• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    VLSI Implementation of Neural Network Driven Augmented FSM

    Thumbnail
    View/Open
    202011048.pdf (11.88Mb)
    Date
    2022
    Author
    Patel, Jimmy Kirtikumar
    Metadata
    Show full item record
    Abstract
    This thesis reports the VLSI implementation of an NN (Neural Network) based emergent behavior model for high-speed robot control. Augmented FSM (Finite- State Machine) is considered to implement the emergent behavior. We performed a system level simulation using our proposed model. For system level simulation, we have used Python base TensorFlow model to implement the Neural Network. Then, we transformed the model to RTL (Register Transfer Level) for circuit simulation. For RTL modeling we have used Verilog (Xilinx, Quartus Prime and iVerilog) and for simulation we have used (Modelsim and GTK wave). In this study, we considered multiple inputs and multiple-outputs NN. Our implementation method improves the speed of execution and accuracy and compares the result with the conventional neural network. For activation function in NN, we implemented sigmoid function with second-order approximation to reduce complexity. We used the walking gesture of the Kondo KHR 3HV robot to verify the model. Finally, we design NN based augmented-AI chip for high-speed robotics applications.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1115
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV