• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Image compression using DCT and compressive sensing (CS) theory

    Thumbnail
    View/Open
    201211024.pdf (2.122Mb)
    Date
    2014
    Author
    Jain, Archit
    Metadata
    Show full item record
    Abstract
    Data compression is a method of storing the same information with less data or space. There are many techniques available for compressing the image data resulting in reduced storage space. Minimizing storage space minimizes the bandwidth required for transmission. This research work presents an image compression technique that uses the discrete cosine transform (DCT) and compressive sensing (CS) theory. The original image is first down-sampled. DCT is applied to this reduced size image and only significant coefficients are selected to represent the original image. In order to decompress the data, first the inverse DCT is taken on the transformed coefficients and the resultant image is divided into blocks. Then a database of original and down-sampled images is used to learn the best match. These blocks for which we do not find the match are estimated using CS theory. The results are compared with the JPEG and state of the art method.
    URI
    http://drsr.daiict.ac.in/handle/123456789/495
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV