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Abstract

For its capacity to provide high data rates to a wide number of users, 4G wireless
communications had a huge success in the previous decade. With the Internet of
Things (IoT) and high mobility scenarios such as vehicle-to-vehicle (V2X) connec-
tions on the horizon, the Orthogonal Time Frequency Space (OTFS) modulation
scheme has ignited lot of attention in recent years as a viable alternative to OFDM,
especially in scenarios involving high user mobility. OTFS has its specialty that
it is designed in the delay-Doppler domain. OTFS modulation, when combined
with an appropriate equaliser, easily leverages the whole channel variety in both
time and frequency. It transforms a fading, time-varying wireless channel used by
modulated communications like OFDM into a time-independent channel with a
nearly complex channel gain for all symbols. This thesis makes a note on existing
drawbacks of OFDM and highlights the usage of a new 2-D modulation scheme
called OTFS modulation. It goes on to detail the various methods of channel es-
timate currently in use while installing OTFS and suggests the use of an adaptive
algorithm for channel estimation in the delay-Doppler domain. The proposed al-
gorithm, unlike widely used channel estimation methods, estimates channel gain
in the time domain and Doppler taps in the delay-Doppler domain.

Keywords: 5G, OTFS, Delay-Doppler channel, Channel estimations, Adaptive Algo-
rithms, Recursive Lease Squares
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CHAPTER 1

Introduction

1.1 Motivation

The 21st century has seen a tremendous growth of internet. And with that, it also
saw the growth of number of users making use of it. This posed a problem of
limiting data bandwidths at that time. And hence it was the hour of need back
then to come up with some innovation in the field of communication systems so
as to increase the data rates offered to the user. Thus, in the early 2000s, wire-
less technology gradually shifted from the widely used Wide Band Code Division
Multiple Access (WCDMA) to the drastically different emerging technology Or-
thogonal Frequency Division Multiple Access (OFDMA), which later became the
primary focus of 3GPP and was dubbed 3GPP Long Term Evolution or simply
LTE.

It has been over 15 years and since then OFDMA has become a central point
of wireless technology used in communication systems. With the 4G technology,
data rates of up to 300Mbps could be achieved. Along with that, it was also pos-
sible to use it in Multiple Input Multiple Output (MIMO) configurations so as to
increase the throughput by even more. 4G cellular communications technology
also ushered the tremendous growth of smart phones thereby increasing the load
of internet usage even more than before. 4G technology changed both the air
interface and core network completely.

With a prediction of a greater number of devices to be using internet, some-
where in the middle of previous decade, the term of Internet of Things (IoT) was
also coined. Touted as one of the major reasons to bring in Industrial revolu-
tion 4.0, IoT envisions a future where most of the machines can be connected via
internet for a machine-to-machine level of communication without un-necessary
human intervention. This ups the scale of number of user devices which would
be using the internet and hence there is a drastic growth in the requirement of
bandwidths. This is one of the reasons for companies around the world to look

1



for technology beyond 4G.
Wireless connectivity needs, which are often handled when the user is immo-

bile, are driving today’s data rate requirements. In highly mobile environments,
however, the performance of currently deployed OFDM systems tends to rapidly
decline. Over the past few years, this has led to an interest in the development of
5th-generation cellular communication technologies which are heading into the
direction of more carrier investment in order to necessitate new application needs
such as Internet-of-Things (IoT) and high-velocity vehicle-to-vehicle communica-
tions.

As newer applications are on the emerge, it becomes an area of interest to see
if 5G could benefit from a change in modulation and multiple access technique,
similar to previous generation jumps from analogue to digital TDMA, CDMA,
and OFDM. It has been well established that OFDM achieves high throughput
in frequency-selective channels. This optimality, however, is only valid under a
set of particular assumptions, including transmitter knowledge of channel state
information (CSI), gaussian modulation alphabet, lengthy code-words (implying
no latency limits), and complexity on receiver side. Many 5G applications do
not stay true to these expectations. For next-generation cellular applications, it is
therefore critical to investigate an entirely new modulation system and multiple
access design.

Orthogonal Time Frequency Space (OTFS) modulation is a new modulation
approach that ensures that every symbol that is transmitted has channel gain that
is almost constant, even in channels with strong Doppler or at higher carrier fre-
quencies (mm-wave). One of the most important characteristics of OTFS is that
it modulates in the delay-Doppler domain, which is ideal for transmission over
time-varying wireless propagation channels.

As a result, OTFS essentially converts the time-varying multipath channel into
a 2-D delay-Doppler channel. All symbols in a transmission frame have the same
channel gain thanks to this transformation, which is combined with equalisation
in this domain.

On the one hand, the delay-Doppler representation of signals can be thought
of as a generalisation of the time representation of signals, and on the other hand,
as a generalisation of the frequency representation of signals. As a result, OTFS
can be thought of as a broadening of OFDM or TDMA. OTFS is a generalisation of
(two-dimensional) CDMA since it uses basis functions that span the whole band-
width and time. In contrast to CDMA and OFDM, the set of OTFS basis functions
is designed particularly to tackle the behaviour of a time-varying multipath chan-
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nel. In a word, OTFS combines the finest aspects of OFDM, TDMA, and CDMA
into a single system.

Introduction of OFDM changed the way of air-interface in communication sys-
tems. Introducing OTFS would change the way transceivers perform modulation
and demodulation in order to extract or encode the data. It therefore becomes
imperative to understand the channel characteristics in delay—Doppler domain
as well.

Channel estimation has always played an integral part in the process of de-
modulation and extraction of data from received symbols. Estimating channel
state information yields the overall gain the signals have been subjected to while
transmission. Channel estimation schemes in currently outgoing 4G systems per-
forms this operation in time-frequency domain. In OTFS, this must be performed
in the delay-Doppler domain, since the modulated symbols reside there. More-
over, the delay-Doppler channel representation is the closest representation to a
real-world wireless channel geometry. Hence estimating channel in delay-Doppler
domain gives a more comprehensive idea of the geometry around the transceivers.

This has led to various algorithm development to estimate the channel state
information. This thesis studies through channel properties in delay-Doppler do-
main and thereafter proposes a novel approach on estimation of channel using
adaptive filtering theory.
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1.2 Problem Statement

With 5G communication services striving to enable widespread network access,
the demand for communication systems capable of delivering high-quality wire-
less connectivity in high-mobility contexts, such as to and from moving devices,
is increasing. The wireless channel in these high mobility situations is doubly
dispersive, distributing signals across both time and frequency due to Doppler
changes generated by motion in the channel. This is a problem for standard wave-
forms like OFDM, which suffer from considerable fading in a fast-changing chan-
nel.

Recently, the Orthogonal Time Frequency Space (OTFS) modulation scheme
was proposed as a solution to these issues. The OTFS waveform’s key novelty
is that, unlike traditional waveforms that function in the time-frequency domain,
symbol multiplexing and detection in the OTFS waveform is done over a grid in
the ’delay-Doppler’ domain.

The channel response is decomposed into a slowly fluctuating response that
closely resembles the physical shape of the channel when viewed in this do-
main.After demodulation, a delay-Doppler impulse broadcast via the channel ap-
pears as a collection of impulses translated according to the constituent propaga-
tion pathways’ delays and Doppler shifts. Fading is eliminated and the complete
diversity of the channel is captured with each sent symbol having the same chan-
nel gain if the resolution is sufficient to differentiate the received signal compo-
nents.. In addition, OTFS can be implemented as a pre- and post-processing stage
to standard multicarrier modulation schemes. This allows it to work alongside
other 5G technologies

Channel estimation is an important step in a wireless communication system.
It allows the transceivers to make better estimate of incoming signals thereby re-
ducing the bit error rate (BER) of the system without compromising on channel
capacity or power of the signals during transmission.

The issue of channel estimation for OTFS modulation has been addressed in
the recent years. In this thesis, such existing literature on channel estimation for
OTFS has been surveyed and mentioned. It has been found that in most practical
scenarios, the number of reflectors is significantly very less, which in turn makes
the channel sparse in nature. This in turn allows accurate estimation of reflectors.
The time-varying nature of the channel allows the use of adaptive algorithms to
estimate the channel gain. Hence this led to formation of an adaptive algorithm-
based channel estimation scheme for OTFS framework.
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1.3 Contribution

Performing detection of OTFS symbols starts with estimating the delay-Doppler
channel response and several existing schemes have been explored. In [3] and
[4], a pilot-aided channel estimation techniques have been explored. In [5] a pi-
lot OTFS frame has been used for estimating channel information In [4], OTFS
channel estimation was conducted in the time–frequency domain. This resulted
in higher implementation complexity than that of [3] and [5], where the channel
estimation was conducted in delay–Doppler domain. There are several papers fo-
cusing on utilizing the sparsity of the channel and they use a compressive sensing
approach for estimating the channel [6]. The compressive-sensing-based algo-
rithms are complex to implement and the pilot overhead is significantly larger,
sometimes being the complete frame. With a suitable message passing based
OTFS detection algorithm [3], the performance of OTFS is in general independent
of Doppler frequencies for a given pulse shape unlike OFDM. In [7], probabilistic
learning models have been implemented to train the detection algorithm in esti-
mating channel state information. Adaptive algorithms such as Least squares and
Recursive least squares have also been utilised in estimating channel state infor-
mation in convention OFDM systems over different multipath scenarios [8] and
variants of RLS have been developed [9] to further enhance their performance
metrics.

This thesis addresses the issue of estimating the delay-Doppler channel using
adaptive algorithms for OTFS system by making use of RLS algorithm in channel
estimation in delay-Doppler domain for an OTFS system.

1.4 Organization of the Thesis

In Chapter 2, we discuss the fundamentals of OFDM systems in brief along with
the advantages and disadvantages associated with them. In Chapter 3, basic fun-
damentals of OTFS modulation, system model and different types of wireless
channel representations with their merits and demerits are discussed in detail.

Chapter 4 begins with a brief introduction to adaptive filter theory. Following
the introduction, RLS algorithm is discussed. Chapter 5 discusses briefly upon ex-
isting literature as part of the literature survey that has been conducted keeping
in focus the estimation of DD channel in OTFS modulation systems and develop-
ments in adaptive filter algorithms.

Chapter 6 discusses about solution to the problem statement of this thesis. In
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this chapter, we discuss the algorithm wherein RLS algorithm is clubbed with the
pilot-based estimation scheme for estimating the delay-Doppler channel in OTFS
scheme. Chapter 7 compares the performance merits of adaptive algorithms over
conventional channel estimation algorithms on OFDM systems and then presents
the channel estimation results for OTFS system based on the RLS aided pilot-
based estimation scheme. Lastly, Chapter 8 discusses the conclusion and future
scope in this area.
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CHAPTER 2

OFDM (Orthogonal Frequency Division Mul-
tiplexing)

2.1 Introduction to Frequency Division Multiplexing

and OFDM

The technique of frequency division multiplexing (FDM) divides the overall band-
width available in a communication medium into a number of non-overlapping
frequency bands, each of which carries a separate signal. This lets numerous inde-
pendent signals to share a single transmission medium, such as a cable or optical
fibre. It can also be used to parallelize serial bits or parts of a higher-rate signal.

Traditional modulation methods however became problematic as the need of
high data rates kept on climbing. As data rate requirements reached new heights,
the symbol duration Ts becomes very small. As a result, the system bandwidth
becomes extremely large in order to achieve the data rate.

It is the nature of a wireless channel that it offers a delay dispersion while
the signal is transmitted through it. As a result, if the symbol duration is short,
the impulse response takes a long time to complete. This in turn also makes the
required length of equalizer very long. The computational efforts for such long
equalizers is quiet large.

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation method
designed for high-data-rate transmission in time-varying settings. It divides a
high-rate data stream into several low-rate streams that are sent via parallel, narrow-
band channels that may easily be equalised.
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2.2 Principle of OFDM and Transceiver Design

OFDM is a multi-carrier modulation technique in which information symbols are
sent on frequency division multiplexed sub-carriers. These sub-carriers are posi-
tioned so that they are orthogonal to one another. Any 2 sub-carries are said to
be orthogonal to each other when peak of one subcarrier is located at the zero-
crossing points of the remaining sub-carrier.

Figure 2.1: Different ways to interpret linear time-varying wireless channels

During the inception of the idea of OFDM, very large number of sub-carrier
oscillators were used to implement the frequency division multiplexing operation
at transmitter and receiver ends. This is also known as analog implementation of
OFDM system. However, later on, usage of Discrete Fourier Transform (DFT) by
Weinstein and Ebert was implemented to perform the base-band modulation and
demodulation. This eliminated the need of filter banks of sub-carrier oscillators
which in turn made the implementation of OFDM system less cumbersome and
more efficient. This form is also known as digital implementation of the system.

To begin with the transmission, the data symbols at the transmitter end is first
mapped onto the subcarriers in a parallel fashion using Inverse Discrete Fourier
Transform (IDFT). This operation is carried out by an IDFT block. While doing
so, the data symbols which are present in frequency domain are converted to the
time domain for their transmission over the time-varying channel. At the receiver
end of the system, the whole operation is performed in inverse fashion, i.e., re-
ceived data symbols are converted from time domain back to frequency domain
by passing them through DFT block. Currently, the IDFT and DFT blocks are re-
placed by Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT)
blocks. The OFDM transceivers use an AWGN (Additive White Gaussian Noise)
channel to communicate. The system can be used as is, with no modifications, in
a frequency-selective channel. As can be observed, the delay dispersion provided
by the channel has only a minor impact on OFDM performance.

In fact, OFDM changes a wideband system into a parallel system of narrow-
band channels, allowing each carrier’s symbol duration to be substantially longer
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than the delay spread. However, when this is not the case, delay dispersion might
cause significant errors which come out in the form of interference between sub-
sequent symbols. This type of interference is known as Inter Symbol Interference
(ISI). It’s also worth noting that delay dispersion causes a loss of orthogonality
between subcarriers, resulting in Inter Carrier Interference (ICI).

In order to avoid the ISI, a special type of guard interval known as the cyclic
prefix (CP) can eliminate both of these unfavourable effects. The CP is placed
as an extension to the existing OFDM symbol in the frequency domain. This is
shown in Fig 2.2. Performing this operation converts the transmission of OFDM
symbol in time domain as a cyclic convolution.

Figure 2.2: Different ways to interpret linear time-varying wireless channels

By introducing the CP, it is possible to retain orthogonality even in poor trans-
mission conditions, removing the effect of ISI. The condition on length of CP is
that it should be larger than the maximum delay spread offered by the channel of
transmission. CP ensures that the delayed copies of OFDM symbols always have
a complete symbol inside the FFT window, resulting in a periodic signal. The sys-
tem model for OFDM is shown in Fig 2.3. On the transmitter end, an input bit
stream of information is generated which is then passed through a suitable mod-
ulation scheme. The output from here is then fed to a Serial to Parallel (S/P) block
which converts the serial stream into parallel stream which will be fed to the IFFT
block. The pilot symbols which act as reference signals for receiver are also added
here. By doing the above, it implies that the data is transformed from frequency
domain to time domain for transmission purpose. CP is added to this so as to
combat the channel impairments. Once the signal is ready in discrete domain, it
is converted into its analog counterpart using Digital-to-analog (DAC) converters
which is then fed to the transmitting antenna. At the receiver end, once the signal
arrives, all operations are done in revere order. First the incoming signal is fed to
Analog-to-Digital (ADC) converted which converts it into digital format. Then,
the CP removal process takes place. The parallel data is fed to FFT block which
then converts the time domain signal into frequency domain for demodulation
purpose. Then the streams are sent to demodulation block and finally we get the
bit streams.

9



Figure 2.3: Different ways to interpret linear time-varying wireless channels

It is however to be noted that the following conditions are to be kept in con-
sideration:

• the channel is considered to be static for the duration of the OFDM signal in
the derivation and interference between the subcarriers can still occur if this
assumption is not met.

• the Signal-to-Noise Ratio (SNR) and spectral efficiency are both reduced
when some of the received signal is discarded.

2.3 Advantages of design in the transceivers of OFDM

compared to previous generations

In summary, the advantages of OFDM scheme compared to previous generations
can be listed as:

• Makes efficient use of spectrum by allowing overlap.

• Divide the channel into narrowband flat fading subchannels.

• Eliminates the ISI through cyclic prefix.

• Uses adequate channel coding and interleaving, recovery of symbols can be
done for frequency selective channels.

• Channel equalization becomes simpler than by using adaptive equalization
techniques with single carrier systems.

• Computationally efficient by usage of FFT techniques.
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2.4 OFDM Drawbacks

A typical OFDM system is based on a primary assumption that the time domain
channel response is well contained within the CP duration. It is also assumed that
the fading in the channel is relatively slow so that the channel can be assumed to
be in a static state. However, should the channels be in deep fade, the length of
CP in such cases is not able to compensate for the ISI introduced. However, in-
creasing CP also increases the overhead and this affects the spectral efficiency in
negative way.
The second major drawback that OFDM suffers also comes from the assumption
that the subcarriers are orthogonal. This condition of orthogonality is one of the
major pillars for 4G technology. However, it is also possible that in case the sub-
carriers are not orthogonal, the OFDM system becomes susceptible to interference
from frequency offset. This interference is known as Inter-carrier-Interference
(ICI).
ICI mitigation techniques have been heavily studied upon and implemented to
mitigate this issue. However, with the upcoming high-mobility next generation
application scenarios, these techniques do suffer and in turn affect the OFDM sys-
tems’ performance.
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CHAPTER 3

OTFS (Orthogonal Time Frequency Space)

The delay-Doppler formulation of signals can be traced back to findings in physics
and maths. P. Bello’s seminal paper [10] explains the delay-Doppler representa-
tion of time-varying channels in detail, and the generalisation of directional time-
varying channels, which is crucial to multiple antenna systems, has also been
studied in the past.

Since the 1990s, several papers have proposed for the use of time-frequency
diversity transmission, proposing a signal model that presents received signals
as a canonical decomposition into delay and Doppler shifted versions on a basis
signal, as well as a delay-Doppler RAKE receiver that takes advantage of disper-
sion in both dimensions. Extensions of these concepts can be found in the use of
various training procedures and the use of guard intervals. These works, how-
ever, take a different approach than OTFS in that their system designs are in the
time-frequency domain rather than the delay-Doppler domain.

This chapter presents the delay-Doppler representation of wireless channels
along with a general mathematical description of time-frequency lattice. The find-
ings from this chapter are utilised to explain OTFS modulation in detail in Chapter
4.

3.1 Delay-Doppler Channel

When an electromagnetic wave is transmitted, it experiences a delay in time (delay-
shift) and a shift in frequency (Doppler-shift) during its traversal over the wireless
channel. Therefore, the receiver receives a delay-Doppler shifted waveform on its
end.

The classical paper of Bello [10] makes it clear that time-varying propaga-
tion channel can be represented by either a time-varying impulse response, time-
varying transfer function, a Doppler-variant transfer function (rarely used) or the
Doppler-variant impulse response. Different methods, such as time-frequency,
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time-delay, and Doppler-delay, can be utilised depending on the parameters used
for modelling the response of a linear time changing multi-path channel.

Usually a time-delay h(t, τ) a time-frequency H(t, f ) reresentation are used.
However, both these representations are having limitations in that they are char-
acterized by maximum delay and Doppler spreads. The rate of variance of chan-
nel coefficients varies (inversely to coherence time) based on the mobility and
operating frequency. Because of the increased mobility and operating frequen-
cies, the channel varies fast, making channel estimation problematic. The other

Figure 3.1: Different ways to interpret linear time-varying wireless channels

way of representing the channel is to use delay-Doppler impulse response h(τ, ν)

where τ and ν are denoting the delay and Doppler respectively. The taps in this
domain correspond to the reflectors or group of reflectors having specific delay
(depending upon the reflectors’ distance) and Doppler values (depending upon
the reflectors’ velocity). In essence, this depicts the actual geometry of the wireless
channel. Because there are only a few reflectors with different delay and Doppler
values, this channel representation is small and sparse.

The delay-Doppler taps are time-invariant for a longer observation time than
the previous representations because the velocity and distance remain essentially
the same over a few milliseconds. This results in estimation of fewer parameters
with lesser samples of channel state over larger periods of time thereby bringing
down the computational requirements of channel estimation in delay-Doppler
domain

Now in the delay-Doppler domain representation, the signal received at the re-
ceiver y(t) can be represented as sum of reflected copies of the transmitted signal
x(t) which are delayed in time (τ) and shifted in frequency (ν) due to reflectors.
Hence this can be represented mathematically by substituting the channel in this
domain with the input signal and is given by the double integral as:

y(t) =
∫

ν

∫
τ

hc(τ, ν)x(t − τ)ej2πν(t−τ) dτ dν (3.1)
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According to (3.1) , the received signal y(t) is a superposition of reflected copies
of the transmitted signals, wherein each copy is delayed by a path delay of τ

and frequency shifted by the Doppler shift weighed by delay-Doppler response
h(τ, ν) for that particular delay and Doppler shift. Doppler shifts are typically
on the order of 10Hz–1kHz, though this can be rather considerable in the case of
exceptionally high mobility or high carrier frequency.

3.2 Time-Frequency Lattice

All time-frequency modulations can be grouped together into an unified frame-
work that includes the following elements:

• A lattice Λ in time-frequency domain that samples the time and frequency
axes at integral multiples of T and ∆ f respectively, that is:

Λ = (nT, m∆ f : n, m ∈ Z) (3.2)

• A packet burst lasting NT seconds and having a total bandwidth of M∆ f
Hz.

• A 2D sequence of modulated symbols X[n, m] that we want to transmit over
a given packet burst, parameterised along a finite number of points of the
lattice Λ with indices n = 0...N − 1 and m = 0...M − 1

• A transmit pulse gtx(t) and associated receive pulse grx(t) whose inner prod-
uct is bi-orthogonal with respect to translations by integer multiples of time
T and frequency ∆ f , that is

∫
t
ej2πm∆ f (t−nT)g∗tx(t − nT)grx(t)dt = δ(m)δ(n) (3.3)

It is important to note that the bi-orthogonality property in (4) of the pulse shapes
ensure that the cross-symbolic interference is eliminated in the symbol reception.

3.3 The Symplectic Finite Fourier Transform

The Symplectic Fourier transform is a variant of 2-dimensaional (2D) Fourier
transform which is associated with the Fourier kernel e−j2π(m∆ f−nTν) used in for
converting between delay-Doppler and time-frequency channel representations.
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Figure 3.2: 2-D orthogonal plane [1]

Since there is finite number of input signals and frequencies, we shift our focus
to the finite version of the transform which is called as Symplectic Finite Fourier
transform (SFFT). The input to SFFT is a 2D periodic sequence denoted by xp[k, l]
with periods (M, N) and output of the SFFT is xp[n, m] with periods (N, M).These
input and output sequences should be viewed as defined respectively, along with
the points on the time-frequency lattice Λ. The reciprocal delay-Doppler lattice
Λ⊥ that samples the delay axis at integral multiples of ∆τ = 1

M∆ f ,and the Doppler
axis at integral multiples of ∆ν = 1

NT , that is :

Λ⊥ = {(k∆τ, l∆v) : k, l ∈ Z} (3.4)

The delay interval ∆τ is inversely proportional to the burst bandwidth M∆ f and
the Doppler interval ∆ν is inversely proportional to the burst duration NT There-
fore, increasing the bust duration/bandwidth increases the sampling resolution
in the delay/Doppler respectively. This is consistent with radar principles, which
state that the range/velocity resolution of probing waveforms is proportional to
their bandwidth/duration. The output sequence is given by the following for-
mula:

X p[n, m] =
M−1

∑
k=0

N−1

∑
l=0

xp[k, l]e−j2π(mk
M − nl

N ) (3.5)

With a minus sign, the SFFT couples the frequency variable with the delay vari-
able and the time variable with the Doppler variable. Symplectic coupling is
the name given to this sort of coupling. The inverse transform xp[k, l] = SFFT−1

xp[n, m] which can be written as follows:

xp[k, l] =
N−1

∑
n=0

M−1

∑
m=0

X p[n, m]ej2π(mk
M − nl

N ) (3.6)
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The interchangeability of circular convolution and point wise multiplication of
periodic sequences is a property of the SFFT, which is equivalent to the convolu-
tion property of the standard finite Fourier transform.

3.4 OTFS Fundamentals

It has been observed that although OFDM modulation scheme has proven itself to
be highly sought-after scheme due to its robustness and simplicity in implemen-
tation as well as achieving high data rates, it is also a fact that OFDM modulation
scheme suffers a heavy performance degradation in high Doppler-sensitive envi-
ronmental conditions. In this chapter, a recently developed modulation technique
is discussed which is Orthogonal Frequency Time Space (OTFS) modulation tech-
nique. It is essentially a result of attempts to combine the governing principles of
CDMA and OFDMA technologies and to bring out the best of both. It combines
the principle of spread spectrum technique which provides resilience to narrow
band interference and the principle of orthogonality among the subcarriers which
simplifies the channel coupling so as to achieve high throughput with lower com-
plexity and high performance. Unlike the above-mentioned schemes (CDMA and
OFDMA), OTFS modulation scheme operates on the delay-Doppler model of the
channel. It has been established in the previous chapters that delay-Doppler chan-
nel model is able to map the exact geometry of the wireless channel compared to
the other channel model representations. This can be picturised as shown in the
following Fig 3.3. OTFS modulation makes use of processing signals in the de-
lay Doppler domain so as to take the advantage of the channel model. To make it
clearer, it must be looked upon into the basic signal representation, both in time as
well as frequency domain. A time domain representation of signal can be realised
as superposition of delta functions whereas the same signal in frequency domain
can be realised as superposition of complex exponentials. It is also established fact
that the two representations are interchangeably used by making use of Fourier
transforms. In the previous chapter, this complementary nature of time and fre-
quency representation has been captured while explaining the Heisenberg’s un-
certainty principle. To reiterate, Heisenberg’s uncertainty principle states that a
signal can’t be localized in both of the domains (i.e., time and frequency) simul-
taneously. This means that if a signal is time-localized, it is frequency-localized,
and conversely.

Signals that behave as though they are localised in both domains (time and
frequency) at the same time do exist. In a form known as the delay-Doppler rep-
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Figure 3.3: Time and Frequency representation of signals [2]

resentation, these signals are linked to localised pulses. Such signals are char-
acterised by the delay and Doppler variables in the 2D domain known as the
delay-Doppler domain. As discussed in previous chapters, the wireless channel
in this domain is represented by time and frequency shift operations.To start with,
a delay-Doppler signal is defined as a function which satisfies the following con-
dition:

ϕ (τ + nτr, v + mvr) = ej2π (nvτr − mτvr) ϕ(τ, v) (3.7)

where τr is the delay period and νr is the Doppler period satisfying the condi-
tion τr.νr = 1.

Figure 3.4: Quasi Periodicity in Delay-Doppler domain [2]

This is also known as the quasi-periodic condition, in which the value of the
function acquires a phase factor of ej2πτvr for each traversal of delay period τr and,
reciprocally, acquires a phase factor of ej2πτvr for each traversal of Doppler period
νr. And hence it can be seen that a signal can be represented in three fundamental
ways, first way is as a function of time, second as a function of frequency and
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lastly as a quasi-periodic function of delay and Doppler. The conversion between
time and frequency is done by the means of Fourier transform similarly conver-
sion between delay-Doppler representation to other representations is done by
Zac transforms Zt and Z f .

Zt(ϕ) =
∫ vr

0
ej2πtvϕ(t, v)dv (3.8)

Z f (ϕ) =
∫ τr

0
e−j2πtvϕ(τ, f )dτ (3.9)

It’s important to note that the Zak transform must satisfy the quasi-periodicity
condition in order to be a one-to-one equivalence between 1D line and 2D delay-
Doppler plane functions. Without the periodic requirement, the delay-Doppler
representation of the signal on the 1D line will have an endless number of repre-
sentations.This is related to the Fourier equivalence between sampled functions
on the line and periodic functions on the line. A sampled function will have an
infinite number of representations in the Fourier domain if periodicity is not im-
posed.

Figure 3.5: Delay-Doppler representation of signal [2]

The relationship shared between these 3 domains can be summarized as shown
in the following fig 3.6 Each edge of the triangle can be represented as a trans-
formation and it can be seen that transformation on one edge can be written as
composition of the pair of transformations on the other two edges of the trian-
gle. For example, a Fourier transform can be written as composition of two Zak
transforms. This implies that instead of using the Fourier transform for trans-
forming from frequency to time domain, one can use inverse Zak transform for
transformation from frequency to delay-Doppler domain and then use Zak trans-
form for transformation from delay-Doppler domain to time domain. It is also
to be noted that that the delay-Doppler representation is not unique but depends
on the choice of the pair of (τr ,νr) satisfying the relation τr · νr = 1 This corre-
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Figure 3.6: The fundamental triangle [2]

sponds to a large family of delay-Doppler representations based on the hyperbola
νr = 1/τr. It is worth notign as to what happens as we approach the limits when
the variable τr → ∞ and when the variable νr → ∞. The delay period is extended
at the expense of the Doppler period contracting in the first limiting case, resulting
in a one-dimensional representation that coincides with the time representation in
the limit. The Doppler period is extended at the expense of the delay period con-
tracting in the second limiting case, resulting in a one-dimensional representation
that coincides with the frequency representation in the limit. As a result, the time
and frequency representations can be thought of as limiting examples of the larger
delay-Doppler representations family. By using correctly designed Zak transfor-
mations that satisfy commutativity connections generalising the triangle relation
stated earlier, all delay-Doppler representations can be interchanged. This means
that any pair of representations along the curve can be converted regardless of
whatever polygonal path is used to connect them.

Figure 3.7: Parametric representation of delay-Doppler domain [2]

Based on above mentioned points, it is observable that converting the Time
Domain Multiplexed (TDM) pulse to the delay-Doppler representation results in
quasi-periodic function which is localized in the delay domain but it is non lo-
calized in the Doppler domain. Similarly, it is the opposite case when Frequency
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Domain Multiplexed (FDM) pulse is converted to the delay-Doppler representa-
tion which results in quasi-periodic function which is localized in the Doppler
domain but non-localized in the delay domain. As a result, as illustrated in the
diagram below, OTFS is a modulation method based on symmetrically localised
signals in the delay-Doppler representation.

Figure 3.8: The relationship between TDMA, FDMA and OTFS [2]

As discussed in the previous chapter, a wireless channel can be modelled as
the collection of reflectors which can either be stationary or moving. Because of
the relative velocity between the reflector and the transmitter/receiver, the trans-
mitted wave is reflected by a reflector with a frequency shift, and these reflections
arrive at the receiver with a delay. There will also be a change in the amplitude
based on the constructive or destructive interference due to numerous reflectors
sharing the same properties of delay and Doppler. The different ways in which
channel effects the three signals discussed above i.e.the TDM, FDM and the OTFS
waveforms can be visualised by following example.

By transmitting a localized TDM pulse we can separate the reflections of each
reflector based on the delays but when reflectors have same delay but different
Dopplers they are superimposed on each other and hence cannot be separated.
This can be seen where the TDM reflections from left to right, the first and third
reflections are time invariant as they are stationary, the last reflection is time vari-
ant as its moving and lastly the second reflection is the superimposition of the
two reflectors where one is stationary while the other is moving. By transmitting
FDM pulse we can separate the reflections of each reflector based on the Doppler
values but when reflectors have same Dopplers but different delays they are su-
perimposed on each other and hence can’t be separated. This can be seen where
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Figure 3.9: TDM and FDM channel interactions. [2]

considering the FDM reflections from top to bottom the first and last reflections
have different frequencies as they are moving at different velocities. The middle
reflection is due to the superposition of the static reflectors.

We obtain reflections with particular delay-Doppler shifts generated by differ-
ent reflectors when we transmit a localised OTFS pulse in the delay-Doppler chan-
nel, as seen in the above figure. The phase and amplitude of the delay-Doppler
reflections are unaffected by the originating pulse’s domain position. These re-
flections are also easily separated based on the delay and Doppler values, hence
there is no interference and no loss of energy. These reflections are also orthogonal
to each other. OTFS is a time-frequency spreading scheme that consists of a set of
two-dimensional basis functions specified over a time-frequency grid.
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Figure 3.10: OTFS signal in delay-Doppler grid. [2]

Another example of a delay-Doppler channel and time-frequency channel is
shown in below figures. This is a 10-tap channel (10 prominent reflectors in the
setup) and the simulation has been created on MATLAB environment.

Figure 3.11: Channel Response in Time-domain
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Figure 3.12: Channel response in Frequency domain

Figure 3.13: Time-frequency channel representation of 10-tap channel.

Figure 3.14: Delay-Doppler Channel representation of the 10-tap channel.
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It can be seen that the delay-Doppler channel representation is quite sparse
compared to the highly varying time-frequency channel suffering from Doppler.

OTFS is designed as a pre-processing block for the multicarrier modulation
schemes like the OFDM. This is based on the duality of the Fourier duality be-
tween the delay-Doppler and the time frequency grids.
The delay Doppler grid consists of M points along the delay axis of spacing of

Figure 3.15: Delay-Doppler and Time-Frequency grids.

∆τ = τrM and N points along the Doppler axis with spacing of ∆v = vr/N and
the time-frequency grid consists of M points along the frequency axis with spac-
ing ∆ f = 1/τr and N points along the time axis with a spacing ∆t = 1/νr. The
time frequency grid can be interpreted as a sequence of N multicarrier symbols
each having M subcarriers. The parameter ∆t is the multicarrier symbol duration
and the parameter ∆ f is the subcarrier spacing. It is to note that the bandwidth
of the transmission B = M∆ f is inversely proportional to the delay resolution
∆τ. and the duration of the transmission T = M∆t is inversely proportional to
the Doppler resolution ∆τ. Both the grids are presented in the above figure. The
Fourier relation between the two grids is a variant of the 2D FFT called as Simplec-
tic Finite Fourier transform (SFFT). SFFT transforms the time frequency domain
into the delay-Doppler domain or the inverse simplectic finite Fourier transform
(ISFFT) transforms the delay-Doppler domain to time-frequency domain which is
shown in the below equation.

X[n, m] =
1

MN

N−1

∑
k=0

M−1

∑
l=0

x[k, l]ej2π nk
N −ml

M (3.10)

ISFFT can be seen as applying an M-dimensional FFT along the columns of the
delay-Doppler matrix x[k ,l] followed by applying N-dimensional IFFT along the
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rows of the matrix to get the time-frequency domain X[n, m] .

3.5 OTFS System Model

One of the ways to implement OTFS modulation is using the pre- and post-processing
blocks in existing OFDM scheme systems. This also adds to the ease of tran-
sitioning to this scheme in future. The block diagram for OTFS modulation is
shown in Fig.3. Here the information symbols are represented by xp[k, l] (which
can be QAM/QPSK symbols) residing in the delay-Doppler domain. They are
first mapped to the familiar time-frequency domain symbols X p [n,m] using 2D
Inverse Symplectic Finite Fourier Transform (ISFFT) and windowing. Together,
they form what is called OTFS transform.

Each element in xp[k, l] modulates a 2D basis function that completely spans
the transmission time and bandwidth in the time-frequency domain. The OFDM
transform (IFFT) which is represented here by a generalized Heisenberg trans-
form is then applied to the time-frequency transformed symbols xp[n, m] to con-
vert the time-domain signal x(t) for transmission.

Figure 3.16: OTFS Modulation Block diagram

The received signal y(t) is converted back to time-frequency domain by Wigner
transform, which is generalization of inverse OFDM transform (FFT). Post this,Y[n, m]

is transformed to the delay- Doppler signal y[k, l] through Symplectic Finite Fourier
Transform (SFFT). The aforementioned explanation, as well as the block diagram,
show that OTFS modulation is a scheme that adds additional pre- and post-processing
to a multi-carrier system that uses time-frequency domain representation (OFDM).
The mathematical formulations to execute the above flow diagram are :

1. Inverse Symplectic Finite Fourier transform (ISFFT): There are MN infor-
mation symbols which are multiplexed on a delay-Doppler grid size of N ×
M These symbols on the delay-Doppler domain are denoted by x[k, l]k =

0, 1, ...N − 1, l = 0, 1..., M − 1, x[k, l] ∈ A where A is a conventional modu-
lation alphabet (for eg. QAM), are transmitted in a packet duration of NT
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in a given bandwidth of B = M∆ f ,where ∆ f = 1
T .These symbols in delay-

Doppler domain are first mapped to the time-frequency (TF) plane using
ISFFT, as follows:

X[n, m] =
1

MN

N−1

∑
k=0

M−1

∑
l=0

x[k, l]ej2π nk
N −ml

M (3.11)

2. Modulator: The TF signal X[n, m] is then converted to the time domain sig-
nal for transmission using Heisenberg’s transform:

x(t) =
N−1

∑
n=0

M−1

∑
m=0

X[n, m]gtx(t − nT)ej2πm∆ f (t−nT) (3.12)

where gtx(t − nT) is the transmit pulse shape. This simplifies to IFFT in case
of N = 1 and rectangular gtx (OFDM block)

3. Channel: The time domain signal is then transmitted through the time vary-
ing channel, whose complex based band delay-Doppler response is denoted
by h(τ, ν), where τ and ν denote the delay and Doppler respectively. The
received time-domain signal is given by:

y(t) =
∫∫

h(τ, ν)x(t − τ)ej2πν(t−τ) dτ dν (3.13)

4. Demodulator: The received signal y(t) is converted into a time-frequency
signal using Wigner Transform:

Y(t, f ) = Agrx[t, f ] =
∫

g*
yx((t′ − t)ej2π(t′−t)) dt (3.14)

Y[n, m] = Y(t, f )|t=nt, f=m (3.15)

where grx(t) denotes the receive pulse shape. This simplifies to FFT in case
of N = 1 and rectangular gtx (OFDM block).

5. Symplectic Finite Fourier Transform (SFFT) : The TF signal Y[n, m] is trans-
formed back to the delay-Doppler domain using SFFT, as

X[n, m] =
1

MN

N−1

∑
n=0

M−1

∑
m=0

x[k, l]ej2π( nk
N −ml

M ) (3.16)

A perfect localization in time and frequency of gtx and grx makes them sat-
isfy the condition of bi-orthogonality.

26



Figure 3.17: Symplectic Fourier dual basis functions in the time-frequency domain
(right) and corresponding 2D basis functions in the delay-Doppler domain (left)

In case of perfect localization, the time frequency input-output relation can
be shown as

Y[n, m] = H[n, m]X[n, m] (3.17)

where

H[n, m] = ∑
l

∑
k

h[k, l]ej2π( nk
N −ml

M ) (3.18)

Based on the system model shown in Fig.5, we have developed following
equations so as to realize the OTFS model. We have the information symbols
in X, to transmit the signal in 2D time domain we perform the operations:
ISFFT, OFDM modulation (IFFT), Pulse shaping in combination to obtain
the symbol matrix S:

S = GtxFM
HFMXFN

H (3.19)

Eq (3.19) simplifies further to

S = GtxXFN
H (3.20)
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Similarly, on the receiver end, we have received symbols in R which can be
represented in delay-Doppler domain by performing the operations of pulse
shaping, OFDM demodulation (FFT), SFFT to obtain the received symbols
in Y

Y = FM
HFMGrxRFN (3.21)

Eq (3.21) simplifies further to

Y = GrxRFN (3.22)

Figure 3.18: OTFS SISO architecture

The above figure is a general representation of a SISO-OTFS architecture
which includes all the steps that we have discussed up till now.
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CHAPTER 4

Adaptive Filter Theory

In signal processing, filters play a major role in extracting meaningful information
from incoming data which is heavily corrupted by noise. In the context of com-
munication systems, this noise creeps into the data streams via various causes led
by channel distortion. And hence the data received at the receiver end is termed
as noisy data and the first step on receiver end is to remove the noise and estimate
the original signal or data which was intended to be sent by the transmitted.
Filters can be of both types – linear and non-linear. However due to computa-
tional complexity reasons, linear filters are preferred more so. Again, within lin-
ear filters, there have been many which have been developed in the past and are
still used today such as wiener filters, Kalman’s filters where the main idea of the
algorithms resides on reducing the mean square error value. Iterative channel es-
timation methods have been explored and investigated by using these algorithms
in case of SC-FDMA. However, the algorithms in this makes an assumption that
there is some information about channel state available prior to the operation of
estimation, for eg, noise correlation. This poses as a limitation in case where CSI
is not available to the user. Hence to mitigate this, the approach can be modi-
fied by making use of adaptive filters. An adaptive filter as the name suggests
works on recursive algorithm by updating system parameters (which are under
observation, in this case information related to channel – channel taps) using a
gradient-based method. The idea is to update the parameter until certain pre-
fixed error criteria is matched and then the system stops updating. To begin with
this, we consider the error reduction problem by a cost function. In this case, the
cost function is considered as mean-squared-value of error (difference between
the desired response and the output of the filter). The updating of parameters
takes place by considering the present set of parameter values and gradient based
parameter (learning parameter) over previous parameters. This concept can be
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expressed as follows:

h(n + 1) = h(n) + correction term (4.1)

where correction term is based on the error, input signal and a learning rate.
One of the commonly used adaptive algorithm with above problem statements
is Recursive Least Squares (RLS) algorithm (Appendix 1.). RLS algorithm among
provides a faster convergence compared to rest of the commonly used adaptive
algorithms such as Least mean squares (LMS), Normalised Least Mean Squares
(NLMS). RLS is an adaptive filter algorithm that recursively finds the coefficients
that minimize the weights of linear least squares cost functions relating to the in-
put signals. This approach falls in contrast with other adaptive algorithms such
as Least mean squares (LMS) that aim towards reducing the mean square error.

4.1 Recursive Least Squares Algorithm

Adaptive algorithms are ones which change behaviour with time. This change
is based on current information as well as some pre-defined criterions based on
previously available information. It represents a system of linear filters wherein
we have a transfer function which is controlled by varying parameters as per an
optimization algorithm.
RLS algorithm recursively finds the coefficients that minimize a weighted linear
Least Square (LS) cost function which is related to the input signal sequence.

Figure 4.1: Adaptive Filter Block Diagram

In a linear LS estimation, the observed data is represented as,

X = Aθ + e (4.2)
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where A is assumed to be a full-rank matrix, θ is the parameter vector and e is
a zero-mean random vector. Components of e are uncorrelated and have same
variance.
LS estimation minimizes the sum square error (SSE) by using the following cost
function:

J(θ) = (X − Aθ)′(X − Aθ) (4.3)

In this case, the LS estimator is given by,

θ̂LS =
(

A′A
)−1 A′X (4.4)

In the case of RLS algorithm, we instead have a weighted SSE and for this we
perform the following operations:
h(n) constitutes of filter coefficients at an instant . The cost function for the algo-
rithm is given by

J(n) =
n

∑
k=0

λn−ke2(k) (4.5)

which simplifies to

J(n) =
n

∑
k=0

λn−k (d(k)− y′(k)h(n)
)2 (4.6)

Here e(k) is the filtering error at the instant k due to h(n) and textstyleλ is the
forgetting factor which lies between 0 and 1. To solve the problem of LS estima-
tion, we minimize J(n), with respect to h(n). This is given by:

∂J(n)
∂h(n)

= 0 (4.7)

Substituting J(n) and h(n),gives the following normalized equation for LS es-
timation: (

n

∑
k=0

λn−ky(k)y′(k)

)
h(n) =

n

∑
k=0

λn−kd(k)y(k) (4.8)

Let us define

R̂y(n) =

(
n

∑
k=0

λn−ky(k)y′(k)

)
(4.9)

which is the estimator of autocorrelation matrix Ry. Similarly, we can define
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r̂dy(n) =
n

∑
k=0

λn−kd(k)y(k) (4.10)

which is the estimator of cross-corelation vector r̂dy(n).Substituting Eq. (4.10)
& (4.9) in (4.8), we can re-write (4.8) as

R̂y(n)h(n) = r̂dy(n) (4.11)

The solution to Eq. (4.11) comes as:

h(n) = R̂−1
y (n)r̂dy(n) (4.12)

The matrix inversion in Eq. (27) makes the solution a computationally complex
algorithm. This prompted us to look for a recursive solution to the above problem.
To find the inverse, we can represent

R̂dy(n)

in recursive way. It can be re-written as

R̂y(n) = λR̂y(n − 1) + y(n)y′(n) (4.13)

Eq. (28) shows that that autocorrelation matrix can be recursively calculated from
its previous values and present data vector. Similarly, the cross-corelation vector
is given as

r̂dy(n) = λr̂dy(n − 1) + d(n)y(n) (4.14)

The solution now can be re-written as

h(n) =
(
λR̂y(n − 1) + y(n)y′(n)

)−1 r̂dy(n) (4.15)

To calculate the inverse of the sum matrix, we make use of matrix inversion
lemma:

(
A + UV′)−1

= A−1 − A−1UV′A−1

1 + V′A−1U
(4.16)

• Provided that
1 + V′A−1

U ̸= 0
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• In this case, once we know A−1 is known, the inverse of rank-one increment

(
A + UV′)−1

can easily be calculated.

To calculate R̂−1
y (n), we will take the matrix lemma inversion with

A = λR̂−1
y (n − 1) and U = V = y(n) (4.17)

Substituting the above, we have,

R̂−1
y (n) =

(
λR̂y(n − 1) + y(n)y′(n)

)−1

=
1
λ

(
R̂−1

y (n − 1)−
R̂−1

y (n − 1)y(n)y′(n)R̂−1
y (n − 1)

λ + y′(n)R̂−1
y (n − 1)y(n)

)
(4.18)

Let P(n) = R̂−1
y (n). Substituting this, we have,

P(n) = (
1
λ
)

(
P(n − 1)− P(n − 1)y(n)y′(n)P(n − 1)

λ + y′(n)P(n − 1)y(n)

)
(4.19)

Simplifying (31) we can write this more neatly as

P(n) = (
1
λ
)(P(n − 1)− k(n)y′(n)P(n − 1)) (4.20)

where , k(n) = P(n−1)y(n)
λ+y′(n)P(n−1)y(n) , [k(n)isGainFactor]

Using the gain factor equation, we can arrive at the following result:

k(n)λ + k(n)y′(n)P(n − 1)y(n) = P(n − 1)y(n)y′(n)P(n − 1) (4.21)

k(n) is an important parameter for adaptation. It is also related to the current
data vector y(n) by

k(n) = P(n)y(n) (4.22)

Substituting the above relations in the original filter update equation, we can
arrive at the following result:

h(n) = h(n − 1) + k(n)(d(n)− y′(n)h(n − 1)) (4.23)
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CHAPTER 5

Existing solutions for Channel Estimation in
OTFS scheme

To perform detection of OTFS symbols on receiver end, the first step is to estimate
the delay-Doppler channel response at the receiver. There are several existing
schemes that have been applied on this problem.

In [3],[4],[11] pilot-aided channel estimation techniques have been explored.
The paper [3] proposes a Markov Chain Monte Carlo (MCMC) based algorithm
for detection and a pseudo-random noise (PN) pilot-based scheme for channel
estimation in the delay-Doppler domain. The authors make use of randomized
Gibb’s sampling-based detection algorithm in order to do so. In [4], pilot-aided
channel estimation was considered for OTFS with ideal pulse-shaping waveform
over channels with integer Doppler shifts only, i.e., when the channel Doppler
taps are aligned to integer delay–Doppler grid. Further, the exact symbol deploy-
ment and channel estimation technique are not described in [4].

In [5], a complete OTFS frame has been used as a pilot for transmission and the
estimated channel information from this was further used for data detection in the
subsequent frame. One of the key highlights of this method is that the pilot over-
head required for CSI estimation is very high. Furthermore, this method may not
prove to be effective if the channel estimation becomes outdated in the following
frame, as there is an assumption that the channel response will be static at least for
the upcoming frames of data. Similarly, in [12], the concept of estimating channel
using a complete OTFS frame has been extended to MIMO-OTFS setup and the
author establish a 3-D structured sparsity of MIMO-OTFS channel and make use
of a 3D-SOMP algorithm which is an extension of OMP algorithm to estimate the
channel. However, the complexity of the algorithm proposed in here is high and
is based on efficient channel feedback which may or may not be the case always.

In [4], OTFS channel estimation was conducted in the time–frequency domain.
This resulted in higher implementation complexity than that of [3] and [5], [12]
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where the channel estimation was conducted in delay–Doppler domain.
There has also been keen focusing on utilizing the sparsity of the channel and

making use of a compressive sensing approach for estimating the channel [6].
The compressive-sensing-based algorithms are complex and the pilot overhead is
significantly larger, sometimes being the complete frame. With a suitable message
passing based OTFS detection algorithm as in [3], the performance of OTFS is
in general independent of Doppler frequencies for a given pulse shape unlike
OFDM.

In [13], the channel estimation scheme proposed makes use of priori chan-
nel information based on multiple impulses so as to make use of diversity gain
and come up with more accuracy than traditionally proposed schemes in [3] [4].
However, this scheme relies on priori channel state information which may not be
available in the initial stage of device’s communications.

In [7], the author makes use of sparse CSI estimation model where the pilots
are directly transmitted over the TF-domain grid. This results in a significantly
reduced pilot overhead and an increased bandwidth efficiency. The author then
developed a Bayesian-learning (BL) framework. The DD-domain CSI obtained
was then fed to the BL framework in order to estimate the subsequent frames of
data detection. The associated BL framework however requires an initial training
time to train the model in order to produce effective results.

In [9], it was found that channel sparsity aware version of RLS algorithms have
been deployed to non-linear systems and active noise control problem areas. This
helps in reducing the complexity by using area specific data selection sequences.
In [8], a comparative study was conducted by the authors on adaptive algorithms
– LS, RLS for estimating channel in different multipath fading environments. The
differences between the two algorithms and merits and demerits along with per-
formances have been presented for reference in this paper.
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CHAPTER 6

Pilot-based Estimation scheme

Based on the previous sections, the problem of delay-Doppler channel estimation
has 2 parts: estimating the position of reflectors and estimating the magnitude of
gain provided by these reflectors. The position of the reflectors is estimated by ob-
serving the received signal frame in delay-Doppler domain. We arrange a pilot at
the centre of the delay-Doppler grid on the 1st frame on the transmitter side. This
pilot symbol has considerably higher power compared to rest of the information
symbols in the grid. The pilot symbol is also surrounded by guard symbols from
all sides so as to contain the delay and Doppler spread while traversing through
the time-varying channel. Following fig. describes one such arrangement of pilot
symbol frame.

Figure 6.1: Pilot placement on delay-Doppler grid

The magnitude of channel taps is estimated with making use of RLS algorithm
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has been approached as shown in the flowchart below.
This transmitting symbol when moved from delay-Doppler domain to the

time-frequency domain are embedded with a preamble pilot at the start of the
OFDM frame. In this way, the first symbol contains a pilot preamble which is
used to estimate the magnitude for channel taps at the receiver using RLS algo-
rithm. Once both, position and magnitude are acquired, the channel estimate in
the delay-Doppler domain can be formed. This channel is of M x N dimension.

Figure 6.2: Workflow of Channel estimation problem

37



CHAPTER 7

Results

7.1 OFDM Performance with RLS-CE

To test the adaptive algorithm, an OFDM system simulation was made where re-
ceiver uses adaptive algorithms to estimate the channel and then perform error
calculation on the received signal vector. In this case, the information was passed
using QPSK modulation schemes before passing the symbols on OFDM trans-
mitter. The channel estimation done in this case was using preamble-based pilot
estimation, wherein a pilot OFDM symbol was attached towards the start of the
frame. The receiver performs RLS algorithm-based channel estimation using the
pilot preamble. The performance is found to improve slightly over the conven-
tional LS estimation technique.

7.2 Channel estimation in OTFS system

Following the channel estimation technique described in previous chapters, the
position of reflectors are estimated from the received signal frame in delay-Doppler
domain. The delay-Doppler grid in consideration is of size 32 x 32. The pilot is
placed at (16,16) with a guard band surrounding it of the size 7 x 7. Fig.6 show-
cases this arrangement. The received pilot and guard frame in delay-Doppler
domain are shown in following figure

RLS algorithm was used to estimate the magnitude gain provided by the chan-
nel in time-domain channel. The simulation parameters for the results are sum-
marized in the following table:
From Fig.12 & 13, it can be seen that the channel estimate in delay-Doppler do-

main is very similar to the original channel along with perfect recovery of position
of reflectors and the respective gains that they provide.
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Figure 7.1: Performance of RLS, LMS & LS in OFDM system for QPSK modula-
tion.

Figure 7.2: Spread of Pilot within guard band due to LTV channel
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M 32
N 32
No of channel taps 4
No of frames 1
No of samples used for RLS
estimation

32

Forgetting factor λ 0.99

Table 7.1: Table 1

Figure 7.3: Channel estimate in time-domain
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Figure 7.4: Original Channel in Delay-Doppler domain

Figure 7.5: Estimated Channel in Delay-Doppler domain
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7.3 Study of 2-D adaptive algorithms to estimate 2-D

delay-Doppler channel for OTFS

Study on 2-D adaptive algorithms had been made for OTFS systems. In OTFS
delay-Doppler channel, there are two parameters of estimation – delay and Doppler.
An attempt to further tailor the RLS algorithm in 2D has also been looked upon
wherein delay and Doppler coefficients for channel can be estimated simultane-
ously. Currently, work is in progress with respect to making use of 2-D algorithms
in delay-Doppler domain.
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CHAPTER 8

Conclusions and future scope

8.1 Conclusions

Fig 6.1 shows the performance of an OFDM system wherein the BER performance
of the system is observed. In this system, a bit stream modulated with QPSK sym-
bols was transmitted and at the receiver end, Least squares, RLS algorithms were
applied to retrieve the information.The computational time of RLS algorithms is
much faster than LS algorithm and yet it delivers a performance which was in
comparable range of LS. This established the fact of faster convergence of RLS
algorithm without suffering losses in precision of estimation.

Moving ahead, we create an OTFS frame with pilot at the centre and sur-
rounded by the guard band. This frame when transmitted on a LTV channel
experiences spread both in delay and Doppler. This is observe and captured in
Fig 6.2. next we create a delay-Doppler channel in OTFS system and place our
pilot in the delay-Doppler grid as shown in Fig 6.2. Since the channel used in this
case is a M x N channel where grid size is at 32 x 32 with 4 channel taps. The
channel’s time response is estimated and compared with original channel time
response magnitudes, which is depicted in Fig 6.3.

Fig 6.4 Fig 6.5 are channel responses in delay-Doppler domain capturing the
Doppler estimates of the LTV channel in consideration. It can be seen that both
figures have exactly same position with comparable magnitudes of each Doppler
coefficient.

Hence , the magnitude of the channel response and the exact position of Doppler
variables is estimated correctly.

8.2 Future Scope

The current implementation of RLS algorithm as discussed in Chapter 5, has been
explored when the system in consideration is a SISO-OTFS model. This opens up
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ground for exploring other adaptive algorithms within the same problem frame.
This can also be extended to a MIMO-OTFS system model with different adap-

tive algorithms and the results can be compared on the metrics of complexity,
energy and resource consumption and resulting estimates of channel state infor-
mation.

As mentioned in chapter 6, development of a 2-D based adaptive algorithm
is also in progress which can further improve the performance of the systems to
estimate a dynamic DD channel.
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