• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    A Novel Image Colorization Architecture and UnderWater Image Color Correction Using Deep Neural Networks

    Thumbnail
    View/Open
    201911030_Revised_Thesis - Srimanta Mandal.pdf (15.58Mb)
    Date
    2021
    Author
    Pipara, Arpit
    Metadata
    Show full item record
    Abstract
    Image colorization has been an interesting and exciting research topic due to its “multi-modal” nature. Before the onset of deep learning, image colorization systems were not end-to-end and required a tremendous amount of effort to colorize a grayscale image. With the advancement of deep learning, end-to-end systems are being designed for the task. The thesis comprises of literature survey of different methods to understand the problem structure and the already prevalent solutions. The thesis presents an ensemble encoder-decoder approach to tackle the problem. Transfer learning has been used to leverage the power of deep learning. Pretrained networks ResNet50 and DenseNet121 have been used to extract multilevel distinct and varied features. The features are then fused. Different feature fusion techniques have been explored. The fused features are then propagated to the decoder module along with encoder features as skip connections. The work is extended to underwater image color correction. A very similar setup has been used for the underwater image color correction problem. The results obtained are reasonably competitive with respect to subjective and referencebased image quality assessment metrics.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1022
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV