• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Deep Learning for Severity Level-based Classification of Dysarthria

    Thumbnail
    View/Open
    201911007_SiddhantGupta - hemant patil.pdf (3.862Mb)
    Date
    2021
    Author
    Gupta, Siddhant
    Metadata
    Show full item record
    Abstract
    Dysarthria is a motor speech disorder in which muscles required to speak somehow gets damaged or paralyzed resulting in an adverse effect to the articulatory elements in the speech and rendering the output voice unintelligible. Dysarthria is considered to be one of the most common form of speech disorders. Dysarthria occurs as a result of several neurological and neuro-degenerative diseases, such as Parkinson’s Disease, Cerebral palsy, etc. People suffering from dysarthria face difficulties in conveying vocal messages and emotions, which in many cases transform into depression and social isolation amongst the individuals. Dysarthria has become a major speech technology issue as the systems that work efficiently for normal speech, such as Automatic Speech Recognition systems, do not provide satisfactory results for corresponding dysarthric speech. In addition, people suffering from dysarthria are generally limited by their motor functions. Therefore, development of voice assisted systems for them become all the more crucial. Furthermore, analysis and classification of dysarthric speech can be useful in tracking the progression of disease and its treatment in a patient. In this thesis, dysarthria has been studied as a speech technology problem to classify dysarthric speech into four severity-levels. Since, people with dysarthria face problem during long speech utterances, short duration speech segments (maximum 1s) have been used for the task, to explore the practical applicability of the thesis work. In addition, analysis of dysarthric speech has been done using different methods such as time-domain waveforms, Linear prediction profile, Teager Energy Operator profile, Short-Time Fourier Transform etc., to distinguish the best representative feature for the classification task. With the rise in Artificial Intelligence, deep learning techniques have been gaining significant popularity in the machine classification and pattern recognition tasks. Therefore, to keep the thesis work relevant, several machine learning and deep learning techniques, such as Gaussian Mixture Models (GMM), Convolutional Neural Network (CCN), Light Convolutional Neural Network (LCNN), and Residual Neural Network (ResNet) have been adopted. The severity levelbased classification task has been evaluated on various popular measures such as, classification accuracy and F1-scores. In addition, for comparison with the short duration speech, classification has also been done on long duration speech (more than 1 sec) data. Furthermore, to enhance the relevance of the work, experiments have been performed on statically meaningful and widely used Universal Access-Speech Corpus.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1060
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV