• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Classification of Polarimetric SAR Images

    Thumbnail
    View/Open
    201911063_Thesis - Srimanta Mandal.pdf (37.99Mb)
    Date
    2021
    Author
    Chaudhari, Nilamben
    Metadata
    Show full item record
    Abstract
    Classification of terrain into different ground covers is one of the predominant applications of polarimetric SAR images. TheWishart classifier works well for major classification tasks. However, it is effective only for homogeneous regions. This research aims to improve the classification accuracy when the terrain under observation is heterogeneous. For this purpose, theWishart mixture model (WMM) is employed for modeling the heterogeneity of terrain. The model’s parameters are first estimated using the expectation-maximization (EM) algorithm along with different initialization approaches. Then, the advanced k-maximum likelihood estimator (k-MLE) is employed along with initialization using k-MLE++ and compared with the EM algorithm. The degrees of freedom is one of the crucial parameters of Wishart distribution. Therefore, its impact is analyzed over classification accuracy. The pixel-based classifiers’ performance is greatly affected by inherent speckle. For that, a conditional random field (CRF) based model is proposed for polarimetric SAR data to incorporate spatial-contextual information. It is combined with Wishart and WMM classifiers, namely Wishart-CRF and WMM-CRF, and compared with the traditional Markov random field (MRF) based model. The experiments are performed using six different full polarimetric SAR data sets. The results show that theWMMwith k-MLE parameter estimator and k-MLE++ as initialization methods perform better than the EM algorithm. Furthermore, combining the CRF model exhibits better classification results by significantly reducing the speckle and preserving the details of edges and micro-regions.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1047
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV