• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Blind inpainting and super-resolution using convolutional neural network

    Thumbnail
    View/Open
    201411027.pdf (1.543Mb)
    Date
    2016
    Author
    Sohoney, Surabhi
    Metadata
    Show full item record
    Abstract
    In this work, we propose a combined approach to two image processing problems:Image Inpainting and Image Super-Resolution(SR). A number of efficient techniqueshave been developed for solving these two problems using deep learning,separately. Researchers have developed hierarchical approaches to solve theseproblems, first in-paint and then super-resolve but there is not much advancementfor solving them simultaneously. There are many applications where both inpaintingand super-resolution are desired simultaneously like digital reconstructionof invaluable artwork in heritage sites, immersive walk-through systems etc.We present a supervised learning based approach for simultaneous blind inpaintingand super-resolution using Deep Convolutional Neural Network. Networklearns mapping between corrupted image patches and true image patches as wellas mapping from low resolution features to high resolution features. Trained deepconvolutional neural network accepts corrupted low resolution (LR) image as inputand outputs a clean high resolution (HR) image. Our network is capable of removingcomplex patterns from an image and providing higher resolution. However,our focus is limited to simultaneous scratch inpainting and super-resolution.
    URI
    http://drsr.daiict.ac.in/handle/123456789/613
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV