• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    On the efficacy of deep image denoising for computer vision applications

    Thumbnail
    View/Open
    201911028 - Manan Shah Thesis.pdf (1.853Mb)
    Date
    2021
    Author
    Shah, Manan Dharmendra
    Metadata
    Show full item record
    Abstract
    Image denoising is a process of inverse reconstruction where the original image is reconstructed from its noisy observations. Several deep learning models have been developed for image denoising. Usually the performance of image denoising is measured by metrics like peak signal to noise ratio (PSNR), structural similarity index (SSIM), however in this research we take a more pragmatic approach. We design and conduct experiments to evaluate the performance of deep image denoising methods in terms of improving the performance of some popular computer vision (CV) algorithms after image denoising. In this paper we have comparatively analysed: Fast and flexible denoising convolution neural network (CNN) (FFDNet), Feed forward denoising CNN (DnCNN) and Deep image prior (DIP) based image denoising. CV algorithms experimented with are face detection, face recognition and object detection. Standard and augmented datasets were used in our experiments. Raw images from standard datasets (BSDS500, LFW, FDDB and WGSID) were augmented with various kinds and levels of noise. From the results we obtained it can be concluded that image denoising is not effective in improving the performance of CV algorithms when denoising is applied to raw images of the datasets. But image denoising is very effective in improving the performance of the CV methods when denoising is applied to Gaussian noise corrupted images of the datasets. In our experiments we found results where the improvements were upto 11.70 percentage in terms of accuracy for face detection experiment.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1020
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV