• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Sentence detection

    Thumbnail
    View/Open
    201811066.pdf (334.5Kb)
    Date
    2020
    Author
    Shah, Pushya
    Metadata
    Show full item record
    Abstract
    Sentence detection is a very important task for any natural language processing (NLP) application. Accuracy and performance of all other downstream natural language processing (NLP) task like Sentiment, Text Classification, named entity recognition (NER), Relation, etc depends on the accuracy of correctly detected sentence boundary. Clinical domain is very different compare to general domain of languages. Clinical sentence structure and vocabulary are different from general English. That’s why available sentence boundary detector tools are not performing well on clinical domain and we required a specific sentence detection model for clinical documents. ezDI Solutions (India) LLP have developed such system that can detect the sentence boundary. We examined Bidirectional Encoder Representations from Transformers (BERT) and Bidirectional Long Short-Term Memory (BiLSTM) algorithm and used BiLSTM-BERT hybrid model for sentence boundary detection on medical corpora.
    URI
    http://drsr.daiict.ac.in//handle/123456789/973
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV