• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Anomalies Detection in Radon Time Series for Earthquake Prediction Using Machine Learning Techniques

    Thumbnail
    View/Open
    202111029.pdf (45.65Mb)
    Date
    2023
    Author
    Gorasiya, Raghav
    Metadata
    Show full item record
    Abstract
    Radioactive soil and water radon gas emission is a significant precursor to earthquakes.The meteorological parameters such as temperature, pressure, humidity,rainfall, and windspeed influence the radon gas emission from the medium suchas soil and water. In this study, radioactive soil radon gas has been investigatedfor earthquake prediction. Before the seismic events, radon gas emission is also affectedby seismic energies. These seismic energies are responsible for the changesinside the earth�s crust, which causes earthquakes on earth. Our focus in this workis first to predict the radon gas concentration using Machine Learning algorithmsand then identify anomalies before and after the seismic events using standardconfidence interval methods. We experimented with different machine learningmodels for the detailed comparative study of radon concentration predictions. Adataset is divided into different settings of training and testing data. Testing dataincludes the seismic samples only. The models are trained on non-seismic daysamples and some of the seismic day samples and tested on seismic day samples.After acceptable predictions, anomaly detection can be done on test data.A simple mean plus two standard deviations away test has been used to identifythe original measured radon values, which are out of this prediction confidenceinterval. These values are then considered as an anomaly
    URI
    http://drsr.daiict.ac.in//handle/123456789/1174
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV