• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Time Series Forecasting using various Machine Learning Models

    Thumbnail
    View/Open
    202011021.pdf (1.015Mb)
    Date
    2022
    Author
    Shah, Varun
    Metadata
    Show full item record
    Abstract
    Analysis of time series data is a challenging task in recent times. Statistical analysis of time series data and forecasting with the help of past data is a requirement in current times. The industry is looking forward to accomplishing complete effectiveness in forecasting. There are several established techniques such as auto regressing (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) for univariate time series forecasting. For multivariate time series forecasting, the vector autoregression (VAR) model was used. With recent advances in deep learning techniques, prediction tasks can be effectively performed by a neural network and deep learning models can give better results than these established models. This study analyses and compares various established models with deep learning techniques on different datasets and explores whether transformers can be used for time series forecasting to get highly accurate results.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1094
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV