the abun-

dances.

2.5 Deep learning for hyperspectral unmixing

Deep learning based approaches out perform in every field of studies and they are

also investigated for solving various problems in remote sensing. Various Deep

learning frameworks are used for hyperspectral unmixing problems [77]. To ex-
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tract features from the HSI an auto-associative network is used and the extracted

features are then made use of in abundance estimation in [78]. In [79], a deep con-

volution neural network based approach is proposed for abundance estimation.

Autoencoder represents a widely used unsupervised network. Therefore, un-

supervised based spectral unmixing can be modelled by using autoencoder and

incorporating various constraints such as non-negativity and sum-to-one. In [80],

authors concatenate marginalizing denoising autoencoder (mDA) with non-negative

sparse autoencoder (NNSAE) for joint estimation of endmembers and abundances.

Here, mDA is used to denoise data while NNSAE extracts endmembers as de-

coder weights and their abundances as hidden units. However, NNSAE uses tied

weights that results in compromising on the accuracy in extracted endmembers.

In [4], the authors used untied denoising autoencoder (uDAS) by imposing spar-

sity and denoising constraints that overcame the limitation of tied weights.
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CHAPTER 3

Abundance estimation using discontinuity pre-

serving prior

We begin by addressing the problem of abundance estimation in this chapter. It is

the task of estimating fractions of the endmembers at every pixel location, given

the endmember signatures and hyperspectral image (HSI). Linear spectral un-

mixing algorithms assume that an observed hyperspectral spectrum is a convex

combination of endmember spectra and their coefficients are the fully constrained

abundances. Hence, most of these algorithms represent every pixel spectrum

within the convex hull formed by the endmembers. Once the endmembers are

estimated from the data, abundance estimation can be derived by inverting the

data model for the unknown coefficients. In [81], ordinary least-squares linear

regression is used to solve an overdetermined linear equations system. How-

ever, accurate abundance estimation is difficult when we consider noisy data with

possible error in endmember extraction. Therefore, various constraints are incor-

porated to estimate the abundances. Statistical approaches based on partial and

fully constrained least square-based solutions are proposed for the same [56–58].

Among them, fully constrained least squares (FCLS) method provides an accu-

rate and computationally effective solution. Simplex projection unmixing uses a

sequence of orthogonal projections to give a faster solution with accuracy similar

to FCLS [60]. In [82], dimensional geometry is used for a fast and effective abun-

dance estimation by using distances among the endmembers and the observed

pixels.

Interestingly, most of abundance estimation algorithms show limited perfor-
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mance when the data is noisy or there are outliers and give an inaccurate esti-

mate of abundances. Use of regularization improves the solution by capturing

the dependencies present in the data [83]. Since the abundance maps are gener-

ally found spatially smooth with discontinuities at places; this property, in prac-

tice, can be captured by making use of Markov random field (MRF) based pri-

ors. Note that, the homogeneous MRF does not take into account the presence of

discontinuities in the abundance values. Notably the Inhomogeneous Gaussian

Markov random field (IGMRF) based prior models have been successfully used

for satellite image deblurring [84], multiresolution fusion of satellite images [85],

and in disparity estimation [86]. To this end, IGMRF prior can be used to capture

the smoothness and also preserve the discontinuity [84]. However, the estimation

of the prior parameters requires the availability of true abundances which them-

selves have to be estimated. To this end, one may use initial estimate of abundance

maps to initialize the IGMRF parameters, which can be refined iteratively.

In this chapter, we use IGMRF prior on abundances to capture spatial depen-

dencies in order to improve abundance estimation. The expressions for comput-

ing these parameters are modified appropriately. We estimate the IGMRF param-

eters by using an initial abundance map and modify them iteratively. To get the

final estimate, an objective function consisting of data fitting and prior terms is

formulated and optimized using Adam optimization [87]. Using an iterative ap-

proach, refined abundance maps are used to reinitialize the IGMRF parameters

and again the optimization is carried out in order to obtain the final abundances.

Doing so, as a by-product, we get the refined IGMRF parameters leading to better

estimates of both the abundances and IGMRF parameters. The block diagram of

the proposed approach is shown in Figure 3.1.
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Figure 3.1: Block diagram of abundance estimation using IGMRF.

3.1 Problem Formulation

Linear mixture model (LMM) is widely used for hyperspectral image analysis

[61]. In this model, the reflectance value at each pixel can be considered as a

linear combination of endmembers present in the data. A mixed data for single

input vector of reflectance r can be modeled as,

r = Mα + η, (3.1)

where, r ∈ Rl×1 denotes the spectral measurement, M ∈ Rl×p is the endmem-

ber matrix, α ∈ Rp×1 is called the abundance vector. Here, l represents the

number of spectral bands, p is the number of endmembers and η ∈ Rl×1 cor-

responds to independent and identically distributed (IID) white Gaussian noise.

The abundance vector follows the abundance non-negativity constraint (ANC):
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αi ≥ 0, for i = 1, .., p and a abundance sum-to-one constraint (ASC): ∑
p
i=1 α = 1.

We formulate abundance estimation problem in an energy minimization frame-

work. Given the hyperspectral data and the endmembers, we estimate the abun-

dances α by minimizing the following energy function (cost function),

E(α) = ED(α) + EP(α), (3.2)

where, ED(α) represents the data fitting term measuring the reconstruction error

between the given and the reconstructed reflectance. EP(α) represents the prior

term that constraints the smoothness and discontinuity of abundance values. Us-

ing the LMM Eq. (3.1), the data term ED(α) in Eq. (3.2) can be obtained as,

ED(α) = ∑
(x,y)
‖r(x, y)−Mα(x, y)‖2

2, (3.3)

where, r(x, y) represents the spectral measurement at (x, y) pixel location and

α(x, y) represents the abundance vector consisting of abundance values for each

endmember. We define the prior term EP(α) using the modified IGMRF (mIGMRF)

as follows.

3.2 Proposed mIGMRF prior for abundances

Abundance estimation is an ill-posed problem, and hence additional regulariza-

tion is necessary to make it better posed. Abundance maps are spatially smooth

with discontinuities at some places. Markov random field (MRF) based models

can capture smoothness in abundance maps. However, they use small number of

global parameters while regularizing. In practice, abundance maps do not have

the uniform variation at each pixel location and may exhibit sudden changes, i.e.,

discontinuities. Therefore, we propose to employ IGMRF prior that considers the

spatial variation among abundances locally. The fact that the abundance maps

have both smoothness as well as discontinuities motivates us to use the IGMRF

as a prior. IGMRF parameters are spatially varying at each pixel location, and

hence they take care of varying degrees of spatial smoothing. Due to this, the
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IGMRF can control smoothness as well as discontinuities with in the abundance

maps.

We model the abundance map by an IGMRF prior in our energy function that

adjusts the amount of regularization locally. While using IGMRF prior, one can

write the prior term EP(α) as the sum of squares of finite difference approxima-

tions to the first order derivatives of abundances at each pixel location (x, y) for

each of the endmember p [84] as follows,

EP(α) = ∑
(x,y)

∑
p

bx
(x,y,p)(α(x− 1, y, p)− α(x, y, p))2

+by
(x,y,p)(α(x, y− 1, p)− α(x, y, p))2,

(3.4)

where, bx and by are the spatially adaptive IGMRF parameters in horizontal and

vertical directions, respectively. In [84], the authors derive the expressions for

IGMRF parameters as,

bxIGMRF
(x,y,p) =

1
max(4(αin(x− 1, y, p)− αin(x, y, p)))2, 4)

,

byIGMRF
(x,y,p) =

1
max(4(αin(x, y− 1, p)− αin(x, y, p)))2, 4)

,
(3.5)

where, αin represents initial estimate in our work which is obtained by using FCLS

[58]. One may observe that the IGMRF parameters computed using Eq. (3.5) take

a regularizer value of 0.25 if neighbouring pixels have a difference of less than or

equal to 1. We know that abundance values vary between 0 and 1. Hence, such a

computation given in Eq. (3.5) apply a constant penalty of 0.25 at every location,

as shown in the Figure 3.2. This motivates us to modify the expression given

in Eq. (3.5) for proper regularization. We know that the logistic function varies

smoothly from 0 to 1 [88]. Hence, we modify the expressions for computing the

IGMRF parameters appropriately, by using logistic function. This makes them to

vary from high to low as the input difference dx varies from 0 to 1. With this, the
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Figure 3.2: IGMRF parameter bxIGMRF and modified IGMRF parameter bxmIGMRF

with the difference dx (between two neighboring abundances).

modified expressions for computing the parameters are now given as,

bx
(x,y,p) = 1− 1

1 + e−5×|(αin(x−1,y,p)−αin(x,y,p))| ,

by
(x,y,p) = 1− 1

1 + e−5×|(αin(x,y−1,p)−αin(x,y,p))| .
(3.6)

Here, the constant 5 used in the exponential terms is chosen to balance the weigh-

tage given for smoothness as well as discontinuities and we have arrived at this

value via experimentations.

In Figure 3.2, we show the variation of bx (modified parameter) w.r.t varia-

tion in dx = |αin(x− 1, y, p)− αin(x, y, p)|. As shown in Figure 3.2, the proposed

parameter now has a larger penalty for smaller differences (smooth region) and

smaller penalty for higher differences (edges). Thus, we have arrived at mIGMRF

parameters for abundance estimation. In Figure 3.3, we show an illustration for

mIGMRF prior on abundance maps. Here, Ammonioalunite abundance map of

synthetic data (will be discussed in section 3.4.1) is used where mIGMRF param-

eters are computed for selected regions displayed by blue square in Figure 3.3 (a).

These calculated parameters for the selected region (Figure 3.3 (b)) for horizon-
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(a) Ammonioalunite abundance map (b) Selected region

(c) Horizontal mIGMRF parameters (bx) (d) Vertical mIGMRF parameters (by)

Figure 3.3: An illustration for mIGMRF prior parameters for Ammonioalunite
abundance map.

tal and vertical direction are shown in Figure (c) and (d), respectively. One can

observe that IGMRF parameters for edge region have smaller values and for the

smooth region they take comparatively larger values.
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3.3 Estimation of final abundance maps using mIGMRF

Using terms given in Eq. (3.3) and Eq. (3.4), the final energy function to be mini-

mized for abundance estimation is given by,

E(α) = ∑
(x,y)
‖r(x, y)−Mα(x, y)‖2+

∑
(x,y)

∑
p

bx
(x,y,p)(α(x− 1, y, p)− α(x, y, p))2

+ by
(x,y,p)(α(x, y− 1, p)− α(x, y, p))2.

(3.7)

Here, bx and by are estimated using Eq. (3.6). See that Eq. (3.7) results in a con-

vex function and hence can be minimized by using gradient-descent optimization

method. To carry out the optimization, we use Adam optimizer [87] that com-

putes the adaptive learning rates from the estimates of first and second moments

of the gradients of energy function w.r.t. abundances. Once the abundances are

estimated, we iterate on the following two steps until convergence in order to get

the final abundance maps.

Step 1: Compute bx and by parameters using Eq. (3.6) by keeping α fixed.

Step 2: Optimize Eq. (3.7) for α by keeping the bx and by fixed.

3.4 Experimental results

We first conduct the experiment on synthetic HSIs generated using three spec-

tral signatures of the U.S. Geological Survey (USGS) digital spectral library [89].

Next, we show the experiments on the two real data sets consisting of Urban data

captured by Hyper-spectral Digital Imagery Collection Experiment (HYDIC) [90]

and Cuprite data collected by the Airborne Visible/Infrared Imaging Spectrome-

ter (AVIRIS) [91] used in the hyperspectral unmixing [92]. In all our experiments,

the IGMRF parameters were initialized by computing them with the use of ini-

tial estimate of abundances obtained using the method of FCLS [58]. The com-

parison between the true and the estimate of abundances is done using the root

mean-squared error (RMSE) [93], abundance angle mapper (AAM) [94] and the
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abundance information divergence (AID) [95] as the quantitative measures. The

ideal value for each of these quantitative measures is zero. Here, the AAM and

AID measure the accuracy of the estimate in terms of spectral content whereas

the RMSE gives the magnitude of error between the true and the estimated abun-

dances.

3.4.1 Experiment on synthetic data

The synthetic HSIs are generated by using the linear mixing of the spectral signa-

tures of three materials, namely: Ammonioalunite NMNH145596, Brucite HS247.3B,

and Andradite WS487 which are available in the USGS library [89]. The spec-

tral signatures of 224 contiguous bands are recorded and these are in the spectral

range of 400− 2500nm. With this, the size of the endmember matrix M becomes

224× 3, in which every column represents a different material. The reflectance

vector r of size 224× 1 is constructed as r = Mα where α is the abundance vec-

tor of size 3× 1. Choosing different α vectors at 75× 75 locations, image cube of

the size 75× 75× 224 is generated by multiplying M and α vectors. The ground

truth abundance maps are shown in Figure 3.4 (a). One can see that each syntheti-

cally generated abundance map has 9 square regions, wherein one of the diagonal

square regions in the maps consists of abundance values close to 1 with the cen-

ter pixel having a value of 1. In order to to satisfy sum to one constraint, other

two diagonal square regions have values closer to 0 with the value at the center

exactly equal to 0. Here, off-diagonal square regions have abundance values with

different mean values in every square region leading to edge between two square

regions. Note that, the abundance maps displayed in Figure 3.4 have both the ho-

mogeneous and heterogeneous abundance values. The synthetic HSI is generated

by using these abundance maps in the LMM.

The experiments are performed at different signal-to-ratio (SNR) levels. In or-

der to generate noisy data, we add IID Gaussian noise to synthetically generated

pure data. To obtain specific SNR data, we calculate the required noise variance

based on the signal variance and then add noise to pure data. For example, for 10

dB SNR, we fix the noise variance as 0.10 times of signal variance. The estimated
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(a) Ground truth

(b) FCLS [58]

(c) Proposed [96]

Figure 3.4: Ground truth and estimated abundance maps for synthetically gener-
ated data for 5 dB SNR.

abundance maps using FCLS as well as the proposed are shown in Figure 3.4 (b)

and (c), respectively, for 5 dB SNR. Looking at Figure 3.4, we observe that the

homogeneous region in abundance maps estimated using the proposed approach

appear smoother when compared to the FCLS. At the same time, our method

better preserves the discontinuities among the abundances as evident at the bor-

ders of the abundance patterns. The quantitative comparison using three different

measures for synthetic data is shown in Table 3.1. One can see that from Table 3.1,

our results are better when compared to other approaches.
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Table 3.1: Quantitative comparison on synthetic data.

Measure Algorithm SNR = 25dB SNR = 20dB SNR = 15dB SNR = 10dB SNR = 5dB

RMSE [93]

FCLS [58] 0.0079 0.0067 0.0114 0.0194 0.0343
DGAE [82] 0.0941 0.0071 0.0140 0.0369 0.1198
cSUnSAL [97] 0.0079 0.0067 0.0114 0.0194 0.0343
Proposed [96] 0.0070 0.0063 0.0095 0.0157 0.0276

AAM [94]

FCLS [58] 0.0155 0.0126 0.0216 0.0370 0.0652
DGAE [82] 0.1898 0.0134 0.0261 0.0647 0.2236
cSUnSAL [97] 0.0155 0.0126 0.0216 0.0370 0.0652
Proposed [96] 0.0134 0.0115 0.0179 0.0297 0.0522

AID [95]

FCLS [58] 0.0214 0.0224 0.0431 0.0729 0.1116
DGAE [82] 1.3089 0.0392 0.0926 0.1798 2.4968
cSUnSAL [97] 0.0215 0.0223 0.0431 0.0729 0.1116
Proposed [96] 0.0060 0.0058 0.0135 0.0305 0.0555

3.4.2 Experiments on Urban data

In this experiment, we use real data of the Urban area at Copperas Cove, TX, US

recorded by HYDICE [90]. This HSI data has a size of 307× 307 pixels where each

pixel covers 2m× 2m area and there are 210 bands which are in spectral range of

400− 2500nm with a spectral resolution of 10nm. The bands 1− 4, 76, 87, 101−

111, 136− 153 and 198− 210 represent the atmospheric distortion and water ab-

sorption. Hence, we remove these bands and perform the experiments on the

remaining 162 bands only. Our data consists of four endmembers, namely: As-

phalt, Grass, Tree, and Roof. We obtain the ground truth abundance by using the

steps given in [98]. The estimated abundance maps for Urban data are shown in

the Figure 3.5, where we observe that the abundance patterns estimated using the

proposed approach are closer to the ground truth when compared to the FCLS

approach. As given in Table 3.2, the results for the proposed approach are better

when compared to the other state-of-the-art methods.
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Asphalt Grass Tree Roof

(a) Ground truth

(b) FCLS [58]

(c) Proposed [96]

Figure 3.5: Ground truth and estimated abundance maps for URBAN hyperspec-
tral data.

Table 3.2: Quantitative comparison on Urban data acquired by HYDICE.

Algorithm
Measure

RMSE [93] AAM [94] AID [95]

FCLS [58] 0.0025 0.0057 0.0357

DGAE [82] 0.0025 0.0057 0.0356

cSUnSAL [97] 0.0025 0.0057 0.0363

Proposed [96] 0.0022 0.0045 0.0414
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3.4.3 Experiments on Cuprite data

We conducted another experiment on real HSI data acquired by the AVIRIS sensor

over the Cuprite mining site, USA. The acquired image consists of 224 bands with

a spectral range 400− 2500nm having the spectral resolution of 10nm and each

pixel covers an area of 20m× 20m. For this experiment, we used sub-images of the

size 250× 190 pixels located towards the east-south centre of the scene. As in the

previous experiment, here also we retain only 188 bands after removing the noisy

bands 1, 2, 104− 113, 148− 167, and 221− 224 which represent the atmospheric

distortion and water absorption.

We first determine the endmembers for this HSI data and then perform abun-

dance estimation. In this experiment, we used the VCA algorithm proposed in

[44] to extract endmembers present in the data. As given in [44], there are 14 end-

members present in this Cuprite data. We then construct the endmember matrix

using the extracted endmembers and then apply our proposed approach to find

abundance maps. Note that in this case, the true abundances are not available.

Hence, we use the data reconstruction error (DRE) as a measure which calculates

the RMSE between the available and the reconstructed reflectance reconstructed

using the estimated abundance map. The ideal value of DRE is zero. Here, ex-

periments for each method are performed ten times, and with that the mean and

standard deviation of the DRE values are shown in Table 3.3. The estimated abun-

dances using the proposed approach are shown in Figure 3.6. As illustrated in Ta-

ble 3.3, the results for the proposed approach are better than other state-of-the-art

methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 3.6: Estimated abundance maps for AVIRIS Cuprite data using the pro-
posed approach. (a) Alunite (b) Pyrope #1 (c) Nontronite (d) Dumortierite (e)
Kaolinite (f) Muscovite (g) Kaolinite #3 (h) Andradite #1 (i) Sphene (j) Budding-
tonite (k) Chalcedony (l) Montmorillonite (m) Pyrope #2, and (n) Desert vanish.
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Table 3.3: Quantitative comparison on Cuprite data acquired by AVIRIS.

Algorithm
DRE

mean standard deviation

FCLS [58] 0.0041 0.0049

DGAE [82] 0.0046 0.0055

cSUnSAL [97] 0.0042 0.0051

Proposed [96] 0.0039 0.0043

3.5 Conclusion

In this chapter, we have proposed a novel approach to estimate abundance maps

by energy minimization framework. A new discontinuity preserving prior is pro-

posed by modifying the expression for IGMRF parameters. A two-step iterative

algorithm is used to refine the abundance maps as well as the prior parame-

ters. The experiments are conducted on synthetic and the real HSIs show that

our method performs better when compared to other state-of-the-art approaches

including at low SNR in the data.

Abundance maps have spatial redundancy and it can be captured using spar-

sity induced prior. Since the IGMRF parameters are computed using the initial

estimate of abundances, their accuracy depends on the initial estimate and the

noise in the data. Use of additional sparseness prior can gives a better solution

under such a scenario. Hence, in the next chapter, we construct sparsity induced

prior along with the modified IGMRF prior in order to better the estimate of abun-

dances.
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CHAPTER 4

Abundance Estimation using Discontinuity Pre-

serving and Sparsity-induced Priors

In chapter 3, we discussed that the abundance maps have homogeneous regions

with limited discontinuity, and they exhibit spatial redundancy. Inhomogeneous

Gaussian Markov random field (IGMRF) prior captures the smoothness and pre-

serves discontinuities among abundance values as shown in chapter 3. In this

chapter, we address the spatial redundancy present in the abundances using spar-

sity induced prior. Many of the algorithms proposed for the abundance estima-

tion are based on the least squares [58, 99, 100], geometry-based [82], and some are

derived from sparse regression [97] methods. However, the solution is sensitive

to noisy data and sudden variations in the unmixing components. The problem of

abundance estimation is severely ill-posed in the presence of noise and outliers,

and hence use of regularization helps in making it better posed [83].

Recently, few researchers have incorporated the spatial information using the

sparse unmixing approach in order to improve the accuracy of estimated abun-

dances [63–65]. Sparse unmixing obtains abundance maps by using the dictionary

of endmember spectra (spectral library). Since the number of spectral signatures

in a scene is much smaller than the total number of the signatures available in

the spectral library, it provides a convenient approach for estimating abundances

by the sparse representation. The authors in [63–65], use sparse regression for

abundance estimation where the problem is formulated as : given hyperspectral

image (HSI) data and the spectral library, the objective is to obtain the abundances

by using the sparse representation of abundances. In [101], abundances are esti-
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mated by incorporating endmember variability and their spatial information in

order to reduce the error caused due to endmember variability. Considering that

the abundances are spatially smooth, the authors in [102], use Markov random

field (MRF) based prior to incorporate the smoothness in their framework. The

MRF is also used for joint HSI unmixing and classification where simulated an-

nealing optimization is employed to solve the problem [103]. Nonlinear mixing

models (NLMM) are also introduced to address the nonlinearity in the data [104].

In [105, 106], a NLMM is proposed where the given HSI data is modelled using

LMM with the additional nonlinearity terms. In [105], Potts MRF is used to de-

tect the nonlinearity based on spatial regularity of nonlinear terms. Here, the HSI

images are segmented into regions having similar statistical properties. Instead

of Potts MRF, Gamma MRF is employed in [106] to model the joint distribution of

the nonlinear terms. We know that, homogeneous MRF considers few global pa-

rameters only, thus making the solution too smooth which is not desirable. Since

the abundance maps have homogeneous as well as non-homogeneous regions

and their values vary locally, it is better to consider prior that adaptively takes

care of variations in abundance values. To this end, as already mentioned use of

IGMRF prior is better suited to capture the smoothness and also to preserve the

discontinuities among the abundances as used in [84].

In practice, abundance maps have homogeneous regions with limited disconti-

nuities, leading to global redundancy. Because of this, one can represent the abun-

dance in a domain in which they are sparse. Though, the mIGMRF prior as de-

veloped in [96] captures the smoothness in addition to discontinuities, it does not

account for global characteristic such as the sparseness present in the abundance

maps. This motivates us to use an additional prior in addition to the mIGMRF

prior (chapter 3) to incorporate the sparseness constraint. The sparse representa-

tion of an entity can be obtained by using a fixed or overcomplete learned dictio-

nary. The overcomplete learned dictionary is adaptive to data which gives more

precise sparse representation [107, 108]. Hence, in this chapter, we make use of the

overcomplete learned dictionary for obtaining the sparse representation of abun-

dances from the given (available) observation itself. To this end, we employ the K-
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singular value decomposition (K-SVD) algorithm to learn the overcomplete dic-

tionary since it has been proven effective in many image processing applications

[28].

In what follows, we briefly compare the proposed approach with other com-

petitive approaches. Authors in [63–65], use spatial regularization with sparse

unmixing that make use of the entire spectral library to obtain the abundances.

Note that, one needs the entire spectral library to estimate the abundances and

these approaches do not make use of sparseness prior as used in our approach.

Our method uses the already available endmembers (note that the endmembers

are assumed to be known or their estimated values are available) and the sparsity-

induced prior to captures the global dependencies inherent in abundance maps.

It results in a better estimate of abundances under the noisy scenario. Besides, the

proposed approach do not require the spectral library as used in [63–65]. Note

that, though approaches in [64, 65], use the edge preserving priors, they do not

consider the spatial adaptive prior mIGMRF as used in this chapter. In [105], MRF

is used to model nonlinearity where the images representing the nonlinearity are

divided in small regions. The approach is improved in [106], where Gamma MRF

is used to model the nonlinearity that accounts for nonlinearity at every pixel lo-

cation. Although, both [105] and [106] consider nonlinear model, they need to use

the Markov Chain Monte Carlo (MCMC) method to solve the problem which is

computationally expensive. When compared to these approaches, our proposed

energy minimization framework, in this chapter, takes care of the local and the

global dependencies present in the abundance maps. Also, the minimization is

carried out by using a simple gradient based optimization technique.

In this chapter, we propose a two-phase iterative algorithm for abundance esti-

mation. In phase one, we compute mIGMRF parameters of abundances estimated

at each pixel location and learn the dictionary as well as the sparse coefficients of

abundances using the current estimate of abundance maps. An initial estimate of

abundances obtained using the FCLS is employed to start the iteration. In phase

two, we minimize the energy function in order to refine abundance values by

making use of the mIGMRF parameters, the current dictionary and the sparse co-
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Figure 4.1: Block diagram of abundance estimation using discontinuity preserv-
ing and sparsity-induced priors.

efficients that are obtained in phase one. The two phases are iterated to refine

the results until the convergence. Here, we consider the convergence in mean-

squared error rate sense where the data reconstruction error, i.e., the error between

the observed reflectance values and the reconstructed reflectance using the esti-

mated unmixed components, is asymptotically constant over the iterations. The

block diagram of the proposed approach is shown in Figure 4.1.

4.1 Problem formulation

Objective is to estimate abundance map for a given hyperspectral data and the

endmembers. Continuing from chapter 3, we now formulate the problem by min-

imizing the following energy function,

E(α) = ED(α) + EP(α), (4.1)

where, ED(α) represents the data fitting term measuring the reconstruction error

between the given and the reconstructed reflectance. EP(α) represents the prior

term performing regularization on abundances.

Using the same linear model, LMM at each location can be given as,

r = Mα + η, (4.2)
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As before, the abundance follows non-negativity and sum-to-one constraints. It is

clear that number of abundance maps is the same as the number of endmembers

p. Using Eq. (4.2), ED(α) for pixel location (x, y) can be written as,

ED(α) = ∑
(x,y)
‖r(x, y)−Mα(x, y)‖2, (4.3)

where, r(x, y) and α(x, y) represent the reflectance and abundance vectors at loca-

tion (x, y).

In this chapter, the prior term, EP(α) is defined as the sum of mIGMRF and

sparsity induced priors, and is given by,

EP(α) := βEmIGMRF(α) + γEsparse(α), (4.4)

where, EmIGMRF and Esparse represent the mIGMRF (chapter 3) and sparsity prior

(will be discussed in section 4.2) terms, respectively. Here, β and γ are the regu-

larization parameters.

As discussed in section 3.2 of chapter 3, EmIGMRF(α) is considered as the sum

of squares of finite difference approximations to the first order derivatives of

abundances at each pixel location (x, y) i.e., considering each of the endmember

p in every abundance map we can write,

EmIGMRF(α) = ∑
(x,y)

∑
p

bxmIGMRF
(x,y,p) (α(x− 1, y, p)− α(x, y, p))2

+bymIGMRF
(x,y,p) (α(x, y− 1, p)− α(x, y, p))2,

(4.5)

where, bxmIGMRF and bymIGMRF are the spatially adaptive IGMRF parameters in hor-

izontal and vertical directions, respectively. We have seen that these parameters

can be given by,

bxmIGMRF
(x,y,p) = 1− 1

1 + e−5×|(αin(x−1,y,p)−αin(x,y,p))| ,

bymIGMRF
(x,y,p) = 1− 1

1 + e−5×|(αin(x,y−1,p)−αin(x,y,p))| .
(4.6)
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4.2 Sparse model for abundances

The mIGMRF prior captures the local characteristics of the abundance maps and

helps in preserving smoothness as well as discontinuities. Now, in order to cap-

ture the hidden global characteristic, one can represent the abundance maps in a

domain where they are sparse and use the sparsity as a prior in addition to the

mIGMRF prior. The redundant characteristic of the abundance values can be cap-

tured by sparsity induced prior on the α. The sparsity induced prior is defined us-

ing the learned overcomplete sparseness of overlapping abundance patches. The

sparseness within an abundance map is then obtained by averaging the sparse-

ness over these overlapping patches.

Researchers have widely used the learned overcomplete dictionary to obtain

the sparse representation of images in various image processing applications.

When using the overcomplete dictionary, the number of dictionary atoms (col-

umn vectors in the dictionary) is much larger than the input data size. For a fixed

number n an image patch of size
√

n×
√

n can be represented as a sparse linear

combination of K dictionary atoms where K >> n. The representation obtained

using a learned overcomplete dictionary is sparser than that obtained when the

dictionary entries are fixed. Further, it is adaptive to the training data which is

also used in inverse problems such as denoising [107] and restoration [108]. In

this chapter, we use the K-SVD algorithm for learning the overcomplete dictio-

nary which has been in use [107]. The K-SVD also takes care of the noise present

in the initial estimate of abundance maps while learning the dictionary [28]. We

generate overlapping patches of initial abundance maps which are then used for

training our dictionary using the K-SVD.

To start with, we extract the αx,y,p ∈ Rn×1 abundance patch vector (vectorized

version of abundance patch with the size of n =
√

n×
√

n) at every location (x, y)

in an abundance map for each of the endmembers p. The overcomplete dictionary

Dp ∈ Rn×K for each of the endmembers p and the sparse vector µx,y,p ∈ RK×1

for each patch at every location (x, y) of each abundance map is learned by the
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following objective function using the K-SVD algorithm as,

arg min
Dp,{µx,y,p}

∑
p

∑
(x,y)
‖αx,y,p −Dpµx,y,p‖2

2,

subject to ‖µ(x,y,p)‖0 ≤ T, ∀(x, y).

(4.7)

Here, T is the maximum number of non zero entries in µ i.e., sparseness, in

sparse vector at the (x, y). We know that ‖.‖0 represents the L0 norm that enforces

sparsity over the abundance patches within an abundance map. K-SVD algorithm

works in two iterative steps. In the first step, the dictionary atoms are updated to

better fit the data and in the second step, sparse representation is obtained for the

updated dictionary.

The abundances can be recovered from the learned dictionary D and the sparse

vectors µ once they are obtained. Thus, one can introduce the sparsity prior

Esparse(α) in the minimization framework as,

Esparse(α) = ∑
p

∑
(x,y)
‖αx,y,p −Dpµx,y,p‖2

2. (4.8)

4.3 Estimation of final abundance maps

Once again, we estimate the abundance maps by using energy minimization frame-

work that has data and prior terms. As given in Eq. (4.3), we use data reconstruc-

tion error by considering LMM. The prior term is formed by adding the mIGMRF

and sparsity priors using Eq. (4.5), and Eq. (4.8), respectively. The final energy

function to be minimized can be written as,

E(α) = ∑
(x,y)
‖r(x, y)−Mα(x, y)‖2+

β ∑
p

∑
(x,y)

{
bxmIGMRF
(x,y,p)

{
(α(x− 1, y, p)− α(x, y, p))2

}
+

bymIGMRF
(x,y,p)

{
(α(x, y− 1, p)− α(x, y, p))2

}}
+

γ ∑
p

∑
(x,y)
‖αx,y,p −Dpµx,y,p‖2

2.

(4.9)
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The energy function given in Eq. (4.9) is convex and hence can be minimized

by using the gradient-descent optimization approach. Once again the minimiza-

tion is carried out by using the Adam optimizer [87] that uses the adaptive learn-

ing rates. We use a similar approach as given in FCLS [58] to impose the sum-to-

one constraint. The non-negativity constraint is incorporated by considering only

the positive values of abundances while updating them. We use FCLS [58] to ob-

tain the initial estimates of abundance maps. However, one may use any other

suitable abundance estimation method in order to get the initial abundances.

Once the initial values of abundances are known, we iterate on following two

steps until the convergence in order to get the final abundance maps:

Phase 1: Keep α fixed, learn the dictionary D and the set of sparse vectors µ

by using K-SVD algorithm. Compute bxmIGMRF and bymIGMRF parameters using Eq.

(3.6), at each pixel location for every endmember.

Phase 2: Optimize the Eq. (4.9) for α using Adam optimizer keeping D, µ,

bxmIGMRF and bymIGMRF fixed as obtained in the phase 1.

Here, we consider the convergence in the mean-squared error (MSE) sense

[73]. We resort to a normalized MSE difference between iterations i − 1 and i

given by,

δ = ∆MSEi =
MSEi−1(r̂i−1)−MSEi(r̂i)

MSEi−1(r̂i−1)
,

where, MSEi(r̂i) = (ri −Mα̂i)
T . (ri −Mα̂i) , ∀i.,

(4.10)

Here, ri, r̂i and α̂i represent the available reflectance, the reconstructed reflectance,

and the estimated abundance vectors, respectively. Note that, as the number of it-

erations i are increased, δ reduces to a very small value and we stop the algorithm

when it becomes asymptotically constant.

4.4 Experimentations

In this section, we present experimental results to demonstrate the efficacy of the

proposed two-phase energy minimization approach for abundance estimation. In

all, we conduct four experiments to validate the proposed approach. We first
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Figure 4.2: Ground truth abundance maps for synthetically generated data 1.

conduct experiments on two sets of synthetic HSIs generated using the spectral

signatures of the U.S. Geological Survey (USGS) digital spectral library [89]. We

next show an experiment on the Urban real data set captured by Hyperspectral

Digital Imagery Collection Experiment (HYDICE) [90], where the true endmem-

bers are available. In our final experiment, we extract endmembers of Cuprite

data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

[91] using VCA [44] and then estimate the abundance maps for these extracted

endmembers. We use FCLS [58] to obtain our initial estimate of abundances for

finding the initial mIGMRF parameters and to get the sparse representation and

then perform iterations in phase 1 and phase 2 until the convergence. We use the

root mean-squared error (RMSE) [93], abundance angle mapper (AAM) [94] and

the abundance information divergence (AID) [95] as the quantitative measures.

The ideal value for each of these quantitative measures is zero.

4.4.1 Experiments on synthetic data 1

As done in chapter 3, our first experiment on synthetic data uses the same data

generated by using the linear mixing of spectral signature recorded using 224

bands of the USGS library [109]. Here, the size of each synthetic HSI is 75× 75

pixels which consist of three materials, namely: Ammonioalunite NMNH145596,

Brucite HS247.3B, and Andradite WS487. The ground truth abundance maps of

synthetic HSI are shown in Figure 4.2. These abundance maps have both the ho-

mogeneous and heterogeneous abundance values.

In this experiment, we choose the size of the dictionary as 81× 256 that makes
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Figure 4.3: Learned dictionary from synthetic data 1.

Figure 4.4: Sensitivity analysis for β.
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the size of each abundance patch as 9 × 9, i.e., we have n = 81 and K = 256,

i.e., patch vector has a size of 81× 1 and the sparse vector is of size 256× 1. The

sparseness T is chosen as 6 in Eq. (4.7). The learned overcomplete dictionary for

this synthetic data is shown in Figure 4.3 in which each square region has a size of

9× 9 and there are 16 square regions in X and Y directions, respectively, making

the total number of squares regions as 256. Note that, such a representation is

adaptive to the dataset. To start the two-phase iteration process we initialize the

mIGMRF parameters and the sparse coefficients by using the initial estimate of α

and iterate between the two phases until the convergence. In order to choose an

appropriate value for β we first carryout the sensitivity analysis for β and choose

that value of β which gives minimum data reconstruction error i.e., the measured

error between the observed reflectance values and the one reconstructed using

the estimated abundances. This value of β is used in all the other experiments

while minimizing the energy function. To perform the sensitivity analysis on β,

we generate synthetic data 1 at SNR of 5dB, minimize Eq. (4.9) by varying the

γ exponentially from 10−4 to 10−1 until the convergence. This is repeated for

different β values and the final value of β is decided (for all experiments) based

on data reconstruction error (DRE) in MSE sense. As shown in Figure 4.4, one can

see that β = 0.01 gives the least DRE. Hence, the β is chosen as 0.01 and γ varies

from 10−4 to 10−1 in all our experiments.

Now, to test the performance, we consider different signal-to-noise ratios (SNR)

in the data and conduct the experiment. The reflectance values are obtained

using the LMM model and adding noise with different variance i.e., by using

r = Mα + η.

The proposed approach is compared with the following state-of-the-art ap-

proaches: FCLS [58], distance geometry-based abundance estimation (DGAE) [82],

constrained sparse unmixing by variable splitting and augmented Lagrangian

(cSUnSAL) [97], maximum entropy (MaxEnt) [59], simplex-projection unmixing

(SPU) [60], FCLS with the total variation regularizer (TV) (FCLS-TV) [111] and

our previous approach based on the mIGMRF prior [96] discussed in chapter 3.

FCLS-TV [111] uses the total variation regularizer to impose smoothness on abun-
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Ammonioalunite Brucite Andradite

(a) FCLS [58]

(b) mIGMRF [96]

(c) Proposed [110]

Figure 4.5: Estimated abundance maps for the synthetically generated data 1 at
5dB SNR, using (a) FCLS [58], (b) mIGMRF [96], and (c) Proposed [110].

dance maps. Our approach also performs better when compared to other spatial

regularization based approaches i.e., FCLS-TV [111] and mIGMRF [96]. The es-

timated abundance maps using the FCLS [58], mIGMRF prior [96] and the pro-

posed method are shown in Figure 4.5 for the case where the SNR is small i.e.,

5dB in the data. We can see that the estimated abundances using the proposed

approach are visually consistent with the ground truth shown in Figure 4.2. From

Figure 4.5, one can observe that the homogeneous regions in abundance maps

estimated using the proposed approach appear smoother when compared to the

other two approaches. At the same time, our method better preserves the discon-

tinuities among the abundances, which is evident from the reconstructed borders
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Table 4.1: Quantitative comparison on synthetic data 1.

Measure Algorithm SNR = 25dB SNR = 20dB SNR = 15dB SNR = 10dB SNR = 5dB

RMSE [93]

FCLS [58] 0.0079 0.0067 0.0114 0.0194 0.0343
DGAE [82] 0.0941 0.0071 0.0140 0.0369 0.1198
cSUnSAL [97] 0.0079 0.0067 0.0114 0.0194 0.0343
mIGMRF [96] 0.0070 0.0063 0.0095 0.0157 0.0276
MaxEnt [59] 0.0219 0.0129 0.0171 0.0244 0.0367
SPU [60] 0.0079 0.0067 0.0114 0.0194 0.0343
FCLS-TV [111] 0.0069 0.0065 0.0106 0.0202 0.0380
Proposed [110] 0.0058 0.0058 0.0063 0.0079 0.0120

AAM [94]

FCLS [58] 0.0155 0.0126 0.0216 0.0370 0.0652
DGAE [82] 0.1898 0.0134 0.0261 0.0647 0.2236
cSUnSAL [97] 0.0155 0.0126 0.0216 0.0370 0.0652
mIGMRF [96] 0.0134 0.0115 0.0179 0.0297 0.0522
MaxEnt [59] 0.0414 0.0230 0.0305 0.0443 0.0680
SPU [60] 0.0155 0.0126 0.0216 0.0370 0.0652
FCLS-TV [111] 0.0138 0.0123 0.0196 0.0376 0.0715
Proposed [110] 0.0105 0.0104 0.0114 0.0137 0.0205

AID [95]

FCLS [58] 0.0214 0.0224 0.0431 0.0729 0.1116
DGAE [82] 1.3089 0.0392 0.0926 0.1798 2.4968
cSUnSAL [97] 0.0215 0.0223 0.0431 0.0729 0.1116
mIGMRF [96] 0.0060 0.0058 0.0135 0.0305 0.0555
MaxEnt [59] 0.0232 0.0128 0.0169 0.0245 0.0407
SPU [60] 0.0214 0.0224 0.0431 0.0729 0.1116
FCLS-TV [111] 0.0052 0.0061 0.0103 0.0192 0.0403
Proposed [110] 0.0038 0.0039 0.0044 0.0059 0.0101

of the abundance in the proposed method. The quantitative comparison consider-

ing different SNR levels is shown in the Table 4.1. Note that the values indicated in

the table represent the average over the entire set of abundance values. From Ta-

ble 4.1, it is clear that our approach consistently performs better when compared

to other methods which do not consider spatial regularization.

In order to demonstrate the performance of our approach in the homogeneous,

heterogeneous and edge regions of the abundance maps, we show the plots of

pixel locations versus estimated abundance values at those locations. To do this

we select small portions (rectangular boxes) of homogeneous and heterogeneous

region from the abundance maps of Ammonioalunite, Brucite, and Andradite as

shown in Figure 4.6. The homogeneous, heterogeneous and edge regions are rep-

resented by GREEN, RED and BLUE colored borders, respectively. Plots of pixel

locations versus abundance values for one of the rows in the selected regions of

the abundance maps are shown in Figure 4.7. It can be seen from the plots that

the abundance values estimated using the proposed approach are closer to the

ground truth.
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Ammonioalunite Brucite Andradite

Figure 4.6: Selected homogeneous (GREEN border), heterogeneous (RED border),
and edge (BLUE border) regions shown in the abundance maps for synthetically
generated data 1. Refer to Figure 4.7. for corresponding plots of estimated abun-
dance values.

(a) Homogeneous reflectance region referring to Figure 4.6.

(b) Heterogeneous reflectance region referring to Figure 4.6.

(c) Edge reflectance region referring to Figure 4.6.

Figure 4.7: Pixel locations versus estimated abundances on the selected regions of
Figure 4.6 within the synthetic data 1. The plots are shown for Ground truth, es-
timated abundances using FCLS method [58], and using the proposed approach.
(a) Homogeneous reflectance region, (b) Heterogeneous reflectance region, and
(c) Edge reflectance region.
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Ammonium_chloride Cyanide_potassium Green_slime kerogen_bic

Figure 4.8: Ground truth abundance maps for synthetically generated data 2.

4.4.2 Experiments on synthetic data 2

In this subsection, we discuss the results of another synthetic data 2 generated by

using the linear mixing of the spectral signatures of four materials, namely: Am-

monium_chloride, Cyanide_potassium, Green_slime, and kerogen_bic selected

from USGS spectral library [89]. We use the Hyperspectral Imagery Synthesis

tools [112] to generate the HSIs with the above material signatures. In this case,

the spectral signatures of 480 contiguous bands are recorded and these are in the

spectral range of 400− 2500nm. We generate image cube of the size 100× 100×

480 using the abundance maps of size 100× 100× 4. The ground truth abundance

maps are shown in Figure 4.8. These abundance maps are generated using the

Gaussian field, and hence they contain both the smooth regions as well as edges

with significantly high heterogeneous regions when compared to the synthetic

data 1 making the estimation of abundances more challenging.

In order to show the qualitative comparison for this experiment, the estimated

abundance maps using the FCLS [58], mIGMRF prior [96] and the proposed method

are displayed in Figure 4.9, for the low SNR of 5dB in the data. It can be seen that

spatial patterns in the abundance maps estimated using the proposed approach

are consistent with the ground truths displayed in Figure 4.8. The quantitative

comparison is shown in the Table 4.2 for the different SNR levels. One can clearly

see that our approach performs better when compared to the other state-of-the-art

approaches.
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(a) FCLS [58]

(b) mIGMRF [96]

(c) Proposed

Figure 4.9: Estimated abundance maps for synthetically generated data 2 at 5dB
SNR using (a) FCLS [58], (b) mIGMRF [96], (c) Proposed.

Finally, before we start explaining the experiments using real data we discuss

in brief the computation time of the proposed two-phase iterative approach. All

the approaches used in comparison have been implemented in MATLAB15 ver-

sion installed on Intel i5 processor with 3.20 GHz clock speed, 8-GB memory. In

Table 4.3, we display the average computation time to estimate abundances for

the synthetic data 1 and 2 using different methods. It can be seen that computa-

tion time for the proposed approach is more when compared with the other ap-

proaches. Although, this is undesirable, note that the state-of-the-art approaches

proposed in [58–60, 82, 97] are non-iterative and are either statistical or geometri-

cal based, making them computationally less expensive. However, our approach

requires dictionary learning (which is not considered in [96]) and also it is iter-

ative resulting in slightly higher computational time. But the advantage here is

that, our method considers the spatial correlation of abundances at every location
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Table 4.2: Quantitative comparison on synthetic data 2.

Measure Algorithm SNR = 25dB SNR = 20dB SNR = 15dB SNR = 10dB SNR = 5dB

RMSE [93]

FCLS [58] 0.0025 0.0043 0.0072 0.0121 0.0193
DGAE [82] 0.0026 0.0048 0.0098 0.0226 0.0466
cSUnSAL [97] 0.0025 0.0043 0.0072 0.0121 0.0193
mIGMRF [96] 0.0022 0.0037 0.0066 0.0112 0.0180
MaxEnt [59] 0.0040 0.0053 0.0074 0.0120 0.0192
SPU [60] 0.0025 0.0043 0.0072 0.0121 0.0193
FCLS-TV [111] 0.0022 0.0039 0.0070 0.0130 0.0228
Proposed 0.0020 0.0029 0.0053 0.0090 0.0138

AAM [94]

FCLS [58] 0.0045 0.0078 0.0131 0.0219 0.0350
DGAE [82] 0.0047 0.0085 0.0166 0.0357 0.0718
cSUnSAL [97] 0.0045 0.0078 0.0131 0.0219 0.0350
mIGMRF [96] 0.0040 0.0068 0.0121 0.0204 0.0326
MaxEnt [59] 0.0075 0.0099 0.0136 0.0209 0.0347
SPU [60] 0.0045 0.0078 0.0131 0.0219 0.0350
FCLS-TV [111] 0.0040 0.0071 0.0127 0.0237 0.0424
Proposed 0.0032 0.0051 0.0089 0.0154 0.0251

AID [95]

FCLS [58] 0.0078 0.0199 0.0470 0.1098 0.2404
DGAE [82] 0.0086 0.0246 0.0791 0.3549 1.4439
cSUnSAL [97] 0.0078 0.0200 0.0470 0.1099 0.2404
mIGMRF [96] 0.0035 0.0041 0.0095 0.0773 0.0868
MaxEnt [59] 0.0037 0.0053 0.0078 0.0932 0.0862
SPU [60] 0.0078 0.0199 0.0470 0.1098 0.2404
FCLS-TV [111] 0.0018 0.0044 0.0110 0.1138 0.2668
Proposed 0.0009 0.0021 0.0048 0.0109 0.0217

Table 4.3: Average computation time.

Algorithm Computation time (seconds)
synthetic data 1 synthetic data 2

FCLS [58] 01.6352 05.0707
DGAE [82] 00.1956 00.2798
cSUnSAL [97] 00.0922 00.1888
mIGMRF [96] 02.7187 04.0489
MaxEnt [59] 38.3950 50.9030
SPU [60] 00.0806 00.2481
FCLS-TV [111] 04.5100 12.6400
Proposed 07.6171 13.8242
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Asphalt Grass Tree Roof

Figure 4.10: Ground truth abundance maps for HYDICE Urban data [98].

in the form of mIGMRF parameters and also use the sparsity present in abun-

dance maps which gives us better results as is evident from Figure 4.5, Figure 4.9,

Table 4.1, and 4.2.

4.4.3 Experiments on HYDICE Urban data

We now apply our algorithm on Urban hyperspectral images of HYDIC [90] of

size 307× 307 pixels having 210 bands with 4 endmembers i.e., Asphalt, Grass,

Tree, and Roof. Here, the noisy bands representing the water adsorptions were

removed and the experiment was performed on 162 bands only. The ground truth

abundance maps for each of the endmembers are shown in Figure 4.10.

Here, we choose the size of a patch as 3× 3, i.e., n = 9 and K = 256 since the

data has a low spatial resolution. The estimated abundance maps using different

approaches are shown in the Figure 4.11, where we observe that the abundance

maps estimated using the proposed approach are visually closer to the ground

truth shown in Figure 4.10 as well as consistent with the FCLS [58] and mIGMRF

[96] based methods. The quantitative measures for this experiment are shown in

Table 4.4. One can see that the results for the proposed approach are superior

when compared to other state-of-the-art methods.
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Asphalt Grass Tree Roof

(a) FCLS [58]

(b) mIGMRF [96]

(c) Proposed

Figure 4.11: Estimated abundance maps for HYDICE Urban hyperspectral data
using (a) FCLS [58], (b) mIGMRF [96], and (c) Proposed.

Table 4.4: Quantitative comparison on Urban data acquired by HYDICE.

Algorithm
Measure

RMSE [93] AAM [94] AID [95]

FCLS [58] 0.0025 0.0057 0.0357

DGAE [82] 0.0025 0.0057 0.0356

cSUnSAL [97] 0.0025 0.0057 0.0363

mIGMRF [96] 0.0022 0.0045 0.0414

MaxEnt [59] 0.0288 0.0608 0.9760

SPU [60] 0.0025 0.0057 0.0357

FCLS-TV [111] 0.0023 0.0051 0.0336

Proposed 0.0018 0.0038 0.0334
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4.4.4 Experiments on AVIRIS Cuprite data

We now conduct experiment on HSI data acquired by AVIRIS sensor [113] and for

this experiment, we use sub-images of the size 250× 190 pixels having 224 bands

with 14 endmembers. On this data, the experiment is conducted on 188 bands

after removing the noisy bands.

Since in this case, the ground truth abundances are not available, we used the

data reconstruction error (DRE) measured in terms of RMSE at each pixel, be-

tween the original and the reconstructed HSI (reconstructed using the estimated

abundance maps) as the quantitative measure. The quantitative comparison are

shown in Table 4.5. It can be seen that the proposed approach has the least DRE

(both least mean and standard deviation) when compared to the other methods.

The estimated abundances using the proposed approach are found visually con-

sistent with the state-of-the-art approaches and are shown in Figure 4.12.

Table 4.5: Quantitative comparison on real Cuprite data acquired by AVIRIS.

Algorithm
DRE

mean standard deviation

FCLS [58] 0.0041 0.0049

DGAE [82] 0.0046 0.0055

cSUnSAL [97] 0.0042 0.0051

mIGMRF [96] 0.0039 0.0043

MaxEnt [59] 0.0064 0.0059

SPU [60] 0.0041 0.0049

FCLS-TV [111] 0.0040 0.0045

Proposed 0.0038 0.0042

4.5 Conclusion

In this chapter, we have presented a new approach for abundance estimation by

using mIGMRF and sparsity-based priors in the regularization framework. We

have incorporated a sparsity-induced prior that provides sparse representation of
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 4.12: Estimated abundance maps for AVIRIS Cuprite data using the pro-
posed approach. (a) Alunite (b) Pyrope #1 (c) Nontronite (d) Dumortierite (e)
Kaolinite (f) Muscovite (g) Kaolinite #3 (h) Andradite #1 (i) Sphene (j) Budding-
tonite (k) Chalcedony (l) Montmorillonite (m) Pyrope #2, and (n) Desert vanish.
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abundance using the K-SVD based adaptive dictionaries. Use of two priors re-

sulted in a better estimate of the abundances. The estimation is carried out using

a two-phase iterative algorithm that refines the abundance maps at every itera-

tion. The experiments conducted on two synthetic and two real datasets confirm

the efficacy of the proposed approach.

In the next chapter, we continue with our work on abundances and use them

in super-resolving the HSI data. We know that HSIs have a low spatial resolution,

and the estimated abundance maps carry the spatial information of these. To

this end, we discuss a new framework to increase the spatial resolution of the

abundances first and then use them to super-resolve the HSIs.
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CHAPTER 5

Hyperspectral Image Super-resolution using

Spectral Unmixing and Transfer learning

In the last two chapters, we discussed on estimation of abundances using spatial

regularizations. In this chapter, we deal with how one can make use of abun-

dances in spatial resolution enhancement of hyperspectral images (HSIs). We

know that, HSIs represent reflectance in hundreds of contiguous electromagnetic

bands of narrow bandwidth. Abundance maps and endmembers convey spatial

and spectral characteristics within the scene. The richness in spectral information

in HSIs can be made use of in numerous applications, such as classification of

scene data, target detection, change detection, and anomaly detection. However,

it is difficult to acquire the high (spatial) resolution (HR) for HSI due to the hard-

ware constraints. One can improve the accuracy of the tasks at hand if we have

the data with high spectral as well as spatial resolutions [114, 115]. This moti-

vates us to develop an algorithm to super-resolve HSI that gives us high spatial

resolution HSI without much compromise on its spectral details.

The low spectral resolution (LR) images such as panchromatic image (PAN),

and multispectral image (MSI) have been recorded in a few spectral bands. How-

ever, these images have much finer spatial information when compared to HSIs.

So, the high spatial auxiliary image can be used to improve the spatial resolu-

tion of the HSI. Recently, many HSI super-resolution (SR) methods have been

proposed [116–124] which use the auxiliary HR image to enhance low-resolution

(LR) HSI image. Here, auxiliary image and the LR HSI represent the same scene.

A pan-sharpening is a similar process which enhances the spatial resolution of
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HSI by fusing it with a PAN [125]. Some techniques [117–119] fuse luminance

component of a high spatial resolution image with HSI, however, they distort

spectral information of HSI [126]. Methods based on matrix factorization have

been used to improve the spatial resolution of HSI with the help of high spatial

resolution auxiliary image [120–124]. Note that, it is challenging to acquire such

an auxiliary image for the same scene. Also, the resultant super-resolved images

may be blurred due to the registration error that happens due to capture of dif-

ferent resolution images. This motivates us to use SR methods in which auxiliary

image itself is not required.

We know that the process of spectral unmixing reveals abundance (material)

maps of the HSI data. Hence, use of the estimated abundances can be used in

enhancing the spatial resolution of HSI images. In this chapter, first the spectral

unmixing is used to obtain the abundances which are in turn used in obtaining

the HR abundances for super-resolution of band images of HSI.

In order to learn the mapping from LR to HR, one can train a deep convolu-

tion neural network (CNN) using large number of LR-HR HSI pairs. However,

such pairs are seldom available for remotely sensed data. Nevertheless, we know

that transfer learning can be used to apply the learned feature knowledge in one

domain to another domain. The remotely sensed images exhibit low-level fea-

ture similarities with the natural images [127]. Hence, we derive this knowledge

from natural images to enhance the spatial resolution of HSIs. Pretrained weights

with input as natural images can be used to find the mapping from LR to HR

abundance maps. This kind of representation refers to transfer learning. The

super-resolved HSIs are then generated by first obtaining the HR abundances af-

ter regularization, and combining them with the estimated endmembers. It is

interesting to note that the given HSIs are not directly used here to get their HR

images. The most important advantage in super-resolving the abundance maps

using transfer learning is the reduced computational complexity when compared

to directly using HSIs since the number of abundances in a scene is much less

when compared to total number of band images in a HSI data.

As discussed in earlier chapters, the abundance maps have homogeneous as

53



well as non-homogeneous regions and their values vary locally. Hence, for reg-

ularization, we consider a prior that is adaptive to variations in abundance val-

ues. To this end, we use the modified Inhomogeneous Gaussian Markov random

field (mIGMRF) prior as used in chapter 3 since it better captures the smoothness

and also the discontinuities among the abundances. We apply mIGMRF priors

on both LR and HR abundance maps which results in improved HR estimate of

abundance maps and the same are then used to obtain the super-resolved HSIs.

In summary, we develop a novel super-resolution technique for HSIs by mak-

ing use of spectral unmixing and transfer learning. To do this, we first train a

deep CNN to learn the mapping from the LR to HR natural images and use the

same for transfer learning to get the initial estimates of the super-resolved abun-

dances where the input corresponds to LR abundances. To get the better estimates

of abundances and hence to improve the SR of HSIs, we use a regularization

framework in which both the LR and HR abundances are modelled as IGMRF

that serves as the prior. Finally, the SR HSIs are obtained by using a linear mix-

ing model that uses the SR abundances and the endmembers estimated using an

appropriate technique.

5.1 Proposed approach

The block diagram of the proposed approach is shown in Figure 5.1. Given the LR

HSI, we first unmix it using robust collaborative nonnegative matrix factorization

(R-CoNMF) [72] to obtain the endmembers and initial LR abundance maps. Note

that any other suitable approach may also be used. Using the LR abundances,

we obtain the initial estimate of super-resolved (initial HR) abundances by trans-

fer learning in which a pre-trained CNN on natural images is used [128]. In the

next stage, we optimize an objective function consisting of data term that uses lin-

ear mixture model (LMM) and two IGMRF prior terms to obtain super-resolved

abundance maps. Every iteration in optimization process improves spatial reso-

lution of abundances which are then used as input to trained CNN network to get

updated HR abundances. Super-resolved HSIs are obtained using the HR abun-
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Figure 5.1: Block diagram of hyperspectral image super-resolution using spectral
unmixing and transfer learning.

dance maps obtained by the optimization and the estimated endmembers.

In order to apply IGMRF model for SR, two IGMRF terms one for LR abun-

dances and another one for HR abundances are considered along with the LMM

data term. We estimate the both prior parameters knowing the abundances as

explained in section 3.2 of chapter 3. For the LR abundances, the IGMRF param-

eters can be obtained using the abundance maps derived using R-CoNMF and

the same for HR can be obtained from the initial estimate of HR abundances ex-

plained in (section 5.2). These parameters are then used in our regularization

framework (section 5.3) and refined iteratively to obtain the super-resolved abun-

dances which are then used to get the super-resolved HSIs.
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5.2 Transfer learning for super-resolution of abundance

maps

Transfer learning opens the scope for knowledge transfer from one domain to an-

other which has a similar data distribution [129]. In this chapter, to obtain the SR

of abundance maps, we use a deep CNN model trained on natural images for SR

presented in [128] for transfer learning. This deep CNN architecture directly finds

the mapping from LR image X to HR image Y by optimizing the following objec-

tive function among HR training and reconstructed F
(
Xi; Θ

)
images, where, Θ

correspond to the model parameters.

min
Θ

n

∑
i=1
‖F

(
Xi; Θ

)
−Yi‖2

F. (5.1)

Here, n corresponds to total number of training images, and F stands for Frobe-

nius norm. We use the learnt parameters Θ and the function F (.) (trained net-

work) to super-resolve the estimated abundance maps to generate the HR abun-

dance maps. We thus obtain the initial HR abundances by super-resolving the

initial LR abundances.

5.3 Regularization and HSI super-resolution

Given the LR HSI data, we obtain the LR abundances and the corresponding end-

members using the R-CoNMF [72]. We then estimate the HR abundance maps

by using the following regularization (energy minimization) framework that has

both data and prior terms and then using transfer learning. Here, the data term

is constructed by considering LMM, the prior terms are formed by adding the

two IGMRF priors on LR and HR abundance maps. With this, and using Eqs. in
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chapter 3 i.e., (3.3),(3.4). the final energy function can be written as,

E(αLR)

= ∑
(x,y)
‖r(x, y)−MαLR(x, y)‖2+

∑
p

∑
(x,y)

{
bxIGMRFLR
(x,y,p)

{
(αLR(x− 1, y, p)− αLR(x, y, p))2

}
+byIGMRFLR

(x,y,p)

{
(αLR(x, y− 1, p)− αLR(x, y, p))2

}}
+

∑
p

∑
(x,y)

{
bxIGMRFHR
(x,y,p)

{
(αHR(x− 1, y, p)− αHR(x, y, p))2

}
+byIGMRFHR

(x,y,p)

{
(αHR(x, y− 1, p)− αHR(x, y, p))2

}}
.

(5.2)

Note that we have replaced bx
IGMRF and by

IGMRF in Eq. (3.4) by bxIGMRFLR , byIGMRFLR ,

bxIGMRFHR and byIGMRFHR . This is to incorporate IGMRF prior on both LR and HR

images. Optimization of Eq. (5.2) for αLR is carried out using Adam optimizer

[87] and used as input to trained CNN to get the updated αHR at every iteration

till convergence. Note that Eq (5.2) is optimized for αLR and the transfer learning

is used to update αHR. Final αHR considered as the super-resolved abundance

map is then incorporated in the LMM framework to yield the super-resolved HSI.

Note that in Eq. (5.2), bxIGMRFLR , byIGMRFLR are obtained using initial estimate of LR

abundance maps and bxIGMRFHR , byIGMRFHR are obtained using initial estimate of HR

abundances. These IGMRF parameters as well as α’s are updated iteratively by

optimization and transfer learning to get the final super-resolved abundances.

Let LR HSI has the size of m × n × l and can be represented in matrix form

Y ∈ Rl×mn. Similarly, abundance maps αLRof size of m× n× p can be represented

as matrix SLR ∈ Rp×mn. Both LR and HR HSI represent the same scene, their end-

member matrix M ∈ Rl×p will be the same. Once the super-resolved abundance

maps αHRof size of M×N × p are obtained (M > m, N > n) and are repre-

sented as matrix SHR ∈ Rp×MN , the final super-resolved HSIs are obtained by

YHRl×MN = Ml×pSHRp×MN . To better understand, in Figure 5.2, Illustration for an

example data is shown for both proposed and auxiliary image based method. As

shown in Figure 5.2 (a), only three abundance maps are used to super-resolve LR
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Figure 5.2: Illustration of HR HSI generation process.

HSIs of size 25× 25× 224. While, in case of auxiliary based method, both LR HSIs

and HR auxiliary image of size 75× 75× 5 are used to get super-resolved HSIs.

5.4 Experimental Illustration

We now demonstrate the efficacy of our approach by conducting experiments on

synthetic as well as on the real HSIs. The synthetic data is generated using the

linear mixing of spectral signatures with 224 bands from the USGS library [89] as

explained in section 3.4.1. The size of each synthetically generated HSI is 75× 75

pixels. The real HSIs used in our experiment has 610× 340 pixels spread in 103

spectral bands with 9 endmembers captured at Pavia University by ROSIS sensor

[130].
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(a) Original

(b) Bicubic (c) (SR) [131]

(d) (SC) [132] (e) A+ [133] (f) Proposed [134]

Figure 5.3: Super-resolution by a factor of 3 for synthetic data (pseudo colour
images (composed of bands 183, 193 and 207 for the red, green, and blue channels,
respectively)).

Table 5.1: Results of super-resolution on synthetic data.

Measure Algorithm
Bicubic SR [131] SC [132] A+ [135] Proposed [134]

RMSE [93] 0.0575 0.0455 0.0431 0.0474 0.0316
MPSNR [136] 24.7941 26.8211 27.2912 26.3122 29.7253
MSSIM [136] 0.8650 0.8837 0.9204 0.9021 0.9378
SAM [94] 0.04636 0.0392 0.0334 0.0361 0.0261
UIQI [137] 0.3536 0.3355 0.3928 0.3929 0.4896

To perform experiment we generate LR data by downsampling both synthetic

and real data by a factor of 3. Comparison of the proposed method is shown

with the state-of-the-art methods of single image SR approaches such as sparse

representation (SR) [131], sparse coding (SC) [132], and A+: Adjusted Anchored

Neighborhood Regression for Fast SR (A+) [135]. The results are quantitatively

evaluated using root mean squared error (RMSE) [93], mean peak signal-to-noise

ratio (MPSNR) [136], mean structure similarity index (MSSIM) [136], spectral an-

gle mapper (SAM) [94], and universal image quality index (UIQI) [137]. Note

that these measures are used by the SR community. Here, ideal values of RMSE,
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(a) Original

(b) Bicubic (c) (SR) [131]

(d) (SC) [132] (e) A+ [135] (f) Proposed [134]

Figure 5.4: Super-resolution by a factor of 3 for real data (pseudo colour images
(composed of bands 5, 28 and 56 for the red, green, and blue channels, respec-
tively)) captured at Pavia university.

MPSNR, MSSIM, SAM, UIQI are 0,∞,1,0,1, respectively.

The quantitative results on synthetic data are given in TABLE 5.1 and the SR

pseudo colour images (composed of bands 183, 193 and 207 for the red, green, and

blue channels, respectively) are shown in Figure 5.3. It is clear from the TABLE

5.1 and Figure 5.3 that our approach performs better in terms of quantitative mea-

sures as well as qualitative assessment when compared to other approaches. The

results on real data are shown in TABLE 5.2 and the corresponding SR pseudo

colour images (composed of bands 5, 28 and 56) magnified by a factor of 3 are

displayed in Figure 5.4. It can be seen that the super-resolved image obtained us-

ing the proposed method shown in Figure 5.4 (f) appears visually better and has

better contrast when compared to the others displayed in Figure 5.4 (b)-(e). The

low values of SAM in TABLE 5.1 and TABLE 5.2 indicate that spectral distortion

is minimum in the proposed approach.
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Table 5.2: Results on real data.

Measure Algorithm
Bicubic SR [131] SC [132] A+ [135] Proposed [134]

RMSE [93] 0.0351 0.0315 0.0314 0.0312 0.0301
MPSNR [136] 29.0781 30.0182 30.0572 30.0530 31.5491
MSSIM [136] 0.8100 0.8336 0.8461 0.8466 0.8586
SAM [94] 0.0816 0.0811 0.0748 0.0768 0.0696
UIQI [137] 0.6916 0.6771 0.7518 0.7533 0.7886

5.5 Conclusion

Here, we have proposed a novel approach to enhance the spatial resolution of

HSIs by spectral unmixing using regularization and transfer learning. We use

spatial information available in the abundance maps of the HSI data, and transfer

this knowledge to super-resolve the HSI. The experiments conducted on synthetic

and real HSI give better results for the proposed method when compared to state-

of-the-art. Results show the capability of transfer learning and regularization to

super-resolve HSI images without compromising on the spectral details.

In the previous chapters, we used spatial regularization framework while work-

ing with abundances. We know that the spectral signatures are recorded in con-

tiguous narrow bands and hence are spectrally correlated. Hence, in our final

work in the next chapter, we use spectral regularization in addition to spatial

regularization for improving the spectral unmixing. There we estimate both the

endmembers and abundances.
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CHAPTER 6

Spectral unmixing using autoencoder with spa-

tial and spectral regularizations

In many of the practical scenarios, the endmembers present in the HSI are un-

known which motivates us to extract endmembers using the unsupervised method.

Hence, in this chapter we estimate both the endmembers and the abundances.

Many of the researchers have developed endmember extraction algorithms by

considering pure pixel assumption [12]. One of the convex-geometry-based algo-

rithms called vertex component analysis (VCA) [44] considers pure pixel assump-

tion for endmember extraction. Here, the endmembers represent the vertices of

a simplex that represent the data. Some of convex-geometry-based algorithms

minimize or maximize the volume of the simplex to extract the endmembers

[43, 48, 138–140]. The non-negative matrix factorization (NMF) is also explored

for unsupervised spectral unmixing that extracts the endmembers and estimate

their abundances without considering pixel purity assumption [47, 72, 141, 142].

NMF is a technique to factorize a matrix into two non-negative matrices. In the

case of spectral unmixing, the NMF can be used to factorize HSI data matrix into

endmember and abundance matrices.

Recently, approaches based on deep learning are outperforming traditional ap-

proaches for solving various problems in the area of hyperspectral imaging [77].

Here, to perform unsupervised spectral unmixing, one can use autoencoder (AE)

which can be trained to find the lower dimensional representation of the data by

minimizing the reconstruction error. The authors in [80], use cascade autoencoder

to solve for spectral unmixing where HSI data is denoised using the marginalize
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denoising autoencoder (mDA) and then AE is used to unmix the HSI using non-

negative sparse autoencoder with tied weights. In [143], untied weights approach

that overcomes the limitations of tied weights is proposed. However, the authors

in [143] do not use regularizations to capture the dependencies inherent in the

data.

Regularization based techniques are used to improve the solution in hyper-

spectral imaging [83]. Researchers have used spatial regularization in semi-supe-

rvised way in which they apply it on abundance maps [63–65], while the priors

are not adaptive. We know that abundances have both homogeneous as well as

non-homogeneous regions. Hence, the adaptive prior that captures the variation

in abundance values should improve the solution. In order to capture smooth-

ness while preserving discontinuities among the abundances, IGMRF is used at

every pixel location [96, 110]. In the case of spectral signatures, the neighbour-

ing values are close to each other since they are recorded in contiguous spectral

bands. Hence, to capture the spectral dependencies, we also use IGMRF on these

signatures.

In this chapter, given the HSI and number of endmembers, we employ AE with

IGMRF priors to extract endmembers and their abundances. By using the linear

decoder, the AE incorporates LMM that represents abundances as hidden units.

To obtain IGMRF parameters, an initial estimates of endmembers and abundances

are required. To do this, we extract endmembers using VCA [44] and estimate the

abundances using FCLS [58]. Nevertheless, one may use any suitable unmixing

technique to obtain the initial parameters. With these initial estimates, the net-

work is trained using backpropagation to get the final solution. Other approaches

use additional methodology to denoise data while here spatial and spectral regu-

larizations take care of noise giving us improved results.
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6.1 Problem formulation and proposed method

Let us consider the HSI data representation as Y ∈ Rl×n matrix containing the n

observed spectral vectors in its columns, then LMM in (3.1) can be described as,

Y = MS + N, (6.1)

where, N ∈ Rl×n represents the noise; M ∈ Rl×p is the endmember matrix with

each column representing one of the endmember signatures, and S ∈ Rp×n de-

notes the corresponding abundance matrix, with each column representing the

mixing coefficient of the p endmembers in making one mixed pixel.

We know that an autoencoder can be used to learn the lower dimension of

the data in an unsupervised manner using data reconstruction error as the cri-

teria. Spectral unmixing can be achieved by encoding HSI data in the hidden

units representing the abundances and reconstructing the data using a linear op-

erator, i.e., using decoder as a endmember matrix. HSI data Y is encoded using

weight W ∈ Rp×l as the abundance matrix S, where rectified linear unit (ReLU)

is used as a non-linear activation function. ReLU provides non-negative values

of abundances, i.e., S = σ(WY), where σ represents ReLU function. Here, we

use a similar approach proposed in [58] for sum-to-one constraint on abundance.

At the decoder, abundance vector is multiplied with the endmember matrix M to

reconstruct the data as Ŷ . The endmembers are extracted as the trained weights

of the decoder and abundances are calculated by the obtained encoder weights.

The decoder weights are made non-negative using non-negativity cost. To find

both the endmembers and abundances, we minimize the cost function consisting

of reconstruction error (based on LMM) and priors. The reconstruction error is

given by,

JLMM(W , M) =
1
2
‖MS− Ŷ‖2

F. (6.2)

In HSI data, abundance maps have a smooth region with edges and hence

spatial regularization can be applied on these maps to obtain a better solution. In
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addition to that, the reflectances are recorded in hundreds of contiguous bands

which makes the variation of reflectance band-wise smooth with limited discon-

tinuity. These observations motivate us to use spatial as well as spectral regular-

ization for better solution of spectral unmixing. In [96], IGMRF is used to capture

smoothness by preserving discontinuity in data. Hence, IGMRF prior is used

for spatial and spectral regularization and for that IGMRF priors are applied on

abundances and endmembers. To initialize IGMRF parameters, we need initial es-

timates of endmembers and abundances. Initial endmembers are extracted using

VCA [44] and then abundances are estimated using FCLS [58]. The IGMRF pa-

rameters for abundance maps in horizontal and vertical directions are calculated

using the initial estimate of abundances to capture spatial dependencies. In order

to capture spectral dependencies, we calculate IGMRF parameters using the ini-

tial estimate of endmembers computed band-wise. To improve the solution, we

also apply IGMRF priors spatially as well as spectrally on reconstructed HSI. The

initial reconstructed HSI is obtained by the initial estimate of endmembers and

abundances. The total cost function consists of reconstruction error, IGMRF prior

terms and non-negativity cost for the decoder. The Adam optimizer [87] is used

to minimize this cost function to obtain the final solutions. The block diagram for

proposed approach shown in Figure 6.1.

6.2 IGMRF priors for spatial and spectral regulariza-

tion

In this section, we describe IGMRF priors employed on abundances, endmembers

and on reconstructed HSI.

6.2.1 Spatial regularization on abundance maps

We incorporate IGMRF on the hidden unit of Autoencoder to apply spatial reg-

ularization on abundance maps. Here, the abundance at (x, y) location can be

represented as α(x, y) ∈ S. Hence, abundance value at (x, y) location for the pth

endmember can be represented as α(x, y, p) = r(x, y)W(:, p), where r(x, y) ∈ Y
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Figure 6.1: Block diagram of proposed spectral unmixing using autoencoder with
spatial and spectral regularizations.

and W(:, p) ∈ W . The cost function for spatial regularization on abundances can

be given [84] as,

Jα(W , M) =

∑
p

∑
(x,y)

{
bx

1(x, y, p)
{
(α(x− 1, y, p)− α(x, y, p))2

}
+ by

1(x, y, p)
{
(α(x, y− 1, p)− α(x, y, p))2

}}
,

(6.3)

where, bx
1 and by

1 represent the spatially adaptive IGMRF parameters in horizontal

and vertical directions for abundance maps. Since the values of abundances vary

between 0 and 1, the expression proposed in [84] (as seen in chapter 3) sets the

parameter values to constant thus imposing the same penalty at every location.

In order to avoid this a modified expression for IGMRF was derived in chapter 3
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as,

bx
1(x, y, p) = 1− 1

1 + e−5×|(αin(x−1,y,p)−αin(x,y,p))| ,

by
1(x, y, p) = 1− 1

1 + e−5×|(αin(x,y−1,p)−αin(x,y,p))| ,
(6.4)

where, αin represent the initial estimate of abundance. The IGMRF parameter

is now a nonlinear function of the difference between two neighbouring abun-

dances and has a larger penalty smooth region and a smaller penalty for edges.

Since the reflectance values also vary between 0 and 1, the IGMRF parameters for

endmembers and reconstructed HSI are calculated in a similar manner.

6.2.2 Spectral regularization on endmembers

Since HSI data is recorded on hundreds of contiguous bands, the reflectance val-

ues for neighbouring bands do not vary much except at few locations. Hence,

IGMRF priors can be applied on endmembers as well. With this the cost function

for spectral regularization can be given by,

JM(W , M) = ∑
p

∑
l

{
b2(l, p)

{
(M(l − 1, p)−M(l, p))2

}
(6.5)

where, b2 represents spectrally adaptive IGMRF parameter for endmember. These

parameters are calculated using the initial estimates of endmember Min. The pa-

rameter b2 can be obtained as,

b2(l, p) = 1− 1
1 + e−5×|(Min(l−1,p)−Min(l,p))|

. (6.6)

6.2.3 Spatial and spectral regularization on reconstructed HSI

We also apply IGMRF on reconstructed HSI data Ŷ for spatial and spectral regu-

larization to improve the solution. Here, the reconstructed reflectance at (x, y)

location can be represented as r̂(x, y) ∈ Ŷ . One can consider Ŷ as stack of l

images (one for each spectral band) and the reconstructed reflectance value at

(x, y) location for lth band can be represented as r̂(x, y, l) = α(x, y)M(:, l) where,
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M(:, l) ∈ M. Similarly, the IGMRF prior for spectral regularization is applied on

reconstructed HSI in band-wise manner. The final energy function for spatial and

spectral regularization on reconstructed HSI can be given as,

Jr(W , M) =

∑
l

∑
(x,y)

{
bx

3(x, y, l)
{
(r̂(x− 1, y, l)− r̂(x, y, l))2

}
+ by

3(x, y, l)
{
(r̂(x, y− 1, l)− r̂(x, y, l))2

}}
+ ∑

l
∑
(x,y)

{
b4(x, y, l − 1)

{
(r̂(x, y, l − 1)− r̂(x, y, l))2

}}
,

(6.7)

where, bx
3 and by

3 represent the spatially adaptive IGMRF parameters in horizontal

and vertical directions while b4 represent spectrally adaptive IGMRF parameters.

The IGMRF parameter bx
3 , by

3 and b4 can be computed as,

bx
3(x, y, l) = 1− 1

1 + e−5×|(r̂in(x−1,y,l)−r̂in(x,y,l))| ,

by
3(x, y, l) = 1− 1

1 + e−5×|(r̂in(x,y−1,l)−r̂in(x,y,l))| ,

b4(x, y, l) = 1− 1
1 + e−5×|(r̂in(x,y,l−1)−r̂in(x,y,l))| .

(6.8)

where, r̂in corresponds to reconstructed HSI using the initial estimate of abun-

dance maps and endmembers.

6.3 Unmixing using modified Autoencoder

In the proposed approach, autoencoder is modified to represent LMM and also to

apply spatial and spectral regularizations. In order to apply LMM, the decoder is

considered as linear. With decoder weights representing the endmember matrix,

the following cost is used to obtain non-negative endmembers which can be given

as,

J(M) = ‖abs(M)−M‖2
F. (6.9)
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Abundance values which represent the hidden units of the network have to follow

non-negative and sum to one constraint. To apply non-negativity on the hidden

unit, we use ReLU as activation function and the sum-to-one constraint is applied

using an approach as given in FCLS [58].

Spatial regularization is carried out on the hidden units of the autoencoder

while the spectral regularization is applied on decoder weights. Besides that,

both regularizations are applied on the reconstructed HSI data. To apply these

regularizations, IGMRF parameters are calculated using initial estimates of abun-

dance and endmembers. Here, we use VCA [44] to obtain the initial estimates

of endmembers and abundances are estimated using FCLS [58]. As given in Eqs.

6.4 and 6.6, bx
1 and by

1 are calculated using initial abundances while b2 is calculated

using initial endmembers and, bx
3 ,by

3 and b4 are calculated using reconstructed HSI

generated by the initial abundances and endmembers.

To perform unmixing the autoencoder is trained using combined cost function

resulting from Eqs. 6.2, 6.3, 6.5, 6.7 and 6.9. Thus the final cost function to be

minimized is given by,

J(W , M) =
1
2
‖MS− Ŷ‖2

F

+ ∑
p

∑
(x,y)

{
bx

1(x, y, p)
{
(α(x− 1, y, p)− α(x, y, p))2

}
+ by

1(x, y, p)
{
(α(x, y− 1, p)− α(x, y, p))2

}}
+ ∑

p
∑

l

{
b2(l, p)

{
(M(l − 1, p)−M(l, p))2

}
+ ∑

l
∑
(x,y)

{
bx

3(x, y, l)
{
(r̂(x− 1, y, l)− r̂(x, y, l))2

}
+ by

3(x, y, l)
{
(r̂(x, y− 1, l)− r̂(x, y, l))2

}}
+ ∑

l
∑
(x,y)

{
b4(x, y, l − 1)

{
(r̂(x, y, l − 1)− r̂(x, y, l))2

}
+ ‖abs(M)−M‖2

F.

(6.10)

To carry out the optimization, we use the Adam optimizer [87] as done earlier.
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6.4 Experimental Results

In this section, we present experimental results to demonstrate the efficacy of the

proposed approach. Here, we conduct two experiments to test the performance

of the our approach. In the first experiment, we generate synthetic data using

the spectral signatures of the U.S. Geological Survey (USGS) digital spectral li-

brary [89], and perform the experiments by considering different noise levels in

the data. We then show the results of another experiment on Japser Ridge real

data set [144], where the true endmembers are available. We use root-mean-squre-

error (RMSE) [93], abundance angle mapper (AAM) [94] and abundance informa-

tion divergence (AID) [95] as quantitative measures for abundances, and spectral

angle mapper (SAM) [94] and spectral information divergence (SID) [95] as quan-

titative measures for endmembers. The ideal values for all these measures are

zero. Note that we have used three different data sets when compared to chap-

ters 3 and 4, where we estimate abundances. One of the data sets is common.

We could have compared our results of abundance estimation with methods dis-

cussed in chapter 3 and 4. However, it is clear that, since endmembers are not

known here, the accuracy of estimation is lesser and hence we avoid comparing

our results with the proposed methods in chapter 3 and 4.

6.4.1 Experiments on synthetic data

We generate synthetic HSIs using the Hyperspectral Imagery Synthesis tools [112]

by using the linear mixing of five signatures of the USGS library [89]. The signa-

tures of five materials are: cynide potassium, cynide zink, ammonium chloride,

green slime, and cynide trihydrate. The spectral signatures of 480 contiguous

bands are recorded and these are in the spectral range of 400− 2500nm. We gen-

erate an image cube of the size 100× 100× 480 using the abundance maps of size

100 × 100 × 5. The ground truth abundance maps are shown in Figure 6.2 (a).

These abundance maps generated using synthesis tools contain both the smooth

regions as well as edges.

To show the qualitative comparison, the estimated abundance maps using the
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Table 6.1: Quantitative comparison of spectral unmixing on synthetic data.

Measure Algorithm SNR = 30dB SNR = 20dB SNR = 10dB SNR = 0dB

RMSE [93]

VCA [44] 0.0882 0.0847 0.1215 0.1421
RoCONMf [72] 0.0621 0.0713 0.1023 0.1231
uDAS [143] 0.0618 0.0688 0.0917 0.1017
Proposed 0.0506 0.0522 0.0685 0.0920

AAM [94]

VCA [44] 10.8919 11.7363 15.1311 18.1208
RoCONMf [72] 5.4483 8.4213 14.2761 15.9187
uDAS [143] 4.8712 7.2161 12.7156 13.8234
Proposed 4.0032 6.2031 11.5421 13.6534

AID [95]

VCA [44] 2.6280 3.8489 4.1371 5.2135
RoCONMf [72] 1.2343 2.9132 4.1008 5.2051
uDAS [143] 0.9795 2.8327 3.3512 4.0072
Proposed 0.8976 2.6013 3.2712 3.6831

SAM [94]

VCA [44] 5.7549 6.5536 8.0189 8.5718
RoCONMF[72] 4.0016 5.8312 7.9122 8.0131
uDAS[143] 3.9917 4.7490 6.8316 7.2315
Proposed 3.2196 3.5518 6.1669 7.1809

SID [95]

VCA [44] 0.0627 0.0780 0.1109 0.2137
RoCONMf [72] 0.0718 0.0691 0.1017 0.1801
uDAS [143] 0.0528 0.0512 0.0802 0.1633
Proposed 0.0523 0.0507 0.0764 0.1521

VCA-FCLS [44, 58], uDAS [143] and the proposed method are displayed in Figure

6.2 (b), (c) and (d), respectively, for the low signal-to-noise ratio (SNR) of 10dB

in the data. It can be seen that spatial patterns in the abundance maps estimated

using the proposed approach are consistent with the ground truths displayed in

Figure 6.2 (a). In Figure 6.3, we show the plots of spectral bands vs reflectance.

Here, reflectance is the endmember signature. These plots represent the estimated

endmembers signatures. One can observe that the plots of estimated endmem-

bers appear closer to the ground truth when compared to other approaches. The

quantitative comparison for the synthetic data is shown in the Table 6.1 for the

different SNR levels. Looking at these quantitative measures, we observe that our

approach performs better when compared to the other state-of-the-art methods as

illustrated in the Table 6.1.

6.4.2 Experiments on Japser Ridge data

The Japser Ridge data set consists of HSI of size 512× 617 pixels and there are

224 bands which are in the spectral range of 380− 2500nm with a spectral reso-
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cynide_potassium cynide_zink ammonium_chloride green_slime cynide_trihydrate

(a) Ground truth

(b) VCA-FCLS [44, 58]

(c) uDAS [143]

(d) Proposed

Figure 6.2: (a) Ground truth abundance maps for synthetically generated data at
10 dB SNR. Estimated abundance maps using (b) VCA-FCLS [44, 58], (c) uDAS
[143], (d) Proposed.

lution of 9.46nm. The bands 1− 3, 108− 112, 154− 166 and 220− 224 represent

the atmospheric distortion and water absorption. Hence, after removing these

bands, 198 bands are used for the experiments which consists of four endmem-

bers : Tree, Water, Dirt, and Road. The ground truth abundance maps for each of

the endmembers are shown in Figure 6.4 (a) and the estimated abundance maps

using different approaches are shown in the Figure 6.4 (b), (c) and (d), where we

observe that the abundance maps estimated using the proposed approach are vi-

sually closer to the ground truth shown in Figure 6.4 (a), as well as consistent with

the VCA-FCLS [58] and uDAS [143]. The extracted endmembers using different

methods are shown in Figure 6.5 which also has the endmembers extracted using

the proposed method. It can be clearly seen that the extracted endmebers using
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Figure 6.3: Estimated endmembers using different approaches and the ground
truth considering synthetic data

the proposed method better match the ground truth when compared to other ap-

proaches. The quantitative measures for this experiment are shown in Table 6.2.

Here also we see that the results for the proposed approach are superior when

compared to other methods.
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Tree Water Dirt Road

(a) Ground truth

(b) VCA-FCLS [44, 58]

(c) uDAS [143]

(d) Proposed

Figure 6.4: (a) Ground truth abundance maps for real jasper Ridge data set. Es-
timated abundance maps using (b) VCA-FCLS [44, 58], (c) uDAS [143], (d) Pro-
posed.
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Figure 6.5: Estimated endmembers using different approaches and the ground
truth considering Jasper ridge data

Table 6.2: Quantitative comparison of spectral unmixing on Jasper ridge data.

Algorithm
Measure

RMSE [93] AAM [94] AID [95] SAM [94] SID [95]

VCA-FCLS [44, 58] 0.1535 14.1353 4.1322 9.2681 0.1432

RoCONMF [72] 0.1491 12.2337 4.1023 8.5627 0.1301

uDAS [143] 0.1372 11.3101 4.0921 8.2219 0.1161

Proposed 0.1279 10.0836 3.0986 7.9457 0.1082

6.4.3 Experiments on HYDICE Urban real data

HYDICE Urban real data has a size of 307× 307 pixels and there are 210 bands

and after removal of bands with distortion and absorption 162 bands are used for

this experiment. This data consists of four endmembers, namely: Asphalt, Grass,

Tree, and Roof. For qualitative comparison, we show the ground truth along with

estimated abundance maps using the he VCA+FCLS [44, 58], uDAS [143] and the

proposed method which are shown in Figure 6.6. One can see that the abundance

maps estimated by the proposed approach are more consistent with the ground

truth than those estimated by other approaches.
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Asphalt Grass Tree Roof

(a) Ground truth

(b) FCLS [58]

(c) uDAS [143]

(d) Proposed

Figure 6.6: (a) Ground truth abundance maps for real HYDICE Urban data set.
Estimated abundance maps using (b) VCA+FCLS [44, 58], (c) uDAS [143], (d) Pro-
posed.
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Figure 6.7: Estimated endmembers using different approaches and the ground
truth considering HYDICE Urban data

Table 6.3: Quantitative comparison on HYDICE Urban data.

Algorithm
Measure

RMSE [93] AAM [94] AID [95] SAM [94] SID [95]

VCA-FCLS [44, 58] 0.2544 7.1347 4.5123 9.8681 0.2413

RoCONMF [72] 0.2493 6.8135 4.1103 9.5847 0.2312

uDAS [143] 0.2381 6.0312 4.1029 9.1219 0.2109

Proposed 0.2161 5.9813 4.0965 8.7467 0.2091

The comparison of the extracted endmembers plots using different methods

along with ground truth are shown in Figure 6.7. Here, the endmembers extracted

by the proposed approach are almost similar to the ground truth, whereas end-

members extracted by other methods appear slightly different from the ground

truth. The quantitative measures for this experiment are shown in Table 6.3 which

indicates that the proposed approach performs better than other approaches.
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6.5 Conclusion

In this chapter, a novel approach for spectral unmixing using autoencoder consid-

ering spatial as well as the spectral regularizations is proposed. We use IGMRF

prior to impose the constraints when using an autoencoder. To train the autoen-

coder, we have used backpropagation with Adam optimization. Use of IGMRF

regularizer improves the efficacy of spectral unmixing that refines the endmem-

bers as well as abundance maps. Synthetic as well as real HSI data are used in our

experimentations and the outcomes validate the effectiveness of our approach.

aa2

78



CHAPTER 7

Conclusions and Future Research Directions

The low spatial (ground) resolution hyperspectral imagery has mixed pixel phe-

nomena, leading to a poor scene analysis. Spectral unmixing techniques decom-

pose reflectance at each pixel location to endmembers and their abundances. Reg-

ularization based techniques give an accurate estimation that results in better

quantitative analysis of the remotely acquired scene data. This thesis has focused

on providing regularization based frameworks to better estimate unmixing com-

ponents of hyperspectral data. In all our work, hyperspectral data is considered

using linear mixing model. In this thesis, we have proposed regularization and

machine learning based approaches for spectral decompositions as well as spatial

resolution enhancements.

We have proposed a novel approach to estimate abundance maps by energy

minimization framework by capturing spatial dependencies present in abundance

maps. In this work, a new discontinuity preserving prior is proposed by modify-

ing the expressions to compute Inhomogeneous Gaussian Markov random field

(IGMRF) parameters. The modified IGMRF prior is better suited for capturing

spatial dependencies within the abundance maps.

In order to capture global dependencies present in abundance, we have further

incorporated a sparsity-induced prior that provides sparse representation using

the K- singular value decomposition (K-SVD) based adaptive dictionaries. The ex-

periments conducted on two synthetic and two real datasets confirm the efficacy

of the proposed approach. The abundance estimation performance is significantly

improved by using sparsity induced prior along with IGMRF prior in the two-step

iterative algorithm.
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We then propose a novel approach to enhance the spatial resolution of hy-

perspectral image (HSI) by using spectral unmixing, transfer learning and spatial

regularization. We use the spatial information available in abundance maps of

the HSI data, and transfer the knowledge to super-resolve HSI. The experiments

conducted on synthetic as well as real HSI give better results for the proposed

method when compared to other state-of-the-art methods. The results demon-

strate the capability of transfer learning and regularization to increase the spatial

resolution of HSI images without much compromising on the spectral details. It is

unlike many existing approaches having the need of auxiliary HR images which

is difficult to obtain in practice.

In our final work, we estimate both endmembers and abundances from the

given HSI data where we have proposed a novel approach for spectral unmixing

using autoencoder considering spatial as well as the spectral regularizations. We

use IGMRF prior to impose these constraints within the proposed autoencoder

based method. To train the autoencoder, we have used the backpropagation al-

gorithm with Adam optimizer. Use of IGMRF regularizer improves the efficacy

of spectral unmixing which refines the abundance maps as well as endmembers.

Synthetic and real HSI data are used in our experimentations and outcomes of the

same confirm the effectiveness of the proposed approach.

Future Research Directions

Considering the work done in this thesis, one may explore the following future

directions:

• We know that a satellite can cover a vast area of the earth and can collect

massive data. However, the data analysis requires ground truth informa-

tion which can be collected by ground surveys and laboratory experiments

on materials. So, for better earth observation, one can use online learning.

For example, as proposed in chapter 6, spectral decomposition can be per-

formed on the selected area, and the proposed network can be fine-tuned

with newly collected data. It would lead to an interesting research direction

of streamed data analytics for hyperspectral data.

• In chapter 6, we have proposed unsupervised spectral unmixing framework
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to extract endmembers and their abundances using spatial and spectral reg-

ularizations. We consider the number of endmembers as prior knowledge.

However, number of endmembers is unknown and can be restricted by im-

posing additional constraints such as sparsity on the hidden unit, and thus

an optimum subspace can be found for better spectral unmixing.

• We use transfer learning for hyperspectral image super-resolution. One can

explore supervised deep learning based model if enough training data is

available.

• In the current time, Graphical processing unit (GPU) developer kits are avail-

able. These can be used to make the real-time prototype for spectral decom-

position using the trained models. In chapter 6, autoencoder is trained for

joint estimation of endmembers and their abundances. The learned encoder

weights can be used to estimate abundances for new reflectance values. So,

one can integrate these weights in the GPU developer kit, and then estimate

the abundances for the given reflectance in real time applications.
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neighborhood regression for fast super-resolution,” in Computer Vision –

ACCV 2014, D. Cremers, I. Reid, H. Saito, and M.-H. Yang, Eds. Cham:

Springer International Publishing, 2015, pp. 111–126.

[136] Y. Yuan, X. Zheng, and X. Lu, “SpectralâĂŞspatial kernel regularized for
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