• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Gradient based Adaptive Channel Estimation for Orthogonal Time Frequency Space (OTFS)

    Thumbnail
    View/Open
    201915009_thesis_Final.pdf (1.441Mb)
    Date
    2021
    Author
    Upalekar, Divya Subhash
    Metadata
    Show full item record
    Abstract
    The next generation wireless system with high mobility requirements brings the challenge to mitigate the effect of a time-varying channel. Conventional multicarrier systems like Orthogonal frequency division multiplexing (OFDM) are designed to mitigate the multipath effects that cause Inter Symbol Interference (ISI), Since OFDM is highly sensitive to inter carrier interference (ICI), it is not wellsuited for the high mobility scenarios with significant Doppler shifts and frequency dispersion. As the Doppler spread and phase noise leads to the inter carrier interference (ICI). Unlike the traditional time-frequency domain schemes,the OTFS system transmits the information symbols in the delay-Doppler domain. OTFS converts a doubly-dispersive time-frequency channel into a nearly static channel in the delay-Doppler domain by means of the Symplectic Fourier transform . In the delay-Doppler domain, the information symbols experiences constant fading, thus the OTFS system performs better than the OFDM system even in the presence of high Doppler. One of the channel estimation schemes for the OTFS system is pilot based estimation in which pilots are transmitted in the delay-Doppler domain. In this method, the delay-Doppler coordinates are estimated using the spreading of the pilot output in the time-frequency domain due to transformations. The channel coefficients estimated by these method are accurate in the absence of noise, but in the presence of noise the channel path gain value estimates were affected. Additional pilot power is required for this method to get the accurate estimate. In the proposed channel estimation algorithm, these slowly varying channel path gain values are estimated using the Gradient based adaptive algorithms. In this method the pilot based approach is combined with the adaptive methods to gain the advantages of both the methods. This method uses a single pilot symbol surrounded by some guard symbols, for the estimation of the delay-Doppler domain channel. In this method the additional pilots were inserted to support the adaptive algorithms, but it can give accurate results even in presence of noise.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1057
    Collections
    • M Tech (EC) Dissertations [17]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV