• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Single Image De-raining Using Convolutional Neural Network

    Thumbnail
    View/Open
    202111063.pdf (3.175Mb)
    Date
    2023
    Author
    Gajera, Pinak
    Metadata
    Show full item record
    Abstract
    Rain streaks vary in size, quantity, and direction, making removing them from individualimages difficult. Recent advancements in deep learning, especially thoseusing CNN-based techniques, have shown promising results in addressing this issue.However, the requirement for additional consideration of the rain streaks locationinformation in the image is a significant drawback of these methods. Methodsbased on deep learning have proven to be quite effective in handling syntheticand real-world rainy images. These methods use convolutional neural networks(CNNs) to their full potential to learn the correspondence between rainy and rainfreeimages. We typically use an encoder-decoder architecture where the encoderpulls features from the rainy image and then creates the rain-free image using thelearned features. These algorithms can efficiently learn the complicated correlationsbetween rain streaks and ground truths by training on large-scale datasetsthat combine images with and without rain. End-to-end methods aim to train asingle model that converts the rainy image into its rain-free counterpart withoutexplicitly decomposing it into the rain and the background components. Additionally,researching end-to-end approaches offers a fascinating way of improvingthe de-raining algorithm�s efficiency. More effective and efficient techniques forremoving rain streaks from single images will probably be developed when thisresearch study continues to be investigated.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1196
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV