• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Location aware tumor segmentation on `MRI images

    Thumbnail
    View/Open
    202111010.pdf (1.333Mb)
    Date
    2023
    Author
    Jadiya, Kevin
    Metadata
    Show full item record
    Abstract
    In our research, we introduce an innovative approach to the segmentation of braintumors, utilizing a convolutional neural network (CNN) architecture that incorporateslocalization awareness. This approach represents a significant advancementin tumor segmentation, as it effectively addresses two critical challenges encounteredin this field: limited resources and the requirement for precise localization.To overcome these challenges, our methodology leverages 2D slices duringtraining and integrates registration operations for MRI images during application.The proposed method is evaluated extensively on the BRATS-2018 dataset andits augmented dataset version, encompassing distinct variations of CNN-basedmodels. Furthermore, it exhibits computational efficiency during inference, enablingthe segmentation of the entire brain in a matter of seconds. The outcomes ofour research position our deep learning model as a promising tool with immensepotential for both research purposes and clinical applications, offering good segmentationoutcomes.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1160
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV