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Abstract

In the last couple of decades, there has been an exponential growth in the pro-

cessor, cache, and memory features of computer systems. These hardware fea-

tures play a vital role in determining the performance and power of a software

application when executed on different computer systems. Furthermore, any

minor alterations in hardware features or applications can alter and impact the

performance and power consumption. Compute-intensive (compute-bound) ap-

plications have a higher dependence on processor features, while data-intensive

(memory-bound) applications have a higher dependence on memory features. To

match the customized budgets in performance and power, selecting computer

systems with appropriate hardware features (processor, cache, and memory) be-

comes extremely essential. To adhere to user-specific budgets, selecting computer

systems requires access to physical systems to gather performance and power

utilization data. To expect a user to have access to physical systems to achieve

this task is prohibitive in cost; therefore, it becomes essential to develop a virtual

model which would obviate the need for physical systems.

Researchers have used system-level simulators for decades to build simulated

computer systems using processor, cache, and memory features to provide es-

timates of performance and power. In one approach, building virtual systems

using a full-system simulator (FSS), provides the closest possible estimate of per-

formance and power measurement to a physical system. In the recent past, ma-

chine learning algorithms have been trained on the above-mentioned accurate FSS

models to predict performance and power for varying features in similar systems,

achieving fairly accurate results. However, building multiple computer systems

in a full-system simulator is complex and an extremely slow process. The prob-

xi



lem gets compounded due to the fact that access to such accurate simulators is

limited.

However, there is an alternative approach of utilizing the open-source gem5

simulator using its emulation mode to rapidly build simulated systems. Unfortu-

nately, it compromises the measurement accuracy in performance and power as

compared to FSS models. When these results are used to train any machine learn-

ing algorithm, the predictions would be slightly inaccurate compared to those

trained using FSS models. To make this approach useful, one needs to reduce the

inaccuracy of the predictions that are introduced due to the nature and design of

the gem5 functionality and as a consequence of this, the variation introduced due

to the types of applications, whether it is compute-intensive or data-intensive.

This dissertation undertakes the above-mentioned challenge of whether one

can effectively combine the speed of the open-access gem5 simulated system along

with the accuracy of a physical system to acquire accurate machine learning pre-

dictions. If this challenge is met, a user would be able to successfully select a

system either in the cloud or in the real world to run applications within ones’

power and performance budget.

In our proposed methodology, we first created several gem5 models using

the emulation mode for available systems with varying features like the type of

processors (Instruction Set Architecture, speed and cache configuration), type of

memory its speed and size. We executed compute-intensive and data-intensive

benchmark applications to these models to procure performance results. In the

second step, 80% of the models, generated using the gem5 simulator in the em-

ulation mode, were used to train machine learning algorithms like linear, sup-

port vector, Gaussian, tree-based and neural network. The remaining 20% models

were used for the purpose of performance prediction. It was found that the tree-

based algorithm predicted the closest performance values compared to the simu-

lated systems’ results obtained using the above-mentioned gem5 model. We sub-

sequently used hardware configuration and application execution statistics data

generated by the gem5 model and fed it to the Multicore Power Area and Timing

(McPAT) modeling tool which would estimate power usage.

xii



To check the accuracy of the gem5 simulator results, the above-mentioned

benchmark applications were fed to real systems with identical features. The

given application code was modified to invoke the Performance Application Pro-

gramming Interface (PAPI) function to measure the power consumption. There

was a sizeable difference between the results of the gem5 model and the real sys-

tem in terms of performance and power.

We conceptualized the idea of using scaling and transfer learning in the con-

text of bridging the difference between predicted values to actual values. We pro-

posed a scaling technique that can establish an application-specific scaling factor

using a correlation coefficient between hardware features and performance/power.

This scaling factor would capture the difference and apply it to a set of predicted

values to conform to those of the physical system. The results demonstrate that

for selected benchmark applications the scaling technique achieves a prediction

accuracy of 75%-90% for performance and 60%-95% for power. The accuracy of

the results validates that the scaling technique effectively attempts to bring pre-

dicted performance and power values closer to that of physical systems to enable

the selection of an appropriate computer system(s).

Another method to achieve better prediction values is to develop a model

based on the existing transfer learning technique. To use the transfer learning

method, we train the decision tree algorithm based on two sets of data; one, from

a simulated system and the second from a closely matching physical system. Us-

ing trained models, we attempt to predict the performance and power of the target

physical system. The target system is different from the source physical system

used for training the machine learning algorithm. This model uses performance

and power from a source physical system during training to bring predicted val-

ues closer to that of the target system. The results from the transfer learning tech-

nique for selected benchmark applications display the mean prediction accuracy

for different target systems to be between 10% to 50%.

In this work, we have demonstrated that our proposed techniques, scaling

and transfer learning, are effective in estimating fairly accurate performance and

power values for the physical system using the predicted values from a machine

xiii



learning model trained on a gem5 simulated systems dataset. Therefore, these

techniques provide a method to estimate performance and power values for phys-

ical computer systems, with known hardware features, without a need for access

to these systems. With estimated performance and power values coupled with

hardware features of the physical systems, we can select system(s) based on user-

provided budget/s of performance and power.
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CHAPTER 1

Introduction

Technological advancements in hardware features of computer systems, namely

processor, cache, and memory, provide us with many options to acquire computer

system(s) and they can be sourced either from commercially-off-the-self (COTS)

or the cloud. These hardware features of computer systems largely determine

the performance (execution runtime) and power consumption of a software ap-

plication when executed on a computer system, as shown in figure 1.1a. Thus,

a software application executed on computer systems with varied hardware fea-

tures results in dissimilar performance and power consumption. Furthermore,

various types of applications depend on different hardware features, resulting in

an increased dissimilarity in performance and power consumption. For exam-

ple, processor features have a greater influence on the performance and power of

compute-intensive (compute-bound) applications, while memory features have

a larger impact on the data-intensive (memory-bound) application’s performance

and power consumption. Due to the diversity in systems’ performance and power

consumption, a user with an application-specific performance and power bud-

get requires suggestions for a suitable computer system(s) as shown in figure

1.1c. Therefore, it is crucial to select computer system(s) with appropriate hard-

ware features that fit the user’s budget for application performance and power, as

shown in figure 1.1b.

To select computer systems that conform to the user-provided budget, one re-

quires access to physical systems in large quantities/numbers with varied hard-

ware features to execute software applications and collect performance and power

consumption data. Therefore, to collect data from a large number of physical
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(a) Software Application’s Performance and
Power Consumption on Computer Systems
with Different Hardware Features

(b) Selecting Computer System for an Applica-
tion without having access to Physical Systems

(c) Computer System Selection for an Application with User Specified
Runtime and Power Budget

Figure 1.1: Problem Formulation

computer systems, systems need to be procured. However, expecting a user to

procure a plethora of physical systems would be prohibitively expensive. There-
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fore we need a methodology that provides accurate estimates of the application’s

performance and power for physical computer systems without having access to

them, a hard problem to solve. Over the years, academic and industry partners

have collaborated to design modeling techniques to estimate the performance and

power of systems with varying hardware features [3] [4] [5]. Furthermore, many

researcher’s have used simulators to simulate real systems [6] [7] [8] [9] [10] [11]

[12] [13]. Thus, we aim to: first, construct simulated systems with real systems’

features and collect approximate performance and power consumption by execut-

ing compute-intensive and data-intensive applications. Second, build models to

accurately estimate the performance and power consumption of physical systems

(without physically accessing them) for the approximate values collected from

simulated systems. Third, we validate the accuracy of our model by compar-

ing estimated performance and power consumption to the actual values collected

from physical systems. Finally, use the estimated performance and power values

to address the computer system selection problem.

1.1 Performance and Power Prediction Modeling

Performance and power modeling is an active research area due to its benefits

for hardware-software co-development. System architects and system software

developers use these models to improvise hardware features or applications by

understanding the interactions between the system architectural features and the

application performance and power [11]. Researchers have built empirical mod-

els using supervised machine learning algorithms for performance and power

modeling. The first task in supervised machine learning is to build a dataset from

computer systems’ hardware features and the actual performance and power col-

lected from simulated or physical systems by executing applications. The hard-

ware features are used as input features while the actual performance and power

consumption are the expected output for the machine learning model. The second

task is to train the machine learning algorithm using the samples from the dataset

with input features and the actual output. Once trained, the machine-learning al-
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gorithm is supplied with only the input features (without the output) from sam-

ples not utilized during training to predict the output. The research community

has proposed performance and power prediction models using various machine

learning algorithms. The prediction accuracy of each model is determined by

the type of machine learning algorithm and the dataset used for modeling. For

example, the linear regression-based model in [14] [15], the tree-based model in

[6] [14] [15] and the neural network-based model in [4] [14] [16] [17] each have

different prediction accuracy. These research papers utilize a particular machine

learning algorithm for prediction modeling. However, we evaluate widely used

machine learning algorithms for their accuracy to provide accurate performance

and power prediction.

We observe two possible trends in the development of performance and power

prediction models using machine learning. In the first trend, a different set of ap-

plications are used to build prediction models while keeping the computer system

unchanged [11] [18] [19]. In this case, the focus is to understand how types of ap-

plications, compute-intensive or data-intensive, depend on hardware features of a

computer system resulting in diverse performance and power. The second trend

uses a different set of computer systems having a diverse processor, cache and

memory features during model training and prediction while keeping the appli-

cation fixed, known as cross-platform prediction [3] [4] [5] [17]. This trend focuses

on understanding how the feature changes in the processor, cache, and memory of

various computer systems impact the performance and power. Our work focuses

on both aspects by considering physical systems with disparate hardware features

and selecting applications with different computation and data access patterns.

1.1.1 Cross Performance and Power Prediction

Cross-platform prediction models estimate the performance and power of com-

puter systems with hardware features or instruction sets that are dissimilar to the

ones used during training. A cross-platform prediction model may use hardware

features either from one system only or from multiple systems during training.

For example, work in [3] has proposed models to predict the performance and
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power of ARM-based systems, utilizing performance counters as input features,

collected during application execution on x86-based systems. Similarly, work in

[5] uses two x86-based HPC systems, one as the source and the other as the target,

to train the model from the features of the source system and perform predictions

for the target system. The modeling work in [20] predicts a GPU’s performance

from features collected from an x86-based general-purpose system. On the other

hand, [4] uses four systems with x86-based and ARM-based instruction-set with

disparate hardware features to perform training from three systems while pre-

dicting the remaining fourth system. The work in [21] uses features of x86-based

systems to predict the performance of the cloud systems.

All of these cross-platform prediction models have used physical systems for

both source platforms for training and the target platforms for prediction. In con-

trast, we use cross-platform prediction to estimate the physical systems’ perfor-

mance and power from simulated systems. The work in [3] and [4] have used

performance counters as input features to the machine learning model, which

captures how each of the applications depends upon processor, cache or memory

hardware features of the system. However, collecting performance counters re-

quires the execution of an application on physical systems. In contrast, we use

processor, cache and memory features directly to eliminate the need for physical

systems. Furthermore, [3] and [4] have built two separate models, one to pre-

dict performance and the other to predict power. Alternatively, we categorize the

performance and power prediction problem as a multi-target prediction due to

the relationship between the performance (runtime) of the application and how

much power it consumes. Therefore, we aim to build a single machine learning

model to predict performance and power simultaneously for each application,

called multivariate performance and power prediction models.

1.1.2 Prediction with Transfer Learning

The widespread use of machine learning models has given rise to new techniques

such as transfer learning [22] for performance and power prediction. A transfer

learning technique can retain the acquired knowledge during the model’s training
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from one task and apply the knowledge for a prediction in a subsequent new

but similar task with equivalent datasets. The advantage of using the transfer

learning technique for a new task is that it does not require retraining and enables

the prediction with an incrementally generated dataset.

The works in [23], [24], and [5] have demonstrated that the model trained us-

ing 100% of samples from source HPC system and only 1% from target system

performance data can predict 99% of the target HPC system performance data.

Similarly, in [25] and [26] transfer learning is utilized to train the model in an

online mode with incremental data as new data is available for improving the

prediction accuracy of a given task. These transfer learning works utilize physical

systems during training as well as during prediction. By contrast, we use transfer

learning models to train the model from simulated systems for the prediction of

physical systems.

1.2 Modeling Challenges Due To an Applications De-

pendence on System Features

Accurate performance predictions of a software application on a computer sys-

tem is a complex task. This is due to the non-terminating and non-deterministic

nature of computer systems; while the behavior of applications is terminating,

deterministic and platform-independent [27] [28]. The performance of an appli-

cation depends on application features, hardware features of a computer system,

the runtime environment, and their mutual interactions [28]. Implementation

of algorithms in the application and input problem size define application fea-

tures. Processor and memory hierarchy features such as processor clock speed,

the number of cores, cache features, memory size, memory access speed, memory

type characterizes the computer systems. Runtime environments consist of sys-

tem software tools essential to execute software applications, such as operating

systems and compilers.

We define the application’s performance in terms of "execution cost," which

is the execution time, that is, "runtime" to complete a task on a computer system
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(hardware model). Applications are characterized as compute-bound (compute-

intensive), memory-bound (data-intensive) or in combination (compute-plus-memory-

bound) according to the roofline-model (figure 1.2) discussed in [2] [29]. Compute-

bound applications are dominated by computation (floating-point operations) rather

than data access, performing multiple computations for each byte of data ac-

cess. Therefore, compute-bound applications have a higher dependence on pro-

cessor features. On the other hand, memory-bound applications are dominated by

data access from memory rather than from computation, causing higher depen-

dence on memory features. Although several applications are compute-bound or

memory-bound, many fall into the third category (compute-plus-memory-bound)

when both computation and data access operations are equally important.

Figure 1.2: Cache-aware Roofline Model [Figure taken from PICSAR application
article [1] which uses cache aware roofline model from [2]]

Performance of an application on a specific computer system’s hardware is

determined by a code balance (Bc) of an application and machine balance (Bm)

of the computer system, which is defined as min(1, Bm
Bc
). Code balance (Bc =

data tra f f ic [bytes]/ f loating point ops [ f lops]) is a good measure to characterize

an application [30]. Bc >> 1 indicates an application is memory-bound whereas

Bc << 1 indicates a compute-bound application. Machine balance (Bm = Memory

Bandwidth [GWords/sec]/Peak Per f ormance [GFlops/sec]) characterizes the com-

puter system’s hardware. A computer system hardware with higher Bm has a bet-

ter bandwidth for faster data access from memory, whereas a lower Bm indicates
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better processing speed. Thus, a computer system with a higher machine balance

is desirable for memory-bound applications, whereas a lower machine balance

system is suitable for compute-bound applications.

1.3 Motivation: Leverage Simulated Systems To Model

Performance and Power for Physical Systems

To select computer system(s) that match user-provided budgets of performance

and power for an application, requires access to a multitude of computer systems

with diverse hardware features to execute an application and gather performance

and power consumption. However, expecting a user to have physical systems as

described above at their disposal is impractical. Therefore, we need a methodol-

ogy to predict performance and power for physical systems without executing an

application on the physical systems.

Over the years, researchers have used simulators to build systems with hard-

ware features from real systems to gather performance and power consumption

proportional to real systems. For example, PTLSim is a cycle-accurate full-system

simulator with support of only x86 instruction-set indicated by [31]. SimpleScalar

is primarily a processor simulator used by [6] and [7] which supports various

instruction-set and processor designs. The BookSim and MultiSim simulators

used by [12] and [13] mainly deal with simulating on-chip networks. However,

we require a simulator that simulates out-of-order processors with multiple in-

struction sets (x86, ARM, etc), and multiple levels of cache hierarchy and various

memory modules.

The gem5 simulator [32] has the capability of handling out-of-order proces-

sors, multi-level cache hierarchy and has a collection of memory modules. Com-

puter systems can be built in a gem5 simulator using processor features such as

clock speed, cores, memory features such as memory types (DDR2, DDR3, DDR4),

memory speed, size and cache features. It also supports building systems with

different instruction-set architecture (ISA) such as x86, ARM. The gem5 simula-

tor is an open-source well-accepted cycle-accurate simulator used by academia
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and industry architecture researchers [8] [9] [31] [33] [34] [35] [36] [37] to build

systems. When an application is executed on gem5 simulated systems, the logs

provide performance (runtime); however, collecting power for gem5 simulated

systems is not a trivial matter. Work in [9] [33] [35] has shown that the McPAT

(Multicore Power, Area, Timing) [38] tool used in conjunction with gem5 provides

fair estimates of power consumption for applications executed on gem5 simulated

systems. Hence, we leverage gem5 simulated systems logs to collect the perfor-

mance (runtime) and McPAT logs to collect power consumption for application

execution.

The common trend is to build simulated systems using a full system simulator

(FSS). The work in [31] shows that the systems built with the full-system mode

in a gem5 simulator provide close estimates of the application’s performance to

that of the physical systems. Additionally, performance prediction models devel-

oped using machine learning algorithms trained on the FSS performance dataset

give fairly accurate predictions for systems varying in hardware features. How-

ever, constructing hundreds of computer systems with a full system simulator is

arduous and slow method/process [39] [40].

On the other hand, gem5 supports what is known as system-call emulation

mode, to construct computer systems rapidly. However, with the inherent design

differences between the emulation mode compared to the full-system mode, the

accuracy of the estimated performance and power is compromised. The focus was

therefore to estimate this difference in the accuracy of performance and power,

and to achieve this we built gem5 simulated systems using emulation mode based

on the hardware features from available real systems. On executing the appli-

cations on these gem5 simulated systems, we found a substantial difference in

performance and power estimated by the gem5 simulated systems compared to

the real systems. Hence, the challenge was to develop a methodology that took

advantage of both, the speed of constructing gem5 simulated systems using emu-

lation mode combined with modeling techniques to provide accurate predictions

for the physical systems.

There were two significant challenges in predicting the performance and power
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of the physical systems from gem5 simulated systems built with emulation mode.

The first being that the hardware features of the physical system and those simu-

lated by the gem5 simulator may not be identical. This necessitated an estimation

of performance and power for the physical system. To overcome this challenge,

we explored performance and power modeling based on machine learning al-

gorithms. We first trained the machine learning algorithm using the hardware

features, performance, and power that were collected by executing an application

on gem5 simulated systems. We then fed the hardware feature values identical to

that of the physical system to the trained machine learning algorithm to predict

the performance and power.

However, the predicted values were inaccurate estimates compared to the ac-

tual performance and power of the physical system. The inaccuracies in predic-

tion were the outcome of a machine learning model trained only from gem5 sim-

ulated systems built using emulation mode with its inherent design differences

to the full system, as stated above. Therefore, the second challenge was to im-

prove the accuracy by bringing predicted performance and power values closer to

that of the physical system’s actual performance and power values. The problem

compounded because the inaccuracies vary according to the application types,

compute-intensive or data-intensive, due to the application’s dependence on dif-

ferent hardware features. To overcome the second challenge, we introduced two

innovative techniques based on scaling and transfer learning integrated with a

machine learning model.

1.4 Thesis Problem Statement and Proposed Solutions

In this dissertation, we aim to demonstrate the possibility of combining the speed

of gem5 simulated systems constructed using emulation mode with state-of-the-

art modeling techniques to provide close estimates of performance and power for

physical systems by solving both the challenges mentioned above. We refer to

this problem as "cross performance and power prediction." An accurate predic-

tion from the cross performance and power prediction model will facilitate the
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selection of physical computer systems, by meeting the user-specified budget for

the application’s performance and power, without the need for executing an ap-

plication on physical systems. We introduce two innovative techniques based on

scaling and transfer learning to achieve this goal.

We propose a scaling technique with the assumption that access to physical

systems is unavailable. We first trained a machine learning model using the per-

formance and power dataset, collected by executing an application only on the

gem5 simulated systems built with emulation mode, which we call the "Learned

Model." To procure the estimates of performance and power for a physical sys-

tem, we provide hardware features, identical to that of the physical system, to the

learned model and to predict performance and power. However, the predicted

values are coarse estimates for the physical system because the learned model is

trained only from a simulated systems dataset. Therefore, the predicted values

are close to the performance and power consumption of the simulated system

that is built using the same physical system’s hardware features used for predic-

tion instead of actual performance and power of the physical system and thus

we calculate the difference between the two. To reduce this difference and make

the estimates accurate, we develop a mathematical model to derive a factor that

we call scaling factor. Our mathematical model determines the scaling factor de-

pending on application types, compute-intensive or data-intensive, by finding the

correlation coefficient between the hardware features and performance or power.

Finally, we applied the application-specific scaling factor to the predicted perfor-

mance and power values to get accurate estimates of the performance and power

values for the physical systems.

We introduced another technique based on the existing transfer learning method.

In this method, we used the notion of source and target systems, both being phys-

ical systems. We considered estimating the performance and power for the target

system(s) to fit in the performance and power budget provided by a user. How-

ever, our assumption for the transfer learning model was that the access to the

target system was unavailable, although access to another physical system, the

source system(s), was possible. We collected performance and power data along
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with hardware features from the source system. If a source system has identical

features to the target, it provides accurate estimates of performance and power for

the target system; however, if the source system’s hardware features were close to

that of the target system was meant to suffice. We eventually trained the machine

learning model from hardware features, performance, and power data combined

from a larger gem5 simulated systems dataset and a smaller source physical sys-

tem dataset. Once trained, the model predicts the performance and power for the

target system, only using hardware features of the target system as input. The

small percentage of source physical systems data used during model training al-

lowed the model to improve the accuracy of performance and power for the target

system. We estimated performance and power for a specific target system from

multiple machine learning models, where each model was trained from a dataset

of different source systems varying in hardware features. The source system with

hardware features close to that of the target system provides a higher accuracy

estimate than other source systems.

1.5 Thesis Contribution

The problem of selecting physical computer system(s) to meet the user-specified

application-specific performance and power budget, by predicting performance

and power for physical systems from the machine learning model trained only

on simulated systems dataset called cross performance and power prediction, is

one of its kind. This thesis presents two new techniques to address this problem.

The thesis also makes several contributions to performance and power modeling

research while presenting new techniques. In particular and major contributions

are:

• To device a solution for cross prediction, it is important to understand how

performance varies between physical systems compared to simulated sys-

tems even when both the types of systems have an identical processor, cache

and memory features. Therefore, we first introduced a "learning-based"

model to train and predict from within the same type of systems, both phys-
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ical and simulated. The learning-based model trained from physical or sim-

ulated systems’ data would be able to provide physical or simulated system

performance given the hardware features. Our learning-based model has

three phases of data collection, training and prediction. In data collection,

to build simulated systems’ datasets, we first constructed 475 simulated sys-

tems in the gem5 simulator using the system-call emulation mode. This was

done utilizing real systems hardware features like the type of processors

(instruction-set, cores, speed and cache configuration), type of memory, its

speed and size. We executed compute-intensive and data-intensive applica-

tions on these simulated systems to collect application-specific performance

from each simulated system. We assembled the known hardware features

and application-specific performance to build the application-specific sim-

ulated systems dataset. To build datasets for physical systems, ten avail-

able physical systems were selected with disparate hardware features and

we collected hardware feature values using the dmidecode utility. We exe-

cuted the same set of applications on the selected physical systems and mea-

sured the performance. Application-specific performance datasets are built

by assembling physical systems’ hardware features and performance. The

training and prediction phases were performed using two machine learn-

ing algorithms, linear regression (LR) and decision tree regression (DTR). In

the training phase, a set of LR and DTR machine learning algorithms were

trained from 80% samples from the application-specific simulated or phys-

ical systems datasets using hardware features and the actual performance,

while the prediction performed on the remaining 20% data was done us-

ing only hardware features as input. The results show that due to the non-

deterministic nature of the physical systems, the model accuracy for physi-

cal systems was lower than the model accuracy for simulated systems. Fur-

thermore, due to the high manufacturer variability of processors compared

to memory modules in physical systems, compute-intensive applications

have lower accuracy compared to data-intensive applications. It was also

observed that the DTR algorithm had higher prediction accuracy compared
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to LR in both models for simulated as well as physical systems, due to the

non-linear relationship between hardware features and performance that is

captured by DTR [41].

• We have evaluated two machine learning algorithms LR and DTR, in our

first work. However, researchers have used many machine learning algo-

rithms to build performance prediction models. Linear, tree-based, Gaus-

sian, support vector, and neural networks are classes of machine learning

algorithms. The prediction accuracy of prediction models varies depend-

ing on which class of machine learning algorithm is used as well as the

characteristics of the performance dataset. Hence, it is essential to evalu-

ate machine learning algorithms from these classes to find out which one

provides the highest prediction accuracy. In [42] [43], we assess fourteen

machine learning algorithms to identify the one that provides better predic-

tion accuracy for various benchmark applications. The result shows that the

tree-based machine learning algorithm class, including the decision tree re-

gression (DTR) algorithm, provides a higher prediction accuracy compared

to the other machine learning algorithms classes. Due to its simplicity and

intelligibility, the decision tree algorithm is the most straightforward tree-

based machine learning algorithm. DTR builds a binary tree with each non-

leaf node with a rule (condition) during the training phase, which gets eval-

uated during the prediction phase to reach the leaf node with a predicted

value. Our understanding is that the binary tree data structure makes the

decision tree algorithm learn the non-linear relationship between hardware

features and performance. To validate this understanding, we present a pro-

cess in [44] to extract the set of rules from a binary tree of trained decision

tree model tracing predicted values from the given hardware features as an

input.

• We have developed prediction models only for performance (runtime) up

till now. However, our aim is to build prediction models for both perfor-

mance and power. Therefore, we extend our learning-based model further

in [45] to include a necessary attribute that of power in addition to the per-
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formance, which we refer to as multivariate performance and power pre-

diction model. Machine learning algorithms such as linear regression (LR)

can predict only one value, therefore, it requires two models to predict per-

formance and power individually. However, algorithms such as decision

tree regression (DTR) predict performance and power simultaneously using

only one instance of an algorithm. We use the DTR algorithm to develop

multivariate performance and power prediction models because there is a

relationship between an application’s performance and how much power

it consumes. For multivariate performance and power modeling, we need

to first collect power consumption for each application executed on each

simulation or a physical system which is non-trivial. For the simulated

systems dataset, we leverage the McPAT tool in conjunction with gem5 to

collect power consumption. We then assembled the system configurations

and execution statistics generated from all 475 gem5 simulated systems and

transformed the information into a format acceptable to McPAT. We built a

simulated systems performance and power dataset from hardware features,

performance collected from gem5 logs, and power consumption collected

from McPAT for each application execution on every gem5 simulated sys-

tem. The decision tree model trained from simulated systems’ performance

and power dataset, simultaneously predicts performance and power with

an accuracy of 95% for applications used in experiments. To collect power

consumption for each application execution on the ten physical systems,

we leveraged the PAPI (Performance Application Programming Interface)

toolset. Our work in [46] shows that with some modification to the applica-

tion code, we can invoke the PAPI (API) (Application Programming Inter-

face) to collect the power consumption.

• All prediction models built so far are trained from either simulated sys-

tems datasets or physical systems datasets to perform predictions for the

same type of systems (i.e. either simulated or physical). We aim to on

the other hand build prediction models to predict performance and power

for physical systems from a model trained on simulated systems dataset,
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called the cross performance and power prediction model. We introduced

our first cross prediction model based on a scaling technique in [47] to pre-

dict the performance of the physical system from a model trained using the

gem5 simulated systems performance dataset. The cross performance pre-

diction model was further extended in [48] to include power predictions

called the "Cross Performance and Power Prediction Model with Scaling." To

implement a cross prediction model with scaling, we first built application-

specific machine learning models by training a decision tree algorithm on

simulated systems performance and power datasets for six benchmark ap-

plications from the San Diego Vision Benchmark Suite (SD-VBS) and MiBench.

We then provided hardware feature values identical to that of the phys-

ical system as an input to the trained model to predict the performance

and power of the physical system. There are dissimilarities between the

gem5 simulated systems (built with emulation mode) and physical systems.

Due to these inherent dissimilarities and compounded by the fact that the

machine learning model is trained only from the gem5 simulated systems

dataset, the predicted values therefore from the model are analogous to the

performance and power of simulated systems. But the predicted values dif-

fer by a factor from the actual values of physical systems. We calculated this

factor by the scaling technique, which we label as the "Scaling Factor." The

scaling factor has two components: a major factor that captures the dissimi-

larity in design between the gem5 simulated systems and physical systems,

and a minor factor is a deviation in the major factor which is contributed

by the variance in performance and power due to compute-intensive or

data-intensive applications and their dependence on different hardware fea-

tures. To assess the major factor, we built gem5 simulated systems using the

hardware feature values from the physical systems and collected the per-

formance and power by executing the same six benchmark applications on

these gem5 simulated systems. The mean difference between the perfor-

mance and power of these simulated systems and the physical systems is

the major factor. To derive the minor factors which are the variations in
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the major factor caused by applications’ dependence on different hardware

features, we used the correlation coefficient between hardware features and

performance or power for each benchmark application. Using the major

and minor factors, we calculated the application-specific scaling factor and

applied it to the predicted performance and power for accurate physical sys-

tems performance and power predictions for a given application. The result

demonstrates the prediction accuracy to be between 75%-90% for perfor-

mance and 60%-95% for power for all the benchmark applications.

• Our work in [46] [49] introduces two cross prediction models based on trans-

fer learning techniques, cross-platform predictions and cross-systems pre-

dictions. In the cross-platform prediction, we used alternative instruction

sets (x86 or ARM) or system architectures (Intel Core or Intel Xeon) as the

platforms, in which one platform (training platform) is used for training,

the other for predictions (prediction platform). On the other hand, in cross-

systems predictions, we train the models from simulated systems (train-

ing systems) dataset and predictions are performed for physical systems

(prediction systems). However, predictions could have lower accuracy due

to vastly different measurement ranges of performance and power for the

dissimilar platforms or system types used during training and prediction.

Therefore, models are trained using 100% training platforms or systems

datasets and 1-10% prediction platforms or systems datasets to predict the

remaining 99-90% of performance and power of the prediction platforms

or systems dataset. The cross-platform and cross-systems prediction works

in [46] [49] also evaluates univariate machine learning algorithms such as

linear regression, nearest neighbor, gaussian process regressor and multi-

variate machine learning algorithms such as decision tree, random forest,

and neural network. The result further confirmed that the tree-based mod-

els outperform the other models. We extended the cross-systems predic-

tion model based on transfer learning using the decision tree algorithm in

[44] called the "Cross Performance and Power Prediction Model with Trans-

fer Learning." In this model, we used physical systems with the notion of
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source and target systems. The assumption for the transfer learning model

was that access to source systems was possible, while access to target sys-

tems was unavailable and therefore target systems require prediction. The

transfer learning model uses a pair of source and target systems for train-

ing and prediction. We train the model from the gem5 simulated systems

dataset combined with a source system dataset to predict the performance

and power of the target system. We predict performance and power for the

same target multiple times, each time a transfer learning model is trained us-

ing an alternative source physical system dataset. The result demonstrated

that the source system having hardware features close to that of the target

system provided higher prediction accuracy. We selected the source system

that provided the highest accuracy for each target system for the final re-

sult. The result of the transfer learning model achieved the mean prediction

accuracy of 50% for all benchmark applications.

1.6 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 introduces the learning-based model based on machine learning for

performance modeling with three phases, data collection, training and prediction.

In the data collection phase, first, the work presents the process of constructing

gem5 simulated systems using emulation mode along with the challenges faced

and the solutions implemented to resolve them. It further provides a selection of

physical systems and compute-intensive and data-intensive applications to build

performance datasets for simulated and physical systems. For the training and

prediction phases, the work uses these datasets to build machine learning models

using linear regression (LR) and decision tree regression (DTR) algorithms. The

work builds separate models for simulated systems datasets and physical sys-

tems datasets for each application to show how accuracy for the same application

deviates between simulated and physical systems.

Chapter 3 evaluates the accuracy of performance prediction models built using
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14 machine learning algorithms. The work develops models using ten algorithms

from the scikit-learn library such as support vector, multiple linear regression,

ridge regression, k-nearest neighbor, gaussian process, decision tree, random for-

est, extremely randomized trees, gradient boosting, and extreme gradient boost-

ing. The remaining four are variants of a neural network built using the Keras

library. The work then provides a comparative analysis of the prediction accu-

racy from all 14 algorithms for eight compute-intensive and data-intensive appli-

cations’ performance datasets built from simulated and physical systems.

Chapter 4 introduces a multivariate machine learning model using a decision

tree algorithm to perform predictions of performance and power simultaneously.

In this work, the multivariate model is evaluated for the simulated systems per-

formance and power dataset requiring assimilation of power consumption data

from gem5 simulated systems. Therefore, the work presents a process to com-

pile the required information from gem5 simulated systems upon application ex-

ecution that is fed to the McPAT tool to compute dynamic power consumption.

The work then evaluates the prediction accuracy of multivariate performance and

power models for seven compute-intensive and data-intensive benchmark appli-

cations.

Chapter 5 introduces the cross performance and power prediction model with

scaling. The cross prediction model with scaling uses a scaling factor consisting of

two factors, major and minor, to predict physical systems performance and power

from the gem5 simulated systems dataset. The work presents the derivation of

both major and minor factors. Furthermore, the use of correlation coefficient to

determine application-specific minor factors is also presented. The work evalu-

ates the model accuracy for six compute-intensive and data-intensive benchmark

applications.

Chapter 6 introduces the transfer learning technique for cross prediction. This

work performs cross-systems prediction and cross-platform prediction using trans-

fer learning. In cross-systems prediction, the work predicts performance and

power for the physical system using a machine learning model trained from sim-

ulated systems’ dataset. On the other hand, in cross-platform prediction, the work

19



trains the model using x86-based systems data to predict performance and power

for ARM-based systems in simulated systems. Similarly, for physical systems, a

trained model from Intel Core-based systems data predicts Intel Xeon-based sys-

tems data.

Chapter 7 first extends the transfer learning model from chapter 6 to train a

machine learning model from a source physical system dataset coupled with a

simulated systems dataset for the prediction of the target physical system. The

work shows that when a machine learning is trained from a dataset of a source

physical system whose hardware features are close to that of the target physical

system, the transfer learning model provides higher prediction accuracy. Finally,

the work carries out a comparative analysis of both the cross performance predic-

tion models, scaling and transfer learning.

Chapter 8 summarizes the contributions with conclusions and outlines future

work.
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CHAPTER 2

Learning Based Performance Prediction of Ap-

plications on Disparate Computer Systems

2.1 Overview

Today, many options of computer systems are available from commercially of-

the-self (COTS) manufacturers or from the cloud to host the software. These com-

puter systems primarily vary in terms of memory and processor features. Soft-

ware execution on dissimilar systems with diverse feature values has different

performances and hardware costs. It is, therefore, crucial to select a system that

provides optimum performance for a given software within the requisite budget.

This would require an accurate performance prediction of the software on a given

system without actually running the software. In this chapter, we aim to propose

a learning-based performance prediction model for hardware configuration selec-

tion that would be best suited for the software execution time defined by a client

for a given software.

Performance prediction has always been a very important research area. Our

area of interest is performance prediction in multicore systems that are widely

used systems today. Some research works [20] [50] [51] have focused on cross-

platform performance prediction to predict the performance of an unknown ap-

plication by collecting features on one architecture while predicting the perfor-

mance for the different target architecture. A cross-platform performance predic-

tion of an unseen software for ARM-based target by collecting performance coun-

ters on an x86-based system is reported in [50]. Similarly, a cross-platform predic-
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tion of unknown software for GPU, by collecting application features (ILP, mem-

ory reference with reuse distance of two, single versus double-precision floating-

point operations, integer operations, etc.) on a general-purpose x86-based pro-

cessor is reported in [20] with an average prediction error of 26.9%. Speedup

prediction for OpenMP applications on a GPU is performed by collecting mem-

ory, computation, control-flow, etc., features from general-purpose processors are

reported in [51] with prediction accuracy of 77% to 90%. These research works

focus on predicting the performance of new software for the same target system

that was used during training. On the other hand, our motivation is to predict the

performance of the same software on new target systems unseen during training

to select the one with optimal performance.

Numerous research efforts have focused on specific hardware domains such

as GPU [15] [40] [18], cloud [21] [52], or HPC systems [5]. The effect on the perfor-

mance of ninety-seven OpenCL applications, by scaling compute units (CU) from

4 to 44 with a frequency ranging from 200MHz to one GHz and GDDR5 mem-

ory bandwidth from 38.4 to 320 GB/s by changing frequency in the range of 150

to 1250 MHz for AMD FirePro™ W9100 GPU has been reported in [40] and [18]

with a performance prediction error of 10% to 15% for new scaling factors. Work

in [21] proposes a performance prediction model that predicts the application’s

performance on a cloud platform before deployment by the amalgamation of fea-

tures from the application’s profile on a non-cloud based system collected using a

platform-independent software analysis (PISA) tool and cloud platform features

collected as cloud profile. The novel idea of rule-based auto-scaling, using the

probabilistic model, in support of the QoS performance guarantee, in the cloud

environment of an application, is proposed in [52]. Performance prediction of

mini-applications from the Mantevo suite on four large-scale HPC systems (two

IBM Blue Gene/Q and two Cray systems) has been reported in [5] with a miniFE

application with a performance prediction error of about 10%.

Many research efforts [14] [17] [53] [54] [55] have focused on utilizing per-

formance prediction to understand and improve upon certain multicore systems

characteristics. For example, [53] proposes a linear regression-based model for
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fine-grain profiling prediction of MPI applications by code block categorization

method with median prediction error of 8% to 13% on TiahHe-2 and Taub clusters

considering two NAS Parallel Benchmarks (NPB). The effect of shared resources

contention upon execution of multiple software applications on multicore archi-

tecture using performance prediction is the focus of [14] and [54]. Improvement

in a thread scheduling or task scheduling has been reported in [55] by predicting

the performance of a task to core assignment in the multicore system.

Performance prediction is applied to study the effect on software performance

based on the evolution of different computer systems in [12] [13] [16] [17]. Perfor-

mance prediction of SPEC CPU benchmarks is performed by building an artifi-

cial neural network (ANN) model that uses relevant features (System, number of

Cores, number of Chips, number of Cores Per Chip, number of Threads Per Core,

Processor clock-speed, Level 1 Cache, Level 2 Cache, Last Level Cache, Memory,

and Compiler) selected using principal component analysis (PCA) with an accu-

racy of 97.5% is reported in [17]. In [12] the effect of different network topologies

are studied for on-chip networks considering different traffic patterns using the

BookSim simulator and the reported prediction error of 8%. Online prediction of

performance in terms of the future processor cycles is performed in [16] by consid-

ering nine processor features for models built in the M-sim simulator and collect-

ing 18 execution parameters at a specific cycle interval with maximum prediction

accuracy of 70%. Design space exploration is the main goal in [13] to develop

different systems by predicting system parameter values using linear regression,

support vector machine regression and k-nearest-neighbor regression.

We have three important observations from literature survey on performance

prediction research summarized as: (1) Most of the prediction models were built

for a specific type of instruction-set-architecture; either ARM-based or x86-based

but not both. (2) Performance prediction models were built either for simulated

systems [12] [16] or for physical systems [5] [14] [55]. (3) Many of the performance

prediction research efforts used standard benchmark applications; for example,

SPEC benchmark used in [16] [17] [54] [55], NPB in [14] [53], PARSEC in [13];

thereby treating the application as a black-box.
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In this work, we proposed a machine learning-based models using linear re-

gression (LR) [7] [56] and decision tree regression (DTR) [57] for performance pre-

diction of applications on different multicore computer systems. The four im-

portant attributes of this work are: Firstly, we have built a single performance

prediction model to perform predictions for multiple instruction-set-architecture

(ISA), ARM-based and x86-based. Secondly, our performance prediction frame-

work consists of both simulated systems built using the gem5 [32] simulator and

physical systems for training as well as prediction. Thirdly, we have selected three

applications according to their known compute-intensive (compute-bound) and

data-intensive (memory-bound) patterns to consider them as white-box. Finally,

to establish the generality of the model, we have tested the performance predic-

tion model on EP (compute-bound) and MG (memory-bound) benchmarks from

NAS Parallel Benchmarks (NPB) [58] and miniFE from the Mantevo [59] suite,

mini-applications, representing real-world applications with multiple phases.

The performance prediction model results could be used to create performance-

based clusters of hardware systems, in which hardware systems with similar per-

formance will make one cluster to enable hardware selection based on the appli-

cation’s performance on each of the clusters.

The remainder of the chapter is organized as follows: Section 2.2 describes a

learning-based performance prediction model that we proposed in this chapter.

We have used two machine learning models for the performance prediction of

three applications on simulated as well as real hardware systems. Section 2.3 pro-

vides information regarding dataset construction by describing the procedure to

build computer systems in the simulator, selection of applications and generating

datasets by executing these applications on simulated and physical systems. Sec-

tion 2.4 provides insight into performing data normalization and handling both

categorical and real-valued features. Section 2.5 describes learning-based models

and how they are used to learn the relationship between the system’s hardware

features and the application’s runtime. Section 2.6 articulates the results from

learning-based models from both simulated as well as physical systems. Addi-

tionally, it provides an analysis of the result to provide insight into model selec-
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tion. Section 2.7 discusses threats to internal and external validity as well as the

limitations. Finally, section 2.8 has concluding remarks along with tasks that we

plan to continue.

2.2 Learning Based Performance Prediction Model

Accurate performance prediction of an application on a computer system is a

complex task because systems are in general non-terminating and non-deterministic,

whereas the behavior of applications is terminating, deterministic and platform-

independent [27] [28]. The performance of an application (software) depends on

a wide range of factors like the nature of the application, the hardware features

of the computer system, the runtime environment, the input (problem size), the

measurement methodology, etc. and their mutual interaction [28]. Computer sys-

tems can be characterized by processor features, memory hierarchy features, and

network features.

We define the application’s performance in terms of "execution cost," which is

the execution time, that is, "runtime" to complete a task on a computer system.

Applications are characterized as compute-bound, memory-bound or compute-

plus-memory-bound according to the roofline-model discussed in [2] [29]. Compute-

bound applications are dominated by computation (floating-point operations) rather

than data access, which means, multiple computations are performed on each

byte of data that is accessed. On the other hand, memory-bound applications

are dominated by data access from the memory rather than computation. Al-

though several applications are compute-bound or memory-bound, many fall

into the third category of compute-plus-memory-bound, in which both compu-

tation and data access operations are equally important. Application’s perfor-

mance on a specific computer system is determined by application’s code balance

(Bc) and computer system’s machine balance (Bm) which is defined as min(1, Bm
Bc
).

Code balance (Bc = data tra f f ic [bytes]/ f loating point ops [ f lops]) is a good mea-

sure to characterize an application [30]. Bc >> 1 indicates an application is

memory-bound whereas Bc << 1 indicates it is compute-bound. Machine bal-
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ance (Bm = Memory Bandwidth

[GWords/sec]/Peak Per f ormance [GFlops/sec]) characterizes a computer system;

higher Bm indicates that the system has better memory data access speed whereas

lower Bm indicates better processing speed. Therefore, a computer system with

higher machine balance is more suited for memory-bound applications, whereas

a system with a lower machine balance is a good fit for compute-bound applica-

tions.

Intuitively, we know that there is a relationship between the machine bal-

ance of computer systems and their features. For example, memory access speed

(bandwidth) will be determined by memory features such as memory clock speed,

memory size, memory type, etc. And the peak computation performance will

be determined by processor features such as processor clock speed, number of

processors, instruction set architecture (ISA), and so on. Therefore, the perfor-

mance of a compute-bound (compute-intensive) application is dictated primar-

ily by processor features, whereas memory features dictate the performance of a

memory-bound (data-intensive) application. We leverage this understanding to

employ a learning-based performance prediction model to learn the relationship

between computer systems’ hardware features and application performance. Our

approach for the learning-based performance prediction model is shown in figure

2.1.

Our learning-based performance prediction model has three phases; data col-

lection phase, learning (training) phase, and prediction (testing) phase. In the

data collection phase, we executed the chosen set of applications (say matrix mul-

tiplication, image processing, etc.) on selected computer systems and gathered

the system’s hardware features and the actual runtime as shown in figure 2.1 to

build an application-specific performance dataset. The performance dataset sam-

ples were divided into training samples and testing samples using the train-test

split ratio. In the training phase, the learning model was trained using training

samples for each application to learn the relationship between the system’s hard-

ware features and the actual performance ("actual runtime") of the same applica-

tion. We selected training samples (M) from performance dataset for the training
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Figure 2.1: Data Driven Learning-Based Performance Prediction Model

phase with feature values that represents the general population of systems avail-

able today. We denote Xj as a set of system features with categorical or continuous

values for system j, 1 ≤ j ≤ M. Categorical feature values have ordered integers

or textual data, whereas continuous feature values have real or floating-point val-

ues. We encoded categorical valued features and normalized complete feature set

Xj into X′j ∈ Rd as explained in section 2.4 to improve the performance predic-

tion model training. d in Rd represents the dimension of real-valued feature space

Xj. For example, if we use nine system features, it will be represented as R9. We

used the actual runtime of selected (M) samples denoted as yj ∈ R in the training

phase to train the model. The objective of the training phase is to find a function

=(X′j) ≈ yj∀j for which we employ machine learning regression models. At the

end of the training phase, the machine learning regression model learns function

=, the mapping between normalized system features and actual runtime of an

application, which we refer to as "Learned Model." A different implementation of

the same application (say matrix multiplication) may result in different runtimes

range; hence for this model different implementation is to be treated as a different

application and will need to be trained separately.
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In the prediction phase, we selected a new set of systems (testing samples) un-

seen during the training phase, and therefore actual runtimes of a given applica-

tion on these systems were unknown. We gathered features of these new systems

denoted as Xnew and followed the same normalization process to get X′new ∈ Rd.

Normalized system features from new systems X′new were provided as an input

to the learned model to predict the runtime ynew of a given application on new

systems using learned relationship from training phase =(X′new)→ ynew.

2.3 Dataset Construction

2.3.1 Construction of Simulation-based Systems in Gem5 Simu-

lator

Several research works have utilized various simulators to simulate real systems.

For example, [6] and [7] uses SimpleScalar, [13] uses MultiSim, [12] uses Book-

Sim. However, due to the advantages of gem5 many recent researchers [8] [9] [31]

[33] [34] [35] [36] [37] have utilized gem5 simulator. We primarily use the gem5

simulator due to its following advantages:

• The gem5 simulator has the system-call emulation mode to simulate sys-

tems rapidly. Therefore, we use system-call emulation mode instead of full-

system mode to build simulation-based systems in the gem5 simulator.

• The gem5 simulator supports processors with six different instruction-set-

architectures (ISAs), including ARM and x86.

• The gem5 simulator supports various processor types, including the out-of-

order (OoO) widely used in real computer systems.

• The gem5 simulator can be used in conjunction with McPAT to collect power

consumption for applications executed on Gem5 simulated systems.

In this section, we provide details of building the gem5 simulated systems

using system-call emulation mode which we used to build the simulated systems
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performance dataset. We also articulate the challenges faced and changes made

to the gem5 source code to overcome these challenges.

2.3.1.1 Selection of Systems

The gem5 simulated systems must represent the general population of physi-

cal computer systems available in the market today. Furthermore, gem5 sim-

ulated systems need to be characterized by their processor, cache and memory

features. Therefore, we surveyed a wide range of commercial computer systems

and categorized them into different hardware classes represented by the "H/W

class" column in table 2.1. The footnote shows the H/W class values and its

class description. For systems of each H/W class, we collected values of nine

features; three processor features, CPU speed, instruction-set-architecture (ISA),

cores, three-level cache sizes, and three memory features, type, access speed and

size. For example, class 1 systems were build using systems features of AMD

Ryzen and EPYC, class 5 systems were built using Apple systems features, class 6

systems were built based on Intel Core and so on. Table 2.1 shows feature values

that we have used to build gem5 simulated systems.

Table 2.1: Computer Systems Built in Gem5 Simulator

H/W ISA CPU Cores Mem Mem L1-l3 Cnt
Class Speed Type Access Cache

GHz MHz Size
1 x86 2-3.5 2-18 DDR4 2400-2666 32kB-64MB 50
2 x86 2.8-4.7 1-8 DDR3 1600-1866 16kB-8MB 60
3 ARM 1.7-2 4,8 DDR4 1866 32kb-8MB 15
4 ARM 1-2.7 2-8 LPDDR2 400-1866 4kB-3MB 70
5 ARM 1.1-2.34 1-4 LPDDR3 1600-1866 32kB-4MB 35
6 x86 1.3-3.5 2,4 DDR3 1600 32kB-8MB 60
7 x86 1.7-3.5 2-18 DDR4 1866-266 32kB-16MB 95
8 x86 1.3-3.5 2,4 LPDDR3 1600-2133 32kB-8MB 90

*Memory Size range 1GB to 8GB
H/W Class and its associated class of systems
1. AMD Ryzen and Epyc. 2. AMD Bulldozer and Piledriver. 3. AMD Opteron 4.
Qualcomm Snapdragon. 5. Apple. 6. Intel Core i7, i5 and i3 with DDR3 DRAM.
7. Intel Core i9, i7, i5 and i3 with DDR4 DRAM. 8. Intel Core i7, i5 and i3 with
LPDDR3 DRAM
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2.3.1.2 Challenges During Construction of Simulated Systems in Gem5

Due to the support of several instruction set architectures (ISAs) in gem5, we built

120 ARM-based systems and 355 x86-based systems in gem5, with a total of 475

systems as shown by the "cnt" column of table 2.1. However, we faced several

challenges while using other hardware features such as types of memory, three

levels of cache and so on for building systems in the gem5 simulator. In the sub-

sections below, we discuss each challenge and the solution we have applied to

resolve it. We also discuss the limitations of gem5 simulated systems compared

to the physical systems.

2.3.1.2.1 Challenge 1: Gem5 Memory Support

The gem5 simulator supports several memory modules with a diversity of mem-

ory types and access speed as shown in table 2.2. However, the challenge is that

the gem5 simulator does not support all the required memory modules with dif-

ferent memory types and access speeds to build simulation systems in the gem5

simulator that represent the surveyed commercial computer systems. To over-

come this challenge, we reviewed the gem5 source code available with open-

access and made changes to add all the required memory modules.

Table 2.2: Supported Memory Modules in Gem5 Simulator

Mem Mem Access Based On
Type MHz Datasheet
DDR3 1600, 2100 Micron MT41J512M8
DDR4 2400 Micron MT40A512M16

LPDDR2 1066 Micron MT42L128M32D1
LPDDR3 1600 Micron EDF8132A1MC
GDDR5 4000 SK Hynix H5GQ1H24AFR
HMC 2500

WideIO 200
HMB 1000

Table 2.3 shows all the memory modules with respective memory types and

access speeds added in the gem5 simulator.

The code below shows an example of the changes made to DRAMCtrl.py

python code in gem5 source to add two of the memory modules. It is evident from
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Table 2.3: Memory Modules Added in Gem5 Simulator

Mem Mem Access Based On
Type MHz Datasheet
DDR3 1066, 1333, 1866 Micron MT41J512M8
DDR4 1866, 2133, 2666 Micron MT40A512M16

LPDDR2 933, 800, 667, 533, 400, 333 Micron MT42L128M32D1
LPDDR3 1866 Micron EDFA164A1PB
LPDDR3 2133 Micron EDFA232A1MA

the code example that we needed to use specification values from the datasheet

of memory provided by the manufacturer to add memory modules in gem5. The

"Based On Datasheet" column in table 2.3 indicates the datasheets we have used

to collect the specification values.

577 c l a s s DDR3_1866_x64 ( DDR3_1600_x64 ) :

578 # 933 MHz

579 tCK = ’ 1 . 0 7 ns ’

580

581 # 8 beats across an x64 i n t e r f a c e t r a n s l a t e s to 4 c l o c k s @ 933 MHz

582 tBURST = ’ 4 . 2 8 ns ’

583

584 # DDR3−1866 13−13−13

585 tRCD = ’ 13 .91 ns ’

586 tCL = ’ 13 .91 ns ’

587 tRP = ’ 13 .91 ns ’

588 tRAS = ’ 34 ns ’

589 tRRD = ’ 5ns ’

590 tXAW = ’ 27 ns ’

591

592 # Current values from datasheet Die Rev E , J

593 IDD0 = ’ 62mA’

594 IDD2N = ’ 35mA’

595 IDD3N = ’ 41mA’

596 IDD4W = ’ 141mA’

597 IDD4R = ’ 174mA’

598 IDD5 = ’ 242mA’

599 IDD3P1 = ’ 41mA’

600 IDD2P1 = ’ 37mA’
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601 IDD6 = ’ 20mA’

602 VDD = ’ 1 . 5V ’

949 c l a s s LPDDR2_933_x32 ( LPDDR2_S4_1066_x32 ) :

950 # 466 .5 MHz

951 tCK = ’ 2 .144 ns ’

952

953 # I r r e s p e c t i v e of speed grade , tWTR i s 7 . 5 ns

954 tWTR = ’ 7 . 5 ns ’

955

956 # Default same rank rd−to −wr bus turnaround to 2 CK, @466 . 5 MHz =

2 .144 ns

957 tRTW = ’ 4 .288 ns ’

958

959 # Default d i f f e r e n t rank bus delay to 2 CK, @466 . 5 MHz = 2 .144 ns

960 tCS = ’ 4 .288 ns ’

961

962 # Current values from datasheet

963 IDD4W2 = ’ 185mA’ # 190 − 5

964 IDD4R2 = ’ 194mA’ # 220 − 194 = 26

2.3.1.2.2 Challenge 2: Gem5 Cache Support

The gem5 simulator supports a two-level cache hierarchy for systems building as

shown in figure 2.2a, whereas most commercial systems used today have a three-

level cache, a second challenge we faced in building simulated systems in gem5.

To cope with this challenge, we analyzed the source code that implements the

cache structure in gem5 and identified two problems that require resolution.

First, the current implementation of gem5 supports only two levels of cache

(L1 and L2); hence, we made code changes to add the third level cache L3. The

new L3 cache being a last-level cache in the new cache configuration will be

shared between all the processors, making it a system-level cache. However, in

the current implementation, the L2 cache is a last-level cache; therefore L2 is a

system-level cache shared by all processors, which was a second problem. Hence,

we added an option to have the L2 cache shared by all processors to make it a

system-level cache or individual L2 cache for each processor. Figure 2.2b shows
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(b) Gem5 Simulator Cache Configuration
Modified to Three-Level

Figure 2.2: Gem5 Simulator System Cache Configuration

the three-level cache configuration that we implemented in gem5.

To implement the three-level cache configuration, we first needed to support

system-level (shared) L2 cache and individual processor (non-shared) L2 cache

modes to ensure that backward compatibility with the two-level cache config-

uration. We used an option l2cache_sharedbycpu with true or false values de-

pending on whether the two-level configuration required a shared L2 cache or a

non-shared L2 cache in a three-level configuration. The code listing below articu-

lates the changes made to CacheConfig.py to check for the l2cache_sharedbycpu

option and create either system-level shared L2 cache or non-shared L2 cache for

each processor.

114 e l i f opt ions . l2cache :

115 # 22−Mar−2018 − AKM − Added Shared L2 Cache

116 # i f l2cache_sharedbycpu true then l 2 cache i s as cpu l e v e l and
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not system wide

117 i f not opt ions . l2cache_sharedbycpu :

118 # 22−Mar−2018 − AKM − Added Shared L2 Cache

119 # Provide a c lock f o r the L2 and the L1−to −L2 bus here as

they

120 # are not connected using addTwoLevelCacheHierarchy . Use

the

121 # same clock as the CPUs .

122 system . l 2 = l 2 _ c a c h e _ c l a s s ( clk_domain=system . cpu_clk_domain

,

123 s i z e =opt ions . l 2 _ s i z e ,

124 assoc=opt ions . l 2 _ a s s o c )

125

126 system . to l2bus = L2XBar ( clk_domain = system . cpu_clk_domain )

127 system . l 2 . cpu_side = system . to l2bus . master

128 system . l 2 . mem_side = system . membus . s lave

164 # 22−Mar−2018 − AKM − Added Shared L2 Cache

165 # i f l2cache_sharedbycpu true then l 2 cache i s as cpu l e v e l and not

system wide

166 i f opt ions . l2cache_sharedbycpu :

167 l 2 = L2Cache ( clk_domain=system . cpu_clk_domain ,

168 s i z e =opt ions . l 2 _ s i z e ,

169 assoc=opt ions . l 2 _ a s s o c )

170

171 l 2 . wri teback_clean = True

172 system . cpu [ i ] . addTwoLevelCacheHierarchy ( icache , dcache , l2 ,

173 iwalkcache , dwalkcache )

174 e l s e :

175 # 22−Mar−2018 − AKM − Added Shared L2 Cache

To add L3 cache to complete the three-level cache configuration, we first added

an option for L3 cache in Options.py.

101 # 21−Mar−2018 − AKM − Added L3 Cache

102 parser . add_option ( "−−l2cache −sharedbycpu " , a c t i o n =" s t o r e _ t r u e " ) #

−−l2cache option must be true to use t h i s option

103 parser . add_option ( "−−l3cache " , a c t i o n =" s t o r e _ t r u e " )

104 # 21−Mar−2018 − AKM − Added L3 Cache
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We then added L3 cache in Caches.py and cross bar switch (Xbar) in XBar.py

that will connect L3 cache to the memory.

79 # 21−Mar−2018 − AKM − Added L3 Cache

80 c l a s s L3Cache ( Cache ) :

81 assoc = 12

82 t a g _ l a t e n c y = 36

83 data_ la tency = 36

84 response_ la tency = 36

85 mshrs = 36

86 tgts_per_mshr = 12

87 w r i t e _ b u f f e r s = 8

88 # 21−Mar−2018 − AKM − Added L3 Cache

142 # 21−Mar−2018 − AKM − Added L3 Cache

143 # We use a coherent crossbar to connect mult ip le masters to the L3

144 # caches . Normally t h i s c rossbar would be part of the cache i t s e l f .

145 c l a s s L3XBar ( CoherentXBar ) :

146 # 256− b i t c rossbar by d e f a u l t

147 width = 32

148

149 # Assume t h a t most of t h i s i s covered by the cache l a t e n c i e s , with

150 # no more than a s i n g l e p i p e l i n e s tage f o r any packet .

151 f rontend_la tency = 1

152 forward_latency = 0

153 response_ la tency = 1

154 snoop_response_latency = 1

155

156 # Use a snoop− f i l t e r by defaul t , and s e t the l a t e n c y to zero as

157 # the lookup i s assumed to overlap with the frontend l a t e n c y of

158 # the crossbar

159 s n o o p _ f i l t e r = SnoopFi l te r ( lookup_latency = 0)

160 # 21−Mar−2018 − AKM − Added L3 Cache

Finally, we connected L3 cache to L2 cache on one side and memory on the

other side using the cross bar bus.

83 # 21−Mar−2018 − AKM − Added L3 Cache

84 i f opt ions . l3cache and options . l2cache :

85 p r i n t " Creat ing System wide L3 Cache "
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86 # Provide a c lock f o r the L3 and the L2−to −L3 bus here as they

87 # are not connected using addTwoLevelCacheHierarchy . Use the

88 # same clock as the CPUs .

89 system . l 3 = L3Cache ( clk_domain=system . cpu_clk_domain ,

90 s i z e =opt ions . l 3 _ s i z e ,

91 assoc=opt ions . l 3 _ a s s o c )

92

93 system . l 3 . wri teback_clean = True

94 system . to l3bus = L3XBar ( clk_domain = system . cpu_clk_domain )

95 system . l 3 . cpu_side = system . to l3bus . master

96 system . l 3 . mem_side = system . membus . s lave

97

98 # i f l2cache_sharedbycpu true then l 2 cache i s as cpu l e v e l and

not system wide

99 i f not opt ions . l2cache_sharedbycpu :

100 p r i n t " Creat ing System wide L2 Cache "

101 # Provide a c lock f o r the L2 and the L1−to −L2 bus here as

they

102 # are not connected using addTwoLevelCacheHierarchy . Use

the

103 # same clock as the CPUs .

104 system . l 2 = l 2 _ c a c h e _ c l a s s ( clk_domain=system . cpu_clk_domain

,

105 s i z e =opt ions . l 2 _ s i z e ,

106 assoc=opt ions . l 2 _ a s s o c )

107

108 system . l 2 . wri teback_clean = True

109 system . to l2bus = L2XBar ( clk_domain = system . cpu_clk_domain )

110 system . l 2 . cpu_side = system . to l2bus . master

111 system . l 2 . mem_side = system . to l3bus . s lave

112 e l i f opt ions . l2cache :

113 # i f opt ions . l2cache :

114 # 21−Mar−2018 − AKM − Added L3 Cache

2.3.1.2.3 Challenge 3: Gem5 Processor Support

The gem5 simulator supports an out-of-order (OoO) processor; however, its im-

plementation is based on five-stage pipeline Alpha 21264 processor [60] with fea-
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tures shown in table 2.4. In contrast, processors used in today’s computer systems

have pipelines with varying stages with advanced features such as vector proces-

sors. It is an unimaginable task to make the gem5 OoO processor support all the

features of several processors of today, which is a considerable challenge. There-

fore, we have constructed all the gem5 simulation-based systems using the only

available OoO processor, which is a limitation in our approach.

Table 2.4: Gem5 Simulator O3CPU Model Features

Feature Value
Pipeline stages 5

Fetch,Decode,Rename,
Issue/Execute/Writeback,

Commit
Branch Predictor Tournament (used)

Number of reorder buffer 1
Number of reorder buffer entries 192

Number of load queue entries 32
Number of store queue entries 32

Number of physical integer registers 256
Number of physical float registers 256

Functional Units IntALU-6,IntMultDiv-3
FPALU-4,FPMultDiv-2

RdWrPort - 4

2.3.2 Selection of Physical Systems

To test the approach on physical systems, we have used physical computer sys-

tems with features listed in table 2.5. We have selected these ten physical systems

with a range of values for each feature, such as cores, processor clock speed, and

in particular, eight systems with x86 instruction-set and two having ARM-based

instruction-set.

2.3.3 Applications for Workloads

The categorization of applications according to their compute and data access pat-

terns are shown in [61] [62] categorizing them in compute-bound, memory-bound
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Table 2.5: Physical Computer Systems used for Matrix Multiplication, Monte
Carlo and Quicksort

Sr ISA CPU Cores Mem Type Mem Mem L1-L3
Speed Access Size Cache
GHz MHz GB Size

1 x86 1.6 2 DDR2 667 2 32-512kB
2 x86 3.2 4 DDR3 1600 4 32kB-6MB
3 ARM 1.2 4 LPDDR3 533 1 8-512kB
4 ARM 1.7 2 LPDDR3 533 2 4kB-2MB
5 x86 3.2 4 DDR3 1600 4 32kB-6MB
6 x86 2.4 12 DDR4 1866 16 32kB-15MB
7 x86 3.2 4 DDR4 2133 4 32kB-6MB
8 x86 3.2 4 DDR3 1600 4 32kB-6MB
9 x86 3.4 4 DDR3 1600 4 32kB-6MB

10 x86 3 2 DDR3 1600 4 32kB-4MB
Configuration taken from following models
1. Intel Core 2 Duo. 2. Intel Core i54460. 3. Qualcomm ARM Cortex A53. 4.
Qualcomm snapdragon 600. 5. Intel Core i56500. 6. Intel Xeon E52620. 7. Intel
Core i56500. 8. Intel Core i53470. 9. Intel Core i53470. 10. Intel Core i76500U

or compute-plus-memory-bound. We have selected three applications having dif-

ferent compute and data access patterns. A memory-bound application matrix

multiplication from linear algebra, a compute-bound application to calculate the

value of PI using monte carlo and quicksort, a compute-plus-memory-bound ap-

plication. Each of these applications was written in C language using known

implementation or taken from standard benchmark such as MiBench [63]. Ex-

ecutable binaries of all applications were generated on the same host machine

using the GCC compiler for x86 and GCC cross compiler for ARM to eliminate

the effect of software environments such as operating systems, optimization vari-

ation, etc.

For each application, several problem sizes were considered for simulated and

physical systems. For simulated systems dataset, we have used matrix sizes of

50-200 in increments of 50 for matrix multiplication, loop iterations of 100000,

500000, 1000000 to calculate PI using monte carlo, sorting of 1000-6000 words in

an increment of 1000 for quicksort. Similarly, for the physical systems dataset, we

have used matrix sizes of 300-500 in increments of 50 for matrix multiplication,

loop iterations of 100000, 500000, 1000000,5000000 to calculate PI using monte
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carlo, sorting of 20000-40000 words in an increment of 5000 for quicksort. We

chose smaller problem sizes for the simulated systems dataset than the physical

systems dataset because even with these problem sizes, the gem5 simulator took

seven days, six days and one and half days continuous runs for matrix multipli-

cation, monte carlo and quicksort applications.

2.4 Feature Encoding and Normalization

The accuracy of a learning-based model primarily depends on the data used in

training the model. Machine-learning algorithms such as linear regression require

real-valued features with normalized values for higher prediction accuracy, which

is the focus of this section.

2.4.1 Encoding Categorical Features

As shown in section 2.3, we have selected a total of nine hardware model features.

There are seven real-valued features; processor clock speed, number of proces-

sors, L1/L2/L3 cache sizes, memory clock, memory size, and the remaining two

categorical features, ISA and memory type having text data. ISA has two possible

values but is not limited to; x86 or ARM, while memory type has several possible

values such as DDR3, DDR4, LPDDR3, etc. To convert categorical features, ISA

and memory type, into real-valued (continuous) features, we applied the dummy

encoding scheme as shown.

Ȳi = α + β1X1i + β2X2i + ... + βkXki (2.4.1)

Ȳi = mean of dependent categorical variable for ith group

Xji = value of jth dummy code for ith group

α = mean of referenced group

β j = mean of jth dummy coded group

When ISA groups values are plugged in, we get

ISA = αISA_− 1 + β1 ISA_0 + β2 ISA_1 (2.4.2)
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ISA_x86 = αISA_− 1 + β1(1) + β2(0) = α + β1 (2.4.3)

ISA_ARM = αISA_− 1 + β1(0) + β2(1) = α + β2 (2.4.4)

Dummy encoding for ISA with two values, x86 and ARM, will have two groups

represented by ISA_0, ISA_1 respectively and any other value (base or undefined)

as ISA_-1. According to [64], in dummy encoding for regression, intercept (α) will

represent the mean of the base value group ISA_-1 and the slops (β1, β2) will

represent the difference between the means of value groups ISA_0 or ISA_1 and

base group ISA_-1. In the simulated systems dataset, there is no base (Undefined)

architecture; therefore, none of the values of ISA_-1 will have one resulting in zero

means (α). On the other hand, out of 475 simulated systems, 355 are for x86, and

120 are for ARM ISAs resulting in mean values of 0.7473 and 0.2527 for dummy

coded groups ISA_x86 (β1) and ISA_ARM(β2).

2.4.2 Normalizing Feature Set

After the categorical features were encoded, all the features in our dataset were

real-valued. Due to the difference in the range of values of some of the features,

mean and variance vary, resulting in poor prediction accuracy. For example, pro-

cessor clock speed measured in GHz has much lower values (1 to 4.7) compared

to L2 cache size in kilobytes (256 to 2048). In this case, the learning model may

assign a higher (or lower) weight to L2 cache size than the processor clock speed.

A machine-learning algorithm such as a decision tree can perform equally well

with a dataset without normalization, but we normalize the dataset to consider

it for both linear regression and decision tree. We normalized all the features to

bring each feature’s values within the range [-1, 1] by applying equations 2.4.5

f eaturesnew = { f ∈ f eatures |
f − µ f

σf
} (2.4.5a)

f eaturesnew = { fnew ∈ f eaturesnew |
fnew

max(abs( fnew))
} (2.4.5b)
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2.5 Training and Prediction Model

We have used two machine-learning regression models for training and predic-

tion, linear regression [7] [56] and decision tree regression [57] from scikit-learn, a

python-based machine learning library [65]. Each of these models are explained

in this section.

2.5.1 Linear Regression Model

In the linear regression model, hypothesis is that the dependent variable y (target)

is a linear combination of independent variables from input feature set xi|1 ≤ i ≤

n as shown in equation 2.5.1

ŷ = Xw = w0 + w1x1 + w2x2 + ... + wnxn (2.5.1)

In the training phase, random value is assigned for the weight of each feature

initially for the samples selected from the dataset for training (train dataset). The

weights are then adjusted in each subsequent iterations to predict the target value

ŷ such that the sum of all errors (ordinary least square) between actual target

values y and predicted target values ŷ reduces for all samples. The learning model

stops iterating when an error is irreducible, which means weight values have been

stabilized to have minimum error value, as shown in equation 2.5.2

min
w
||Xw− y|| or min

w
||ŷ(w, x)− y|| (2.5.2)

In the prediction phase, only the input features from dataset samples selected for

prediction (test dataset) are used in conjunction with learned weights from the

training phase to predict the target y value.

2.5.2 Decision Tree Regression Model

In the training phase, the decision tree regression model recursively partitions

feature set xi|1 ≤ i ≤ n such that the samples with close target values y are on the
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same side of the tree. Let dataset at node m be represented by Q = (xm, ym) with

several possible partitions. For each candidate partition θ = (xmi , tmxi
), dataset Q

is partitioned into Qle f t(θ) and Qright(θ) (equation 2.5.3), where feature xmi values

are compared against the threshold tmxi
.

Qle f t(θ) = (xm, ym)|xmi ≤ tmxi
(2.5.3a)

Qright(θ) = Q \Qle f t(θ) (2.5.3b)

For each candidate partition, mean squared error (MSE) MSE = 1
n ∑n

i=1(yi − ȳi)
2

is calculated for the left and right partitions which is then used to calculate the

impurity function 2.5.4.

G(Q, θ) =
nle f t

Nm
MSE(Qle f t(θ)) +

nright

Nm
MSE(Qright(θ)) (2.5.4)

Out of all the candidate partitions, select the one which minimizes the impu-

rity

θ∗ = argminθ(xm,tm) G(Q, θ(xi, ti)) (2.5.5)

Recursively partition the subsets Qle f t(θ
?) and Qright(θ

?) until MSE cannot be

improved or maximum allowable depth of the tree is reached Nm < minsamples

or sample size has reached to one Nm = 1. At the end of the training phase, a

rule-based tree structure is built where the non-leaf nodes are decision points that

guide the direction in which the data path is traversing, for a set of specific feature

values of a sample until a leaf node is reached, which provides the target value y

for that sample. It is possible to extract these rules from the trained decision tree.

The prediction phase uses the tree built in the training phase to predict the target

values for the test feature set.

2.6 Experimental Results and Analysis

In this section, we provide the experimental details and analysis of the results.

In the first two subsections, we provide performance prediction results from sim-
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ulated systems and physical systems. In the third subsection, we evaluate two

learning-based models built from linear regression and decision tree machine-

learning algorithms for different train and test split ratios for splitting the per-

formance dataset. To establish a generalization of our learning-based model, we

applied the model to well-known benchmark programs and provided the result

in the fourth subsection.

2.6.1 Prediction Accuracy for Simulated Computer Systems

To demonstrate the accuracy of our approach, we have first performed a predic-

tion on hardware models built in the gem5 simulator. We collected runtime from

the execution of each of the three selected applications with different problem

sizes on all of the 475 simulated systems. For each simulated system, values from

nine features were already known because they were used to build the gem5 sim-

ulated systems. The performance dataset for each application was built using

the systems’ hardware features and respective runtimes. We performed encoding

and normalization on systems features as described in section 2.4. In the train-

ing phase, we have selected 80% of 475 performance dataset samples consisting

of normalized system features along with runtime at random (using ShuffleSplit

from scikit-learn) to train linear regression and decision tree models, which we

call learned-model. From the remaining 20% of performance dataset samples,

only the normalized system features were provided to test the accuracy of the

learned-model.

We calculated the test errors as shown in equation 2.6.1 for the test systems by

comparing the predicted runtime and actual runtime. Figures 2.3 and 2.4 shows

test errors for linear regression and decision tree models respectively.

testerror =
y− ŷ

y
(2.6.1)

Pearson correlation (r) calculated as per equation 2.6.2 shows the correlation

between predicted runtime (ŷ) values with respect to the actual runtime y values

also shown in figures 2.3 and 2.4. Pearson correlation coefficient of more than 90%
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(a) matrix multiplication

1 3 5 7 9
1

1
1

3
1

5
1

7
1

9
2

1
2

3
2

5
2

7
2

9
3

1
3

3
3

5
3

7
3

9
4

1
4

3
4

5
4

7
4

9
5

1
5

3
5

5
5

7
5

9
6

1
6

3
6

5
6

7
6

9
7

1
7

3
7

5
7

7
7

9
8

1
8

3
8

5
8

7
8

9
9

1
9

3
9

5

Nu m b er  o f  Test  Ar ch i t ect u r es

0.1

0.0

0.1

0.2

T
e

s
t
 E

r
r
o

r
1.e+ 03

2.e+ 03

3.e+ 03

4.e+ 03

5.e+ 03

6.e+ 03

Problem Size

(b) quicksort
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Figure 2.3: Linear Regression (LR) Prediction Error for Simulated Systems Test
Architectures per Problem Size (a) Matrix Multiplication [Pearson Coeff: 90.28%
to 92.83%], (b) Quicksort[Pearson Coeff: 93.63% to 94.17%], (c) Monte Carlo PI

Calculation [Pearson Coeff: 94.87%],

is achieved in case of linear regression whereas the decision tree model achieved

100% confirming higher test errors in case of linear regression compared to deci-

sion tree.

r =
n(∑ yŷ)− (∑ y)(∑ ŷ)√

[n ∑ y2 − (∑ y)2][n ∑ ŷ2 − (∑ ŷ)2]
(2.6.2)

In the case of linear regression, monte carlo has the highest percentage error of

-0.6 to 0.6, due to a compute-bound monte carlo depends primarily upon pro-

cessor features causing it to have much higher variations in runtime. Quicksort

application reads a large number of strings to perform sorting depends more on

memory features resulting in the smallest percentage error between -0.15 to 0.20.

Matrix multiplication, a memory-bound application, depends more on memory

features than the processor features having less variation in runtime, resulting in

lower error than monte carlo.
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(b) quicksort
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Figure 2.4: Decision Tree Regression (DTR) Prediction Error for Simulated
Systems Test Architectures per Problem Size (a) Matrix Multiplication [Pearson

Coeff: 100%], (b) Quicksort [Pearson Coeff: 100%], (c) Monte Carlo PI
Calculation [Pearson Coeff: 100%]

2.6.2 Prediction Accuracy for Physical Computer Systems

To apply the learning-based model for physical systems, we have used a small set

of ten physical systems with diverse system features as depicted in table 2.5. We

collected nine system features using dmidecode and lscpu utilities on Unix-based

physical systems. We executed the same three applications with multithreaded

versions on all ten physical systems using threads one to eight to take advantage

of the multicore systems and to increase the dataset size.

To train the regression models, we first performed data encoding for textual

features such as mem-type and ISA; then, we normalized the feature set to bring

the values for each feature between [-1, 1]. In physical systems, some features

do not have any value; hence zero value was used to represent Not a Number

(NaN) in a normalized format. For example, physical systems with ARM-based
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systems do not have level three cache; hence, the level three cache features were

considered all zeros for these physical systems.

Similar to a simulation-based performance prediction approach, for physical

systems also, we have used a train-test split ratio of 80%-20% training and testing

(prediction) phase. For the decision tree in figure 2.6, the test errors are showing

a similar pattern as observed in the simulated systems for all three applications.

Quicksort has the smallest percentage error with most points within 5% that is

because of lower runtime variation due to large string data read activity. Matrix

multiplication, a memory-bound application, having most of the test errors within

10%, whereas monte carlo, a compute-bound application, having the largest error

within the 20% range with few exceptions.

2.6.3 Model Evaluation using Physical Systems Results

In this section, we have performed a model evaluation for three scenarios. First,

we have evaluated the linear regression model compared to the decision tree

model and see which one fits the best for the problem at hand. For the second

evaluation, we have considered a different ratio to split the dataset in training

and testing sets and evaluate the results from each split to identify the split with

minimum errors. Finally, we have shown improvements in our performance pre-

diction model by adding an additional system feature.

2.6.3.1 Linear Regression vs Decision Tree

In this section, we have established which of the two regression models, linear re-

gression or decision tree regression, performs better. Figure 2.7 shows the median

absolute percentage errors (MedAPE) for each of the three applications from both

linear regression and decision tree regression models. We chose the median value

instead of the mean value to reduce the effect of outliers as suggested by [66]. We

first plotted the histograms using the percentage errors of test systems for all the

three applications from linear regression and decision tree models and observe

that the percentage errors are not normally distributed. Therefore, we perform

a nonparametric Kruskal-Wallis one-way ANOVA test to compare the medians
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Figure 2.5: Linear Regression (LR) Prediction Error for Physical Systems Test
Architectures per Problem Size (a) Matrix Multiplication [Pearson Coeff: 94.84%
to 96.17%], (b) Quicksort [Pearson Coeff: 91.67% to 99.88%], (c) Monte Carlo PI

Calculation [Pearson Coeff: 98.82% to 98.85%]

of different problem sizes for each application. In the case of linear regression,

we get the p-values of 0.807, 0.553, 0.948 for matrix multiplication, quicksort and

monte carlo. While for the decision tree, we get p-values of 0.997, 0.931 and 0.970

for matrix multiplication, quicksort and monte carlo. Furthermore, we observe

that the MedAPE for test systems is 39.97%,10.60% and 8.32% for linear regres-

sion, as compare to 5.26%, ≈0%, 5% for decision tree model for each of the matrix

multiplication, quicksort, and monte carlo applications respectively. Hence, con-
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(b) quicksort
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Figure 2.6: Decision Tree Regression (DTR) Prediction Error for Physical Systems
Test Architectures per Problem Size (a) Matrix Multiplication [Pearson Coeff:
97.83% to 99.40%], (b) Quicksort [Pearson Coeff: 91.82% to 99.98%], (c) Monte

Carlo PI Calculation [Pearson Coeff: 98.52% to 98.87%]

clusively the decision tree model has much higher accuracy and is a better fit than

linear regression for the problem at hand with a given dataset.

To understand the reason behind this, we have plotted four of the system fea-

tures CPU clock, memory clock, L2 cache size and L3 cache size on the x-axis

and the actual runtime on the y-axis for matrix multiplication and monte carlo as

shown in figure 2.8. It can be inferred from this plot that the runtime is not lin-

early dependent on the input features. In other words, we cannot find weight W
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Figure 2.7: Physical Systems: LR and DTR Median Error per Problem Size
Linear Regression - Train Error

Linear Regression - Test  Error

Decision Tree - Train Error

Decision Tree - Test  Error

in y = Wx to make runtime linearly dependent on feature x. The quicksort plot

is not shown, but it shows a similar non-linear relationship between hardware

features and runtime.
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Figure 2.8: Input Features vs Runtime

It is observed that matrix multiplication has a higher error in linear regression

than the other applications. To further analyze this point, we considered four

input features, namely cpu clock, memory clock, l2 size and l3 size, as shown in

figure 2.8. We trained four different linear regression models with each of the four

features and the actual runtime for each application. The plots show the original

runtime on Y-axis and the hardware feature on X-axis for two applications, matrix
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multiplication and monte carlo. The line in the plots indicates the predictions

from the respective linear model. It is clear from the plot that the distance from

the actual runtime to the predicted value, which is the projection on the line, is

higher in matrix multiplication than monte carlo. This is especially more evident

in the plots with hardware features cpu clock and memory clock. The higher

the distance, the larger the error; therefore, matrix multiplication has a higher

error than monte carlo. These results are indicative of the higher error in matrix

multiplication from the multiple linear regression model used.

2.6.3.2 Train vs Test Dataset Split Ratio

To test the prediction accuracy of the learning-based model, we need to carefully

split the dataset into train and test sets. During the training phase, a learning-

based model can learn with a higher prediction accuracy but can have poor pre-

diction accuracy for testing dataset, a problem known as over-fitting [67]. Over-

fitting is the problem when the learning-based model works too hard to find accu-

rate relationships between independent input features and dependent output dur-

ing the training phase, but it fails to establish a generalized relationship. Hence,

when the prediction is performed for the testing dataset, the model may have

higher errors as the test input features may not exactly coincide with the training

dataset features. To decide the train-test split ratio, we explored several options

and have plotted three of them in figure 2.9.

According to median absolute percentage errors (MedAPE) for testing dataset

in decision tree regression; matrix multiplication errors were 7.2% for 30-70 split,

5.2% for 50-50 split and 5.2% for 80-20 split. Similarly, for monte carlo errors were

12.2% for 30-70 split, 8.9% for 50-50 split and 5% for 80-20 split. For quicksort,

MedAPE is ≈0 because the MiBench quicksort benchmark program that we have

used reads a large number of strings to sort from a file resulting in much less

variance in runtime making it more deterministic for prediction. Our learning-

based model has the highest accuracy with the 80-20 train-test split, and hence we

have used the same for final models.

We have two observations from these results. First, the monte carlo application
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Figure 2.9:

Linear Regression - Train Error

Linear Regression - Test  Error

Decision Tree - Train Error

Decision Tree - Test  Error

Median absolute percentage error for different train-test split (a)-(c) Matrix
Multiplication (d)-(f)Quicksort (g)-(i) Monte Carlo

has larger errors as compared to matrix multiplication and quicksort. We believe

this is due to the manufacturer’s variability in the processors. For memory-bound

applications such as matrix multiplication, the impact on the runtime of manu-

facturer variability of a processor is hidden due to slower memory access, but for

monte carlo, due to a higher number of computations, the effect of manufacturer

variable is seen persistently. The second observation is that the four Intel core

i5 systems with similar system feature values have different runtime values re-
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sulting in higher errors in some cases. This indicated that possibly one or more

system features might not have been considered in the original dataset that dis-

tinctly identifies all the four Intel Core i5 models.

2.6.3.3 Additional Architecture Features for Prediction Improvement

To resolve the issue of higher percentage errors in monte carlo in the second ob-

servation, we reviewed the processor documentation of Intel Core i5 models from

[68] to identify additional hardware feature(s) that can be used to distinguish In-

tel Core i5 models. After careful consideration, we added "bus speed" as an ad-

ditional feature to be considered for the learning-based model. We calculated the

bus speed in megabytes per second (MB/s) using the information provided at [68]

and [69] for each of the Intel processors. For ARM-based systems, bus speed was

considered as the default value of zero.

Figure 2.10 shows monte carlo’s median (b) and mean (d) percentage errors

with bus speed and median (a) and mean (c) percentage errors without the inclu-

sion of bus speed. After the addition of bus speed, the median errors improved

from 5% to 4.4% for monte carlo that is a 12% improvement in prediction. Mean

test errors for monte carlo improved even higher at 23%, with 15.42% without

the bus speed and 11.77% with the bus speed. The reduction in errors with the

addition of bus speed is due to the fact that the learning-based model is able to

differentiate between the different Intel Core i5 processors. The addition of bus

speed also improved the prediction accuracy of matrix multiplication and quick-

sort in the range of 15% to 30%.

2.6.4 Performance Prediction of Mantevo mini-applications and

NAS Parallel Benchmarks

To assess the true effectiveness and generality of our proposed approach, we ap-

plied a learning-based performance prediction model on two NAS Parallel Bench-

marks (NPB) benchmark programs, EP and MG, and the miniFE benchmark pro-

gram from the Mantevo suite. According to NPB documentation, EP is embarrass-
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(d) Mean Error with Bus Speed

Figure 2.10:

Linear Regression - Train Error

Linear Regression - Test  Error

Decision Tree - Train Error

Decision Tree - Test  Error

Comparison of Median and Mean absolute percentage error for Monte Carlo
with and w/o Bus Speed

ingly parallel (compute-bound), and MG is memory-bound applications. These

benchmark programs are representative of real-world applications with multiple

and complex phases. We have selected problem sizes of 25, 50, 75 and 100 for the

miniFE benchmark and problem sizes of S, A and B for EP and MG benchmarks

for performance prediction. As far as system selection is concerned, we selected

two server-like systems with Intel Xeon processors with many cores and large

memory, three Intel Core i7 systems, three Intel Core i5 systems and two ARM-

architecture based embedded boards to represent commonly used computer sys-

tems. Detail configurations of these systems are listed in table 2.6.

We executed the MPI versions of each of these three benchmark programs with

the respective problem sizes on all ten physical systems. To take advantage of

hyper-threading, we executed the number of processes for each application from

one to two times the number of cores in each system; that is, we executed 24 appli-
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Table 2.6: Physical Computer Systems used for EP, MG and miniFE

Sr ISA CPU Cores Mem Type Mem Mem L1-L3
Speed Access Size Cache
GHz MHz GB Size

1 x86 3.2 4 DDR3 1600 4 32kB-6MB
2 ARM 1.2 4 LPDDR3 533 1 8kB-128kB
3 ARM 1.7 2 LPDDR3 533 2 4kB-512kB
4 x86 3 2 DDR3 1600 4 32kB-4MB
5 x86 2.6 2 DDR3 1066 4 32kB-4MB
6 x86 3.2 4 DDR3 1600 4 32kB-6MB
7 x86 3.2 4 DDR4 2400 4 32kB-6MB
8 x86 3.2 4 DDR4 2666 16 32kB-12MB
9 x86 2.4 12 DDR4 2133 64 32kB-15MB

10 x86 2 16 DDR3 1600 32 32kB-20MB
Configuration taken from following models
1. Intel Core i56500. 2. Qualcomm ARM Cortex A53 3. Qualcomm snapdragon
600 4. Intel Core i76500U 5. Intel Core i7620M 6. Intel Core i53470 7. Intel Core
i56500 8. Intel Core i78700 9. Intel Xeon E52620v3 10. Intel Xeon E52640v2

cation processes on a system with 12 cores. We collected system features using the

dmidecode utility and extracted runtime for each execution from the benchmark

logs. We performed training and prediction for linear regression and decision tree

models using an 80-20% train-test split ratio after feature normalization.

The performance prediction results for benchmark programs also confirmed

that decision tree regression performed better than linear regression in line with

our earlier experiments. Figure 2.11 shows the decision tree model prediction er-

ror of about 8-15% for EP and miniFE and about 6-8% for MG. For smaller problem

sizes of 25 in miniFE and S for EP, percentage errors are higher because runtimes

for small problem sizes have a higher variance. In the case of MG, with problem

size S, runtime values were zero for many systems; hence the bar is not shown

in the chart. We observe that EP being compute-bound similar to monte carlo

has a higher prediction error due to manufacturer variability, whereas MG being

memory-bound similar to matrix multiplication, has a lower prediction error.
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Figure 2.11: miniFE, EP and MG Prediction Errors Per Problem Size

2.7 Threats to Validity and Limitations

• Internal Validity: To ensure internal validity, we executed different types of

applications on a large number of simulated systems and available physi-

cal systems. To build 475 simulated systems, we spent a couple of months

collecting the hardware features from real systems, making required modifi-

cations to the gem5 source code, and then building simulated systems using

these collected hardware features. We carefully selected ten systems from

many available systems for constructing physical systems datasets, each

with disparate hardware feature values. Furthermore, to reduce the effect

of non-determinism in physical systems, we executed each application 25

times to collect runtime values and have used the mean runtime value as

the actual runtime (performance). We collected runtime for each thread for

parallel applications and summed it up for calculating the final runtime. We

have also evaluated the machine learning model using different train-test

split ratios to ensure that the higher prediction accuracy ratio is used in the
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final model.

• External Validity: To ensure external validity, we utilized the same host com-

puter to compile all applications and generate binaries (executables), which

we executed on all systems. Since the host machine used for compilation

has an x86 instruction-set, we used a cross compiler to compile applications

for systems based on the ARM instruction set. Additionally, we selected

physical systems with the Unix-based operating system (mostly Ubuntu) to

reduce the impact on measured performance due to the dissimilarity in op-

erating systems.

• Limitations: Our learning-based model relies on several assumptions. First,

we assume that the behavior of actual performance is steady. However,

due to variations in the system’s load, performance measurement may vary

vastly, making learning difficult from this unsteady performance. Further-

more, our assumption is that the performance of simulated systems is pro-

portional to that of physical systems with identical hardware features, which

they are up to a certain extent. But because of the design differences in the

simulator, such as the support of only one out-of-order processor with 5

stage pipeline, the system represented by the simulated system may not pre-

cisely match the real system.

2.8 Summary

This chapter proposed a learning-based technique to select a hardware system

best suited for a given software by predicting the performance of the software on

unseen computer systems without running the same software. This was achieved

by learning relationships between systems hardware features and the actual run-

time of a given application. We identified system features from a processor, cache,

and memory hierarchy that dictated the performance of compute-bound, memory-

bound, or compute-plus-memory-bound applications. We demonstrated that us-

ing the training dataset, the learning-based model can capture the relationships

between computer systems’ hardware features for a given application and actual
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runtimes. The learned model then predicts the performance of the same software

for unseen systems.

The performance prediction result can be used for the selection of the com-

puter system by forming a performance-based cluster of the systems while con-

sidering the performance of a given software on all the computer systems. A sin-

gle cluster will have systems with similar performance for a given software. Ap-

plications that are embarrassingly parallel, such as EP from the NPB benchmark,

will have better performance on a server-like system with many-core even with

lower clock speed, whereas highly sequential applications will have better perfor-

mance on systems having fewer cores with higher clock speed. Memory-bound

applications such as MG from the NPB benchmark will have better performance

on systems with higher memory bandwidth and low latency.

Our proposed learning-based model is general in nature. One can extend this

model for performance prediction of multi-node systems by including network

features. To use our model from figure 2.1 for multi-node systems, each system

shown will become multi-node homogeneous clustered systems with each node

having the same processor, cache and memory features connected via a network.

The system features will include network features such as bandwidth in addition

to the processor, cache, and memory features. Benchmarks such as the NAS Par-

allel Benchmark can be executed to collect the runtime on a homogeneous cluster.

Performance prediction of the same benchmark programs can be performed for

multi-node clusters with different node and network features.

Below are conclusions from our work in this chapter:

1. We demonstrated that a single performance prediction model can predict

the performance of systems of different instruction-set such as ARM and

x86-based systems with different features of various hardware components

such as processors, cache and memory.

2. Our prediction model worked on both simulated systems and for the phys-

ical systems. On simulated systems, the prediction accuracy of 99% was

achieved, whereas, on the physical systems, the prediction accuracy of more

than 90% was achieved considering 80% systems for training and 20% for
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testing.

3. Prediction accuracy in simulated systems was much higher compared to

physical systems. This is because runtimes from the simulation-based ap-

proach are deterministic due to the lack of interference in shared resources.

While the runtimes from physical systems are non-deterministic due to in-

terference from multiple tasks running at the same time.

4. Our performance model predicted the performance of compute-bound, memory-

bound, and compute-plus-memory-bound applications with an accuracy of

more than 90%.

5. The proposed prediction model considered system features with continuous

values (real-valued) and categorical values. Categorical values were non-

numeric, which were converted to numerical features with the help of the

encoding technique.

6. Two Machine learning regression models, linear regression, and decision

tree were applied for performance prediction. We observed that due to the

non-linear relationship between hardware features and the runtimes, the de-

cision tree regression model gave at least 40% higher accuracy than linear re-

gression for all the three applications matrix multiplication, quicksort, and

monte carlo.

7. We had an option of choosing from several machine learning algorithms.

Machine learning algorithms such as linear regression and decision tree have

useful analytical and computational properties. These properties help to un-

derstand the decision-making process for prediction and make them com-

putationally less expensive but with small accuracy compromise. Complex

models such as neural networks provide higher accuracy but are gener-

ally difficult to understand the prediction outcome and are computationally

more expensive. Therefore, we first started with a linear regression model,

but prediction accuracy was poor; hence, we used the decision tree model,

which provided us the results with acceptable accuracy.
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8. Dataset was split with different ratios in training and testing set (70-30, 50-

50, and 80-20). We observed that an 80-20 split gave a prediction error of 5%,

which was much lower than the prediction error from the other splits.

By providing accurate performance prediction, work provides insight into the

selection of computer systems that fit the performance criteria of a user. For the

selection of computer systems, three factors are important; performance, power,

and hardware cost. In this work, we have primarily focused on the performance

aspect. In future work, we plan to include other factors such as power and hard-

ware cost. We would also like to explore additional machine learning models such

as a neural network in subsequent work.
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CHAPTER 3

Evaluating Machine Learning Models for Dis-

parate Computer Systems Performance Predic-

tion

3.1 Overview

Performance modeling is an active area for research to estimate the performance

of a software application for computer systems with the known processor, cache

and memory features. The estimated performance (runtime) from the perfor-

mance model aids us with the tool to select system(s) with optimal performance.

Thus, performance modeling is useful to software developers and system ar-

chitects to choose the most optimal application implementation and features of

the underlying computer systems. Performance modeling is primarily imple-

mented using supervised machine learning algorithms. The accuracy of estimated

(predicted) performance depends on the machine learning algorithm utilized for

modeling and the nature of the performance dataset.

Several research works have focused on performance prediction models uti-

lizing various machine learning algorithms. The study in [5] evaluates linear,

nearest neighbor, support vector, gaussian, tree-based and neural network-based

machine learning algorithms for performance models of scientific applications

with skewed and irregular domain configurations on four leadership class HPC

platforms. Work in [21] deals with predicting optimal cloud configurations for

HPC applications before deployment using linear, tree-based and neural network-
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based machine learning algorithms. The prediction of power and performance on

heterogeneous systems using neural networks is studied in [18]. The prediction

accuracy rate of 97.5% is achieved in [17] using multiple neural networks and PCA

on SPEC CPU2006 and SPEC CPU2017 benchmarks. The work in [14] utilizes lin-

ear and tree-based machine learning algorithms to predict the performance on

multicore cloud systems with shared resource contention.

We identified the following questions from related work: (i) The referenced

works use several machine-learning algorithms, which ones have better predic-

tion accuracy and why? (ii) What inferences can be drawn from the performance

modeling of memory-bound and compute-bound applications? (iii) Does the

machine learning model behave similarly for simulated systems as compared to

physical systems?. We further analyzed different configurations of neural net-

work models to answer the following questions: (i) Does the data scaling affect

the performance prediction accuracy of neural network models? (ii) How does

the accuracy of one-layer and multi-layer neural network models differ? (iii) For

benchmark programs with different computations and memory access patterns,

will neural networks require different configurations? In this chapter, we address

these questions to understand the performance model better using different ma-

chine learning models.

The remainder of the chapter is organized as follows: Section 3.2 describes the

computer hardware selection and dataset. Section 3.3 describes machine learn-

ing models that we have used for the study. Section 3.4 provides three scenarios:

(a) Overall performance of models on each dataset and discussion on the infer-

ences that can be drawn. (b) Evaluation of results concerning compute-bound

and memory-bound applications. (c) Analysis of performance concerning physi-

cal and simulated systems for each model. Section 3.5 evaluates neural network

models with different configurations. Finally, section 3.6 provides concluding re-

marks and work that we plan to continue.
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3.2 Dataset Preparation

3.2.1 Applications Selection for Workload

We used two categories of applications, compute-bound and memory-bound, to

test the applicability and accuracy of the performance prediction models. The se-

lected four compute-bound applications are monte carlo application to calculate

the value of PI, maximally stable regions (mser) application from San Diego Vision

Benchmark Suite (SD-VBS) [70], miniFE [59] from the Mantevo mini-applications

benchmark suite, and embarrassingly parallel (EP) application from the NAS par-

allel benchmark (NPB) [58]. Similarly, three selected memory-bound applications

are matrix multiplication, feature tracking (tracking) application from SD-VBS

[70], and multi-grid on a sequence of meshes, long and short distance commu-

nication (MG) application from the NPB [58].

3.2.2 Computer Systems Selection

To execute the selected applications, we selected the computer systems that de-

scribe the class of computers commonly used today. We chose two server systems

with Intel Xeon processors with many cores and large memory, three Intel Core

i7 systems, and three Intel Core i5 systems with the configurations listed in the

table 3.1. For the simulated systems dataset, we utilized the gem5 simulator, a

widely accepted simulator for architectural research. We built 120 simulated sys-

tems based on the ARM instruction set (ISA) and 355 simulated systems based on

the x86 ISA using the system-call emulation mode of gem5 as described in chapter

2.3.1. We considered nine system features for the construction of gem5 simulated

systems, as shown in table 2.1. These feature values were gathered from the real

memory and processor models commonly used in today’s computers.

We executed applications listed in the "Scientific Applications" column on 475

simulated systems and 8 physical systems as listed in the "System Type" column

in table 3.2. For physical systems, each application was executed for the number

of processes from one to two times the number of cores in the system; that is, we
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Table 3.1: Physical Computer Systems used for Evaluation of Machine Learning
Models

Sr ISA CPU Cores Mem Mem Mem L1-L3
Speed Type Access Size Cache
GHz MHz GB Size*

1 x86 3.2 4 DDR3 1600 4 32,6
2 x86 3 2 DDR3 1600 4 32,4
3 x86 2.6 2 DDR3 1066 4 32,4
4 x86 3.2 4 DDR3 1600 4 32,6
5 x86 3.2 4 DDR4 2400 4 32,6
6 x86 3.2 4 DDR4 2666 16 32,12
7 x86 2.4 12 DDR4 2133 64 32,15
8 x86 2 16 DDR3 1600 32 32,20

*L1 Cache Size is in kB and L3 Cache Size is in MB
Configurations were taken from the following models
1. Intel Core i56500. 2. Intel Core i76500U 3. Intel Core i7620M 4. Intel Core
i53470 5. Intel Core i56500 6. Intel Core i78700 7. Intel Xeon E52620v3 8. Intel
Xeon E52640v2

have executed 24 application processes on a system with 12 cores. This was to

take advantage of systems with hyper-threading. We extracted runtimes for each

execution from the benchmark logs.

Table 3.2: Applications used as workloads for Evaluation of Machine Learning
Models

Applications Benchmark System
Type (MB/CB) Data Points

matrix multiplication Physical MB 280
matrix multiplication Simulated MB 1900
monte carlo Simulated CB 1425
monte carlo Physical CB 224
mser SD-VBS Simulated CB 475
tracking SD-VBS Simulated MB 475
miniFE Mantevo Physical CB 124
EP NPB Physical CB 108
MG NPB Physical MB 108

CB = Compute-Bound (compute-intensive)
MB = Memory-Bound (data-intensive)
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3.3 Machine Learning Models

Performance modeling based on empirical methods is implemented using super-

vised machine learning algorithms. A labeled dataset is used to make a machine

learning algorithm learn the function =x which maps inputs Xi to an output yi.

Here Xi is a multidimensional vector or tuple while the output yi is a single nu-

merical value. In our case, each sample input Xi is a multidimensional tuple with

hardware features corresponding to processor and memory as shown in table 3.1

for physical systems and table 2.1 for simulated systems and the output yi is run-

time or performance of the application. Different machine learning algorithms de-

rive the said function =x with dissimilar prediction accuracy, and the one which

gives the most accurate predicted y values is used for modeling.

The overview of the models with various machine learning algorithms that we

use in this chapter is as follows.

3.3.1 Support Vector Regressor (svr)

Support vector regression [71] performs function approximation (linear or non-

linear) by formulating a constrained optimization problem. For non-linear func-

tions, the kernel trick is used to map Xi into a higher dimensional space called

kernel space to make better predictions. The svr uses the ε− insensitive loss func-

tion and penalizes predictions that are far from the actual output.

3.3.2 Multiple Linear Regression (lr)

Simple linear regression has one-dimensional input, whereas a multiple linear

regression has multidimensional input Xi and both having one-dimensional out-

put yi. A simple linear regression model would have the form: y = α + xβ + ε

whereas a multi-variable or multiple linear regression model takes the form: y =

α + x1β1 + x2β2 + ... + xkβk + ε ,where y is a dependent variable, x is a single in-

put feature value in the simple regression model, and x1, x2, . . . , xk are the multiple

input feature values in the multiple regression model.
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3.3.3 Ridge Regression (rr)

Ridge regression [72] is an extension for linear regression when a penalty term is

added to the loss function to avoid over-fitting or when there is multicollinearity

among the input features. Loss function L = σ(ŷi − yi)
2 + λ(σβ2) is used, where

λ is a penalty term for regularization and β are the coefficients to be estimated.

3.3.4 K Nearest Neighbors (knn)

K nearest neighbors regression [73] belongs to the class of instance-based meth-

ods, where the model is not built explicitly during the training phase but deter-

mined only during the prediction of value. KNN uses the concept of neighbor

instances which are determined based on the distance from X for which the pre-

diction is required. It selects the user-defined number of neighbors and averages

their actual y values to give us the predicted y value for a given X.

3.3.5 Gaussian Process Regressor (gpr)

Gaussian process regression [74] model implements the gaussian process for re-

gression purposes. This algorithm finds the normal distribution, which maxi-

mizes the log marginal likelihood using an optimizer parameter. The gaussian

process gives the predictive variance estimate around the prediction and a clear

probabilistic interpretation.

3.3.6 Decision Trees Regressor (dt)

Decision tree regression [57] belongs to the class of recursive partitioning meth-

ods. The decision tree is used to build regression models that are similar to a

binary tree data structure. At each non-leaf node of the tree, permutations of fea-

ture values and their respective thresholds are compared. Each feature-threshold

combination is one possible data split into left and right sub-trees. For each data

split (feature-threshold combination), the impurity function is calculated using

the mean squared errors between the actual output values and the possible pre-
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dicted values of data from the left and right sub-trees. A combination of feature

and threshold with the lowest mean squared error (MSE) is chosen to split the data

at each non-leaf node. With the final construction of the tree, leaf nodes provide

the predicted values. The depth of the final tree can be limited by an argument

called max_depth.

3.3.7 Random Forest Regressor (rf)

Random forest [75] is a bagging approach that builds a large number of decision

trees for the same dataset. It reduces the high variance part of decision trees for

better predictions. Each tree has a different set of associated rules for dividing the

dataset into smaller subsets. It outputs the mean prediction of the individual trees

that it builds. This technique of using multiple models to obtain higher predictive

performance is called the ensemble model.

3.3.8 Extremely Randomized Trees (etr)

Extremely randomized trees [76], or extra trees is like a random forest. But, it

does not bootstrap data items, meaning it samples the data without replacement.

Furthermore, node splits are random and not the best split. In extra trees, ran-

domness does not come from bootstrapping of the data, but rather it comes from

the random splits of all the observations. Also, It runs faster than the random

forest.

3.3.9 Gradient Boosting Regressor (gbr)

Gradient boosting regression [77] is a boosting technique where weak learners are

combined to get a strong learner. We have used decision trees as weak learners.

The trees are formed in a greedy manner while choosing the best split using infor-

mation gain. Trees follow an additive approach one at a time. Gradient boosting

uses gradients of the error function to add a decision tree. This is done by modi-

fying the tree’s parameters and moving in the direction to minimize the error.
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3.3.10 XGBoost (xgb)

XGBoost [78] stands for eXtreme gradient boosting. It is an optimized variant of

the gbr model that practices parallel programming, pruning trees, and regulariza-

tion to avoid model overfitting. This algorithm has built-in cross-validation for

each epoch. Furthermore, the model handles missing data values automatically,

which makes this a sparse aware model.

3.3.11 Deep Neural Networks

A deep neural network (DNN) is an artificial neural network with multiple hid-

den layers which estimate the linear or non-linear relationship between input and

output. We used four DNN variants as shown in table 3.3. Neurons column indi-

cates the number of neurons used at each layer and params column shows the to-

tal number of parameters which is derived by NeuronscurrLayer ∗ (NeuronsprevLayer +

1). We have used mean absolute error (MAE(y, ŷ) = 1
n ∑n

i=1 |yi − ŷi|) loss func-

tion for our DNN models. Rectified linear unit (ReLU) is used as an activation

function in hidden layers for introducing non-linearity, whereas the linear activa-

tion function is used for summing up the predicted performance value from the

last hidden layer to the output layer. The number of epochs used is 100 for each

variant.

Table 3.3: Model Summary of DNN Variants

dnn_1 dnn_2 dnn_3 dnn_4
LayerType Dense Dense Dense Dense

Neurons Params Neurons Params Neurons Params Neurons Params
Layer1 512 11776 512 11776 256 5888 512 11776
Layer2 1 513 512 262656 64 16488 128 65664
Layer3 N/A N/A 512 262656 16 1040 32 4128
Layer4 N/A N/A 1 513 4 68 8 264
Layer5 N/A N/A N/A N/A 1 5 2 18
Layer6 N/A N/A N/A N/A N/A N/A 1 3
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3.4 Experimental Evaluation/Results

In this section, we performed experiments to evaluate machine learning mod-

els described in section 3.3 using gem5 simulated systems and physical systems

performance datasets from section 3.2. The performance datasets consist of two

categorical hardware features, isa and mem-type, with text data that is not accept-

able by many machine learning algorithms. Hence, we converted these categor-

ical features data from text to real values using one-hot encoding. Furthermore,

we normalized the dataset using StandardScaler() function from scikit-learn, a

python-based machine learning library [65]. To ensure that the model provides

an accurate prediction for random selection of samples from the performance

dataset for training and testing, we have used ten-fold cross-validation using the

Shu f f leSplit() function from the scikit-learn library.

We trained each machine-learning model with 80% of the dataset and the re-

maining 20% is used for prediction due to higher accuracy for 80:20 ratio. For

example, for tree-based models dt, rf, etr and gbr, matrix multiplication and NPB

EP on physical systems have a mean error of 4.1% and 12.54% for 60:40 whereas

3.08% and 10.33% for 80:20 ratio respectively. We have used R2 score, median

absolute percentage error (MedAPE), and mean squared error (MSE) metric to

measure the accuracy of models. We took the median over the mean absolute per-

centage error values that we got from cross-validation for calculating the MedAPE

score. Low values of MedAPE and MSE represent that the model has high predic-

tion accuracy, whereas the R2 score of 1 indicates the model fits the data well. The

negative R2 score indicates a worse model fit than a horizontal hyperplane.

We evaluated machine learning models in three different scenarios. First, the

overall result for each model averaged over all nine datasets. Second, a com-

parison of model performance concerning the types of applications and finally, a

comparison of model performance between physical and simulated systems per-

formance datasets.
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3.4.1 Model comparison for performance prediction

Figure 3.1 shows the mean value of all datasets’ R2 scores and the MedAPE score.

We observed that the order of model performances according to the prediction

accuracy in decreasing order is: ’etr’, ’rf’, ’gbr’, ’dt’, ’xgb’, ’knn’, ’gpr’, ’lr’, ’rr’,

’dnn_2’, ’dnn_4’, ’dnn_3’, ’svr’, ’dnn_1’. This is the relative order of performance

that we got after comparing all three plots in figure 3.1 and after taking a majority

vote of all three metrics, namely R2, MedAPE, and MSE scores. The explanation

for this behavior in performance concerning each model is explained below.
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Figure 3.1: Mean of R2, MedAPE and MSE values per model for all datsets

• svr: Support vector regressor with mean R2 = 0.28 and mean MedAPE =

65.91% (figure 3.1), is not able to perform well because function to be approx-

imated is non-linear and the distribution of each attribute is also skewed. We

also observed that parameter C (regularization parameter) required value

1000 using grid search to provide better results. This means that a smaller

margin hyperplane is chosen due to which the model is not able to perform

well.

• lr and rr: Linear regressor with the mean R2 = 0.68 (figure 3.1) has poor

accuracy because the runtime is not linearly dependent on all the memory

and processor features. The ridge regression regularizes the overfitted linear

model that can be observed in figure 3.1 where MedAPE for linear regression

is 84.72% whereas for ridge regression is 64.02%.

• knn: KNN regressor with mean R2 = 0.86 and mean MedAPE = 9.44% (fig-

ure 3.1) performs better than linear models and kernel svr. The parameters
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n_neighbors and distance metrics play an important role in the prediction

accuracy of KNN which we optimized using grid search. The best distance

metric for our data is Minkowski, which is a generalization of both euclidean

and manhattan distance. The accuracy of KNN indicates that the perfor-

mance dataset has systems with alike features in high dimensional vector

space.

• gpr: Gaussian process regressor with mean R2 = 0.83 and mean MedAPE =

46.29% (figure 3.1) also performs better than linear models and kernel svr.

But still, tree-based models have higher prediction accuracy. The reason for

reduced accuracy in gpr can be explained by the fact that gpr assumes the

gaussian process prior, which is a multivariate gaussian distribution, and

then learns the posterior distribution during training. This means that the

distribution of our dataset does not follow the multivariate gaussian distri-

bution and is not tractable by the model.

• dt: Decision tree regressor with mean R2 = 0.93 and mean MedAPE = 4.95%

(figure 3.1) performs better than all the models discussed above. The param-

eter max_depth of the decision tree is above 10 in most cases of grid search

on each application data, which provides the model with a large number of

decision rules to divide the data into smaller subsets. Due to the categorical

characteristics of the dataset features, the decision tree structure provides

higher prediction accuracy.

• rf and etr: Random forest (rf) and extra tree regressor (etr) tree-based mod-

els provide the highest prediction accuracy. Both of these algorithms are

bagging approaches of the decision tree, in which a large number of trees

improve the accuracy of the model. The etr with mean R2 = 0.99 and mean

MedAPE = 0.69% (figure 3.1) performs better than rf with mean R2 = 0.97

and mean MedAPE = 2.58%. This is because etr model uses a random data

split that provides diversification in binary-tree generation during training

strengthening the etr model.

• gbr and xgb: Boosting algorithms, gbr and xgb, are based on weak learners
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(high bias and low variance). A gbr with mean R2 = 0.96 and mean MedAPE

= 4.02% (figure 3.1) performs better than xgb with mean R2 = 0.97 and mean

MedAPE = 11.57%. These boosting models reduce the bias to get good ac-

curacy. But the base learner decision tree has good prediction accuracy with

low bias. Moreover, boosting tends to overfit the data. So the boosting algo-

rithm works well, but accuracy is lower than the bagging approaches.

• dnn: Deep neural networks with dnn_2, a best performing model among the

four variants (table 3.3), with mean R2 = 0.53 and mean MedAPE = 23.98%

(figure 3.1) has lower prediction accuracy. We believe that this is due to a

limited number of data points available, as shown in table 3.2), neural net-

work models have lower accuracy than best performing tree-based models.

3.4.2 Estimating the Effect of Performance concerning Compute-

Bound and Memory-Bound Applications

Figures 3.2 and 3.3 shows R2 and MedAPE scores on left and right y-axis with

ranges [−0.5, 1.5] and [−10%, 100%] respectively for compute-bound and memory-

bound applications datasets (refer table 3.2).

The first observation from figures 3.2 and 3.3 is that five models, ’dt’, ’rf’, ’etr’,

’gbr’ and, ’xgb’ have mean R2 score of 0.75 and mean MedAPE score below 20%

for nearly all scientific applications. The result demonstrated that these models

are a good fit for datasets listed in table 3.2. Therefore, we have considered only

these five tree-based models for subsequent prediction accuracy analysis. The

second observation from figure 3.4 is that an average taken over MedAPE values

of the tree-based models, the prediction accuracy in memory-bound applications

(with 3.75% mean error) is slightly better than in compute-bound applications

(with 5.58% mean error). This is because the processors have higher manufacturer

variability due to complex architecture design than memory.
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Figure 3.2: R2 score and MedAPE for Compute-Bound Applications

3.4.3 Comparing model performance on Physical and Simulated

Systems

Figure 3.5 shows R2 score and MedAPE gathered from 10-fold cross-validation

for performance prediction on physical and simulated systems for matrix multi-

plication (memory-bound) and monte carlo (compute-bound) applications. The

models that do not show box-plot have much higher error falling outside the y-

axis range.

By comparing the performance of tree-based models, it was observed that

the prediction accuracy for simulated systems (with mean R2 = 0.999 and mean

MedAPE = 4.20%) is higher than the accuracy for physical systems (with mean R2

= 0.989 and mean MedAPE = 7.16% ). This is due to the larger variance in runtime

for non-deterministic physical systems than for deterministic simulated systems.

We also found that memory-bound applications such as matrix multiplication
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(b) matrix multiplication-simulated
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Figure 3.3: R2 score and MedAPE for Memory-Bound Applications
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Figure 3.4: Mean MedAPE for both CB and MB Applications

(with mean R2 = 0.98 and mean MedAPE = 3.46%) has higher prediction accuracy

then compute-bound applications such as monte carlo (with mean R2 = 0.99 and

mean MedAPE = 10.85%), when executed on physical systems. This is because

the higher variance in runtime contributed by manufacturer variability from the

complex architecture of processors in the physical system results in higher error in

compute-bound applications. On the other hand, we observed that for simulated
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Figure 3.5: Comparing model performance on Physical and Simulated Systems
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systems, compute-bound applications (monte carlo with mean R2 = 0.9997 and

mean MedAPE = 1.69%) have higher prediction accuracy then memory-bound

applications (matrix multiplication with mean R2 = 0.990 and mean MedAPE =

6.71%). Higher prediction accuracy for compute-bound applications in simulated

systems is caused by the availability of a single out-of-order five-stage pipeline

processor in gem5 which is used to build all 475 simulated systems.

3.5 Evaluation of Neural Network Models

In this section, we evaluate different neural network models.

3.5.1 Neural Network Models

Neural network models are commonly used to learn from a dataset with non-

linear relationships between dependent and independent variables. Figure 3.6

shows the non-linear relationship between the performance (runtime) of an appli-

cation and the system hardware features cpu-clock, num-cpus, l3-size, and mem-

clock for the systems on which application is executed. Therefore, we tackled this

problem using an artificial neural network (ANN) in this work. We have used

a dense fully-connected sequential ANN model from Keras framework [79] con-

sisting of one input layer, one output layer, and one or more hidden layers. We

explored two different ANN models, one has only one hidden layer (One-Layer

Model) and the other with three hidden layers (Multi-Layer Model), as shown in

figure 3.7. Each ANN’s input layer has the number of neurons equal to distinct

hardware features such as processor clock speed, L1/L2/L3 Cache sizes, memory

size, collected during dataset preparation as an input for performance prediction.

The output layer has only one neuron since we predict one output, the perfor-

mance of an application. Each hidden layer of the multi-layer model has half of

the neurons from the predecessor hidden layer starting with 400, 200, and 100

neurons in the first, second, and last hidden layers.

Both these neural networks are represented by the following mathematical no-

tations:
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Figure 3.6: Hardware Features vs Runtime

Input Features X = X1, X2, ..., Xm

X1 = Processor Clock Speed

X2 = cores

X3 = L1 Cache Size,...,

Xm = Memory Type

One-Layer NN Predicted Performance having one hidden layer with n nodes:

ŷ = ∑n
j=1 W ′ j(∑m

i=1 WijXi)

Multi-Layer NN Predicted Performance having 3 hidden layers with n, n/2

and n/4 hidden layer nodes:

ŷ = ∑n/4
l=1 W ′′′l(∑n/2

k=1 W ′′kl(∑n
j=1 W ′ jk(∑m

i=1 WijXi)))

It is important to know the time complexity of each neural network model

because a neural network model with lower time complexity having comparable

prediction accuracy is a preferable model for performance prediction. For our

models, the time complexity is represented by the following notations:

t = number of samples in the dataset

e = number of epochs considering Back Propagation Algorithm

Tmn = Time Complexity for Calculating Weights for Hidden Layer with m nodes
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Figure 3.7: Fully-Connected Neural Network Models

to n nodes.

Tmn = m ∗ n

One-Layer NN Predicted Performance having a one hidden layer with n nodes:

T = (calculate weights for input to hidden layer + calculate weights for hidden

layer to output layer) * number of training samples * number of epochs

T = (m ∗ n + n ∗ 1) ∗ e ∗ t = et ∗ (mn + n)

Multi-Layer NN Predicted Performance having 3 hidden layers with n, n/2
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and n/4 hidden layer nodes:

T = (calculate weights for input to 1st hidden layer + calculate weights for 1st

to 2nd hidden layer + calculate weights for 2nd to 3rd hidden layer + calculate

weights for 3rd hidden layer to output layer) * number of training samples * num-

ber of epochs

T = (m ∗ n ++n ∗ n/2 + n/2 ∗ n/4 + n/4 ∗ 1) ∗ e ∗ t

= et ∗ (mn + n2/2 + n2/8 + n/4)

Performance prediction is a regression problem that estimates the parameters

by minimizing the sum of squares taken over all the responses and all the obser-

vations. This is a least-squares problem, therefore, we have used mean squared

error (MSE(y, ŷ) = 1
n ∑n

i=1(yi − ŷi)
2) loss function for our ANN. An activation

function is responsible for transforming summed weighted input from the previ-

ous layer to the next layer until the output layer. Rectified Linear Unit (ReLU) is

used as an activation function in hidden layers for non-linearity. Simultaneously,

the linear activation function is used, to sum up, the predicted performance value

from the last hidden layer to the output layer.

3.5.2 Experimental Evaluation of Neural Network Models

We first built the performance dataset [X, y] for each selected benchmark program

EP, MG, and miniFE by executing them with different processes on eight systems

shown in the table 3.1. We collected the hardware feature values X of nine features

from physical systems using dmidecode utility and collecting the performance

(runtime) y from the benchmark logs. We encoded two features instruction-set-

architecture (ISA) and memory type with text data using one-hot encoding re-

sulting in a real-valued feature set X′. We then scaled the encoded performance

dataset [X′, y] with an appropriate scaling method. We divided the scaled perfor-

mance dataset [X′, y] into train-test split with 80-20 ratio using train_test_split()

function of scikit-learn that shuffles the data using ShuffleSplit() before the split

resulting in training set [X′train, ytrain] and testing set [X′test, ytest]. Finally, we evalu-

ated the neural network models built using Keras library by training them on the
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training set [X′train, ytrain] and performing prediction on the testing set [X′test, ytest].

For each of the experiments in this section, we built neural network models

five times and have shown percentage errors as quartiles of box plots for accu-

rate evaluation. The training and prediction times for one layer neural network

model with 100 epochs and 3000 neurons with 80-20 train-test split are 1 sec and

1 msec. On the other hand, the same data split for a multi-layer neural network

model with 100 epochs and 400, 200, and 100 neurons in the first, second and third

hidden layers respectively took 3 secs and 1 msec. We performed neural network

model experiments on a Lenovo laptop with two cores, two threads per core, Intel

Core i7-6500U processor, and eight GB DDR3 memory.

In this section, we performed different experiments and evaluated the neural

network models described in section 3.5.1 using datasets from section 3.2. We

evaluated the ANN models in three different ways. First, we looked at the impact

of data scaling on performance prediction by the neural network model. We then

evaluated the two ANN models one-layer versus multi-layer, and finally, we eval-

uated the model for selecting the number of neurons and optimization function.

3.5.2.1 Impact of Data Scaling

Our performance dataset has two categorical features instruction-set and memory

type with text data, which is not accepted by the neural network. We applied one-

hot (dummy) encoding [64] using categorical encoding python package to convert

categorical features into real-valued features. Machine learning algorithms such

as neural networks perform better or converge faster when used with a scaled

dataset. we evaluated our ANN model’s prediction accuracy for MinMaxScaler

and StandardScaler from the scikit-learn framework [65]. MinMaxScaler trans-

forms the dataset such that each feature values are scaled in a range between 0

and 1 by applying (X − Xmin)/(Xmax − Xmin) to each feature X. Mean and vari-

ance for each feature remain unchanged in the case of MinMaxScaler. On the

other hand, StandardScaler applies (X− µ(X))/σ(X) to standardize each feature

by removing mean and scaling to unit variance. In other words, all features have

a mean of zero and variance of one once standardized.
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We trained multi-layer neural network models separately for the scaled and

standardized dataset. We used 80% of the dataset for training, and the remain-

ing 20% dataset was used as a test set for predicting the performance. Figure

3.8 shows mean percentage errors (MPE) for training and testing phases. We ob-

served that the accuracy of multi-layer ANN with a standardized dataset is at

least 50% higher in most cases than scaled data. In the compute-bound EP appli-

cation, the impact of a standardized dataset is higher than the memory-bound MG

application due to manufacturer variability. Processors have higher manufacturer

variability due to complex design as compared to simpler memory modules. The

compute-bound applications’ performance depends more on the processor fea-

tures, whereas the memory-bound applications’ performance depends more on

the memory features. Therefore, the manufacturer variability effect in processors

is more evident in compute-bound applications.
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Figure 3.8:

Scaled-Train Error

Scaled-Test  Error

Standardized-Train Error

Standardized-Test  Error

Scaling Effect on Performance Prediction on Neural Network Model

3.5.2.2 One-Layer vs Multi-Layer Neural Network

Cross-validation [80] is a common technique to evaluate the accuracy of machine

learning models. We have used 5-fold cross-validation with ShuffleSplit, an itera-

tor that splits the data into train and test sets after shuffling the data randomly. We
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evaluated both one-layer and multi-layer neural network models as described in

section 3.5.1 with an 80-20% train-test ratio for each of the five folds. We modeled

a one-layer model with 3000 neurons in the only hidden layer and a multi-layer

model with 400-200-100 neurons in each of the three hidden layers. Figure 3.9

shows the percentage error from one-layer and multi-layer for each of the five

folds. For the NPB EP, the one-layer model has a median error of about 27-28%,

whereas the multi-layer model has 7-12%. Similarly, for Mantevo miniFE, a one-

layer model median error is 13-16% compared to 11-13% for multi-layer. For NPB

MG, median errors for both one-layer and multi-layer models are between 4 to

5%.
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Figure 3.9: Cross-Validation Prediction Error for One-Layer (OL) VS Multi-Layer
(ML) Neural Network

We concluded that the multi-layer model has higher accuracy in compute-

bound applications and has similar performance for memory-bound applications

compared to the one-layer model. The multi-layer model’s higher prediction ac-

curacy is because the one-layer model acts like linear regression with one hidden

layer having a linear activation function, whereas the problem of performance

prediction is non-linear due to the non-linear relationship between hardware fea-

tures and performance (runtime). The multi-layer neural network model is able

to learn the non-linear relation effectively than the one-layer model resulting in

lower errors in the multi-layer model.

Due to the lower error in the multi-layer model compared to the one-layer

model, we have used a multi-layer model for performance prediction experiments

in subsequent sections.
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3.5.2.2.1 Number of Neurons

First, we evaluated the multi-layer neural network model to understand the num-

ber of neurons required for convergence of predicted performance to the actual

performance to reduce the prediction error depending upon the type of applica-

tion, compute-bound, or memory-bound. Figure 3.10 displays runtime error for

each sample as a shaded region along with the mean line for each of the three

applications. We observed that NPB EP, a compute-bound application, has higher

runtime variations to its mean, resulting in higher errors. For example, the NPB

EP has the highest error with 100 neurons compared to miniFE and NPB MG.

Therefore, the NPB EP requires a higher number of neurons in the multi-layer

neural network to converge, as shown in figure 3.11. On the other hand, the re-

duction in error is also higher in the case of EP than miniFE as we increased neu-

rons from 100 to 700 in steps of 200. For NPB MG, a memory-bound application,

convergence happens much earlier at 50 neurons, and therefore, an increase in the

number of neurons further increases the error rather than reducing it. In the case

of miniFE, the mean line is close to many samples except with samples from 85 to

90, placing it in-between EP and MG, resulting in a higher error as compared to

EP but lower error than MG. Therefore, convergence for miniFE takes a smaller

number of neurons than EP but larger than MG.
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Figure 3.10: Variations in Runtime with Respect to Mean

3.5.2.2.2 Optimizer Selection

The optimizer function minimizes the objective function (error function) in a neu-

ral network by parameter adjustment. In other words, the optimizer function

adjusts internal parameters (weights and biases) so that the error between the

actual value and the predicted value is reduced, minimizing the overall loss dur-
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Figure 3.11: Effect of Neurons on Performance Prediction

ing each iteration. We evaluated our multi-layer neural network model with four

optimizers from Keras; Stochastic Gradient Descend (SDG), AdaGrad, RMSProp,

and Adam as shown in figure 3.12. We observed that Adam has the lowest errors

of 13%, 17%, and 6% for miniFE, EP, and MG applications, respectively. Perfor-

mance prediction can be a non-convex problem where a neural network can find

multiple local minima of runtime values for convergence due to the hardware fea-

tures for test systems can be close to more than one systems’ hardware features

used during neural network training. SDG oscillates with the same momentum

through a gradient to find the optimum value of runtime, resulting in either jump-

ing over the local minima or not being able to converge fast enough resulting in

higher errors. RMSProp uses a learning rate that changes according to change

in the slope to find the minima changes. The change in learning rate allows RM-

SProp to adapt to the change in slope for convergence and find local minima faster

than SDG. Adagrad further improves convergence with parameter-specific learn-

ing rates, which is inversely proportional to parameter updates. Finally, Adam

provides parameter-specific learning rate and bias correction according to [81],

resulting in the lowest errors from the four optimizers studied in this experiment.

3.6 Summary

The work in this chapter analyses the prediction accuracy of 14 machine learn-

ing algorithms and different configurations of neural network models built on

the performance dataset from gem5 simulated systems and physical systems for

83



SGD RMSprop Adagrad Adam
optimizers

0
5

10
15
20
25
30
35
40
45
50

%
 E

rr
or

(a) miniFE

SGD RMSprop Adagrad Adam
optimizers

0
5

10
15
20
25
30
35
40
45
50

%
 E

rr
or

(b) EP

SGD RMSprop Adagrad Adam
optimizers

0
5

10
15
20
25
30
35
40
45
50

%
 E

rr
or

(c) MG

Figure 3.12: Effect of Optimizers on Performance Prediction

seven applications. The conclusions from the experiments are as follows:

• The tree-based models, including tree-based bagging models dt, etr, and rf

outperform all other machine learning models, including the deep learning

variants.

• The performance prediction on memory-bound applications have slightly

better accuracy than compute-bound applications due to manufacturer vari-

ability.

• After exhaustive comparison of prediction accuracy from performance pre-

diction models built from physical systems and simulated systems datasets,

it is concluded that models from simulated systems have higher accuracy

compared to physical systems due to non-deterministic physical systems.

• System hardware features have a non-linear relationship with performance,

hence, the linear models have lower prediction accuracy compared to other

models. Furthermore, the random forest model performs better than the

decision tree model due to averaging error approach of the bagging method

in random forest.

• For neural network models, standardizing features with StandardScaler have

lower errors than MinMaxScaler because StandardScaler scales each feature

with zero mean and unit variance making them fit the normal distribution
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curve for the neural network to apply weight in a similar range for each

feature to find global or local minima.

• In evaluating the one-layer versus multi-layer model, we demonstrated that

the multi-layer model has better prediction accuracy because the one-layer

model with linear activation function acts like linear regression while hard-

ware features against runtime have a non-linear relationship.

• We established that compute-bound applications such as NPB EP take longer

to converge due to higher runtime variations compared to memory-bound

applications such as MG. Therefore, compute-bound applications require a

higher number of neurons.

Our future work includes building efficient multivariate models. We are planning

to include power in addition to runtime for multivariate prediction. We aspire to

contribute more datasets and also intending to apply transfer learning for cross-

platform and cross-systems performance prediction.
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CHAPTER 4

Multivariate Performance and Power Predic-

tion of Applications on Simulated Systems

4.1 Overview

The power consumption of computing resources has been a significant concern in

recent times. This concern is due to the cost of power generation and its effect on

environmental hazards. Therefore, power-aware computing has been a constant

focus in the research community. The large and complex software applications of

today require a significant amount of computational ability of computer systems.

The demand for growing computational ability has resulted in advancements in

computer systems, which further increases power consumption.

Hardware infrastructure provided either by commercially-of-the-self (COTS)

or from the cloud provides several computer systems for selection. Software ap-

plications running on computer systems with diverse hardware features have dif-

ferent performance and power footprints. In some cases, the performance of a

given software on one system may be comparable to another system. However,

the power consumption may vary due to the difference in hardware features be-

tween computer systems. Given the software, we need to select the system(s) that

provides optimal performance with a smaller power requirement without run-

ning a software application. It means we need to predict the performance and

the power consumption for a given software application and the system’s hard-

ware features. This problem is a multivariate performance and power prediction

problem.
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Researchers have proposed performance and power prediction models for

computing systems. For example, work in [3] predicts performance and power

of various applications using LASSO regression for one specific ARM-based tar-

get system by using performance counters collected from an x86-based system.

Work in [34] has demonstrated improving the accuracy of performance and power

model of gem5, and McPAT for the simulated system built based on ODROID-

XU3 systems. Performance and power prediction of four heterogeneous systems

using two different neural networks is shown in [4]. Work in [35] uses gem5 and

McPAT tool to analyze (without predicting) the improvement in performance and

power as the vector length changes for vector-oriented N-body and Triad bench-

marks. Similarly, [10] uses GPGPUSim to predict the performance and power for

NVIDIA’ Fermi GPU with changes in hardware features. All of these research

works either focuses only on the prediction of performance (runtime) or have

built two separate machine learning prediction models, one to predict the perfor-

mance and the other to predict the power consumption. In contrast, we proposed

a method to build a single machine learning model to predict performance and

power simultaneously that we called the multivariate performance and power

prediction model, which is a different goal.

Work in [82] estimates performance and power consumption of workloads us-

ing six benchmark applications for big-LITTLE ARM architecture with power

values obtained through estimation from performance counter values and not

through measurement. Work in [18] plugs in performance and power values from

an already collected large number of data points for changes in hardware features

values in a heterogeneous system. Work in [83] considers both power and per-

formance for a generalized class of parallel and distributed systems for scientific

applications. These research works use estimated power values as actual for mod-

eling purposes while we measure the power from the system to use as actual for

our model.

There are research works that focus only on power models without consid-

eration of performance. For example, power modeling is used in [84] to im-

prove the power consumption of virtual machines reducing operational costs in
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the cloud. Work in [85] uses power consumption obtained through prediction as

feedback to improve power supply units used in physical computer systems. In

[86] and [87] system-level power prediction is performed to understand the effect

of component-level power consumption usage. Work in [33] introduces a scale-

out and scale-up framework to reduce power consumption by efficient thread-

level parallelism and migration in heterogeneous cores. Our work differs from

these works because our goal is to predict the performance and power both and

not just focus on the prediction of power consumption.

In this chapter, we provided a methodology for performance and power pre-

diction to solve multivariate performance and power prediction problem. The

four important aspects of our work are summarized here: First, we selected ker-

nel and benchmark applications as workloads for our prediction model according

to their known compute-bound and memory-bound patterns to consider them

as white-box. Second, we developed a methodology to collect the actual power

consumption using McPAT tool [38] which utilizes the relevant information from

gem5 simulator upon execution of an application on gem5 simulated systems.

Third, we built a single performance-power prediction model to perform pre-

dictions for multiple instruction-set-architecture, ARM-based, and x86-based. Fi-

nally, by categorizing the multivariate performance-power prediction problem as

a multi-target regression problem rather than a multi-model problem, we trained

a single machine learning model that predicted both performance and power si-

multaneously. Furthermore, accurate performance and power prediction of bench-

mark applications and kernels can be extrapolated for real applications with mul-

tiple kernels and multiple phases, as shown in [19].

The remainder of the chapter is organized as follows: Section 4.2 describes the

multivariate performance and power prediction model based on machine learn-

ing algorithms that we propose. Section 4.3 describes the procedure to build the

simulated systems in the gem5 simulator. It further provides information for ex-

ecuting selected benchmark applications on simulated systems to collect perfor-

mance and system hardware features. It also describes the process of generating

the power consumption for each execution using McPAT. Section 4.4 articulates

88



the results from learning-based models. Finally, section 4.5 has concluding re-

marks along with tasks that we plan to continue in future work.

4.2 Multivariate Prediction Model

We had two options for building a machine learning model for solving multivari-

ate prediction problem. Option one was to build two different machine learning

models, the first model to predict the performance and the other to predict power.

Option two was to build a single machine learning model that predicts both per-

formance and power simultaneously. A problem where multiple outputs are re-

lated to each other is known as a multi-target regression problem, as defined in

[88]. We categorized the problem of performance and power prediction as a multi-

target regression problem because there is a relationship between an application’s

performance and how much power it consumes. Therefore, we chose option two

and developed a single machine learning model to predict multiple outputs, per-

formance, and power.

Our multivariate prediction model shown in figure 4.1 has three phases; data

collection phase, learning (training) phase, and prediction (testing) phase. In the

data collection phase, we collected the system’s hardware features and the ac-

tual performance ("runtime") by executing a chosen set of benchmark applications

(such as matrix multiplication, image processing) on selected computer systems

with features representing the general population of computer systems available

today. We also gathered actual power consumption for each execution, as de-

scribed in 4.3.2.

In the training phase, the learning model is trained for a given benchmark

application using M samples of computer systems to learn the relationship be-

tween hardware features and the actual multi-target output (i.e. actual perfor-

mance and power) of the same benchmark application. We denoted Xj as a set

of hardware features with categorical or continuous values for jth system, where

j, 1 ≤ j ≤ M. We encoded features with text data and normalized the feature set

Xj into X′j ∈ Rd. We collected the actual runtime and power from selected (M)
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Figure 4.1: Learning-Based Performance and Power Prediction Model

training samples denoted as Yj ∈ R2 to train the model. The training phase’s ob-

jective is to find a function =(X′j) ≈ Yj∀j for which we employ machine learning

regression models. At the end of the training phase, the machine learning re-

gression model learns function = by mapping the normalized hardware features

as input to the actual multi-target output of a benchmark application, which we

referred to as the "Learned Model."

In the prediction phase, we selected new computer systems unseen during

the training phase. Therefore, the actual runtime and power consumption of

a given benchmark application for these systems were unknown. We gathered

the hardware features of these new computer systems denoted as Xnew and fol-

lowed the same normalization process to get X′new ∈ Rd. Normalized hard-

ware features X′new of new systems were provided as an input to the "Learned

Model." The learned model then predicted the multivariate output (performance

and power) Ynew ∈ R2 for new systems using learned relationship from training
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phase =(X′new)→ Ynew for the same benchmark application.

4.3 Experimental Setup

In this section, first, we describe the process of building gem5 simulated systems.

We then explain the selection of kernel and benchmark applications for work-

load selection and the process to gather the actual runtime and dynamic power

consumption of benchmark application execution on simulated systems built into

the gem5 simulator.

4.3.1 Dataset Construction

The gem5 simulator [32] has been widely accepted simulator for architectural re-

search. We built 475 simulated systems in the gem5 simulator, out of which 120

were based on ARM-based instruction set, and the rest were x86-based instruction

set as described in chapter 2.3.1. We collected feature values from the real systems

as shown in table 2.1 to use them for constructing systems in the gem5 simulator.

To test our multivariate prediction model, we selected kernels and bench-

mark applications as workloads according to their computation and data access

patterns widely used in the real world, as shown in table 4.1. Monte carlo re-

quires more computation than data access, categorizing it as compute-intensive

(compute-bound). On the other hand, matrix multiplication requires more data

access than computation categorizing it as data-intensive (memory-bound). Quick-

sort requires about the same amount of computation and data access, therefore,

categorized as compute-plus-data-intensive (compute-plus-memory-bound). These

categorization is stated in [61]. We have also used two image processing ap-

plications that perform image stitching (stitch), an image analysis application,

and maximally stable regions (mser) from San Diego Vision benchmarks (SD-

VBS) [70]. In addition, a network protocol application dijkstra and an encryp-

tion application sha from MiBench benchmark [63] have been used. As per SD-

VBS documentation, mser is compute-bound (compute-intensive), and stitch is

memory-bound (data-intensive). Similarly, dijkstra is memory-bound, whereas
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Table 4.1: Applications used as workloads for Multivariate Model

Application Benchmark Intensiveness
monte carlo compute-intensive

matrix multiplication data-intensive
quiksort MiBench compute-intensive and data-intensive

mser SD-VBS compute-intensive
stitch SD-VBS data-intensive
sha MiBench compute-intensive

dijkstra MiBench data-intensive
compute-intensive = compute-bound
data-intensive = memory-bound

sha is compute-bound.

Each of these benchmark applications with different problem sizes [Problem

Size (PS) = =(Application)] were executed on each of the 475 simulated systems

resulting in the "475 x NoOfApps x PS" sample size of the dataset. We collected

performance (actual runtime) values for each execution. Collecting power con-

sumption for each execution was not as trivial, so we developed a separate pro-

cess to collect dynamic runtime power consumed, as described in section 4.3.2.

This process was carried out for each of the samples in the dataset.

4.3.2 Collecting Dynamic Runtime Power

McPAT tool is built for integrated power, area, and timing modeling. It accepts the

XML file as an input with gem5 simulated system’s configurations and statistics of

application execution. Using the information from an XML file, McPAT generates

dynamic power consumption at the hardware component level such as processor,

cache and memory, and overall system level. We leveraged this McPAT’s capabil-

ity to gather power consumption for our multivariate prediction model. Figure

4.2 shows the process flow for collecting dynamic power consumption using Mc-

PAT.

During each execution of the benchmark application on gem5 simulated sys-

tems [475 (simulated systems) x NoOfApps x PS], a set of configuration and statis-

tic files was generated. The configuration file has simulated system hardware ar-

chitecture features such as instruction set, cores, cache, memory controller. The
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statistics file has execution statistics of a benchmark application on the simulated

system indicating usage of each hardware component. For example, the number

of reads from cache or memory, number of writes in cache or memory, number of

reads and write misses from cache/memory, etc.

The parser program produces McPAT input XML by mapping the fields from

gem5 generated configuration and statistic files into template XML. The McPAT

template XML files were manually generated for each architecture (x86 and ARM)

because the fields in configuration files and statistics files may vary depending

on the simulated system’s hardware features. We executed a parser program for

each set of configuration and statistics files to generate McPAT input XML using

the template XML. We then fed each of the input XML files to the McPAT tool to

generate the dynamic power consumption.

4.3.3 Training and Prediction Model

We have used the decision tree regression model [57] from scikit-learn, a python-

based machine learning library [65] for multivariate performance and power pre-

diction. Given the input features xi from input feature set x = x0, x1, ..., xn and

target value y, decision tree regression model recursively partitions feature space
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of xi such that samples with close target value are on the same side of the tree. For

regression problems, mean squared error (MSE) is used to identify the closeness

between actual and target values and is given by:

MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (4.3.1)

Let data of node m is represented by Q. At each of the decision tree node m,

there could be several possible partitions in dataset Q. For each candidate parti-

tion θ = (xi, txi), data is partitioned into Qle f t(θ) and Qright(θ) (equation 4.3.2),

where xi is compared against the threshold tm.

Qle f t(θ) = (x, y)|xi <= tm (4.3.2a)

Qright(θ) = Q \Qle f t(θ) (4.3.2b)

For each of the candidate partitions, mean squared error (MSE) is calculated

for the left and the right partitions which is then used to calculate the impurity

function given by

G(Q, θ) =
nle f t

Nm
MSE(Qle f t(θ)) +

nright

Nm
MSE(Qright(θ)) (4.3.3)

Out of all the candidate partitions, select the one which minimizes the impu-

rity

θ∗ = argminθ(xm,tm) G(Q, θ(xi, ti)) (4.3.4)

At the root node, candidate partitions consist of one partition for each input

feature xi|xi ∈ x input feature set and threshold txi . For each of the candidate par-

titions, impurity function G(Q, θ) is calculated using mean squared error. Parti-

tion with smallest impurity is selected as criteria θ = (Xi, tm) for this node. Based

on criteria θ = (Xi, tm), all the samples Q from root node with xi <= tm are

partitioned into Qle f t(θ) and xi > tm are partitioned into Qright(θ). Recursively

partition the subsets Qle f t(θ) and Qright(θ) until maximum allowable depth of the

tree is reached Nm < minsamples or sample size has reached to one Nm = 1, that
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Table 4.2: Prediction Accuracy for Different Train-Test Ratio

Runtime Power
Application 40:60 50:50 60:40 40:60 50:50 60:40
monte carlo 0.15 0.13 0.01 0.049 0.16 0.014

matrix multiplication 6.15 2.29 1.59 0.57 0.52 0.32
quiksort 11.84 4.6 1.44 0.77 0.83 0.001

mser 74.09 7.03 0.0005 1.72 1.95 0.0020
stitch 5.17 1.35 0.45 6.96 1.83 2.5
sha 3.44 0.3 0.26 2.89 0.9 0.04

dijkstra 13.56 0.62 0.18 11.82 0.1 0.025

means, mean squared error cannot be reduced further. Each of the non-leaf nodes

are the decision points that guide the direction in which the data path is travers-

ing for a set of specific feature values of a sample until a leaf node is reached

which provides the target (predicted) value y for that sample. Mean of y values is

considered as the target value for the leaf node with more than one samples.

4.4 Results

We collected runtime by executing selected benchmark applications with differ-

ent problem sizes on all 475 gem5 simulated systems and the hardware features

of gem5 simulated systems. Power consumption for each execution was collected

using the process described in section 4.3.2. We split the dataset into 60:40 train-

test set ratio using train_test_split() function from scikit-learn which internally

calls ShuffleSplit() function to randomize the samples selection. We then trained

the decision tree regression model using a 60% training dataset consisting of the

hardware features, runtime, and power consumption for each benchmark applica-

tion. The train-test split ratio of 60:40 was selected since the 60:40 split had better

prediction accuracy for all benchmark applications, as shown in table 4.2. In the

prediction phase, the trained decision tree model was provided only the hardware

features of the remaining 40% test simulated systems as an input, unseen during

the training phase, to predict both the runtime and power consumption values.

We evaluated our multivariate performance and power prediction model statisti-

cally first using cross-validation and then the overall accuracy of the approach.
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4.4.1 Cross-Validation Error

We performed five-fold cross-validation [80] using 60% of dataset samples used

for training. Figure 4.3 shows runtime and power cross-validation mean percent-

age error (MPE) for each fold separately for matrix multiplication, monte carlo

and quicksort. We calculated the median of MPEs for each problem size for a

given application which we label as MedPE. For all five folds, matrix multiplica-

tion has average runtime MedPE of 1.15, power MedPE of 0.2, monte carlo has

average runtime MedPE of 0.038, and power MedPE of 0.027 and quicksort has

average runtime MedPE of 2.86 and power MedPE of 0.22.
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Figure 4.3: Cross-Validation Prediction Error Per Problem Size

We observed that for memory-bound matrix multiplication, MedPE for run-

time is an order of magnitude higher than runtime MedPE for compute-bound

monte carlo. Additionally, power MedPE is lower than runtime MedPE for both
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applications. We believe that different MedPE for runtime and power is due to

the difference in the distributions of samples over the runtime and power values

range. Figure 4.4 shows sample distributions of runtime and power for matrix

multiplication and monte carlo applications. We infer from this histogram that

samples of matrix multiplication are widely spread across a range of runtime val-

ues between 20000 to 50000, whereas the power values of one, two, and seven

dominate the sample distribution. On the other hand, for monte carlo, the major-

ity of samples have runtime between 20000 to 25000 and power values of one and

nine having a narrow spread.
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Figure 4.4: Samples Distribution over Runtime vs Power

We observed similar behavior in other benchmark applications from the his-

togram in figure 4.5. A memory-bound stitch (ST) application, has a wider spread

for runtime as compared to mser (MS), a compute-bound application resulting

in higher runtime median percentage error for stitch. Similarly, dijkstra (DI), a

memory-bound application, has a higher runtime median percentage error than

compute-bound sha (SH). We also see that the median percentage error for power

97



is less than runtime for stitch, dijkstra, and sha because power has a narrow

spread as compare to runtime for each of these three benchmark applications.
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Figure 4.5: Samples Distribution over Runtime vs Power for Benchmarks

4.4.2 Prediction Accuracy

To demonstrate the overall accuracy of our approach, we predicted runtime and

power simultaneously for 40% dataset test systems samples using a single multi-

variate prediction model trained from 60% dataset train systems samples. Figure

4.6 shows the median percentage error (MedPE) prediction error for test systems.

Matrix multiplication has average runtime MedPE of 0.29, power MedPE of 0.089,

monte carlo has average runtime MedPE of 0.13, and power MedPE of 0.13 and

quicksort has average runtime MedPE of 0.64 and power MedPE of 0.10. We

observed that the compute-bound monte carlo application has lower runtime me-

dian percentage errors as compared to memory-bound matrix multiplication and

both-bound quicksort. Also, the power error is generally lower than the corre-
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sponding runtime error.
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Figure 4.6: Prediction Accuracy for Test Simulated Systems

To understand the reasons behind these observations, we further analyzed the

results. The processor features have a higher impact on the performance (runtime)

of a compute-bound application. On the other hand, memory features dominate

the runtime of a memory-bound application. The gem5 simulator supports only

one superscalar processor with five stages of out-of-order pipeline that we have

used to build all of the simulated systems. It causes the compute-bound monte

carlo application to have lower variations in runtime values from simulated sys-

tems. Whereas, the gem5 simulator supports several different memory resulting

in higher variations in the runtime of the memory-bound application, such as ma-

trix multiplication. Due to higher runtime variations in matrix multiplication, the

runtime prediction error is higher as compared to monte carlo. Quicksort applica-

tion depends on both a processor and memory features; therefore, error for quick-

sort is similar to matrix multiplication. We observed that the power error is less

than runtime error for all the three benchmark applications, whether compute-

bound or memory-bound because the memory unit consumes much less power

than the computation unit resulting in lower variance and lower error for power

for all applications.

We made similar observations for benchmark programs from figure 4.7 with

99



the stitch (ST) having runtime MedPE of 0.41 and power MedPE of 0.041, mser

(MS) having runtime MedPE of 0.34 and power MedPE of 0.34, dijkstra (DT)

runtime MedPE of 1.88 and power MedPE of 0.44 and finally sha with runtime

MedPE of 0.32 and power MedPE of 0.18. Here, runtime error for dikstra (DI)

is higher as compared to sha (SH) because a memory-bound dikstra has higher

dependence on memory features resulting in higher variance in runtime for dif-

ferent memory units. In comparison, a compute-bound sha has lower runtime

variance with the use of the same processor model for building all gem5 simu-

lated systems. Once again, the power error for all four benchmark applications is

lower than the corresponding runtime error because of the smaller contribution

of power consumption of different memory units of gem5 simulated systems as

compared to the computing unit.
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Figure 4.7: Prediction Accuracy of Test Simulated Systems for Benchmarks

4.5 Summary

This chapter proposed a learning-based approach to multivariate performance

and power prediction. In this approach, different simulated systems were char-

acterized according to their key processor, cache, and memory features to build

gem5 simulated systems. To collect actual power consumption in addition to the
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performance of a software execution on the gem5 simulated systems, we formu-

lated a process using the McPAT tool. We demonstrated that a single learning-

based prediction model predicts both performance and power consumption si-

multaneously with high accuracy of greater than 95% for different software ap-

plications. We established that our prediction model worked even with vastly

different architectures such as x86 and ARM. Our results showed that for gem5

simulated systems, due to higher runtime variations, power prediction accuracy

is higher than in performance. A simple gem5 processor design results in lower

performance errors in compute-bound applications compared to memory-bound.

In this work, benchmark applications used have serial code executed on the gem5

simulator but in the future, we plan to extend our model for parallel benchmarks

on physical systems to test the model’s adaptability for workload variations. In

the future, we aim to perform multivariate predictions on physical computer sys-

tems.
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CHAPTER 5

Cross Prediction with Scaling using Machine

Learning

5.1 Performance Prediction of Physical Computer Sys-

tems Using Simulated Systems

5.1.1 Overview

The progression in computer systems architecture has made it possible to have

several options for the selection of computer systems available today. A software

performance will differ on each computer system according to its architectural

(hardware) features. To obtain the performance of a software application on a

specific computer system, we need to acquire the system. However, it is an ex-

haustive task to procure several computer systems just to collect the performance

of a software application to evaluate them for selection. On the other hand, sev-

eral simulated systems can be built easily in a short duration with simulation tools

to evaluate the performance of the software. Therefore, we need to use simulated

systems to predict the performance of the physical systems, which is a difficult

problem to solve.

Performance prediction has been an active research topic. The GPU perfor-

mance is predicted using features collected during the execution of an application

on the x86-based system in [20] and [51]. For unseen software, a performance

on an ARM-based system is predicted in [50] by collecting performance coun-

ters on an x86-based system. Work in [5] shows that a trained machine-learning
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model from one platform can be retrained only with one percent of samples from

test (another) platform to predict ninety-nine percent of performance data. These

works have shown that a machine-learning model trained on performance data

from one physical system can predict the performance of another physical system

with a disparate set of hardware features, which is a different goal.

Cycle-accurate simulators [89] are widely used for evaluating software perfor-

mance with good accuracy. One of which is gem5 simulator [32], a powerful well-

accepted cycle-accurate simulator. The gem5 simulator provides two modes for

simulating systems; full-system mode and system-call emulation mode. Work in

[31] has shown that gem5 simulated system built with full-system mode provides

an accurate software performance compared to the physical system. However,

full-system set up for each system is arduous and slow as compared to native

execution [39] [40]. On the other hand, the system-call emulation mode of gem5

provides systems simulation at a higher speed with lower accuracy. Therefore,

our goal is to, perform accurate performance prediction of physical systems using

gem5 simulated systems constructed using system-call emulation mode.

In this work, we performed "Cross Performance Prediction", in which, a machine-

learning model is trained only on gem5 simulated systems, built using system-

call emulation mode, to predict the performance of physical systems. We evalu-

ated cross performance prediction models for MiBench [63] and San Diego Vision

Benchmark Suite (SD-VBS) [70] applications from different application domains

having different computation and memory access patterns.

The remainder of the section is organized as follows: Section 5.1.2 describes

the cross performance prediction model. Section 5.1.3 describes the procedure to

build simulated systems, applications selection for workload, and physical sys-

tems selection for cross performance prediction. Section 5.1.4 articulates the re-

sults from the cross performance prediction model. Finally, section 5.1.5 has con-

cluding remarks along with tasks that we plan to continue in future work.
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5.1.2 Cross Performance Prediction Model

Our cross performance prediction model shown in figure 5.1 has three phases;

training, cross performance prediction and model evaluation. In the training

phase, the machine-learning regression model is trained for a given application

to learn the relationship between the system’s hardware features and the actual

simulator performance ("actual runtime") of the same application. We selected

sample systems (M) for the training phase with hardware feature values that rep-

resents the general population of systems available today denoted as Xsj where

j, 1 ≤ j ≤ M. We encoded hardware features with text data from Xsj into

Xs′j ∈ Rd. For example, systems with nine features represented as Xs′j ∈ R9.

We represented the actual simulator runtime of selected (M) samples for a given

application as ysj ∈ R in the training phase to train the model. The objective of

the training phase is to find a function =(Xs′j) ≈ ysj∀j, the mapping between sys-

tems’ hardware features and actual simulator runtimes for an application, which

we referred to as "Learned Model".

In the cross performance prediction phase; first, we collected hardware fea-

tures Xpi from each of the (N) physical systems i, 1 ≤ i ≤ N. The hardware fea-

tures with textual data were then encoded from Xpi into Xp′i ∈ Rd. These physi-

cal systems’ hardware features Xp′i were provided as an input to an application-

specific learned model to predict the runtime yspredi for physical computer sys-

tems using learned relationship from training phase =(Xp′i)→ yspredi.

In the model evaluation phase, we validated the predicted runtime yspredi

from the cross prediction model to the actual runtime ypi collected by executing

an application on physical systems (N). To evaluate the accuracy of the learned

model, we collected runtime yspi by executing an application on gem5 simulated

systems built with the hardware features of the physical systems for which cross

prediction is required and compare yspi runtime with yspredi. Runtimes yspi and

cross predicted runtime yspredi will have a difference of a factor with the runtime

from physical system ypi, we labeled it as a "Scaling Factor". We determined scal-

ing factor depending upon the type of application and was applied to yspi and

yspredi to improve the accuracy of the model.
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Figure 5.1: Cross Performance Prediction Framework

5.1.3 Experimental Setup

In this section, we provide detail of building gem5 simulated systems, articulate

application selection for workloads and then provide information about physical

systems used for cross performance prediction.
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Table 5.1: Applications used as workloads for Cross Performance Prediction
Model with Scaling

Application Benchmark Intensiveness
mser SD-VBS compute-intensive
svm SD-VBS compute-intensive

tracking SD-VBS data-intensive
stitch SD-VBS compute-intensive and data-intensive

dijkstra MiBench data-intensive
sha MiBench compute-intensive

compute-intensive = compute-bound
data-intensive = memory-bound

5.1.3.1 Simulation-based Models for Training

To show the effectiveness of our cross performance prediction model for the real-

world systems, we collected hardware features from the computer systems avail-

able in the market today as shown in table 2.1. Using these features, we built 475

systems in the gem5 simulator using system-call emulation mode as described in

chapter 2.3.1. Due to the limitations and differences in the design of gem5 simu-

lated systems compared to physical systems presented in chapter 2.3.1, simulated

systems are a close representation but not the exact replica of physical systems.

5.1.3.2 Applications Selection for Workload

We selected four applications mser, svm, tracking and stitch from San Diego Vi-

sion Benchmark (SD-VBS) and two applications sha and dijkstra from MiBench

benchmark each representing an application from the different domain as shown

in table 5.1. According to [70], mser and svm are compute-bound, tracking is

memory-bound whereas stitch is compute-plus-memory-bound. Work in [11] de-

picts that the correlation between hardware features and runtime can be used to

understand the hardware features that affect runtime the most. In this way, we

can identify whether processor features or memory features dominate the run-

time categorizing application into compute-intensive (compute-bound) or data-

intensive (memory-bound) respectively.

We plotted a pearson correlation coefficient [69] of nine hardware features with

runtime for each of the six applications in figure 5.2. For mser, processor feature
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L2 cache size has a higher correlation with runtime than memory features cat-

egorizing mser as compute-bound (or compute-intensive). Similarly, for svm, a

compute-bound application, has a higher correlation for L1 and L2 cache sizes

with runtime. A memory-bound (or data-intensive) application tracking has a

higher correlation between memory features (memory clock speed and types)

with runtime. Even though MiBench does not categorize dijkstra and sha ap-

plications, we categorized dijkstra to be data-intensive and sha to be compute-

intensive using a correlation coefficient plot. We observed that sha has a marginally

higher correlation of L2 cache size compared to memory features because sha

reads data to be encrypted from a file causing it to also have some dependence

on data.
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Figure 5.2: Pearson Correlation Coefficient of Hardware Features with Runtime

5.1.3.3 Physical Computer Systems for Cross Performance Prediction

For cross performance prediction experiments, we kept our scope limited to x86-

based computer systems mainly using Intel processors. We considered physical

systems with varied values of all nine hardware features as shown in table 5.2. The

selection of these systems consists of a server system with Intel Xeon E5-2620 v3

processor, a high-end system having Intel Core i7-8700 processor and the general-

purpose systems with Intel Core i7-6500U and Intel Core i5-6500 processors with
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different memory types and sizes. We collected the values of these nine hardware

features from physical systems using the dmidecode utility.

Table 5.2: Physical Computer Systems for Cross Performance Prediction Model
with Scaling

Sr ISA CPU Cores Mem Mem Mem L1-L3
Speed Type Access Size Cache
GHz MHz GB Size

A x86 3.2 4 DDR3 1600 4 32,6
B x86 2.4 12 DDR4 1866 16 32,15
C x86 3 2 DDR3 1600 8 32,4
D x86 3.2 6 DDR4 2666 16 32,12

**L1 Cache Size is in kB and L3 Cache Size is in MB
Configuration taken from following models
A.Intel Core i5-6500 B.Intel Xeon E5-2620 v3 C.Intel Core i7-6500U D.Intel Core
i7-8700

5.1.4 Results

We executed each of the applications from table 5.1 on each of the 475 gem5 sim-

ulated systems from table 2.1 and collected runtime for each execution. We col-

lected nine hardware features Xsj ∈ R9 and runtime ysj ∈ R where j represents all

475 simulated systems. Two of the hardware features with text data instruction-

set-architecture (ISA) and memory-type were then converted to real-value using

encoding technique resulting in hardware features with all real-valued dataset

Xs′j ∈ R9. Therefore, the performance dataset consists of records with nine real-

valued hardware features and the corresponding runtime [Xs′j, ysj] for an appli-

cation execution from each simulated system.

For training and prediction, we used the decision tree regression machine-

learning model [90] [6] from a python-based library scikit-learn [65]. We ran-

domly selected 60% of [Xs′j, ysj] performance records using the SuffleSplit() func-

tion from scikit-learn and trained the decision tree model for each application

separately which is called the "Learned Model." The learned model was then pro-

vided encoded nine features from physical systems Xp′i ∈ R9 (i=1 to 4 in our case

since we have four physical systems) as an input to predict the performance, that

is, we performed cross performance prediction. In this section, we evaluate our
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model in two ways: first, the accuracy of the learned model, that is, a decision tree

model trained only on gem5 simulated systems’ performance dataset is verified

by performing cross-validation. Second, we evaluate the learned model for cross

performance prediction by predicting runtime for x86-based physical computer

systems shown in table 5.2.

5.1.4.1 Simulation-based Performance Prediction Accuracy

To evaluate the performance of the simulation-based performance prediction model,

we performed five-fold cross-validation [80]. In which we trained the decision

tree regression model on 60% of 475 simulated systems performance dataset [Xs′j, ysj]

and predicted the runtime for the remaining 40% (test systems) for each applica-

tion separately. To show that our model provides accurate predictions for any

random selection of samples from the performance dataset for training and pre-

diction, we use ShuffleSplit() function to randomly select samples for training and

prediction in each of the five folds. The mean percentage error (MPE) of the 40%

samples of test systems for each of the folds is shown in figure 5.3. Our results

demonstrated that the learned model achieves a performance prediction accuracy

of 99% in each fold for all applications considering prediction for test simulated

systems.
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Figure 5.3: Cross-Validation Mean Percentage Error

109



5.1.4.2 Cross Performance Prediction Accuracy

We used a decision tree regression model trained only on gem5 simulated sys-

tems’ performance dataset (Learned Model) for each of the applications to predict

the runtime for the physical systems from table 5.2, which we call "cross perfor-

mance prediction".

To demonstrate the accuracy of cross performance prediction, we performed

two tests. In the first test, we compared the cross performance predicted runtime

with the actual runtime from gem5 simulated systems that were built with the

same hardware feature values of nine features from physical systems. The results

of the first test are shown in figure 5.4 with the red bar indicating actual runtime

collected from gem5 simulated systems build from physical systems’ hardware

features and the blue bar indicating cross predicted runtime. Mean percentage

error (MPE) considering all four physical systems for svm, mser, tracking, stitch,

sha, and dijkstra are 2.29%, 8.13%, 3.87%, 1.76%, 10.86%, and 9.98% respectively.

Hence, we achieved an accuracy of more than 90% considering the MPE of all four

physical systems for all applications combined.

In the second test, we compared the actual runtime from physical systems to

cross predicted runtime predicted from the learned model trained only on simu-

lated systems. The results from the second test are shown in figure 5.5 with the

actual runtime from physical systems in the red bar and cross predicted runtime

(unscaled) in the black bar. The first observation from the plot is that server-like

systems (B and D) have larger errors between cross predicted runtime and the

actual runtime as compared to the general-purpose systems (A and C). This is

because simulated systems are representative of the general class of machines,

therefore, the difference in hardware features between the simulated system and

the server-like system is larger, resulting in a larger difference in runtime.

The second observation is that when we compared actual runtimes from phys-

ical systems and the corresponding unscaled cross predicted runtimes, errors in

compute-bound applications are higher than memory-bound applications. For

example, sha has an error of 35.16%, whereas tracking has an error of about 10%

for general-purpose systems (A and C), we call this a "Scaling Factor". This is
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because the gem5 simulated systems, built with the only supported superscalar

processor, witness a larger gap in features with that of several disparate proces-

sors used in physical systems. This results in higher variations in runtime for

compute-bound applications between simulated systems and physical systems.

The higher variation in the runtime of compute-bound applications causes larger

errors. On the other hand, we have the support of several different memory mod-

ules (types, clock speeds) in gem5, which enables the simulated systems to closely

represent memory units of physical systems resulting in a narrow difference in

runtimes for memory-bound applications between gem5 simulated systems and

the physical systems. The difference between the gem5 processor and the physical

system’s processors exists for memory-bound applications also, but it is hidden

due to higher dependence on memory which is slower as compared to a processor.

Based on the second observation, we applied the scaling factor of 35% and

10% to cross predicted runtime values of compute-bound and memory-bound
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applications, respectively. Both unscaled and scaled cross performance prediction

runtime values are shown in figure 5.5. We can confirm from the plot that the

error between the actual runtime and unscaled cross predicted runtime is higher

compared to the scaled cross predicted runtime. The results demonstrated that by

applying the scaling factor, we reduced errors in cross predicted runtimes for each

application in the range of 10% to 20%. Furthermore, considering all applications

combined, the scaled predicted runtime error is 2.8% and 12% for the general-

purpose systems A and C, and 21% and 37% for the server systems B and D.

5.1.5 Summary

In this section, we applied cross performance prediction on benchmarks appli-

cations from MiBench and SD-VBS. First, with the help of the correlation coef-

ficient, we categorized applications in compute-bound or memory-bound. The

results demonstrated that compute-bound applications have a higher difference
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in runtime between the simulated system and physical as compared to memory-

bound applications. Using this information, we applied the scaling factor of 35%

for compute-bound applications and 10% for memory-bound applications. After

applying the scaling factor, our cross performance prediction achieved an aver-

age accuracy of 80% to 90%. In the future, we would like to extend our work

to include other instruction-set architecture systems such as ARM-based physi-

cal systems. We would also like to include additional variables such as power in

addition to performance for improving computer system selection using power-

aware computing.

5.2 Predicting Physical Computer Systems Performance

and Power from Simulated Systems using Machine

Learning Model

5.2.1 Overview

Technological advancements in hardware features of computer systems have pro-

vided us with a plethora of options. In particular, features of processors, caches

and memories have seen tremendous growth. The software application will have

dissimilar performance and power consumption when executed on computer sys-

tems with the diversity of processor, cache and memory features. Therefore, se-

lecting a computer system with the appropriate hardware features that provide

optimal performance and power is a challenging but important problem to ad-

dress. To collect the performance and power consumption of application exe-

cution on computer systems require access to physical computer systems. How-

ever, making many physical systems available just for collecting performance and

power for selection is an exhaustive task. Thus, we needed a solution to accurately

estimate the performance and power of software applications for computer sys-

tems with a specific processor, cache and memory features without the availabil-

ity of physical systems to execute an application. This task is even more complex

because physical systems are in general non-terminating and non-deterministic,
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whereas the behavior of the application is terminating, deterministic and platform-

independent [27]. This makes the problem of computer systems selection very

difficult.

Performance has always been an important factor for the selection of com-

puter systems but since the past decade, power consumption has emerged as a

major concern due to heat profile causing environmental hazards. Furthermore,

the development of complex software applications requires plentiful computer re-

sources resulting in increased power consumption. Therefore, power-aware com-

puting has become an active research area as discussed in [91]. The work in [84]

proposes cost estimation for a cloud-based virtual machine using power predic-

tion. Similarly, power consumption is reduced using thread-level parallelism in

[33]. A study of component-level power to reduce the system-wide power con-

sumption is the focus of work in [86] and [87]. These research works have focused

primarily on power estimation without performance consideration. In contrast,

our goal is to utilize both the performance and power consumption to address the

computer systems selection problem.

Some research works have focused on cross-platform prediction. The work in

[20] predicts GPU performance by collecting features from the x86-based system.

The work in [5] builds a machine learning model from the performance dataset of

one HPC system to predict performance for another HPC system. Both [20] and

[5] focuses only on performance prediction without power consideration. On the

other hand, the research works in [50] and [4] built machine learning models for

performance and power prediction for the ARM-based target system by collecting

performance counters on x86-based host systems. These works constructed two

separate machine learning models for performance and power; however, due to

the relationship between performance and power, we consider performance and

power prediction as a multi-target prediction problem requiring a single model

to predict both performance and power simultaneously as discussed in [92]. Fur-

thermore, [20], [5], [50] and [4] all require access to physical systems for collect-

ing training data. However, we aim to perform multi-target prediction of perfor-

mance and power without having access to physical systems.
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We have two objectives for the work in this section; first, build an accurate

performance and power prediction model for physical systems without access-

ing them. Second, achieve the objective of computer systems selection using the

model. We proposed a novel model "Cross Performance and Power Prediction

with Scaling" to achieve the first objective. Our model used only gem5 [32] sim-

ulated systems dataset in conjunction with the machine learning model to per-

form predictions for physical systems. Furthermore, building full systems in the

gem5 simulator is arduous [39] [18], hence we explored the gem5 emulation mode

for achieving speed. However, gem5 emulated systems have a larger design gap

with physical systems reducing the accuracy of the predictions which we compen-

sated by applying application-specific "Scaling Factor". In summary, the contri-

butions of this work include: First, we collected hardware features of real-world

computer systems, made modifications to the gem5 simulator source and built

475 systems in the gem5 simulator using emulation mode. We executed well-

known benchmark applications from SD-VBS and MiBench with different com-

putations and data access patterns on gem5 simulated systems to construct the

performance and power dataset. Second, we executed the same benchmark appli-

cation on selected physical systems to build the performance and power dataset

for validation. Third, we trained a multivariate machine-learning model from the

gem5 simulated systems’ dataset to predict the performance and power simul-

taneously for physical systems. Fourth, we designed a mathematical model to

derive application-specific "Scaling Factor" to improve the accuracy of predicted

values compared to the physical systems’ actual values. Finally, we demonstrated

that accurate predictions from our model achieved the objective of computer sys-

tems selection without the need to access physical systems.

The remainder of the section is organized as follows: Section 5.2.2 describes

our methodology and model. Section 5.2.3 describes applications selection for

workload and procedure to collect performance and power consumption on sim-

ulated systems and physical systems for cross prediction. Section 5.2.4 articulates

the results from our cross prediction model. Section 5.2.5 provides details about

using our cross prediction model for computer system selection. Finally, section
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5.2.6 has concluding remarks along with tasks that we plan to continue in future

work.

5.2.2 Methodology and Model

In this section, we describe our methodology and the cross prediction model that

we propose.

5.2.2.1 Methodology

We proposed that instead of using physical systems to collect performance and

power for selection, we quickly built systems in cycle-accurate simulators [89]

for accurate performance and power measurements. We then trained a machine

learning model to predict the performance and power of physical systems. Gem5

[32] simulator is a well-accepted cycle-accurate simulator used by academicians

and industry researchers. Furthermore, McPAT [93] in conjunction with gem5

provides accurate power consumption of application execution as shown in [9].

We can build simulated systems with a full-system mode in gem5 for very ac-

curate performance estimates compared to the physical system as shown in [9].

However, setting up many full systems in gem5 is arduous and slow as compared

to native execution indicated by [39] and [18]. Therefore, to speed up the construc-

tion of systems, we built simulated systems in gem5 using system-call emulation

mode.

We collected nine hardware features cpu clock speed, cores, instruction set ar-

chitecture (ISA), L1 size, L2 size, L3 size, memory type, memory access speed,

memory size from simulated systems. We trained a decision tree machine learn-

ing algorithm from these hardware features, the performance and power dataset

collected from gem5 and McPAT by executing applications on gem5 simulated

systems and predicted the performance and power of physical systems. Never-

theless, due to the design differences in the emulation mode of gem5 simulated

systems and physical systems, we observed large errors between predicted values

from the machine learning model and the actuals from the physical system. To

improve the accuracy of predictions, we designed a mathematical model to deter-
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mine the factor called the "Scaling Factor" by which predicted values needed to be

adjusted. There are two components to the scaling factor; dissimilarity between

the design of gem5 simulated systems with emulation mode and physical sys-

tems, and the application’s dependence on hardware features resulting in further

variations in performance and power. We determined both factors to derive the

application-specific scaling factor. We applied the scaling factor to the predicted

values for accurate performance and power prediction of the physical system.

5.2.2.2 Cross Performance and Power Prediction with Scaling Model

We categorize performance and power prediction problem as multi-target (mul-

tivariate) regression problem [92] due to the correlation between performance

(runtime) and power consumption. To address the multivariate regression prob-

lem, our model trains a single machine-learning model to predict both perfor-

mance and power simultaneously. In a separate study conducted by us [42], we

have established that tree-based machine learning algorithms such as decision

tree [90] [6] provides the highest prediction accuracy for the performance predic-

tion model. Therefore, we have used a decision tree algorithm from python-based

machine learning library scikit-learn [65] for our model.

Our model "Cross Performance and Power Prediction with Scaling" has three

phases as shown in figure 5.6; training phase, cross performance & power predic-

tion phase, and model evaluation phase. For the training phase, we denoted simu-

lated systems hardware features as Xs and actual runtime and power as Ys ∈ R2.

Since memory-type and instruction-set-architecture (ISA) features have text data,

we encoded these features using a dummy encoding technique to convert them

from text data in Xs to real value in Xs′ ∈ Rd. The objective of the training phase

is to learn a function =(Xs′) ≈ Ys, which we referred to as the "Learned Model".

In the training phase, we trained a single decision tree regression algorithm per

application from 80% of gem5 simulated systems’ performance and power dataset

generated in section 5.2.3.2 consisting of real-valued hardware features Xs′ ∈ Rd

and actual performance and power Ys ∈ R2. We predicted the performance and

power for the remaining 20% simulated systems by providing only hardware fea-
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Figure 5.6: Cross Performance and Power Prediction with Scaling Model

tures to the "Learned Model" to validate the accuracy.

In the cross performance and power prediction phase; first, we collected nine

hardware features Xp of each physical system using the dmidecode utility. We

also collected the actual runtime and power consumption Yp as discussed in sec-

tion 5.2.3.3. We encoded memory-type and ISA with text data from Xp to real-

value in Xp′ ∈ Rd. We fed real-valued physical system features Xp′ as an input to

the application-specific "Learned Model" to predict the runtime and power Yppred

such that =(Xp′)→ Yppred, which we labeled to as cross predicted values. How-

ever, the cross predicted values Yppred when compared to physical systems’ ac-
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tual Yp results in large errors. We believe that these large errors are caused by

machine learning models trained only from simulated systems’ dataset to predict

performance and power for physical systems, indicating dissimilarities between

simulated and physical systems environment. To identify these dissimilarities

and improve the accuracy of our model, we perform the model evaluation phase.

In the model evaluation phase, upon analyzing the differences between Yp

and Yppred for different benchmark applications, we observed that two factors

are causing large errors. First, the design of gem5 simulated systems built us-

ing emulation mode differs from physical systems resulting in a major factor for

errors. Second, variations in a major factor, called a minor factor, are caused by

the dissimilarities in the dependence on hardware features by compute-intensive

or data-intensive applications. The combined effect of major and minor factors is

what we call the "Scaling Factor." As shown in figure 5.6, we applied the application-

specific "Scaling Factor" to the cross predicted values to reduce the error between

cross predicted values and the actual physical system values. We discuss the

mathematical formulation of the "Scaling Factor" below:

5.2.2.3 Determining Scaling Factor

The scaling factor is determined by a major and minor factor as shown in equation

5.1.

ScalingFactor(SF) = MajorFactor + MajorFactor ∗MinorFactor (5.1)

To calculate the scaling factor, we first determined a major factor, large errors

caused by dissimilarities in gem5 simulated systems built-in emulation mode and

physical systems. First, we constructed gem5 simulated systems using the same

hardware features as the physical systems as shown in the left yellow lane in

figure 5.6. We then executed the benchmark applications on these gem5 simulated

systems equivalent to physical systems and collect the actual performance and

power dataset Ysp. We took the mean difference between the Ysp and Yp for
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performance and power separately, which is a major factor.

MajorFactor = ∑N
n=1(Yspn −Ypn)

N
(5.2)

To determine an application-specific minor factor, we first needed to quantify the

application’s dependence on the processor, cache and memory features result-

ing in variations in performance (runtime). We calculated the Pearson correlation

(PC) coefficient between individual hardware features and simulated systems per-

formance (runtime) for each application.

We define processor feature set as computational features (C) and memory

features (M) as shown.

Computational Features(C)={numcpus, L1size, L2size, L3size}

Memory Features(M)={memclock, memsize, memtype*}

We calculated the correlation coefficient for computational features PCC and

memory features PCM as shown in equations 5.3 and 5.4. The minor factor is

calculated using PCC and PCM as shown equation 5.5.

PCC =
∑c∈C PC(c)
|C| (5.3)

PCM =
∑m∈M PC(m)

|M| (5.4)

MinorFactor =
PCC − PCM

PCC
(5.5)

5.2.3 Experimental Setup and Dataset Construction

In this section, we articulate the selection of benchmark applications, provide de-

tails of systems constructed in the gem5 simulator using emulation mode and the

selection of physical systems used for the validation of our model. We also outline

the procedure for collecting actual performance (runtime) and power consump-

tion from gem5 simulated systems and physical systems for selected applications.
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Table 5.3: Applications used as workloads for Cross Performance and Power Pre-
diction Model with Scaling

Application Benchmark Intensiveness
mser SD-VBS[70] compute-intensive
svm SD-VBS[70] compute-intensive

tracking SD-VBS[70] data-intensive
stitch SD-VBS[70] compute-intensive and data-intensive

dijkstra MiBench[63] data-intensive
sha MiBench[63] compute-intensive

compute-intensive = compute-bound
data-intensive = memory-bound

5.2.3.1 Application Selection for Workload

We selected applications from different application domains having different com-

putations and memory access patterns. Our selection includes four applications

svm, tracking, stitch and mser from San Diego Vision Benchmark Suite (SD-VBS)

[70] and two applications, sha and dijkstra, from MiBench [63], as shown in table

5.3. The svm is a machine learning algorithm, stitch and tracking are image oper-

ations, sha is an encryption algorithm, and dijkstra is a network protocol. Accord-

ing to SD-VBS documentation [70], mser and svm are compute-bound (compute-

intensive) having a higher dependency on processor features, tracking is memory-

bound (data-intensive) having a higher dependency on memory features, whereas

stitch depends on both, computation and memory access (compute-plus-memory-

bound). The correlation coefficient between systems’ hardware features and run-

time can identify features of processors and memory that dominate the runtime

categorizing the respective application into compute-intensive or data-intensive

respectively, as shown in [11].

For each application in table 5.3, we calculated Pearson correlation coefficient

[94] (PC) between simulated systems runtime and computational features (C) and

memory hardware features (M) as shown in columns B to K of table 5.4 with

columns G to J showing the PC values for the encoded memory-type feature. We

also calculated the application-specific PCC, PCM and minor factor using equa-

tions 5.3, 5.4 and 5.5 as shown in columns L, M and O. We observed from the

table 5.4 that for mser and sha PCC � PCM categorizing them as compute-bound
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Table 5.4: Runtime Minor Factor Based on Pearson Correlation Coefficient

A B C D E F G H I J K L M N O
dijkstra 0.44 0.41 0.40 0.02 0.26 0.08 0.31 0.79 0.75 0.18 0.36 0.44 MB -0.22

sha 0.21 0.29 0.20 0.02 0.06 0.16 0.20 0.12 0.16 0.34 0.26 0.14 CB 0.46
stitch 0.07 0.38 0.27 0.00 0.12 0.18 0.28 0.34 0.34 0.23 0.24 0.25 CB+MB 0.06

tracking 0.29 0.27 0.31 0.00 0.12 0.24 0.37 0.38 0.41 0.18 0.26 0.31 MB -0.17
mser 0.05 0.61 0.20 0.00 0.03 0.14 0.20 0.13 0.11 0.33 0.30 0.12 CB 0.59
svm 0.38 0.31 0.23 0.00 0.07 0.35 0.32 0.13 0.21 0.14 0.26 0.22 CB 0.18

A-Algo, B-PCL1Size, C-PCL2Size, D-PCL3Size, E-PCNumCPUs, F-PCMemSize, G-PCMemType1,
H-PCMemType2, I-PCMemType3, J-PCMemType4, K-PCMemClock, L-PCC, M-PCM, N-Algo Type
(CB/MB), O-MinorFactor

applications whereas in case of tracking and dijkstra PCC � PCM categorizing

them as memory-bound. In the case of stitch, we observed that PCC ≈ PCM cat-

egorizing it as compute-plus-memory bound. In other words, a positive minor

factor indicates compute-bound applications, a negative minor factor indicates

memory-bound applications and a minor factor close to zero indicates the appli-

cation has dependencies on both processor and memory features.

5.2.3.2 Simulated Systems for Training

We built 475 systems in the gem5 simulator with system-call emulation mode as

discussed in chapter 2.3.1 using the features collected from real systems as shown

in table 2.1. However, due to the limitations and differences in the design of gem5

simulated systems compared to physical systems as indicated in chapter 2.3.1,

simulated systems are close but not the exact representation of physical systems.

We executed each benchmark application from table 5.3 on each of the 475

simulated systems to collect actual runtime along with hardware features. We

utilized the McPAT [93] tool to collect the power consumption for each application

execution on gem5 simulated systems as carried out in our earlier work [45].

5.2.3.3 Physical Computer Systems for Cross Performance and Power Predic-

tion

For cross performance and power prediction experiments, we kept our scope lim-

ited to x86-based computer systems mainly using Intel processors. We consid-
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Table 5.5: Physical Computer Systems for Cross Performance and Prediction
Model with Scaling

Sr ISA CPU Cores Mem Mem Mem L1-L3
Speed Type Access Size Cache
GHz MHz GB Size**

A x86 3.2 4 DDR3 1600 4 32,6
B x86 3 2(4) DDR3 1600 8 32,4
C x86 3.2 6(12) DDR4 2666 16 32,12
D x86 3.2 4 DDR3 1600 4 32,6

**L1 Cache Size is in kB and L3 Cache Size is in MB
Configuration taken from following models
A.Intel Core i5-6500 B.Intel Core i7-6500U C.Intel Core i7-8700 D.Intel Core
i5-3470

ered physical systems with different feature values of all nine hardware features,

as shown in table 5.5. The selection of these systems consists of a server system

(C), two general-purpose desktop systems (A) and (D) and a laptop (B). We chose

these systems to consider different power profiles, with the server system having

the highest power consumption and a laptop having a mobile processor with the

lowest power consumption. Furthermore, we chose systems B and C which use

hyper-threading with 2 threads per core, as shown in the Cores column.

We first collected hardware feature values from each of the systems using the

dmidecode utility. We modified each of the benchmark applications’ source code

to integrate PAPI-API [95] to collect power consumption. PAPI-API uses Intel’s

RAPL [96] to read machine status registers (MSRs) to collect power consumption.

We executed modified versions of each benchmark application on each physical

system to collect runtime and power consumption from benchmark logs.

5.2.4 Results

In this section, we perform validation in three ways. First, we validated the pre-

diction accuracy of the learned model, a decision tree machine learning algorithm

trained only from the performance and power dataset collected from simulated

systems. Second, to evaluate the accuracy of the cross prediction model, we com-

pared cross predicted runtime and power Yppred to the actual runtime and power

Ysp gathered from gem5 simulated systems having hardware features same as
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Figure 5.7: Cross-Validation Mean Percentage Error (R)-Runtime, (P)-Power

physical systems. Third, to evaluate the accuracy of our model with scaling fac-

tor, we compared the cross predicted runtime and power Yppred, before and after

applying the scaling factor, to the actual physical systems’ runtime and power Yp.

5.2.4.1 Simulation-based Performance Prediction Accuracy

To evaluate the accuracy of our decision tree algorithm, we performed 5-fold

cross-validation on simulated systems’ performance and power dataset [Xs, Ys].

For each fold, we trained a new decision tree algorithm on 80% of randomly se-

lected samples from [Xs, Ys] and the remaining 20% from [Xs] used for predic-

tion. The median percentage errors of all five folds for all applications are shown

in figure 5.7 with a maximum error of 2.1%, achieving an accuracy of about 98%.

5.2.4.2 Cross Performance and Power Prediction with Scaling Model Accuracy

To demonstrate the accuracy of our model, we performed two tests. In the first

test, we compared unscaled cross predicted runtime and power Yppred with Ysp,

the actual runtime and power from gem5 simulated systems modeled using fea-

tures of physical systems. In the second test, we compared the actual runtime and

power from physical computer systems Yp to unscaled and scaled cross predicted

runtime and power Yppred.
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5.2.4.2.1 Cross Predicted Targets (Yppred) vs Actual Targets from Gem5-based

Physical Systems (Ysp)

We plotted unscaled cross predicted values Yppred and the actual performance

and power from simulated systems with identical features as physical systems

Ysp in figures 5.8 and 5.9. We make two observations from these results. First, re-

gardless of the application-type, compute-bound or memory-bound, runtime pre-

dictions have higher prediction accuracy than power predictions (|Yppred[runtime]−

Ysp[runtime]| < |Yppred[power]− Ysp[power]|) due to smaller variations in run-

time as compared to the variations in power. We standardized the runtime and

power values for comparison and plotted variations between standardized run-

time and power values with respect to its respective mean for tracking application

as an example in figure 5.10. We can observe that most of the standardized run-

time fits in the window of -0.1 to 0.7 with a mean of 0.35 whereas standardized

power ranges from -0.1 to 1 with a mean of 0.42. We make a similar observation

for other applications as well.

The second observation is that the difference in power values of Ys and Yppred

for compute-bound applications is lower than memory-bound applications. We

plotted the histogram in figure 5.11, showing the spread of power values between

compute-bound mser versus memory-bound tracking. For the tracking applica-

tion, the histogram has power values distributed from four to twelve whereas for

mser they are from four to ten. The broader spread in tracking is because gem5

has an implementation of several memory devices, resulting in higher variations

for memory-bound applications. On the other hand, gem5 supports only one out-

of-order O3CPU processor which is used in constructing all simulated systems

causing lower variations in compute-bound applications.

5.2.4.2.2 Cross Predicted Targets (Yppred) vs Actual Targets from Physical Sys-

tems (Yp)

For the second test, we compared cross predicted values of runtime and power

to the actual runtime and power of physical systems as shown in figures 5.12 and

5.13. The red bar indicates the actual runtime and power of physical systems.
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Figure 5.8:
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Simulator Runtime (µs) vs Cross Predicted Runtime (µs)

The black bar depicts the unscaled cross predicted values (i.e. before applying the

scaling factor) whereas the blue bar shows scaled cross predicted values (i.e. after

applying the scaling factor). Thus, we expect to have a red bar (actual runtime or

power) height much closer to the height of the blue bar representing scaled cross

predicted value rather than the height of the black bar representing unscaled cross

predicted value.

We make following two observations from figure 5.12, which compares cross

predicted unscaled and scaled runtime Yppred[runtime] to the physical systems’

runtime Yp[runtime]:

Observation 1: Physical system D has a similar configuration as system A,

however, it has much higher runtime values causing it to have higher prediction

errors especially for tracking, dijkstra, stitch, and svm applications. This is be-

cause system D has a much lower bus speed than system A.

Observation 2: Difference (error) between actual runtime from the physical
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system Yp[runtime] and the unscaled cross predicted runtime Yppred[runtime]

is larger in compute-bound applications as compared to memory-bound appli-

cations. For example, mser and sha have 48% and 18% errors respective with a

mean of 30% whereas dikstra has an error of 12%. When comparing two compute-

bound applications, mser has a much higher error compared to sha. This is be-

cause mser has higher dependence on processor features than sha as per columns

L and M in table 5.4.

The higher dependence of application on processor features increases the gap

in runtime due to greater dissimilarities in processors than memory devices be-

tween physical systems and gem5 simulated systems. The gem5 simulated sys-

tems were built with the only supported superscalar processor witnesses a sig-

nificant gap in features with that of several disparate processors used in phys-

ical systems resulting in higher runtime difference for compute-bound applica-

tions causing the higher error. On the other hand, the support of several different
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Figure 5.13:

Physical System Power

Cross Predicted Power (Scaled)

Cross Predicted Power (Unscaled)

A - IntelCorei56500_DDR31600_4GB

B - IntelCorei76500U_DDR31600_8GB

C - IntelCorei78700_DDR42666_16GB

D - IntelCorei53470_DDR31600_4GB

Physical System Power (W) vs Cross Predicted Power (W)

memory devices in gem5 enables the simulated systems’ memory to closely repre-

sent physical systems’ memory resulting in a small error in runtime for memory-

bound applications. For memory-bound applications also, differences in proces-

sors of simulated systems and physical systems do exist but it has less impact due

to higher dependence on memory which is much slower than a processor.

To calculate the scaling factor, we first calculated the major factor. The mean

percentage error for compute-bound and memory-bound applications between

physical systems and gem5 simulated systems built using identical features as

physical systems is about 30% and 10% respectively with a mean of 20%. Hence,

we considered the value of 20 as a major factor. The minor factor is already calcu-

lated using the Pearson correlation coefficient as shown in column O of table 5.4.

Using the formula in equation 5.1, we calculated the scaling factor for each bench-

mark application which is 15.63 for dijkstra, 29.24 for sha, 18.72 for stitch, 16.58 for

tracking, 31.83 for mser and 23.56 for svm. The application-specific scaling factor
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is then applied to unscaled cross predicted runtime to calculate the scaled cross

predicted runtime.

Both unscaled and scaled cross predicted runtime values are shown in figure

5.12. We can confirm from the plot that scaled runtime errors are much lower as

compared to unscaled runtime errors when unscaled and scaled cross predicted

runtimes are compared with the physical system’s actual runtime. For each ap-

plication, scaled cross predicted runtime mean percentage error of 10% to 25% is

achieved considering all physical systems combined.

We have following observations from figure 5.13 which compares unscaled

and scaled cross predicted power Yppred[power] and physical systems power

Yp[power]:

Observation 3: Server system C consumes maximum power compared to other

systems due to a more number of cores and large memory, causing it to have the

highest difference between cross predicted power Yspred[power] and the actual

physical system’s power Yp[power]. System B having a mobile processor con-

sumes marginally lower power than all other systems resulting in higher errors

than systems A and D.

Observation 4: For both types of applications, compute-bound or memory-

bound, the mean error between the unscaled cross predicted power Yspred[power])

and physical system’s power (Yp[power]) is approximately equal. This is because

power consumption from the memory device is insignificant compared to a pro-

cessor. For example, for compute-bound mser, the total power consumption of

29.97 Watts is divided into package power consumption (computation power) of

29.36 Watts and memory power of 0.61 Watts, whereas for memory-bound dijk-

stra package power consumption of 25.38 Watts and memory power of 0.66 Watts

with the total power consumption of 26.04 Watts. Therefore, there is a negligible

difference in the scaling factor for power consumption of compute-bound versus

memory-bound applications. Furthermore, we observed errors of about 100% in

all physical systems with the exclusion of server system C.

Considering observation 4, we applied the power scaling factor of 100% uni-

formly for all unscaled cross predicted power values. Figure 5.13 shows both
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unscaled and scaled cross predicted power values. From the plot, we can infer

that differences between scaled power and the physical system’s power are much

lower as compared to the difference between unscaled power and the physical

system’s power. We reduced errors for each application in the range of 6% to 40%

for all systems with a mean of 25% excluding the server system C. A different

scaling factor would apply to server systems as it represents a different class of

computer systems.

5.2.5 Selection of Computer Systems

Performance and power consumption are essential factors in the selection of com-

puter systems today. For example, in real-time applications, performance (run-

time) is more important; therefore, systems with lower runtime are preferred with

compromise in power consumption. On the other hand, systems used in the area

such as combat require to run with limited power; therefore, systems with a small

power footprint are preferred over performance. In this section, we demonstrate

that our proposed cross performance and power prediction model with scaling

can effectively be used to select physical systems based on user budget of runtime

or power or both values without access to the physical systems.

We have already established that our cross prediction model predicts both per-

formance and power with high accuracy from the simulated systems. Figure 5.14

displays performance (runtime) versus power values after applying the respective

scaling factor for mser, a compute-bound application, dijkstra, a memory-bound

application, and stitch, compute-plus-memory-bound application. Let us assume

that the user provides a runtime budget of 40 milliseconds or a power budget

of 10 Watts or both. Thus, systems that take maximum runtime of 40 millisec-

onds and/or require a maximum of 10 Watts of power must be selected. From the

figure 5.14, any systems to the left of the vertical line can be selected for power

consumption of 10 Watts and lower, while any of the systems below the horizon-

tal line can be selected for the runtime of 40 milliseconds and lower. The systems

in the shaded region fulfill both runtime and power budget.
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Figure 5.14: System Runtime vs Power

5.2.6 Summary

In this section, we proposed a novel model "Cross Performance and Power Predic-

tion with Scaling". We established that our model can accurately predict the per-

formance and power of various applications for physical systems from decision

tree machine learning models trained only on performance and power datasets

collected from gem5 simulated systems built using emulation mode. Prediction

accuracy of six applications from MiBench and SD-VBS benchmarks has achieved

a prediction error of 10% to 25% for performance and 6% to 40% for power for

general-purpose systems. The benefit of our model is that it predicts the perfor-

mance and power of physical systems without the need to access them for exe-

cuting the applications. Accurate predictions from our model are the result of the

systematic derivation of application-specific "Scaling Factor", which when applied

to cross predicted values improves the accuracy significantly. We have demon-

strated that users can utilize our model to select physical computer systems given

a budget of runtime and/or power. Currently, our study has been limited to the

x86-based systems; therefore, we plan to extend our work by considering systems

with other instruction sets and networked systems in the future.
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CHAPTER 6

Cross Prediction with Transfer Learning us-

ing Machine Learning

6.1 Cross-Platform Performance Prediction with Trans-

fer Learning using Machine Learning

6.1.1 Overview

Advancements in computer systems have helped us with the availability of sev-

eral options of computer systems each having diverse hardware features. An

application when executed on these systems results in dissimilar performances

(runtimes). Therefore, it is essential to select system(s) that provide optimal per-

formance for an application. It is possible that access to some physical systems is

available but access is not available for the systems that provide optimal perfor-

mance for an application. Thus, we need to predict the performance of an applica-

tion for the unavailable physical systems from the performance data of available

physical systems.

Cross-platform performance prediction is an active area of research that aims

to predict the performance from one type of computer system (known platform)

to the other (unknown target platform) with the help of transfer learning. In trans-

fer learning, machine-learning models are built with performance data of known

platforms along with a small percentage of available target platform data (that

we have access to) to predict the performance data of the unknown (unavailable)

target platform. In this work, we explored transfer learning to solve two prob-
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lems; cross-systems prediction and cross-platform prediction. In cross-systems

prediction, we predicted the performance of physical systems from performance

collected from simulated systems while predictions of the dissimilar target archi-

tecture (such as x86 and ARM) are performed in cross-platform prediction.

The remainder of the section is organized as follows: Section 6.1.2 describes

work related to transfer learning and how our objective differs. Section 6.1.3 de-

scribes the selection of benchmarks for workload and computer system selection

for simulated systems and physical systems. Section 6.1.4 details machine learn-

ing models along with techniques to improve prediction accuracy, such as grid

search that we have used for the study. Section 6.1.5 provides results and anal-

ysis of cross-platform and cross-systems prediction, and evaluation of various

machine-learning models including dimensionality reduction, hyper-parameter

selection. Finally, section 6.1.6 provides concluding remarks and work that we

plan to continue.

6.1.2 Related Work

Transfer learning has been widely used in performance prediction research. Work

in [23] predicts 90% of the performance data of server C using machine learn-

ing model trained on 100% features collected from servers A and B plus only

10% from server C. [5] shows that a trained machine-learning model from one

x86-based HPC system’s performance data can be re-trained using transfer learn-

ing only on one percent of samples (data) from the test (another) x86-based HPC

system to predict ninety-nine percent of performance data for the test system. A

novel instance-based transfer learning technique is proposed in [25] for measuring

the performance of MariaDB database’s query responses installed on virtual ma-

chines when systems configurations and database sizes with incremental changes

in system configuration or database size. Service-level metric predictions of data-

center 2 or 3 are performed using transfer learning from measurements collected

from data-center 1 in [24]. Cross-platform prediction for ARM-based system from

an x86-based system is performed in [50].

The work in [23], [24] and [5] uses transfer learning for the prediction of tar-

134



get systems having the same instruction-set (x86) as the systems used for training

while [50] performs cross-platform prediction without transfer learning. In addi-

tion, all these research works use physical systems to collect the data for training

as well as prediction. To the best of our knowledge predicting the performance of

physical systems from the simulated systems (cross-systems) utilizing the transfer

learning approach is not addressed. Therefore, we address these four questions

out of which the first two are addressed using transfer learning: (i) Can we use

transfer learning to predict the performance of ARM-based systems from x86-

based performance? (ii) Can we use transfer learning to predict the performance

of physical systems from simulated system performance data? (iii) What is the

effect of dimensionality reduction? (iv) How to select hyper-parameter values of

machine-learning models?

6.1.3 Dataset Preparation

6.1.3.1 Applications Selection for Workload

We evaluated models described in section 6.1.4 on several benchmark applications

representative of real-world applications having different computation and data

access patterns listed in table 6.1. We selected compute-bound (CB) applications

svm from SD-VBS [70], miniFE from the Mantevo benchmark suite [59], sha from

MiBench and EP application from the NAS parallel benchmark (NPB) [58]. Sim-

ilarly, selected memory-bound (MB) applications are dijkstra from MiBench and

MG applications from NPB. Similarly, we selected quicksort from MiBench, and

stitch from SD-VBS are dependent on both computation and data access making

them compute-plus-memory-bound (CB+MB). These applications were executed

on the simulated systems and physical systems from which the runtimes were

collected.

6.1.3.2 Computer Systems Selection

We selected computer systems that are the class of computers commonly used to-

day to execute the benchmark applications for collecting performance data. For
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Table 6.1: Application and System Types used for Cross Performance Prediction
Model with Transfer Learning

Applications Benchmark System
Type (MB/CB) Data Points

dijkstra MiBench Physical MB 52
dijkstra MiBench Simulated MB 475
quicksort MiBench Physical CB+MB 320
quicksort MiBench Simulated CB+MB 2850
sha MiBench Physical CB 52
sha MiBench Simulated CB 475
miniFE Mantevo Physical CB 124
EP NPB Physical CB 108
MG NPB Physical MB 108
stitch SD-VBS Physical CB+MB 52
stitch SD-VBS Simulated CB+MB 475
svm SD-VBS Physical CB 52
svm SD-VBS Simulated CB 475

CB = Compute-Bound (compute-intensive)
MB = Memory-Bound (data-intensive)

constructing performance dataset for physical systems, we chose two server sys-

tems with Intel Xeon processors with many cores and large memory, three Intel

Core i7 systems, and three Intel Core i5 systems with the configurations listed

in the table 6.2. We collected the hardware features for these systems using the

dmidecode utility. We executed each application with a number of processes from

one to two times the number of cores in the system; that is, we executed 24 pro-

cesses on a system with 12 cores. This is to take the advantage of systems with

hyper-threading. We extracted runtimes for each execution from the benchmark

application logs.

For the simulated systems’ dataset, we built 475 simulated systems using the

gem5 simulator, a widely accepted simulator for architectural research as dis-

cussed in chapter 2.3.1. The gem5 simulated systems were built considering nine

system hardware features, as shown in table 2.1 with values from the real mem-

ory and processor models commonly used in today’s computers. We collected

runtimes from gem5 logs after executing each application on each of the 475 sim-

ulated systems. To apply transfer learning, for cross-platform prediction in sim-

ulated system dataset, we utilized 120 simulated systems based on the ARM in-
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struction set (ISA) as target platform and 355 simulated systems based on the x86

ISA as known (source) platform.

Table 6.2: Physical Computer Systems for Cross Performance Prediction Model
with Transfer Learning

Sr ISA CPU Cores Mem Mem Mem L1-L3
Speed Type Access Size Cache
GHz MHz GB Size*

1 x86 3.2 4 DDR3 1600 4 32,6
2 x86 3 2 DDR3 1600 4 32,4
3 x86 2.6 2 DDR3 1066 4 32,4
4 x86 3.2 4 DDR3 1600 4 32,6
5 x86 3.2 4 DDR4 2400 4 32,6
6 x86 3.2 4 DDR4 2666 16 32,12
7 x86 2.4 12 DDR4 2133 64 32,15
8 x86 2 16 DDR3 1600 32 32,20

*L1 Cache Size is in kB and L3 Cache Size is in MB
Configurations were taken from the following models
1. Intel Core i56500. 2. Intel Core i76500U 3. Intel Core i7620M 4. Intel Core
i53470 5. Intel Core i56500 6. Intel Core i78700 7. Intel Xeon E52620v3 8. Intel
Xeon E52640v2

6.1.4 Models and Techniques Used

Supervised machine learning algorithms ease in empirical performance model-

ing. These models require training on an underlying dataset to learn the mapping

function from input Xi to output Yi. The machine learning models use the function

or distribution learned during the training phase to predict the output during the

testing (prediction) phase. Here, Xi can be a multidimensional tuple. In our case,

Xi is the feature vector corresponding to processor, cache and memory features of

ith system as listed in tables 6.2 and 2.1. And Yi is the runtime or performance of

an application collected from the ith system with the hardware feature vector Xi.

6.1.4.1 Machine Learning Models

Machine learning models that perform prediction for real-value output such as

performance (runtime) are called regression models. Regression machine learn-

ing models are built utilizing various algorithms. The diverse classes to which
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the algorithms belong to are linear, bayesian, tree-based, gaussian, support vector,

nearest neighbor, ensemble and neural network models. The most desirable re-

gression algorithm models providing accurate predictions depend on the dataset

features like dimensionality, variance, skewness, sparsity, and multivariate prob-

ability distribution. The model algorithms that we utilized for the evaluation are

listed in table 6.3. These model algorithms incorporate almost all the classes that

we have listed above. Furthermore, our neural network model is a deep neural

network (DNN) model with the summary, as shown in figure 6.1. For DNN, we

used loss function as mean absolute error, optimizer as adam [81], and ran the

model for 100 epochs. ReLU activation is used for the first four layers and linear

activation for the last layer.

Table 6.3: Machine Learning Models for Cross Performance Prediction Model
with Transfer Learning

Models Used Abbr. Important Hyper-Parameters
Support Vector Regr.[71] svr C, gamma, kernel
Linear Regr. lr fit_intercept, normalize
Ridge Regr.[72] rr alpha, fit_intercept, normalize, solver
K-Nearest Neighbor Regr.[73] knn p, n_neighbors, weights
Gaussian Process Regr.[74] gpr alpha, normalize_y, optimizer
Decision Tree Regr.[97] dt criterion, max_depth, max_features
Random Forest Regr.[75] rf n_estimators, criterion, max_depth
Extra Trees Regr.[76] etr n_estimators, criterion, max_depth
Gradient Boosting Regr.[77] gbr n_estimators, criterion, max_depth, loss
eXtreme Gradient Boosting[78] xgb n_estimators, max_depth, learning_rate
Deep Neural Network[98] dnn activation, loss, optimizer, metrics

6.1.4.2 Grid Search

Grid search technique [65] is used to fine-tune a model for the best performance

on a specific dataset using cross-validation over a given parameter grid. Table 6.3

lists the model algorithms with their respective hyper-parameters that were tuned

for performing each experiment. The essential hyper-parameters which had a

significant impact on model prediction accuracy were used for the grid search.
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Figure 6.1: DNN Model Summary

6.1.4.3 Transfer Learning

Transfer learning aims to reuse previously gained knowledge from a specific task

to apply the same to a similar but different task. It is tedious to build separate

models for every new prediction problem. To save time and computational cost,

one can build a generalized model from one problem that can be reused after

fine-tuning on other similar problems. For example, Alex-net architecture [99], is

a generalized model for image classification and, after little fine-tuning, can be

used for similar image classification tasks.

6.1.5 Experimental Evaluation

In this section, we performed several experiments to assess the prediction accu-

racy of machine learning models and the application of transfer learning for cross

prediction. We used categorical one-hot encoding to convert categorical data

like instruction set architecture and memory type. We normalized the dataset

using StandardScaler() function from the scikit-learn library [65]. Furthermore,

Shu f f leSplit() function [65] from scikit-learn library is used for cross-validation
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to ensure the robustness of the models. Please note that we normalized both input

and output data points, for cross prediction whereas we just normalized the input

for other experiments.

The train to test ratio for each model is kept at 80:20 except for transfer learning

experiments. The metrics used for model evaluation are R2 score, median abso-

lute percentage error (MedAPE), and mean squared error (MSE). Low values of

MedAPE and MSE represent models that have high prediction accuracy, whereas

R2 score of 1 means the model fits the data well. The negative R2 value reveals

that the model fit is even worse than the horizontal hyperplane.

We evaluated dataset characteristics and model accuracy in different contexts

and scenarios. Firstly, the outcome from principal component analysis (PCA) and

optimization of hyper-parameters through grid search to increase model predic-

tion accuracy is shown. Secondly, the prediction results of models for cross pre-

diction using transfer learning are discussed. Thirdly, the analysis of performance

prediction for each model with a different machine learning algorithm, and lastly,

the comparison, according to various application types, is also conducted.

6.1.5.1 Effect of Dimensionality Reduction using PCA

Principle component analysis (PCA) is a statistical method that identifies the cor-

related variables (features) to transform a large number of input variables into

uncorrelated variables with reduction. We applied PCA to observe the effect of

the dimensionality reduction on the accuracy of performance prediction models.

Figure 6.2a illustrates the effect of PCA in improving performance prediction ac-

curacy. The experiments are performed on the quicksort application’s simulated

systems dataset. As can be seen, models have lower error with mean R2 = 0.75

and mean MedAPE = 22.59% when PCA is applied in comparison to mean R2 =

0.66 and mean MedAPE = 27.77% without PCA. The results are averaged over all

models (svr, knn, gpr, etr) as shown in figure 6.2a. Prediction accuracy improve-

ment is due to machine-learning models’ ability to predict better using a smaller

number of uncorrelated variables rather than a larger number of variables having

some amount of correlation. For example, in our experiment, it was found that
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most variance of our higher dimensional data is expressed within three to six prin-

cipal components. A similar increase in model performance was also observed for

other datasets when PCA is applied.

6.1.5.2 Effect of Grid Search on Model Performance

The grid search method helps us tune the hyper-parameters of machine learning

algorithms that are not learned during the training phase. By performing an ex-

haustive search through the grid of parameters, we can select the hyper-parameter

values that provide the highest prediction accuracy from the model. Figure 6.2b

illustrates the effect of using grid search for improving the performance of ma-

chine learning models. The experiments are performed on dijkstra application’s

simulated systems dataset. As can be seen, models have improved performance

with mean R2 = 0.69 and mean MedAPE = 16.66% when grid search is used in

comparison to mean R2 = 0.57 and mean MedAPE = 20.97% when default model

arguments are used. These results are averaged over all models (svr, lr, gpr and

knn) shown in figure 6.2b. The improvement in prediction accuracy using grid

search is due to the selection of suitable values of hyper-parameters such as regu-

larization parameter ’alpha’ to prevent model over-fitting, ’fit_intercept’ parame-

ter for bias in linear methods, ’kernel’ function for feature transformation like ’rbf’

in svm, stopping criterion like ’max_depth’ parameter in tree-based algorithms,

’normalize’ parameter for data normalization and, the ’metric’ parameter for cal-

culation of loss function. We tuned the parameters, as shown in table 6.3 using an

exhaustive grid search. In some cases, default values of hyper-parameters were

the best selection as observed in the case of linear regression (lr) the figure 6.2b.

6.1.5.3 Cross Prediction using Transfer Learning

6.1.5.3.1 Cross-Systems Prediction: Simulated Systems to Physical Systems

To predict the runtime for physical systems from the simulated system’s run-

time, we implemented transfer learning on dijkstra (memory-bound) and sha

(compute-bound) applications datasets to consider both types of applications (re-

fer table 6.1 for dataset description). Firstly, for each application, we trained
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Figure 6.2: Application of PCA and Grid Search Techniques

our models on 100% of simulated systems dataset and 10% of physical systems

dataset. Since the partial_fit() function for retraining is not available for all algo-

rithms in the scikit-learn library, we used the fit() function to train the model only

once with a combined dataset of 100% of simulated systems and 10% of physical

systems. After training the machine learning model, we fed hardware features

as an input to the trained model from the remaining 90% of the physical sys-

tems dataset and predicted the performance. For implementing transfer learning

in dnn, we first trained the model (shown in figure 6.1) on 100% of simulated
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systems data. We then froze all model layers except the last 2 layers and again

fine-tuned the model with 10% of physical systems data. And then predicted the

performance of a fine-tuned model on the rest 90% of physical systems data. The

results from the transfer learning models for cross-systems prediction are shown

in figure 6.3a for dijkstra and figure 6.3b for sha application. The first observation

is among the two application types, where, memory-bound dijkstra with mean

APE = 12.56% has better cross prediction accuracy than compute-bound sha with

mean APE = 14.99%. This is because the complex design of the processors has

higher manufacturer variability causing larger runtime variations for compute-

bound applications resulting in higher errors. Furthermore, we observed that

linear regression models (lr and rr), performed best in the case of memory-bound

applications (as shown in figure 6.3a), whereas bagging models (rf and etr) per-

formed best in the case of compute-bound applications (refer figure 6.3b). Thus

linear and bagging models are good for cross-systems performance prediction.
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Figure 6.3: Results for Training on Simulated System’s Data and Testing on
Physical System’s Data

6.1.5.3.2 Cross-Platforms Prediction: x86-based Systems to ARM-based Sys-

tems

In this case, we used transfer learning to predict the runtime on ARM-based

systems from x86-based systems on quicksort application’s simulated systems

dataset since the data points are maximum in simulated systems (refer table 6.1).

We divided the dataset into two types of system instruction set architectures,
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namely x86 and ARM. Firstly, we trained our models on 100% data points of x86-

based systems (1470 data points) and 1% of data points of ARM-based systems (7

data points). After that, we predicted the performance of machine learning mod-

els on the rest 99% (713 data points) of ARM-based systems. Also, we performed

transfer learning with dnn by fine-tuning the dnn model using 1% of test data

in the same manner as explained in the above section. The results for the trans-

fer learning models for cross-platform predictions are shown in figure 6.4a. We

observed that tree-based models with a 16.43% mean percentage error give good

prediction accuracy for cross-platform performance prediction from x86 to ARM

architectures and outperform all other models, including deep neural networks

in the case of simulated systems.

6.1.5.3.3 Cross-Platform Prediction: Intel Core to Intel Xeon

In this part, we used transfer learning to predict Intel-Xeon server systems run-

time from Intel Core general-purpose systems runtime on quicksort application’s

physical systems dataset (refer table 6.1). We divided the dataset into two variants

of the system’s architectures, namely Intel Core and Intel-Xeon. Firstly, we trained

our models on 100% data points of Intel Core-based systems (280 data points) and

10% of data points of Intel-Xeon systems (4 data points). After that, we predicted

the performance of machine learning models on the rest 90% (36 data points) of

Intel-Xeon systems. Also, we performed transfer learning with dnn in the same

manner as explained in the above section. The results for the transfer learning

models for cross-platform predictions are shown in figure 6.4b. We observed that

tree-based models with a 22.30% mean percentage error have higher prediction

accuracy for cross-platform performance prediction from Intel Core to Intel-Xeon

architectures and outperform all other models including deep neural networks in

the case of physical systems.

6.1.5.4 Model Comparison for Performance Prediction

Figure 6.5 depicts the values of R2 score, MedAPE and, MSE for each model av-

eraged over all datasets listed in table 6.1. We observed that according to the
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Figure 6.4: Results for Training and Testing for Cross-Platforms Prediction

decreasing order of prediction accuracy the models are ’etr’, ’rf’, ’gbr’, ’dt’, ’xgb’,

’knn’, ’lr’, ’dnn’, ’gpr’, ’rr’, ’svr’. This was observed after taking a majority vote

of all three metrics named above. The inferences and analysis from the results for

each model are as follows.
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Figure 6.5: Mean Prediction Scores per ML model across all datasets

• svr: Support vector regressor with mean R2 = 0.36 and mean MedAPE =

18.89% (figure 6.5) is underperforming as compared to other models. Grid

search found C (Regularization Parameter):’1000’ and kernel: ’rbf’ as the

best parameters in almost all datasets. The higher value of C indicates that

less regularization is required due to which a smaller margin hyper-plane is

chosen.

• Linear Regression Models: Linear regressor with mean R2 = 0.72 and mean

MedAPE = 14.49% and ridge regressor with mean R2 = 0.69 and mean MedAPE

= 15.33% (figure 6.5), both models have nearly similar performance. Low
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prediction accuracy in linear models is due to the non-linear relationship

between hardware features and runtime (performance).

• knn: KNN regressor with mean R2 = 0.76 and mean MedAPE = 9.35% (figure

6.5) has better prediction accuracy than kernel svr and linear models. Using

a grid search, we found the optimal number of neighbors (n_neighbors) and

metric as ’Minkowski’, which is a generalization of both euclidean and man-

hattan distance. The reason for better accuracy is that the KNN algorithm is

robust to outliers, whereas svr and lr are not.

• gpr: Gaussian process regressor with mean R2 = 0.40 and mean MedAPE

= 15.11% (figure 6.5) still performs better than ridge regressor and kernel

svr. The model underperforms in comparison to other models because we

believe that the performance datasets may not exactly follow the multivari-

ate gaussian distribution. So, while learning posterior distribution by gpr, it

may not be tractable by the model.

• dt: Decision tree regressor with mean R2 = 0.85 and mean MedAPE = 4.26%

(figure 6.5) has better prediction accuracy than all the models discussed

above. The parameters ’criterion’ and ’max_depth’ are optimized using grid

search. The improved performance is due to the optimal splitting criterion at

each node during tree formation. The decision tree finds training instances

that follow the same decision rules as the test examples rather than consid-

ering correlation like other linear models.

• Bagging Models : The random forest (rf) and extra tree regressor (etr) are the

two bagging approach models that are outperforming all machine learning

models due to the creation of a large number of decision trees. The etr model

with mean R2 = 0.94 and mean MedAPE = 1.58% (figure 6.5) performs better

than rf model with mean R2 = 0.93 and mean MedAPE = 2.56%. The reason

is due to random splits in etr, which works better in case features are noisy.

• Boosting Models: Gradient boosting regressor (gbr) with mean R2 = 0.88

and mean MedAPE = 3.73% (figure 6.5) performs better than extreme gradi-
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ent boosting (xgb) with mean R2 = 0.86 and mean MedAPE = 4.72%. These

boosting models work on bias reduction to get better prediction accuracy

and sometimes lead to overfitting. Hence, the error in boosting model is

higher than the bagging approaches.

• dnn: Deep neural network (dnn) model (as shown in figure 6.1) with mean

R2 = 0.48 and mean MedAPE = 9.64% (figure 6.5) is not able to outperform

other machine learning models except svr and gpr. We believe that dnn

model is underperforming due to the small dataset size available for train-

ing. The dnn models generally require a large number of data points for

learning the mapping function.

6.1.5.5 Estimating the Effect of Performance with respect to Compute-Bound,

Memory-Bound and Compute-plus-Memory-Bound Applications

Figures 6.6, 6.7 and 6.8 shows R2 score and MedAPE on left and right y-axis with

ranges [−0.5, 1.5] and [−10%, 100%] respectively for compute-bound, memory-

bound and compute-plus-memory-bound application types from dataset (refer

table 6.1).

sv
r lr rr

kn
n

gp
r dt rf et
r

gb
r

xg
b

dn
n−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
R2

0.0

0.2

0.4

0.6

0.8

1.01e2
MedAPE score

(a) miniFE-physical

sv
r lr rr

kn
n

gp
r dt rf et
r

gb
r

xg
b

dn
n−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
R2

0.0

0.2

0.4

0.6

0.8

1.01e2
MedAPE score

(b) EP-physical

Figure 6.6: R2 score and MedAPE for Compute-Bound Applications

Each application type plot is color-coded with compute-bound in green, memory-

bound in red and compute-plus-memory-bound in violet. The results were com-

piled for each dataset but we have shown the accuracy of only two datasets per

application type. Furthermore, figure 6.9 illustrates the mean MedAPE score for
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Figure 6.7: R2 score and MedAPE for Memory-Bound Applications
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(a) quicksort-physical
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Figure 6.8: R2 score and MedAPE for Compute-Plus-Memory-Bound
Applications

all three application types with scores averaged for all datasets (as listed in table

6.1) for each machine learning model. The first observation from all these figures

is that five models, ’dt’, ’etr’, ’rf’, ’gbr’ and, ’xgb’, are performing well in nearly all

scientific applications. This is also the case in plots for the individual application

type. Since these models have higher prediction accuracy, we have considered

only the result of these five tree-based models for further experiments and the

comparison of overall prediction accuracy.

The second observation from figure 6.9 is that on an average taken over MedAPE

values of the tree-based models, prediction accuracy in compute-plus-memory-

bound applications (with 7.92% mean error) is the highest followed by memory-

bound applications (with 9.06% mean error) and the lowest accuracy in the compute-
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bound applications (with 9.70% mean error). This observation strengthens the

conclusion from the previous section that compute-bound applications have higher

runtime variations due to the manufacturer variability in the sophisticated de-

signs of the processors resulting in higher errors. The memory-bound appli-

cations have a higher dependence on memory features, which hides the effect

of manufacturer variability of processors, causing fewer runtime variations and

lower error.

sv
r lr rr

kn
n

gp
r dt rf et
r

gb
r

xg
b

dn
n0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e1Compute Bound Applications

sv
r lr rr

kn
n

gp
r dt rf et
r

gb
r

xg
b

dn
n0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e1Memory Bound Applications

sv
r lr rr

kn
n

gp
r dt rf et
r

gb
r

xg
b

dn
n0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e1 Both Bound Applications

Figure 6.9: Mean MedAPE for all application types

6.1.6 Summary

We demonstrated in this work that using transfer learning, cross prediction in

terms of simulated systems to physical systems and prediction between systems

with different instruction sets can be achieved with good prediction accuracy. The

experiments were performed on thirteen datasets (refer table 6.1) collected by exe-

cuting five scientific applications on 475 simulated systems built in the gem5 sim-

ulator, while eight scientific applications were executed on eight diverse physical

computer systems. The conclusions drawn from the above experiments are as

follows:

• Dimensionality reduction using PCA is an important pre-processing step

and increases the model’s prediction accuracy.

• Grid search proved useful for selection of optimal values for hyper-parameters

achieving higher prediction accuracy.
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• Cross-systems performance prediction from simulated systems to physical

systems using transfer learning yields less than 15% error using tree-based

models.

• Cross-platform performance prediction from x86 to ARM architectures for

simulated systems dataset using transfer learning yields less than 17% error

using tree-based models.

• Cross-platform performance prediction in physical systems dataset from In-

tel Core to Intel-Xeon architectures using transfer learning yields less than

23% error using tree-based models.

• For the performance prediction for simulated to simulated systems or physi-

cal to physical systems, the tree-based machine learning models, namely etr,

rf, gbr, dt and, xgb outperform all other machine learning models. Among

these models, bagging-based models have higher prediction accuracy.

• Due to the manufacturer variability in processors, prediction accuracy for

memory-bound applications is higher than compute-bound applications.

In the future, we plan to include experiments with multi-target performance

and power prediction using transfer learning. We will contribute datasets with

performance and power for different systems to the research community.

6.2 Modeling Performance and Power on Disparate

Platforms using Transfer Learning with Machine

Learning Models

6.2.1 Overview

Performance has always been an essential factor in the selection of computer sys-

tems. However, computing resources’ power consumption has emerged as a sig-

nificant concern in recent times due to environmental hazards. Advancements
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in software-hardware co-development have increased the power consumption

even further. Therefore, performance and power prediction models using ma-

chine learning have become an active area of research. Several researchers have

used power prediction to reduce power consumption in computer systems. Work

in [85] uses power consumption obtained through prediction as feedback to im-

prove power supply units used in physical computer systems. In [86] and [87]

system-level power prediction is performed to understand effect of component-

level usage on power consumption. By enabling efficient thread-level parallelism,

work in [33] achieves power consumption reduction in heterogeneous cores.

Cross-platform prediction aid us in predicting performance and power from

one platform or system to the other. For example, work in [20] shows applica-

tion performance prediction for GPU from features collected from the x86-based

system. Similarly, work in [50] achieves software application performance and

power prediction for the ARM-based system by collecting performance counters

on an x86-based system using linear regression univariate model. Work in [5]

shows that a trained machine learning model from one HPC system can be re-

trained only on one percent of samples from test (another) HPC system to pre-

dict ninety-nine percent of performance data. These research works have focused

on cross prediction model with two dissimilar physical systems for training and

prediction. In contrast, we explored the transfer learning technique for cross pre-

diction with either training and prediction for the dissimilar instruction set in the

case of cross-platform prediction model or prediction for physical systems from

simulated systems in the case of cross-systems prediction.

We identified four questions from similar work in the referenced literature. 1)

Which of the univariate and multivariate machine learning models predict run-

time and power with high accuracy? 2) Which type of application, compute-

bound or memory-bound, has higher prediction accuracy? 3) Can we use trans-

fer learning to predict physical system targets (runtime and power) from simu-

lated systems, which we refer to as a cross-systems prediction? 4) Can we predict

the runtime and power of one type of physical system (Intel Xeon) from other

physical systems (Intel Core) using transfer learning which we refer to as a cross-
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platform prediction?

The remainder of the section is organized as follows: Section 6.2.2 describes the

computer systems selection and dataset. Section 6.2.3 lists machine learning mod-

els and techniques that we have used. Section 6.2.4 provides results of three sce-

narios: (a) Prediction accuracy analysis of different machine learning models on

each application type and system type dataset (b) Evaluation of results concern-

ing compute-bound and memory-bound applications. (c) Prediction accuracy of

cross-platform and cross-systems prediction implementation using transfer learn-

ing concerning physical and simulated systems. Finally, section 6.2.5 provides

concluding remarks and work that we plan to continue.

6.2.2 Dataset Preparation

6.2.2.1 Applications Selection for Workload

We selected applications as workloads for our performance modeling according to

their computation and data access patterns categorizing them as compute-bound

(CB) and memory-bound (MB). Compute-bound applications such as monte carlo

and sha have a higher dependence on processor features than memory features.

On the other hand, memory-bound applications like matrix multiplication and

dijkstra depend more on memory features than processor features. Some applica-

tions, such as quicksort and stitch, depends on both processor and memory fea-

tures approximately equally categorizing them as compute-plus-memory-bound

(CB+MB). Table 6.4 lists the scientific applications and their respective types CB,

MB, or CB+MB we have used in our experiments.

6.2.2.2 Computer Systems Selection

First, we built performance datasets by executing the selected applications on sim-

ulated systems. For the execution of applications on simulated systems, we built

475 simulated systems in the gem5 simulator [32], a widely accepted simulator for

architectural research. Out of 475 simulated systems, 355 systems were built based

on x86 instruction set architecture and the remaining 120 systems were based on
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Table 6.4: Application and System Types used for Cross Performance and Power
Prediction Model with Transfer Learning

Applications Benchmark System
Type Data Point System

Type Data Point CB/MB

matrix multiplication Physical 519 Simulated 1780 MB
monte carlo Physical 260 Simulated 1365 CB
mser SD-VBS Physical 52 Simulated 430 CB
stitch SD-VBS Physical 52 Simulated 425 MB+CB
svm SD-VBS Physical 52 Simulated 390 CB
tracking SD-VBS Physical 52 Simulated 425 MB
quicksort MiBench Physical 672 Simulated 2730 MB+CB
sha MiBench Physical 52 Simulated 367 CB
dijkstra MiBench Physical 52 Simulated 362 MB
CB = Compute-Bound (compute-intensive)
MB = Memory-Bound (data-intensive)

the ARM instruction set architecture as discussed in chapter 2.3.1. Table 2.1 shows

the hardware feature set (configurations) of all 475 gem5 simulated systems. The

hardware feature values for each gem5 simulated system were gathered from real

computer systems available today, indicated by the H/W class column. Each ap-

plication was executed on all simulated systems, as shown in columns three and

four in table 6.4. For each execution, we collected runtime from gem5 execution

logs and power consumption using McPAT tool [38] using the process explained

in section 4.3.2.

Similarly, we built a physical systems performance dataset by executing ap-

plications on the physical systems with hardware features set shown in table 6.5.

The hardware features from physical systems were collected using the dmidecode

utility. Our selection of six systems includes server systems and general-purpose

systems commonly used today. To take advantage of hyper-threaded systems, we

executed processes from one up to two times the number of cores in the system;

that is, we have executed 24 processes on a system with 12 cores. We modified the

source code for each application to integrate it with PAPI tool API [95] to collect

runtime and power consumption upon execution on each physical system. Both

runtime (performance) and power consumption for each application execution on

each physical system was collected from application logs.
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Table 6.5: Physical Computer Systems for Cross Performance and Power Predic-
tion Model with Transfer Learning

Sr ISA CPU Cores Mem Mem Mem L1-L3
Speed Type Access Size Cache
GHz MHz GB Size*

1 x86 3 2 DDR3 1600 4 32,4
2 x86 3.2 4 DDR3 1600 4 32,6
3 x86 3.2 4 DDR3 1600 4 32,6
4 x86 3.2 4 DDR4 2400 4 32,6
5 x86 3.168 6 DDR4 2666 16 32,12
6 x86 2.4 12 DDR4 1866 16 32,15

*L1 Cache Size is in kB and L3 Cache Size is in MB
Configurations were taken from the following models
1. Intel Core i76500U 2. Intel Core i56500 3. Intel Core i53470 4. Intel Core i56500
5. Intel Core i78700 6. Intel Xeon E52620

6.2.3 Machine Learning Models and Techniques Used

Supervised machine learning algorithms are used to perform empirical perfor-

mance and power modeling. The machine learning models, use the labeled dataset

to learn the function =x that maps input Xi to output Yi. Tables 2.1 and 6.5 de-

picts processor and memory features for simulated systems and physical systems

which defines input Xi for our machine learning models. The output Yi for our

machine learning model has two target variables runtime and power, which we

collected during the application’s execution on simulated and physical systems.

We trained machine learning models to determine the function =x by mapping

hardware features Xi to runtime and power, the output Yi. In the prediction phase,

the trained model predicts the values of both runtime and power using systems

with input features not utilized during training.

6.2.3.1 Models Description

There were two options to build machine learning models considering two output

variables runtime and power. The first option was to build a separate machine-

learning model for each output called univariate models. The second option was

to build a multivariate model where one model predicts both runtime and power

simultaneously. We selected different classes of algorithms for machine learning
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models such as linear models, boosting models, tree-based models, and neural

network models; some are univariate, and others are multivariate models. The

scikit-learn library provides linear regression (lr), ridge regression (rr), k-nearest

neighbor (knn), and gaussian process regressor (gpr), which can only perform

univariate modeling. Linear models lr and rr cannot have a single equation pre-

dicting two targets, therefore, implemented as multiple univariate models to pre-

dict multiple targets. Furthermore, knn regression returns the weighted average

of k-nearest neighbors corresponding to each output separately. On the other

hand, the decision tree (dt), random forest (rf), extra tree regressor (etr), and deep

neural network (dnn) are multivariate models. Table 6.6 lists all the models that

we have used for the experimentation. Figure 6.10 shows the configuration of our

deep neural network model with the number of layers, number of neurons used

at each layer, and parameter details.

Table 6.6: Machine Learning Models for Cross Performance and Power Prediction
Model with Transfer Learning

Models Used Abbreviations True Multivariate
Linear Regressor lr No
Ridge Regr.[72] rr No
K-Nearest Neighbor Regressor[73] knn No
Gaussian Process Regressor.[74] gpr No
Decision Tree Regressor[97] dt Yes
Random Forest Regressor[75] rf Yes
Extra Trees Regressor[76] etr Yes
Deep Neural Network[98] dnn Yes

6.2.3.2 Transfer Learning

Transfer Learning allows the transfer of learning from the already trained model

from one problem to another similar problem. The work in [100] describes an ex-

cellent example of transfer learning, where knowledge from the pre-trained state

of the art BERT model for NLP task is applied to a variety of tasks by just fine-

tuning with an additional output layer. We utilized transfer learning for both

the cross prediction models, cross-platform and cross-systems prediction. We

used transfer learning in cross-platform prediction to train the model on a source
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dataset with the systems of one type of instruction-set to predict the targets (run-

time and power) with systems of different instruction-set. While transfer-learning

is used in cross-systems prediction to predict the targets of physical systems from

simulated systems.

Figure 6.10: DNN Model Summary

6.2.4 Experimental Evaluation

In this section, we have provided the details of experiments performed along

with the assessment of the results of univariate and multivariate machine learn-

ing models for compute-bound and memory-bound applications on simulated

and physical systems’ datasets. Furthermore, we also included the experiments

for cross-platform and cross-systems multivariate prediction using transfer learn-

ing. For using a dataset in machine learning models, we needed to preprocess the

dataset. First, we transformed the categorical features memory-type and instruc-

tion set architecture with text data to real value using one-hot encoding. We then

standardized our real-valued dataset using a StandardScalar() function from the

scikit-learn library, which normalizes each feature with a mean of zero and unit

variance used in the training and prediction phases of our models.
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To ensure that our machine learning model provides high accuracy for any

samples selection in the training and prediction phase, we used 10-fold cross-

validation using the Shu f f leSplit() function with a train-test ratio of 80:20 except

for transfer learning experiments. Additionally, we applied grid search for tun-

ing important hyper-parameters to improve the model accuracy. To evaluate the

machine learning model’s accuracy, we used a R2 score and a median absolute

percentage error (MedAPE). We considered mean values of all 10-folds for R2

score and MedAPE for prediction accuracy evaluation. The model with higher

accuracy has low MedAPE and a high R2 score. Also, a negative R2 score implies

that the model is not a good fit.

6.2.4.1 Model Comparison for Multivariate Prediction

We trained each machine learning model from table 6.6 with an 80% dataset and

tested on the remaining 20% while measuring metric scores for each prediction.

We took the mean of runtime and power R2 score, while MedAPE is used sepa-

rately each for runtime and power. Mean MedAPE and R2 score was then com-

bined across all datasets as listed in table 6.4. Figure 6.11 shows the 10-fold cross-

validation mean MedAPE and R2 score for each machine learning model.

6.2.4.1.1 Prediction Accuracy of Univariate Models:

We built two separate machine learning models, one for runtime and the other for

power, using four univariate algorithms lr, rr, knn, and gpr using the scikit-learn

library. Figure 6.11 shows the prediction accuracy of these models. We observed

that the knn model with mean runtime MedAPE = 11.76%, mean power MedAPE

= 10.53% and mean R2 = 0.83 has the lowest prediction errors among the four

univariate models due to its ability to map non-linear function between input

hardware features and targets, runtime and power. On the other hand, due to the

same reason, linear models with algorithms lr and rr have higher errors. The gpr

model also has low prediction accuracy because the feature set does not follow

gaussian curve resulting in poor prediction of the targets.
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Figure 6.11: Mean of R2 and MedAPE values per model across all datasets

6.2.4.1.2 Prediction Accuracy of Multivariate Models:

The last four machine learning models dt, rf, etr, and dnn from figure 6.11 are

truly multivariate models that predict both runtime and power simultaneously.

The dt, rf, and etr are tree-based models, while dnn is a neural network model.

From the results in figure 6.11, it is observed that the etr model with mean run-

time MedAPE = 2.14%, mean power MedAPE = 3.94% and mean R2 = 0.95 has

the highest prediction accuracy among all other models including dnn. The etr’s

higher accuracy is due to tree-based models’ ability to build decision rules with

optimal splitting criterion at each node rather than considering correlation like

other linear models. The etr performs better than other tree-based model algo-

rithms dt and rf because the splits in the etr model are random, which leads to

more diversified tree formation and works well in case of noisy features. We be-

lieve that due to the availability of a limited number of samples, dnn has a lower

accuracy than tree-based models. One important observation is that the multi-

variate models outperform univariate models.
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6.2.4.2 Multivariate Prediction Accuracy per Application Types and System

Types

In this section, we first compared the prediction accuracy of the multivariate pre-

diction model for different application types, compute-bound, memory-bound,

and compute-plus-memory-bound. Figure 6.12 depicts the example with compute-

bound application sha , memory-bound application dijkstra and compute-plus-

memory-bound application stitch. Secondly, we compared the prediction accu-

racy of simulated systems and physical systems.
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Figure 6.12: R2 score and MedAPE for each of the example Application Types for
Simulated Systems

6.2.4.2.1 Prediction Accuracy per Application Type:

We performed multivariate performance and power prediction for applications

from table 6.4, and results were averaged over a specific application type, compute-

bound (CB), memory-bound (MB) or compute-plus-memory-bound (CB+MB). Fig-

ure 6.13 displays the combined mean MedAPE across all applications per appli-

cation type.

We have three observations from the results. First, the tree-based multivari-

ate models dt, rf, and etr with mean runtime MedAPE = 3.77% and mean power

MedAPE = 8.47% outperform all other models, including deep neural network.

Second, for tree-based models, the power prediction errors are higher than the

runtime prediction errors due to higher variations in power values than run-

time values. Third, for non-linear models, the runtime prediction accuracy for

compute-bound applications is higher than memory-bound applications due to
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Figure 6.13: Comparing Model Performance with respect to Application Type

the higher number of data points that account for simulation data points. The

simulated systems use only one supported out-of-order processor in the gem5

simulator, resulting in lower runtime variations for compute-bound applications.

On the other hand, the power prediction accuracy for compute-bound applica-

tions is analogous to memory-bound applications because the power consump-

tion of memory units is insignificant compared to processor power consumption,

which results in similar power variations in all types of applications.

6.2.4.2.2 Prediction Accuracy per System Type:

Each scientific applications from table 6.4 were executed on both simulated sys-

tems and physical systems from tables 2.1 and 6.5 respectively. In this section, we

compared the prediction accuracy for both system types, simulated systems, and

physical systems. Figure 6.14 shows mean MedAPE for each machine learning

model across all applications. We observed that for simulated systems across tree-

based models, the prediction accuracy with mean runtime MedAPE = 0.096% and

mean power MedAPE = 3.21% is higher than physical systems with mean run-

time MedAPE = 7.31% and mean power MedAPE = 14.10%. The lower prediction

accuracy in non-deterministic physical systems is because of the resource con-

tention among multiple processes. On the contrary, the simulation environment

is deterministic, resulting in fewer variations in simulated systems than physical

systems. Even in the case of both system types, simulated systems and physical

systems, the power prediction errors are higher than runtime prediction errors

due to higher variance in power in line with application types’ power and run-
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time errors comparison.
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Figure 6.14: Comparing Model Performance on Physical and Simulated Systems

6.2.4.3 Cross-Platform Multivariate Prediction using Transfer Learning

We carried out cross-platform in both simulation and physical environments. We

transfer the learning from the trained machine learning model from the source

platform (platform-1) and apply it to the target platform (platform-2). We se-

lected quicksort application to perform cross-platform prediction due to the high-

est number of simulated systems and physical systems data points with 2730 and

672 respectively among all applications, as shown in table 6.4. In section 6.2.4.3.2,

we performed cross-platform prediction in simulation environment by separating

data points into three platforms, Intel Core with 1440 data points used as source

platform (platform-1) and ARM with 720 data points or AMD with 570 data points

one of which used as a target platform (platform-2). Similarly, in section 6.2.4.3.2,

we performed cross-platform prediction in the physical environment by separat-

ing data points into two platforms, Intel Core with 360 data points used as source

platform (platform-1) and Intel Xeon with 312 data points used as a target plat-

form (platform-2).

6.2.4.3.1 Cross-Platform Prediction: Intel Core to ARM and AMD

In this section, we use transfer learning to predict targets runtime and power

for ARM or AMD systems (platform-2) using a trained model from Intel Core

systems’ (platform-1) hardware features and both targets in a simulation environ-

ment. For transfer learning implementation, we consumed 100% data of platform-
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1 and 1% data of platform-2 to train the machine learning model and predicted

the targets for the remaining 99% data of platform-2. We trained all models ex-

cept dnn using combined data of 101% from platform-1 and platform-2 due to the

unavailability of partial_fit function for all machine learning models in the scikit-

learn library. In the case of dnn, we first trained the dnn model using 100% of the

platform-1 dataset, and then we froze all other layers except the last two, which

we retrained using 1% of the platform-2’s dataset. The results for cross-platform

prediction in simulation environment are shown in figures 6.15a and 6.15b. From

figure 6.15a, it is observed that for Intel Core to ARM prediction, dnn with R2

score = 0.83 including runtime APE = 12.47% and power APE = 8.32% outper-

forms all other models. We also achieved mean runtime APE = 14.24% and mean

power APE = 18.61% for dnn and tree-based models combined. From figure 6.15b,

it is observed that for Intel Core to AMD tree-based models with mean runtime

APE = 2.89% outperform other models, whereas, dnn with mean power APE =

8.98% outperforms other models in case of power prediction.

6.2.4.3.2 Cross-Platform Prediction: Intel Core to Intel Xeon

In this section, we use transfer learning to predict Intel Xeon systems (platform-

2) targets using Intel Core systems (platform-1) for physical systems. For transfer

learning implementation, we consumed 100% data of platform-1 and 10% data of

platform-2 to train the machine learning model and predicted targets for the re-

maining 90% data of platform-2. We utilized 10% data from platform-2 for train-

ing because the use of smaller than 10% data points resulted in higher errors. We

trained all models except dnn using combined data of 110% from platform-1 and

platform-2. In the case of dnn, we first trained the dnn model using 100% of the

platform-1 dataset, and then we froze all other layers except the last two, which

we retrained using 10% of the platform-2 dataset. Figure 6.15c shows the results of

cross-platform prediction in the physical environment. We observe that dnn with

runtime APE = 18.04% and power APE = 11.08% outperforms all other models.
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Figure 6.15: Transfer Learning on Quicksort Simulated Dataset (a and b) and
Quicksort Physical Dataset (c)

6.2.4.4 Cross-Systems Multivariate and Univariate Prediction using Transfer

Learning

In this section, we demonstrate the cross-systems prediction results in which we

predict the targets runtime and power of physical systems from the machine

learning model trained on the simulated systems’ dataset. To compare the pre-

diction accuracy of different application types, we performed cross-systems ex-

periments on svm, a compute-bound application, tracking, a memory-bound ap-

plication, and stitch compute-plus-memory-bound (CB+MB) application. We per-

formed another experiment for comparing the prediction accuracy of univariate

and multivariate models implemented using the same machine learning algo-

rithms for cross-systems prediction. We implemented univariate models using

separate machine learning models for runtime and power, whereas we imple-

mented multivariate models using a single machine learning model that predicts

both targets. For transfer learning implementation, we utilized a 100% simulated

systems dataset and 10% of physical systems dataset for each application to train

the machine learning model and predicted targets for the remaining 90% physi-

cal system’s data. We trained all models except dnn using combined data of 110%

from simulated systems and physical systems datasets. In the case of dnn, we first

trained the dnn model using 100% of the simulated systems dataset, and then we

froze all other layers except the last two, which we retrained using 10% of the

physical systems dataset.
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6.2.4.4.1 Prediction Accuracy per Application Type:

Figure 6.16 displays runtime and power prediction errors from cross-systems ex-

periment for univariate and multivariate models of the three selected applications

svm, tracking and stitch. It is observed from figures 6.16a, 6.16b and 6.16c that for

all the three application types compute-bound (svm), memory-bound (tracking)

and compute-plus-memory-bound (stitch) dnn multivariate model outperforms

all other models with svm runtime APE = 9.10% and power APE = 23.38%, track-

ing runtime APE = 11.81% and power APE = 31.03% and stitch runtime APE =

12.11% and power APE = 22.05%. We also observed that runtime errors between

univariate and multivariate dnn implementations have a similar range, whereas

power errors are lower in multivariate dnn implementation.
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Figure 6.16: APE error for Simulated Systems to Physical Systems Prediction
using Transfer Learning

6.2.4.4.2 Prediction Accuracy of Univariate and Multivariate Implementation:

Figure 6.16 shows the results from the univariate and multivariate implementa-

tion of selected machine learning models. We observed from the plots that the

univariate and multivariate implementations of dt, rf, etr, and dnn have differ-

ent prediction accuracy categorizing them as multivariate models. On the other

hand, knn univariate and multivariate implementation gives precisely the same

prediction accuracy strengthening the argument that knn is not truly a multivari-

ate model.
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6.2.5 Summary

In this section, we experimented with machine learning models built from vari-

ous classes of algorithms for a wide variety of datasets consisting of three different

application types and two different system types. We compared the results and

made important observations to give an in-depth analysis of multivariate perfor-

mance and power modeling. Furthermore, we also utilized the transfer learning

approach for cross-platform and cross-systems predictions. The conclusions from

the experiments performed are as follows:

1. Multivariate tree-based models namely dt, rf and etr outperformed all other

models including dnn models. Also, multivariate models performed better

than univariate models if the training and prediction are made on the same

application dataset.

2. Among univariate models, knn had the best performance with less than 12%

prediction errors. Also, among multivariate models, etr had the best perfor-

mance with less than 4% prediction errors.

3. The errors in power prediction were higher than runtime prediction due to

higher variations in power.

4. Multivariate prediction errors in simulated systems were less than physical

systems due to the deterministic nature of simulated systems.

5. For cross-platform prediction, dnn multivariate model and tree-based mod-

els outperformed all other models for power and runtime, respectively.

6. For cross-systems prediction, dnn multivariate outperformed all other uni-

variate or multivariate models.

Our future work will include more experimentation for building efficient mul-

tivariate models to include the cost in addition to performance and power and

contribute more datasets to the research community. We also plan to experiment

with the data augmentation technique to add more data to the physical systems

dataset.
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CHAPTER 7

Cross Prediction Models: Scaling vs. Transfer

Learning

7.1 Overview

Computer systems come with many options today, each having diverse hardware

features due to technological advancements in a processor, memory, and other

components. These hardware feature differences result in different software exe-

cution performance (runtime) on various computer systems; therefore, selecting

a computer system with optimum performance for a given software is desirable.

However, access to several physical systems having dissimilar hardware features

is a difficult task. To overcome this problem, we have already proposed a solu-

tion that we called "cross performance prediction with scaling" in our previous

work [47]. In which, we predicted the performance of physical systems using a

machine learning model trained only on the performance dataset of simulated

systems built using the gem5 simulator [32].

Our selection of the gem5 simulator for building simulated systems is because

it is a cycle-accurate simulator [89] with support of full-system mode and system-

call emulation mode. Work in [31] has shown that the gem5 system built with

full-system simulation mode provides accurate software performance compared

to the physical system. However, full-system setup for each computer system

is arduous and slow as compared to native execution according to [39] and [40].

On the other hand, the system-call emulation mode of gem5 provides systems’

simulation at a higher speed with lower accuracy. Therefore, our goal is to per-
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form accurate performance prediction of physical systems using gem5 simulated

systems built using system-call emulation mode.

Fast and accurate performance prediction for hardware/software co-development

is very much desirable. The task is even more challenging when access to required

physical computer systems or platform is unavailable. Cross-platform perfor-

mance prediction has been widely used to solve this challenging problem. The

cross-platform performance prediction approach uses a machine learning-based

model trained on the features from the source platform to predict the target plat-

form’s performance which is different from the source platform. This method

allows us to predict the software’s performance without actually running it on

the target hardware platform.

A LASSO machine learning model was recently proposed to predict the ARM-

based target system’s performance by collecting performance counters on x86-

based systems [3] [50] for several MiBench and SD-VBS benchmarks. Similarly,

the P4 framework has been proposed [4] for ARM-based system’s prediction us-

ing a neural network trained using performance counters that identify application

phases on the x86-based system for heterogeneous systems. The cross-platform

framework was proposed [20] for the prediction of GPU performance from x86-

based systems. A method was proposed [21] to select the cloud’s optimum con-

figuration for a user application using cross prediction that predicts the appli-

cation’s performance on a cloud with different configurations using platform-

independent features collected from general-purpose systems.

The goal for these research works is to use cross-platform prediction to predict

a target physical’s performance from the source physical system using machine-

learning performance modeling. On the other hand, our goal is to use cross

performance prediction to predict physical systems’ performance from simulated

systems using the decision-tree machine learning model, which is a different goal

[47].

It is expected to use the dataset with the same feature space in traditional ma-

chine learning models, possibly with the same distribution. The same feature

space samples are then divided into train and test sets to be used by the machine
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learning model for training and prediction phases for performance modeling. On

the other hand, in transfer learning, a machine learning model is trained from fea-

ture space from one task and performs prediction for different but similar tasks

with different feature spaces.

Several researchers have used transfer learning for cross-platform prediction.

For example, work in [23] applied transfer learning to predict the runtime of a tar-

get server C with features and runtime from source servers A and B. They mod-

ify the benchmark applications code to count the number of loops, assignment,

conditional, and message passing instructions. They use these counters as input

features and output runtime from servers A and B to train the machine learning

model. During the training, they also use 1% to 10% features from target server C

and then prediction for the remaining 90% features prediction is performed.

Similarly, work in [5] used transfer learning for cross-platform performance

prediction between two HPC-systems p1 and p2. They collect features such as

the number of nodes, number of processes, and application-specific features of

Mantevo miniFE and miniMD mini-applications along with runtime. They then

train the machine learning model using the feature space of source HPC system

p1 and only 1% of target HPC system p2 to predict the remaining runtimes for

target HPC system p2.

In the transfer learning implementation of the research works in [5] and [23],

a small percentage of the dataset from the target system is used in training ma-

chine learning model for cross performance prediction. Our goal is to train the

machine learning model with the source system’s feature space having similar

characteristics but not the same feature space as the target system. In this work,

we further extended our previous work to performance cross performance pre-

diction using transfer learning by leveraging the said ability of transfer learning.

To use transfer learning for cross performance prediction models, we trained a

machine learning model on simulated system’s performance, and source phys-

ical system’s performance datasets combined and predicted the different target

physical system’s performance. Our consideration is that source system access is

available with dissimilar hardware features from the target physical system.
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We outline our contributions from this work below:

• We used the previously proposed model "Cross Performance Prediction with

Scaling" that utilizes scaling factors to predict physical systems’ performance

from simulated systems.

• We proposed a new model, "Cross Performance Prediction with Transfer

Learning," in which a combined performance dataset from simulated sys-

tems and a source physical system predicts the performance of the target

physical system, which is different from the source system.

• We assessed the prediction accuracy individually for both the variants of

cross performance prediction models using applications from different ap-

plication domains having different computation and data access patterns

from San Diego Vision Benchmark (SD-VBS) and MiBench suites.

• In the cross performance prediction model with transfer learning, we com-

pared the prediction accuracy from each model trained with different source

physical systems for a given target system to assess the source system hav-

ing the highest prediction accuracy for most of the applications.

• We also developed a methodology to extract the set of rules (boolean logic)

from binary tree build during the decision tree’s training to analyze how

the runtime value (performance) is predicted for a given set of hardware

features.

The remainder of the chapter is organized as follows: Section 7.2 articulates the

related work using cross prediction and transfer learning. The section describes

the cross performance prediction model. Section 7.3 describes both variants of

our cross performance prediction model, the one with scaling and the other with

transfer learning. Section 7.4 describes the procedure to build simulated systems,

applications selection for workload, and physical systems selection for cross per-

formance prediction. It also details the decision tree regression, a machine learn-

ing model that we have used for our cross performance prediction models. Sec-

tion 7.5 and 7.6 articulates the performance dataset construction in experimen-

169



tal details and detailed analysis from results from our cross performance predic-

tion models. Section 7.7 compares the prediction accuracy between both models,

cross performance prediction with scaling, and cross performance prediction with

transfer learning. Finally, section 7.8 has the concluding remarks and tasks that

we plan to continue in future work.

7.2 Related Work

Performance modeling research dates back many years. In particular, cross per-

formance prediction has proliferated due to the availability of diverse hardware

platforms. In this section, we discuss several research works that performed cross

performance prediction.

7.2.1 Cross-Platform Performance Prediction

Several research works [3] [4] [20] [50] [51] have focused on cross-platform per-

formance prediction to predict the performance of the target architecture from a

performance dataset collected from source architecture. In some cases, source and

target architecture themselves are different, whereas in some cases, architectures

are the same, but systems have different processors and memory features.

Cross-platform prediction is used in [50] to show that the performance of a

target ARM-based system can be predicted from a source x86-based system. They

collect performance counters from x86-based host systems to be used as input fea-

tures in the training phase. To use the actual runtime (performance) in the training

phase, they collect the runtime from target ODROID-XU3 ARM-based systems for

157 different application programs from the ACM-ICPC database. A LASSO ma-

chine learning model is then trained using performance counters from x86-based

source systems and the actual runtime from the ARM-based target system. In

the prediction phase, they collect only the performance counters of 35 applica-

tions from Mi-Bench, SD-VBS, and SPEC 2006 benchmarks from x86-based host

systems. The performance counters are provided as input features to the trained

machine-learning model to predict these benchmarks applications’ performance
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on an ARM-based target system without actually executing them on the target

system. The work achieves an average prediction error of about 1.4% with mser

1.8%, svm 2%, tracking 1%, stitch 1.9%, dijkstra 0.75% and sha 1%. Our cross

performance prediction model differs in two ways. First, our model predicts the

runtime of physical systems from the simulated systems, while referenced work

uses only physical systems for both training and prediction. Second, work in [50]

uses performance counters as input features for the machine learning model; on

the other hand, we use hardware features values (cpu clock, ISA, cache size, mem-

ory type, access speed, size, etc). The use of performance counters captures the

application’s dependence on the hardware features, but it requires the execution

of the application on the source systems to collect performance counters, while

our method does not require execution to collect hardware features used for pre-

diction. These two reasons cause the prediction errors of our implementation to

differ from the referenced work.

Similarly, the work in [4] applies cross-platform prediction for predicting the

performance of a chosen target platform from a different source platform. They

have used four different platforms mobile Odroid XU3 ARM-based platform and

the remaining three x86-based, server Intel SR1560SF, server Sun Fire X4270 and

server Dell PowerEdge R810. They have collected 11 and 12 performance counters

from ARM-based platforms and x86-based platforms for 129 industry-standard

benchmark applications. They capture the performance counters that collect the

event for different phases of the benchmark application. Then the neural network

model is trained using these performance counters as input features to predict

the performance. Work in [4] performs cross prediction between four different

systems; however, they are all physical systems. Also, the author uses perfor-

mance counters for training and prediction of the machine learning model. On

the other hand, our cross performance prediction model predicts physical sys-

tems’ performance from simulated systems using directly processor, cache and

memory hardware features.

Cross-platform prediction is even used to predict GPU performance from CPU-

based software applications in [20]. First, they execute the CPU version applica-
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tion on a host with Intel Xeon Processor E3-1241 v3 and extract or calculate the

features from each runs that affect the GPU performance. They extract features

like ILP, the number of memory or control instructions, cold references, reuse dis-

tance. They also calculate some features like cache bank conflict, global memory

coalescing, branching pattern, floating-point multiplication, division, exponential

operations. They train the ensembled machine learning model using these fea-

tures. The prediction is performed for two GPU platforms, Maxwell GTX 750 and

Kepler GTX 660 Ti 10 benchmark applications.

7.2.2 Performance Prediction with Transfer Learning

In general, the machine learning model assumes that training and testing samples

are sourced from the same dataset; therefore, they have the same feature space and

distribution. A new dataset will result in training a machine learning model from

scratch to learn the new relationship. However, transfer learning allows retrain-

ing of an already trained machine learning model with a small percentage of new

datasets resulting in improving the learned knowledge with the new dataset. The

survey paper [22] has provided in-depth knowledge of different transfer learning

categories and their implementation. Transfer learning is widely used in perfor-

mance prediction to predict the different sources and target systems’ performance

with similar features.

Transfer learning is used in [23] for automated performance prediction of par-

allel applications with a message passing interface (MPI). The work collects domain-

independent runtime features from three MPI-based benchmarks Graph500, GalaxSee,

and SMG2000, by instrumenting the code for counting loops, conditions, assign-

ment, and communication messages. Runtime and features are collected to build

performance data by executing instrumented benchmarks on three servers A, B,

and C having different hardware features, including network. The random for-

est machine learning model is trained on performance data using source servers

B and C plus 1 to 10% of server A’s performance data. The trained model pre-

dicts the remaining server A’s performance data with an accuracy of about 10%

to 20% for Graph500 and SMG2000 benchmarks but the higher error in the case of
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GalaxSee. Work in [23] uses transfer learning to train the model using 100% per-

formance data from two source physical systems to predict for one target physical

system. On the other hand, we use transfer learning to train the model from sim-

ulated systems for the performance prediction of physical systems.

ModelMap, a novel instance-based transfer learning technique, is proposed in

[25]. In this work, performance in terms of response time of the MariaDB database

is predicted using various request types of the TPC-C benchmark. Several virtual

machines were built using CPU quota, disk I/O quota, and database buffer pool

quota to create systems with dissimilar system configurations and database size

changes. Database response time was measured on each of the virtual machines

with different configurations and database sizes. To implement transfer learning,

they started the machine learning model with empty sample space, and with each

system or database change, new samples in the range of 0 to 5% were fed in-

crementally to an already trained machine learning model. The trained machine

learning model with incremental data predicts the performance of database soft-

ware with a new set of samples with high accuracy when trained with sufficient

data.

Performance predicted from dissimilar systems’ configurations is always of in-

terest because we can select the system with the best configuration providing op-

timum performance. Generally, a black-box model collects and predicts data from

a real system for performance prediction, but performance measurement may not

scale according to system configuration changes. Therefore, authors of [26] pro-

posed a cost-aware transfer learning model that predicts the performance of the

real system from data from other sources such as simulation. The experimenta-

tion is performed on a robotic system, a NoSQL database, and stream processing

applications.

Similarly, the transfer learning model in [5] shows that a trained machine-

learning model from one x86-based system’s performance data can be retrained

only on one percent performance data from different x86-based systems to pre-

dict the remaining ninety-nine percent data. Experiments are performed on two

IBM Blue Gene and two Cray systems using Mantevo mini-applications miniMD,
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miniAMR, miniFE, LAMMPS as workloads. The work achieved an accuracy of

about 10% for the miniFE application. Similar to [23], work in [5] also uses trans-

fer learning for physical HPC systems, whereas we use transfer learning between

simulated systems and physical systems.

7.3 Cross Performance Prediction Models

In this work, we utilized two cross performance prediction models, the cross per-

formance prediction model with scaling and cross performance prediction model

with transfer learning. In our earlier work [47], we already introduced cross per-

formance prediction model with scaling as shown in figure 7.1. We introduced

a new cross performance prediction model that uses the transfer learning tech-

nique to achieve the same goal, as shown in figure 7.2. This section describes the

three phases of both models; training, cross performance prediction, and model

evaluation.

7.3.1 Cross Performance Prediction with Scaling

Our cross performance prediction model with scaling used only a simulated sys-

tems’ performance dataset to train the machine learning model. The trained ma-

chine learning model was then provided with the physical system’s hardware

features to predict the runtime. However, the physical system’s predicted run-

time vastly differs from the actual runtime because the machine learning model

trained only on a simulated systems performance dataset was used to predict the

runtime. Therefore, we applied the scaling factor, as explained in sections 5.1.2

and 5.2.2.

In the training phase, we selected hardware features from M simulated sys-

tems Xsjwherej, 1 ≤ j ≤ M and also collected the actual runtimes ysj ∈ R by

executing each selected applications. We then encoded text features Xsj into real-

valued features set Xs′j ∈ Rd. The machine learning was then trained using Xs′

and ys to learn a function such that =(Xs′j) ≈ ysj∀j called "Learned Model". In the

cross performance prediction phase; first, we collected hardware features Xpi of
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each of the N physical systems i, 1 ≤ i ≤ N. After encoding textual features from

Xpi into Xp′i ∈ Rd, we provided Xp′i to "Learned Model" to predict the runtime

yspredi of the physical systems using learned relationship from the training phase

=(Xp′i)→ yspredi.

In the model evaluation phase, we applied the scaling factor to the cross pre-

dicted runtime yspredi of physical systems which is a combination of a major fac-

tor and a minor factor. The major factor measures the gap between hardware

design between physical systems and the gem5 simulated system built with a

system-call emulation mode. The minor factors are the variations in the major

factor caused by compute-bound, memory-bound and compute-plus-memory-

bound applications’ dependency on processor, cache and memory features of each

system. We determined major factor, minor factor and scaling factor as explained
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in chapter 5. We used the scaling term in this approach because it indicates that

predicted runtimes are scaled (adjusted) using scaling factors to estimate physical

systems’ actual runtime accurately.

7.3.2 Cross Performance Prediction with Transfer Learning

We show in the scaling model that when a machine learning model is trained

from only the simulation systems’ performance dataset, the predicted runtime

is vastly different from the actual physical system’s runtime. Our cross perfor-

mance prediction model with transfer learning used transfer learning instead of

scaling technique to improve the accuracy of prediction by providing additional

knowledge to the machine learning model. The machine learning model gains ad-

ditional knowledge by utilizing a small percentage of the accessible physical sys-

tem’s performance dataset denoted as source physical systems in addition to the

simulated systems performance dataset during the training phase. In the training

phase, first, we collected hardware features and actual runtimes from simulated

systems (M) denoted as Xsjwerej, 1 ≤ j ≤ M, and ysj ∈ R respectively by exe-

cuting selected applications. Similarly, we also collected hardware features and

actual runtimes from the source physical systems, Xpsrc, and ypsrc. We then

merged the hardware features Xs and Xpsrc into Xsrc and actual runtimes ys and

ypsrc into ysrc. We encoded features with text data from Xsrc into Xsrc′ ∈ Rd to

form a dataset with real numbers only. For example, systems with nine features

represented as Xsrc′ ∈ R9. The machine learning model is then trained using

Xsrc′ and ysrc to learn a function =(Xsrc′) ≈ ysrc that maps hardware features

values to actual runtimes such that error between actual and predicted runtime is

minimum for all samples. We referred to the trained machine learning model as

the "Learned Model."

The cross performance prediction phase of the cross performance prediction

model with transfer learning used a different set of physical systems unseen dur-

ing the training phase referred to as target physical systems. Ideally, we assume

that the target physical systems are inaccessible requiring prediction. We col-

lected hardware features from target physical systems Xptrg and encoded the
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textual data from Xptrg to Xptrg′. We also collected actual runtimes from target

physical systems yptrg required to analyze the prediction accuracy. The features

Xptrg′ of target physical systems were used as input features to "Learned Model,"

a trained machine learning model, to predict the runtimes for target physical sys-

tems yptrgpred using learned relationship from the training phase =(Xptrg′) →

yptrgpred. We performed several predictions of performance for the same target

system each time with a different source system used during training, which al-

lowed us to select the source system that provides the optimal runtime prediction

for a given target system. In the model evaluation phase, we compared actual run-

time yptrg with a set of predicted runtimes yptrgpred predicted using a disparate

set of source physical systems for each target physical system.

7.4 Experiment Platforms

This section provides detail of building gem5 simulated systems, articulates appli-

cation selection for workloads, and provides information about physical systems

used for cross performance prediction.

7.4.1 Simulated Systems

As detailed in chapter 2.3.1, we built 475 systems in gem5 simulator using system-

call emulation mode with features listed in table 2.1 that were collected from real-

world systems. We modified the gem5 source to support third-level cache and

add several memory types to represent the simulated systems more accurately

compared to the real systems. However, the limitation of these systems is the use

of a single out-of-order processor model supported in gem5.

7.4.2 Applications Selection for Workload

Our selection of applications as the workload is shown in table 7.1 includes four

applications mser, svm, tracking, and stitch from San Diego Vision Benchmark

(SD-VBS) [70] and two applications sha and dijkstra from MiBench [63] bench-
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Table 7.1: Applications used as workloads used for Comparison of Scaling versus
Transfer Learning Cross Performance Models

Application Benchmark Intensiveness
mser SD-VBS compute-intensive
svm SD-VBS compute-intensive

tracking SD-VBS data-intensive
stitch SD-VBS compute-intensive and data-intensive

dijkstra MiBench data-intensive
sha MiBench compute-intensive

compute-intensive = compute-bound
data-intensive = memory-bound

marks. These applications represent different application domains; svm is a ma-

chine learning algorithm, mser, stitch, tracking are image operations, sha is an

encryption algorithm, and dijkstra is a network protocol. We selected these spe-

cific applications due to their known computation and data access patterns. Ac-

cording to [70], mser and svm depend more on computation, placing them in the

compute-bound category; tracking depends more on data access, categorizing it

as memory-bound, whereas stitch depends on both computation and data access

(compute-plus-memory-bound). Similarly, sha is compute-bound, where dijkstra

is memory-bound. The compute-bound applications depend more on processor

features because they are compute-intensive, whereas memory-bound applica-

tions depend more on memory features. We have demonstrated in our previous

work [47] that we can identify the dominant processor or memory features for

each application using Pearson Correlation Coefficient [94] between runtime and

hardware features.

7.4.3 Physical Systems for Cross Performance Prediction

We limit the scope of our cross performance prediction work to x86-based sys-

tems, mainly using Intel processors. Our selection of four physical systems in-

cludes a server system, a high-end system, and general-purpose systems. The

server system has 12 cores Intel Xeon E5-2620 v3 processor with 16GB of DDR4

memory, the high-end system has six cores Intel Core i7-8700 processor with 16GB

DDR4 memory, and the two general-purpose systems have two cores Intel Core
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i5-6500 processor and four cores Intel Core i7-6500U with DDR3 memory. We uti-

lized the same nine features values for physical systems, as shown in table 7.2,

which we collected using the dmidecode utility.

Table 7.2: Physical Computer Systems used for Comparison of Scaling versus
Transfer Learning Cross Performance Models

Sr ISA CPU Cores Mem Mem Mem L1-L3
Speed Type Access Size Cache
GHz MHz GB Size

A x86 3.2 4 DDR3 1600 4 32kB,6MB
B x86 2.4 12 DDR4 1866 16 32kB,15MB
C x86 3 2 DDR3 1600 8 32kB,4MB
D x86 3.2 6 DDR4 2666 16 32kB,12MB

Configuration taken from following models:
A.Intel Core i5-6500 B.Intel Xeon E5-2620 v3 C.Intel Core i7-6500U D.Intel Core
i7-8700

7.4.4 Decision Tree Regression Machine Learning Model

Decision tree regression is one of the popular machine learning models due to

its simplicity and intelligibility [101] [102]. Furthermore, in a separate study per-

formed by us in [42], we demonstrated that decision tree regression has higher

prediction accuracy than other machine learning models for our performance

dataset. Therefore, we employed scikit-learn [65], a python-based library imple-

mentation of decision tree regression [6] [90] as our machine learning model for

our cross performance prediction.

Given the input features xi from input feature set x = x0, x1, ..., xn and target

value y, decision tree regression model recursively partitions feature space of xi

such that samples with close target value are on the same side of the tree. For

regression problems, mean squared error (MSE) identifies the closeness between

actual and target values and is given by:

MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (7.4.1)

Let data of node m is represented by Q. At each of the decision tree node

m, there could be several possible partitions in data set Q. For each candidate
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partition θ = (xi, txi), data is partitioned into Qle f t(θ) (left sub-tree) and Qright(θ)

(right sub-tree) (equation 7.4.2), where xi is compared against the threshold tm.

Qle f t(θ) = (x, y)|xi <= tm (7.4.2a)

Qright(θ) = Q \Qle f t(θ) (7.4.2b)

For each candidate partition, mean squared error (MSE) is calculated for left

and right sub-trees, which is then used to calculate the impurity function given

by

G(Q, θ) =
nle f t

Nm
MSE(Qle f t(θ)) +

nright

Nm
MSE(Qright(θ)) (7.4.3)

Out of all the candidate partitions, select the one which minimizes the impu-

rity

θ∗ = argminθ(xm,tm) G(Q, θ(xi, ti)) (7.4.4)

At the root node, candidate partitions consist of one partition for each input

feature xi|xi ∈ x input feature set and threshold txi . For each of the candidate par-

titions, impurity function G(Q, θ) is calculated using mean square error. Partition

with smallest impurity is selected as criteria θ = (Xi, tm) for this node. Based on

criteria θ = (Xi, tm), all the samples Q from root node with xi <= tm are parti-

tioned into Qle f t(θ) and xi > tm are partitioned into Qright(θ). Recursively parti-

tion the subsets Qle f t(θ) and Qright(θ) until maximum allowable depth of the tree

is reached Nm < minsamples or sample size has reached to one Nm = 1, that means,

mean squared error cannot be reduced further. Each of the non-leaf nodes is de-

cision points that guide the direction in which the data path is traversing for a set

of specific feature values of a sample until a leaf node is reached which provides

the target (predicted) value y for that sample. Mean of y values is considered as

the target value for the leaf node with more than one samples.

180



7.5 Cross Performance Prediction with Scaling

In this section, we discuss the experiments carried out for cross performance pre-

diction with scaling. First, we provide experimental details about the construction

of performance datasets using simulated systems and physical systems. We then

articulate the results from performance prediction using machine learning model

trained on the simulated systems performance dataset. We analyze the prediction

accuracy results of our machine learning model for different applications. Finally,

we outline the procedure for cross prediction and show the prediction accuracy

results with or without scaling factor.

7.5.1 Experimental Details

First, we built the performance dataset from simulated systems. To built the sim-

ulated systems’ performance dataset, we collected the values of nine hardware

features Xs ∈ R9 and actual runtimes ys ∈ R by executing each selected applica-

tion from table 7.1 on each of the 475 gem5 simulated systems from table 2.1. A

machine learning model does not accept textual data; hence, we employed one-

hot encoding to convert text data features, instruction-set-architecture (ISA) and

memory type, to real-valued features Xs′ ∈ R9. Therefore, the simulated systems

performance dataset consists of all real-valued hardware features and the corre-

sponding actual runtime [Xs′, ys] of an application executed on each of the 475

simulated systems.

In our previous work [45], we have shown that a 60:40 train-test split ratio pro-

vided much higher prediction accuracy in the simulation-based prediction model.

Therefore, we selected 60% samples from simulated systems performance dataset

[Xs′j, ysj], 1 ≤ j ≤ M, M = numbero f trainingsamples for the training phase and

the remaining 40% [Xs′k, ysk], 1 ≤ j ≤ N, N = numbero f testingsamples was used

for prediction (testing). We used 5-fold cross-validation to ensure high predic-

tion accuracy for each fold by random samples selection of training and testing

using the ShuffleSplit() function from the scikit-learn library. We trained the de-

cision tree regression, a machine learning model on training samples [Xs′M, ysM]
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for each application’s simulated systems performance dataset separately, which

we referred to as "Learned Model."

For the cross prediction phase, we collected hardware features from the four

physical systems Xpi ∈ R9, 1 ≤ i ≤ 4 as shown in table 7.2. We built gem5

simulated systems using physical systems’ feature values Xp and collected actual

runtime ysp by executing applications on simulated physical systems. We also

encoded the text features ISA and memory type from Xp using the same one-hot

encoder class used by simulated systems performance dataset to apply the same

encoding to the physical systems’ features resulting in real-valued physical fea-

ture set Xp′. We also collected actual runtimes yp from physical systems by exe-

cuting applications on all four physical systems. To reduce the effect of variations

in the non-deterministic physical system’s runtime, we collected 40 runtime val-

ues by executing each application on each physical system 40 times and the mean

of these 40 runtime values were used as the actual runtime. We then provided

an encoded physical system’s hardware features Xp′ as an input to the learned

model to predict the physical system’s runtime yspred for cross performance pre-

diction. We analyzed the prediction accuracy between the actual runtime ysp from

simulated physical systems and the predicted runtime yspred as well as accuracy

between the actual physical system’s runtime with unscaled and scaled cross pre-

dicted runtime yspred

7.5.2 Results

In the results section for cross performance prediction with scaling, we evaluate

our model in two ways. First, we evaluated the decision tree model’s prediction

accuracy by studying the rules that determine predicted runtime for a given ap-

plication on a specific system. Second, we applied the scaling factor determined

from our previous work and analyzed the actual physical system’s runtime re-

sults with unscaled and scaled cross-predicted runtime from the model ("Learned

Model"), trained from simulated systems dataset.
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7.5.2.1 Prediction Accuracy of Decision Tree Machine Learning Model

We plotted actual runtime (ysp) from the simulated physical system and predicted

runtimes (yspred) for each of the four physical systems in figure 7.3. Considering

the percentage errors of all four physical systems shown in table 7.3, mean per-

centage error for svm, mser, tracking, stitch, sha, and dijkstra applications are

2.9%, 5.17%, 3.87%, 1.77%, 10.93%, and 9.98% respectively. Hence, we achieved a

prediction accuracy of at least 90% for each application between ysp and yspred.
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Simulator Runtime vs Cross Performance Prediction Runtime

In the training phase, the decision tree regression model develops a binary

tree with boolean logic defining a set of rules. Each index node of a tree has a rule

(condition) with an associated threshold value with hardware features. The leaf

node of this binary tree has the target value runtime. In the prediction phase, the

index nodes’ rules guide the path for a new set of hardware features to reach the

leaf node determining the predicted runtime. To analyze how the decision tree
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Table 7.3: True/Actual and Predicted Performance for Simulated Systems with
Percentage Error

Algo A B C D
True Pred PE True Pred PE True Pred PE True Pred PE

mser 7264 6670 8.18 9344 9130 2.29 7652 7881 2.99 7228 6707 7.21
svm 46909 48268 2.9 62389 59723 4.27 49703 51641 3.90 48000 48268 0.56

tracking 16999 15640 7.99 22209 21380 3.73 18019 18615 3.3 16965 16886 0.47
stitch 31758 31812 0.17 40884 41949 2.6 33690 34927 3.67 31617 31812 0.62

dijkstra 26446 27210 2.89 26446 34370 29.96 27951 29109 4.14 26431 27210 2.95
sha 21109 20350 3.6 21109 28053 32.9 22370 23235 3.87 21063 20350 3.38

predicts a particular runtime yspred for a given application on each of the four

physical systems, we extracted the binary tree rules built by the trained decision

tree regression model for each application. To extract these rules, we utilized

the export_graphviz() function from scikit-learn, which generates a DOT file from

each application’s trained decision tree model. We then plotted the tree with index

and leaf nodes using an open-source Graphviz tool. Figure 7.4 shows the binary

trees built from the decision tree models for mser and tracking applications for

system C as an example.

In the prediction phase, we took feature values from system C from table 7.2

and traverse through the index node either going to the left side when the rule

condition is true or going to the right side when the rule’s condition is false. In

the case of mser, root node #0 with condition cpu-clock<=2.28 is false with System

C having cpu-clock of 3 GHz, so we take the right branch. Following the sequence

of conditions, we reach the leaf node with a runtime value of 7881, which is the

predicted value shown in table 7.3 for mser on system C. Similarly, for tracking

following the rules at index nodes of the binary tree, we reach the leaf with a

runtime value of 18615, which is the predicted value for tracking on system C

shown in table 7.3. The thick lines and thick leaf node border indicate the path

that the prediction phase took for a given set of hardware features of systems C in

these examples in figure 7.4.
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Figure 7.4: Decision Tree Rules Determining Predicted Runtime

7.5.2.2 Cross Performance Prediction Accuracy with and without Scaling

To demonstrate the accuracy of cross performance prediction, we compared actual

runtimes from physical systems yp to cross predicted runtimes yspred predicted

from the learned model trained only on simulated systems performance dataset

shown as a red and black bar in figure 7.5. We observed the mean error between

cross predicted runtimes yspred and actual runtimes yp of server systems B and

D are 36.97% and 34.82% whereas for general-purpose systems A and C the mean

errors are 18.82% and 21.46%. The higher errors in server systems are because

gem5 simulated systems represent a general class of systems resulting in a larger

gap in design between the simulated systems and physical server systems.

We observed a significant difference between physical systems’ actual runtime

yp and simulated physical systems’ actual runtime ysp, called "Scaling Factor."

We applied a scaling factor of 35% for compute-bound applications and 10% for

memory-bound applications as determined from our previous work [47] to the

unscaled cross predicted runtime yspred. We plotted unscaled and scaled cross

predicted runtimes with respect to physical systems’ actual runtimes in figure 7.5.

We confirm from the figure that unscaled errors are much higher compared to the

scaled errors. We have achieved a reduction using scaling factor for each appli-
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Physical System Runtime vs Cross Performance Prediction Runtime in Scaling
Model

cation within the range of 10% to 25% for general-purpose systems except for sha

and tracking application. The memory-bound tracking application has a higher

error because it also depends on processor features; therefore, the scaling factor

is slightly higher than 10% applied to it is cross predicted runtime. Similarly, the

compute-bound sha application depends on memory features resulting in slightly

different scaling factors than 35%.

7.6 Cross Performance Prediction with Transfer Learn-

ing

In this section, we discuss the experiments carried out for cross performance pre-

diction with transfer learning. First, we provide experimental details about the

construction of performance datasets using various schemes of samples selection
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from simulated systems and source physical systems forming several instances

of training datasets. We then show cross predictions for the same target physi-

cal system from the different training datasets. We analyze the predicted runtime

for each target physical system to determine a source physical system (used for

training) that provides the highest prediction accuracy for a given target physical

system.

7.6.1 Experimental Details

We already built a simulated systems performance dataset [Xs, ys] for each ap-

plication with simulated systems hardware features and the application’s actual

runtime by executing an application on all 475 gem5 simulated systems. Similarly,

we also built an application-specific performance dataset [Xp, yp] for four phys-

ical systems by collecting hardware feature values using dmidecode utility and

actual runtime by application’s execution. We built a training dataset by combin-

ing simulated systems performance datasets and a source physical system perfor-

mance dataset to apply transfer learning. The machine learning model, decision

tree, is then trained using the training set to predict the runtime for the target

physical system with different physical systems used as source and target.

We developed an algorithm 1 shown below for cross performance prediction

with transfer learning. First, we selected m samples PDs = [Xsm, ysm] for the

training phase from simulated systems performance dataset [Xs, ys] with values

of m varied to 10%, 50%, 90% and 100% of samples. Let the target physical sys-

tems set be T = {A, B, C, D} and the selected target physical system be system t.

We then selected a target physical system t’s hardware features from performance

dataset PDpt = [Xpt] for cross performance prediction. We chose source physical

systems set S = {A, B, C, D}− t to have all the systems in the set except the target

system. For example, if we use the system C as a target system, then the source

systems set has systems A, B, and D. Therefore, a performance dataset of each

source system s from set S for the same target physical system t is represented

as PDps = [Xps, yps]. To reduce the effect of non-determinism on the runtime

of the physical systems, we executed each application 40 times on each physical
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system. We used the mean of all 40 runtime values as the actual runtime ypt for

the target physical system. On the other hand, to keep the larger number of sam-

ples in the training dataset from source physical systems, we used all 40 runtime

value samples for source physical systems. For training phase, we merged the

simulated systems performance dataset PDs and source physical system dataset

PDps into PDtraining. We then trained the decision tree model on training dataset

PDtraining called the "Learned Model." Finally, we provided the target physical

system’s hardware features to the learned model to predict a target physical sys-

tem’s performance ypt for cross performance prediction.

Algorithm 1: Cross Performance Prediction using Transfer Learning
Let Simulated Systems Performance Dataset be [Xs, ys];
Let Physical Systems Performance Dataset be [Xp, yp];
Let All Physical Systems Set be {A, B, C, D};
Simulated Systems Dataset Sample Selection Percentage Set

M = {10%, 50%, 90%, 100%};
for m ∈ M do

Simulated Systems Performance Dataset for Training
PDs = [Xsm, ysm];

Target Physical Systems Set T = {A, B, C, D};
for t ∈ T do

Target Physical Systems Performance Dataset for Cross Prediction
PDpt = [Xpt];

Source Physical Systems Set for Each Target System
S = {A, B, C, D} − t;

for s ∈ S do
Source Physical Performance Dataset for Training

PDps = [Xps, yps];
Merge Simulated Systems and Source Physical Systems
Performance Dataset for Training PDtraining = PDs + PDps;

Train Decision Tree Machine Learning Model ("Learned
Model") using Training Dataset dtr = dtr. f it(PDtraining);

Cross Performance Prediction for Target Physical Systems
Using Learned Model ypt = dtr.predict(PDpt);

end
end

end
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7.6.2 Results

We displayed prediction errors for each target in figure 7.6 with different source

systems used for cross performance prediction in transfer learning model. We

have three significant observations from the plot. The first observation is that the

prediction errors for general-purpose systems A and C are lower in most cases

than server systems B and D. Second observation is regarding the prediction ac-

curacy of each target using different source systems from the plot itemized below.

• Target system B has equal or lower accuracy for all applications except svm

for cross prediction using source system D. This is because system B has

a vastly different cpu-clock speed than the other three systems. However,

system D, being a server system, they have other similar hardware features

resulting in lower error when system D is used as a source system.

• For target system C, source system A has a lower or equal error for all ap-

plications because both are general-purpose systems with similar features.

• System D when used as a source physical system provided higher predic-

tion accuracy for target system A except svm. We believe this is because a

vital feature cpu-clock between systems A and D is the same, and cpu-clock

having a higher correlation with runtime. Source system C also has good

accuracy except for stitch for target system C since system A and system C

are general-purpose systems.

• For target system D, we cannot identify a single source system with higher

prediction accuracy, but system A or C has higher prediction accuracy than

system B. This is because the important feature cpu-clock for A and C has a

similar value as the cpu-clock of system D.

Finally, the third observation is that when comparing the prediction accuracy

of different training datasets for each target, we notice that the training dataset

with more than 50% of simulated systems’ dataset samples has higher errors. This

higher error is because using more than 50% samples from simulated systems per-

formance dataset generates noise in the training performance dataset created by
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Figure 7.6: Prediction from each target system from different source systems in
Transfer Learning Model

merging a mix of performance data from simulated systems and source physical

system.
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7.7 Prediction Accuracy: Scaling vs Transfer Learning

In this section, we compared performance prediction errors between cross perfor-

mance prediction carried out using transfer learning in section 7.6 versus cross

performance prediction with scaling in section 7.5. For comparison, we selected

source systems with the lowest percentage error for each target system from cross

performance prediction model with transfer learning. Figure 7.7 shows the per-

centage error for each application and each target using both the scaling and trans-

fer learning techniques.
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Figure 7.7:

Transfer Learning Cross Predict ion Error

Scaling Cross Predict ion Error

A - IntelCorei56500_DDR31600_4GB

B - IntelXeonE52620_DDR41866_16GB

C - IntelCorei76500U_DDR31600_8GB

D - InteCorei78700_DDR42666_16GB

Comparison of Prediction Error for Transfer Learning vs Scaling

One important observation is that the target system’s prediction accuracy for

most of the applications except sha of cross performance prediction model with

scaling is higher than cross performance prediction with transfer learning. We be-

lieve that this is because, with the help of the scaling factor, the scaling model is

more effective in matching the predicted value with the actual runtime of target

physical systems to bridge the gap in design between gem5 simulated systems
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and physical systems. Furthermore, lower prediction accuracy in the transfer

learning model is due to the use of a smaller number of samples from source

physical systems in the training dataset making the transfer learning model less

effective to bridge the design gap of simulated systems and physical systems. We

believe that by having runtime collected from a larger number of physical systems

with different hardware features used as source systems, the prediction accuracy

of the transfer learning model can be improved, which we will consider in our

future work.

7.8 Summary

This chapter implemented two cross performance prediction models, one with

scaling and the other with transfer learning techniques to predict physical sys-

tems performance from the performance dataset of simulated systems. In cross

performance prediction with scaling, we first predicted the physical system’s per-

formance using their hardware features and then applied the scaling factor de-

cided from our previous work to get the actual predicted runtime. For cross per-

formance prediction model with transfer learning, we combined the performance

data from simulated systems and a source physical system to predict the target

physical system’s performance. We utilized the source physical system dataset

along with a simulated systems dataset for incremental learning or providing a

hint to the decision tree, a machine learning model.

We validated our models using six benchmark applications drawn from SD-

VBS and MiBench suite, each with different computations and data access pat-

terns representing separate application domains. We made the following conclu-

sions from our work.

• Our cross performance prediction model with scaling factor provided a mean

of 10-25% errors for general-purpose systems after applying scaling factor

except for tracking and sha. Some dependence on computation caused a

higher error in the memory-bound tracking application. In contrast, for

compute-bound sha, the higher error resulted from some dependence on
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memory features.

• We also developed a method to extract the set of rules in the form of a binary

tree built during the decision tree regression model’s training phase. This set

of rules dictates the path traversal during the prediction phase by evaluating

each condition at the index nodes to reach the predicted runtime value at the

leaf node.

• For our cross performance prediction model with transfer learning, we used

four physical systems. We selected each of the four systems as a target

system and a different physical system as a source system from the set.

We trained the decision tree regression, a machine learning model, using a

source physical system and simulated systems combined performance dataset

to predict the selected target’s performance. We demonstrated that system

C prediction accuracy is highest when system A is used as a source, both

being a general-purpose system. Similarly, system D as a source has higher

accuracy for system B as a target since both are server-like systems.

• Finally, we compared the prediction accuracy of both our cross performance

prediction models. Our experimental results showed that the model with

scaling outperforms the model with transfer learning for all applications ex-

cept sha. We believe compute-bound sha has a higher error for scaling than

the transfer learning model because the scaling factor requires adjustment

depending on the dependence on memory features.

Our cross performance prediction model can be leveraged even for emerg-

ing hardware such as GPU. One can build simulated GPUs in a simulator such

as GPGPU-Sim to apply our cross performance prediction model with scaling or

transfer learning to predict the physical GPUs’ performance for GPU benchmark

applications. Similarly, these models can also be used for networked homoge-

neous systems if good simulators are available for simulating the networked sys-

tems. We would like to expand our cross prediction models research for hetero-

geneous and networked systems areas in the future.
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CHAPTER 8

Summary, Conclusions and Future Work

In this section, first, we summarize our contributions and conclusions from the

work performed in this dissertation. We then outline the tasks to guide the direc-

tion of the future work.

8.1 Summary and Conclusions

This thesis presented cross prediction models to predict the performance and

power of physical computer systems from the machine learning model trained

on the gem5 simulated systems’ dataset. The cross prediction models are im-

plemented using two innovative techniques transfer learning and scaling using

machine learning algorithms. The thesis provided detailed results from both the

cross prediction model for compute-intensive and data-intensive benchmark ap-

plications. The thesis work confirmed that accurate predictions from the cross

prediction models can be used to address the problem of selection of physical

computer systems without the need for executing the application on the actual

computer system.

To build a foundation for our cross prediction model, we first established that a

strong relationship exists between the hardware features of computer systems and

the performance (runtime) of a given application executed on the respective com-

puter systems. To capture this relationship in a model, we train machine learning

algorithms from hardware features and performance and predict the performance

given the hardware features of systems unseen during training. Experiment re-

sults show that even with identical hardware features in simulated and physical
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systems, performance is vastly dissimilar due to the difference in design. Further-

more, we have shown that the relationship between hardware features and perfor-

mance is globally non-linear resulting in higher prediction accuracy for non-linear

machine learning models such as tree-based models.

It is important to use the machine learning algorithm that provides higher

accuracy for our cross prediction models. Therefore, we investigated 14 univari-

ate and multivariate machine learning algorithms. We have shown that univari-

ate algorithms such as linear regression, gaussian process regression has lower

prediction accuracy than multivariate algorithms such as tree-based and neural

network algorithms for predictions of performance and power on simulated as

well as physical systems. Experimental results show that models built from tree-

based algorithms outperform all other univariate and multivariate algorithms.

We believe that this is because a decision tree is a binary tree-based algorithm that

effectively captures the non-linear relationship between hardware features and

performance or power. The binary tree of the decision tree algorithm consists of

non-leaf nodes with rules and leaf nodes with prediction values built during the

training phase forming a boolean logic. During the prediction phase, the rules

from non-leaf nodes are evaluated to reach the leaf node for prediction. We have

shown that we can extract the rules from the binary tree of the trained decision

tree algorithm to understand the boolean logic for prediction.

We have investigated the prediction accuracy of the tree-based machine learn-

ing model for different application types such as computationally-intensive and

data-intensive applications for simulated systems and physical systems. We found

that due to the deterministic nature of simulated systems prediction accuracy of

simulated systems is much higher than non-deterministic physical systems when

training and predictions are performed on the same dataset. We have also found

that the computationally intensive applications have higher variations in runtime

on physical systems resulting in higher prediction errors than data-intensive ap-

plications whereas the accuracy for power is similar in both types of applications.

However, on simulated systems accuracy of computationally intensive applica-

tions is higher because of the use of the same processor model for all the simulated
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systems built into the simulator.

Selecting physical system(s) for an application without having access to exe-

cute the applications on a plethora of physical systems with diversity in proces-

sor, cache and memory features makes the problem hard. We provide the solu-

tion to this problem by implementing a machine learning-based cross prediction

model that effectively predicts the performance and power of physical systems

from the systems built with the gem5 simulator. To speed up the construction of

systems in the gem5 simulator, we leveraged the emulation mode of gem5 result-

ing in a wider gap between the performance and power collected from the gem5

simulated system with identical features to that of the physical system. Further-

more, experimental results revealed that the performance (runtime) gap is larger

for compute-intensive applications compared to data-intensive applications due

to the design of processors in simulated systems is much different than physical

systems. Our "Cross Performance and Power Model with Scaling" provides the

solution to bridge the gap by determining application-specific scaling factors, con-

sisting of two components major factor and minor factor. The major factor is de-

termined by identifying the mean difference of performance and power between

the physical systems and gem5 simulated systems built using identical hardware

features of the physical systems. The minor factor is derived from the Pearson

correlation coefficient between hardware features and application-specific perfor-

mance or power. We have shown that by accurate performance and power predic-

tions from our scaling model, physical systems can be selected without executing

the application on them eliminating the need to have access to the physical sys-

tems.

We provide another solution to the computer system(s) selection problem us-

ing a transfer learning technique called "Cross Performance and Power Predic-

tion Model using Transfer Learning." Unlike the scaling model, the transfer learn-

ing model does not require determining the scaling factor, however, it assumes

that access to some physical systems is available. Our transfer learning model

uses the notion of a source physical system that is accessible, however, the tar-

get physical system is inaccessible requiring prediction. We have shown that a
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machine learning-based transfer learning model trained from performance and

power datasets of simulated systems plus a source physical system provides a

reasonable prediction for the target physical system. Furthermore, experimental

results reveal that the transfer learning model trained from a source physical sys-

tem having hardware features close to that of the target physical systems provide

higher prediction accuracy. The target systems predictions from the cross predic-

tion model with transfer learning can be used to select computer system(s) even

when access to target systems is unavailable.

8.2 Future Work Direction

In this section, we articulate the direction for cross prediction models to improve

accuracy, adapt to applications with greater complexity and explore additional

system architectures.

8.2.1 Improve Model Accuracy

There are two issues observed for model accuracy that requires improvement.

First, experiment results from both cross prediction models show that the server-

like systems have higher prediction errors. Our understanding from the result is

that gem5 simulated systems are approximate to general-purpose systems such as

laptops or desktops, hence, the scaling factor calculation is appropriate for these

systems. However, there is a need to calculate the scaling factor specific to the

server-like systems by considering a large number of server systems to calculate

the major factor, a factor measuring the difference between physical server sys-

tems to the gem5 simulated systems. In the case of the transfer learning model, the

prediction accuracy depends on the similarity between hardware features from

the source and target physical system, therefore, we can improve the accuracy

of the transfer learning model by having access to several server systems to be

used as source systems with hardware features as close as possible to the target

server systems. The second issue observed from the results is that the cross pre-

diction model with transfer learning has errors higher than 50% on average. We
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know that the prediction accuracy of the machine learning model is improved by

having a training dataset representing a large number of physical systems sam-

ples hardware features close to that of the target system. Therefore, we believe

by training the transfer learning model with a large number of physical systems

samples having disparate hardware features as source systems should improve

the accuracy.

8.2.2 Adapting to Complex Application

Although our cross prediction models have been implemented considering appli-

cations from a different domain with distinct computation and data access pat-

terns, the model implementation provides the solution for single-threaded ap-

plications. However, high-performance computing systems (HPC) with multiple

cores have been in use for a couple of decades to utilize the parallelized (multi-

threaded) versions of the applications for improving the performance of an ap-

plication. In the future, we plan to investigate the possibility of enhancing cross

prediction models for multithreaded and multiprocessing applications. To im-

plement a cross prediction model for scaling for parallel applications, the main

challenge is to determine different scaling factors depending on the number of

threads or processes used by the application in addition to considering the actual

number of cores of the systems. However, the cross prediction model with trans-

fer learning does not have this requirement, hence, we believe it is better suited

for the cross prediction of parallelized applications.

8.2.3 Explore Systems Architectures

In this thesis, our cross prediction model implementation is focused on predicting

the performance and power consumption of physical systems with Intel proces-

sors having an x86-based instruction set. While computers with x86-based in-

struction sets are widely used, due to the proliferation of the internet of things

(IoT) and edge computing, embedded systems are at the forefront of computing

utilizing primarily ARM-based instruction sets. Therefore, a possible future work
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is to perform cross prediction on embedded systems built using ARM instruc-

tion set. The gem5 simulator used for building simulated systems does support

the ARM instruction set, therefore, we can use the same simulator for this work.

For the cross prediction model, we have measured power consumption on phys-

ical systems using Intel’s RAPL with the PAPI toolset. The main challenge for

ARM-based embedded systems will be to develop a process for System-On-Chip

(SoC) power measurement due to the utilization of different SoCs in disparate

embedded systems. Additionally, the scaling model will require determining a

new scaling factor for embedded systems with ARM-based processors.
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CHAPTER A

Glossary

Table A.1: Glossary

Acronym Full Form

FSS Full System Simulator

LR Linear Regression

DTR Decision Tree Regression

McPAT Multicore Power, Area and Timing

PAPI Performance Application Programming Interface

API Application Programming Interface

RAPL Running Average Power Limit

SD-VBS San Diego Vision Benchmark Suite

MiBench eMbedded Becnhmark

GPU Graphical Processing Unit

OoO out-of-order

ISA Instruction-Set-Architecture

CPU Central Processing Unit
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