• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Data Augmentation Using CycleGAN for Children’s ASR43e

    Thumbnail
    View/Open
    201911057_Dipesh_Singh - hemant patil.pdf (9.854Mb)
    Date
    2021
    Author
    Singh, Dipesh Kumar
    Metadata
    Show full item record
    Abstract
    Extensive use of voice assistants by children in their day-to-day life activities asks for better performance of Automatic Speech Recognition (ASR) for children’speech. The recent advancements in ASR perform better for adult speech. However, due to acoustic mismatch (in particular, higher pitch frequency and thus, the poor spectral resolution and less availability of children data), it remains a challenge to improve the performance of children’s ASR. Due to less availability of children’s speech data to train the deep neural network, data augmentation is one of the key research areas for children’s ASR. This thesis explores well known data augmentation approaches from the literature, i.e., audio (speed and tempo) perturbation and SpecAugment methods. In the thesis, the voice conversion-based data augmentation technique using a Cycleconsistent Generative Adversarial Network (CycleGAN) is proposed for hybrid DNN-HMM and end-to-end (E2E) ASR systems. Here, CycleGAN training is exploited for children-to-children voice conversion for hybrid DNN-HMM ASR and adult-to-children voice conversion for E2E ASR systems. The performance comparison with and without data augmentation is presented for different augmentation strategies. ASR experiments were performed using the children ASR corpora released in INTERSPEECH challenges. The effect of using out-of-domain data for data augmentation is observed, in particular, for male-to-children class and female-to-children class voice conversion. Both the approaches performed well with a significant reduction in word error rate (WER) of the children’s ASR system. Another application of the proposed CycleGAN architecture is investigated in the voice privacy system, where male-to-female and female-to-male class mapping is obtained to modify the speaker-specific information. Thus, providing a good anonymization method.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1065
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV