CORMS: A GitHub and Gerrit based
Hybrid Code Reviewer Recommendation

Approach for Modern Code Review

by

Prahar Pandya
202011001

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
n
INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

June, 2022

Declaration

[hereby declare that

. _ s the degree of Master of
Technology in Information and Communication Technology at Dhirubhai

Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

i) due acknowledgment has been made in the text to all the reference material
used.

[

Prahar Pandya

Certificate

]

=5 : I B |
, e 1% _ .’ﬁ%;-..r__L . 2 —~
»sis work entitled “CORMS: A Gi
er Recommendation Approach for

_ — WL ‘ . "-ﬂ'fr‘] : Y____; I :
v Prahar Pandya (202011001) t

r
-
> —

gl T g e e { e e I] - *J-— U_.--IJ H‘{‘ﬁl . I P ' 3
ommunication Technology

| e N el I (i |
rachnoloe j'/*:hﬂ ‘Lﬂ formation ana OIIlL)

'J_ - o =

B L e YT 1T
PRI IAST L o —~d -y -{'IFT’- 101 fIVYIEd & (J1TLTT0LETEREL bR BN
IMCTITIITE O LILJUT I} F‘_?-H-'ffib‘:_sff urilde ©
: J 'II - l.‘. i = i P " . . -

R

|||
|||||||

_k‘-
.....
el e i

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Saurabh Tiwari for
providing all the help, support and motivation needed for my research work.
Without his continuous guidance and trust, this thesis would not have been con-
cluded. He was always there to lead me towards the solution whenever 1 got
stuck.

Last but not least, a special a special thanks to my parents, my family and my
friends for their continuous support.

i1

Contents

Abstract

List of Principal Symbols and Acronyms

List of Tables

List of Figures

1 Introduction

1.1
1.2

1.3

1.4

Objective and Problem Description
Motivation
1.21 Observations and Implications
Thesis Contribution . « < <« sss wems =5
1.3:1 Literature Reviewr . « .« wv wos v wa o
1.3.2 Mining Code Review Repositories . .

1.3.4 Performance Evaluation

1.3.5 ToolSupport
Organisation of the Thesis

2 Code Review

21
22
2.3
24

What is Code Review?
Modern Code Review Process
Benefits and Challenges
Factors Influencing the Modern Code Review
24.1 Non Technical Factors
24.2 Technical Factors

3 Literature Review

3.1

Traditional Approaches.
311 ReviewBot

111

1.3.3 Automating Reviewer Recommendation Process

vi

vii

viii

[y
o

O OO0 O WO O O 0 O\ =

12

3.1.2 RevFinder 19

3.2 Approaches based on Reviewer Expertise 20
a2l CORRECT . o o5 co ssnsmemuoss an smsmeons =s am s 20
F2Z ReVROC v oo v wn wmvmsme @s wan am e wssms @5 on i 21
3.3 Approaches based on Social Relations 22
331 Comment-Network. : « ¢ ¢s w5 an v s ma s #5 85 s 22
34 Hybrid Approaches «: 5 s s wu s $5 e5 S8 i@ eWE §3 85 4 23
341 CoreDevRec 23
342 TIE e 24
343 WhoReview oo 25
0l CONERNRNYE o e o e 2 e i e B 6 9 BN SN RN E @ 8N REES ENE S E AN 3 27
Code Reviewer Recommendation: Proposed Approach 28
41 DataMining 29
41.1 Mining reviews from Gerrit 29
41.2 Mining reviews from GitHub 30
42 IR Fre-progessuif . «: s smaois e oy wu 5w s me = @6 3 31
4.3 Natural Language Processing and Vector Transformation 32
43.1 Natural Language Processing 32
432 TFIDEVectorization: : « i s sw v ¢35 ss smsmaima a3 o4 s 33
44 DataSphthing . : ez o5 65 s ¢ @505 $5 48 s B FECE $5 €5 2 33
4.5 SimilarityModel « : o2 v s i v s En R ERIEE G5 85 4 33
46 EnsembleModeling 0000 35
47 CORMSController, 36
Experimentation and Results 38
21 Experimental SEtUp : o o5 s e ms s $5 68 s BB E $5 £ 8 38
bl ProjectSelection: s ssswams 5 05 SR IR W 55 &5 8 38
5.1.2 Statistics of collecteddata 39
52 Evaluation Metrics 39
521 Top-K. 40
5.2.2 Mean Reciprocal Rank (MRR) 40
5.3 ResearchQuestionsand ANalysis « : « « s v cmemsms ws wa s 40
B3l Research CHIEShoNS s v v m v ma o5 d s o e @ Ema @5 & & 3 40
532 AndlySisResultS :: oo mswv on s sme g e 55 a0 s 43
54 ThredtstoVahidity': « +: cs swsosms o 23 sws@ams 55 25 4 44

1V

6 CORMS: A Tool
6.1 Whatis CORMS-TOOL?
6.2 CORMS-TOOL Architecture

6.3 Django MVC Framework of CORMS-TOOL

6.4 Features of CORMS-TOOL
6.5 Various Interfaces of CORMS-TOOL .
6.5.1 Code-Review Interface
6.5.2 Results and Feedback Interface
6.5.3 Create or View Project Interface

7 Conclusions and Future Work

References

Abstract

Modern Code review (MCR) techniques are widely adopted in both open-source
software platforms and organizations to ensure the quality of their software prod-
ucts. However, the selection of reviewers for code review is cumbersome with
the increasing size of development teams. The recommendation of inappropri-
ate reviewers for code review can take more time and effort to complete the task
effectively. We carried out a detailed literature review over existing recommenda-
tion approaches and extended the baseline of reviewers’ recommendation frame-
work — RevFinder! to handle issues with newly created files, retired reviewers,
the external validity of results, and the accuracies of the state-of-the-art RevFinder.
Our proposed hybrid approach, CORMS, works on similarity analysis to compute
similarities among file-paths, projects/sub-projects, author information, and pre-
diction models to recommend reviewers based on the subject of the change. We
conducted a detailed analysis on the widely used 20 projects of both Gerrit and
GitHub to compare our results with RevFinder. Our results reveal that on average,
CORMS, can achieve top-10, top-5, top-3, and top-1 accuracies, and Mean Recip-
rocal Rank (MRR) of 79.9%, 74.6%, 67.5%, 45.1% and 0.58 for the 20 projects, con-
sequently improves the RevFinder approach by 12.3%, 20.8%, 34.4%, 44.9% and
18.4%, respectively. Finally, we built a complete tool - CORMS-TOOL based on
our proposed approach, CORMS, to support reviewer recommendation process
in modern code review.

Thttps:/ / github.com /patanamon/revfinder

Vi

List of Principal Symbols and Acronyms

LCPrefix Longest Common Prefix
LCSubseq Longest Common Subsequence
LCSubstr Longest Common Substring
LCSuf fix Longest Common Suffix

MCR Modern Code Review

MRR Mean Reciprocal Rank

OSS Open Source Software

SVM Support Vector Machine

Vil

List of Tables

2.1

3.1
3.2

9.1
52
5.3

54

Factors Influencing the Modern Code Review 17
Technique, Platform, Source Code, Data-sets, Metrics Used 26
Features used in most common Recommendation Algorithms . . . 26
Statistics of the data collected from OSS 39
Performance evaluation of CORMS and RevFinder 41
Performance of CORMS with Normalization and Borda Count score

propagation techniques’: : « cw e wsms w5 s sma@ams a5 a4 s 42
Measurement of Accuracy Gain for each Individual Models 43

viii

List of Figures

1.4
1:D
1.6

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Code review interfaceof GitHub 2
Reviewer Assignment Problem at GitHub 3
Code review interfaceof Gerrit oo v v v o0y 4
Code-Review 836629 - OpenStack project of Gerrit 7
Code-Review 798228 - OpenStack project of Gerrit 8
Code-Review 836814 - OpenStack project of Gerrit 8
Working of Modern Code Review (MCR) 14
Worlking Of RevENder « : s v s ms s €5 66 S M B8 F 8 65 19
Working of CORRECT : u5 s s swams 63 85 § 8 30885 55 @5 4 20
Workingof RevRec oo 21
Working of CodeDevRec 23
Working of TIE o o 25
Working of WhoRevieWw .. ;s woms ws o5 smsmaems w5 vn s 25
Proposed Hybrid Approach: CORMS . . cs cwsmams w5 wa 28
Our Mining Workflow forGerrit 30
Our Mining Workflow for GitHub 31
CORMS-TOOL architecture . o« ¢ v v wov wn wn vmomims ws w5 46
Django MVC Framework of CORMS-TOOL 49
Step-1 Interface: OSS Platform Selection 50
Step-2 Interface: Project Selection 50
Step-3 Interface: Upload code-review JSONfile 50
ResultsInterface 0oL 51
Submit Feedback Interface 51
Create New Project RequestInterface.. . -« «s smswmams ws wn 5
View Supported Projects Interface . . v v vn s v wvmwe wn wn 52

1X

CHAPTER 1

Introduction

This chapter gives the overview of the objectives and problem description, moti-
vation, observation and implications and finally the thesis contribution.

1.1 Objective and Problem Description

Software code reviews help the development process in reducing overall costs and
helps in knowledge transfer. The reviews conducted on the software code identify
logical errors, coding rule violations, and also assisted with the automated tools.
This review process is known as MCR (Modern Code Review) [3]. The MCR are
nowadays used by both the organizations such as Microsoft [24] or Google [34],
and by the open-source software (OSS) platforms such as GitHub!, Gerrit® or
review-board®.

The existing works highlighted that selection and assignment of inappropriate
reviewers downgrade the review process and quality of the software product [40].
o Patanamon Thongtanunam et al. [40] investigated reviews in Gerrit open-source
system and found that 4%-30% of the reviews have reviewer assignment issues.
As a result, on average, 12 more days may require to complete it. Jing Jiang et
al. [19] also analyzed the pull requests in GitHub and found that 40.6% of man-
ual assignments. Gerrit and GitHub are the two widely used OSS platforms for
performing code reviews.

GitHub is a widely used OSS Platform. GitHub provides support for a pull-
based development. In GitHub, developers first fork a repository and make changes
to fix some bugs or implement new features. When ready with the changes, they
submit a pull request to merge code changes into the main repository. This pull
request needs to be evaluated by a reviewer. This reviewer is a trusted experi-

Thttps:/ / github.com/
Zhttps:/ /www.gerritcodereview.com /
https:/ /www.reviewboard.org/

enced member of a community. The reviewer then checks the code changes and
code legibility and decides whether to merge code changes into the main branch
or not. If the reviewers have any confusion, they may ask the developer for clar-
ification or make updates and submit new commits for reevaluation. Ideally, re-
viewers are assigned to pull requests without any delay after the creation of the
change requests. However, in reality, some popular projects receive many pull
requests, and reviewers find difficulties in prioritizing pull requests [18]. Since
reviewers need to be assigned to pull requests soon after their creation, finding an
appropriate reviewer can be a time-consuming task.

bug fix: hot key view disappear on i0S 15 =160
n - -
P Author X wants to merge 2 commits into facebook:wain from alex-yatsenko-dev:hot_keys_view_iosis_fix [Lj

Author X commented on Nov 29, 2021 R
Reviewer A]
Thanks for proposing a pull request!
Reviewer B]
To help us review the request, please complete the following: e o E} i
* [x] sign contributor license agreement Reviewer D @ e
« [x] I've ensured that all existing tests pass and added tests (when/where =
Reviewer E @ e
necessary)
¢ [x] I've updated the documentation (when/where necessary) and Changelog Reviewer F @ e
(when/where necessary)
¢ [x]I've added the proper label to this pull request (e.q. bug for bug fixes) Assignees

Mo one a -',:ignr-_d

-0 fix hot key view disappear on i05 15 ' 3862226
Labels
CLA Signed
O Author X requested review from| Reviewer C,D,E
and[g as code owners 7 months ago
Projects

Figure 1.1: Code review interface of GitHub

Figure 1.1 shows the code review interface of GitHub for a Facebook project®.
Here we can see that the Author X wants to merge 2 commits into the main branch
of Facebook, but for that, he needs approval from reviewers. The status of this
request is open and we can see that it is 7 months older. The right sidebar of the
Ul shows the number of reviewers and their status. In GitHub, these reviewers
are further divided into core members and commenters. Core members are those
who take the final decision for a merge, while commenters are those who help
the code review process by providing their suggestions in comments. The lock
symbol denotes that this reviewer is a code-owner. In the given example of code
review interface of GitHub, the Reviewer C,D,E and F are the code-owners. GitHub
introduced code-owners® to define individuals or teams that are responsible for

*https:/ / github.com/facebook / facebook-ios-sdk /pull /1960
“https:/ /docs.github.com/en /repositories/ managing-your-repositorys-settings-and-

2

code in a branch. These code owners are automatically requested for review when
someone opens a pull request that modifies code that they own. The yellow dot
near reviewer denotes that requested review from this reviewer is still awaited.
When any one of the reviewers approves the request, a green tick will appear
next to that reviewer instead of a yellow dot and the author can able to merge the
pull request. After a successful merge, the pull request status will be marked as

closed.

ta Memerd Adding CC for INI #911
g merged 12 commits into master from mcm86-84jun21-inclusive-.. L|;| onJun 17, 2021

O Author X commented on Jun 8, 2021 Author = (&) +++

Hey| DeveloperY |sorry for any pressure. Will you have a chance to review this week? If
not, I can re-assign. Lemme know. Thx.

O Author X commented on Jun 9, 2021 Author () -

Is there anyone that has time to review this?

Figure 1.2: Reviewer Assignment Problem at GitHub

Figure 1.2 shows the reviewer assignment problem present at the ‘change id-
911" of betterscientificsoftware project® of GitHub reviewed on Jun 8, 2021. Here, the
Author X is requesting the reviewer Developer Y to review. However, he didn’t get
any reply. Hence, the Author X put the comment asking ‘Is there anyone that has time
to review my code?’. The reviewers can be assigned to the pull requests immediately
after their creation in an ideal scenario. However, it is not the common case at the
moment. Recently, GitHub followed a round-robin and load balancer algorithm

7. However, still this method doesn’t count other

for recommending reviewers
features such as file path or expertise of reviewer or other social features.

Gerrit is also being used by many large open source projects, everyone with
their unique setup in terms of what they require a code review to pass before be-

ing ready to submit into master. Gerrit reviews use reviewUI® which provides tool

features/customizing-your-repository /about-code-owners

®https:/ / github.com /betterscientificsoftware /bssw.io/pull /911

“https:/ /docs.github.com/en/organizations/ organizing-members-into-teams /managing-
code-review-settings-for-your-team

Shttps: / / gerrit-review.googlesource.com/Documentation /

3

Android Q

: CHANGES DOCUMENTATION BROWSE Repositori Sign i
Open Source Project @ Repositories & Signin

Merged 2019419 Clean up unused profile_select_tablayout. T

Change Info SHOW ALL ~ Clean up unused profile_select_tablayout.

Submitted Mar 10) .) .

5 Author X Change-Id: If1f58f13aBcfi14bfB7Bboelbc23fede726f223a
WIner

Reviewers Reviewer B +:-.‘ Reviewer C

Comments (. 2 resolved |
Repo | Branch platform/packages/apps/Settings | master

Hashtags git-source-editor

Links builds
automerger
Change Log
Show all entries (2 hidden) EXPAND ALL
Author X Published edit on patch set 1. VIEW DIFF Patchset 2 | Mar 10 10:27 ~
Author X Added to reviewer: Reviewer A Patchset 2 | Mar 10 10:27 ~
Reviewer A Patchset 2 | Mar 10 12205

Added to reviewer: Reviewer B Reviewer C

Removed from reviewer; Reviewer A
Reviewer A Patchset 2 | Mar 10 12:05 A

Patchset

Reviewer A Patchset?2 Mar10 ~

Reassign to current owner

Figure 1.3: Code review interface of Gerrit

support to provide many functionalities to make the review process comfortable
and efficient. In Gerrit, developers first clone a repository and make changes to
fix some bugs or implement new features. When they are ready with the changes,
they submit a pull request to merge code changes into the repository. Here, they
have to provide details regarding the reference of a branch for which this change
request is created. By default this branch setting is master-branch. After that, Gerrit
reviewlUI provides support to the author, where he can also perform tasks such as
1) comparing the changed lines with the previous version, 2) writing comments
inline to ask reviewers for advice on a certain part of the change and 3) adding a
list of reviewers. The author can manually add the reviewer or can use the plu-
gins to automatically add reviewers to the change. The Reviewers-plugin® helps
to configure default reviewers so that they can be automatically added to every
change. The Reviewers-by-blame-plugin'® helps to add reviewer by considering the
reviewer code familiarity and experience. These added reviewers will get noti-
fied over email. In Gerrit, before the change is accepted, the following two checks
must be completed: 1) Code-Review: It requires the reviewer to ensure that the
code change meets project guidelines, 2) Verified: This check denotes that the

9https: / / gerrit-review.googlesource.com/admin/repos/plugins/reviewers,general
Ohttps:/ / gerrit-review.googlesource.com/admin/repos/plugins/reviewers-by-blame,general

4

code compiles successfully, passes tests, and performs without any issues. The
automated build server in Gerrit checks this verified status through a Gerrit Trig-
ger'l. Finally, when reviewers make decisions, they have choices to vote from -2
to +2. +2 vote denotes that the change request looks good to the reviewer and is
approved. +1 vote denotes that the change request looks good to the reviewer,
but someone else must approve it. 0 vote denotes no score. -1 score denotes that
the reviewer would prefer not to submit this change. -2 vote denotes that the re-
viewer made a decision to abandon this change request. A change must have at
least one +2 vote and no -2 votes before it can be submitted.

Figure 1.3 shows the code review interface of a Gerrit android project'?. This
change request ‘change id-2019419" was reviewed on 10th March 2022. Here, we
can notice that the Author X added the reviewer Reviewer A, however, he is not the
actual reviewer, so he added two more reviewers Reviewer B and Reviewer C and
removed himself as a reviewer as he is no longer an owner of this project. Finally,
the Reviewer B approved the change by providing a +2 vote. The correct reviewer
could be assigned to change requests without any delay after their creation in an
ideal scenario. However, it is not a common case at the moment. The pull-based
model has the potential to be more effective and enhancements in these areas.

[t depends on the organization and their certain requirements to follow GitHub
fork-and-pull-model or Gerrit-code-reviews. GitHub is the go-to place to host open-
source projects. Gerrit can be indispensable for larger teams where there is intense
code reviewing. Some similarities, as well as differences in GitHub and Gerrit’s
code review workflow, are:

1. While GitHub supports multiple commits in one pull request, Gerrit does
not. GitHub’s pull requests do not force the author to think about atomic or
related changes as one commit. While Gerrit’s reviews, by their restrictions
(i.e. one commit per review), do force authors to think about this much more
consciously, which is good for a code review.

2. Both Gerrit and GitHub provide the facility to push draft changes. By de-
fault draft changes are only visible to the author. This gives the author the
possibility to have some staging before making the changes visible to the

reviewers.

3. In GitHub, new members or authors have to fork the repositories, clone
them locally, make the changes, push them to their fork and then create the

Uhttps:/ /wiki.jenkins-ci.org/display /JENKINS/Gerrit+Trigger
https:/ /android-review.googlesource.com/c/platform /packages/apps/Settings/+ /2019419

pull request. With Gerrit, the author could clone the main repository, do his
change, and then push it directly to the same remote as he cloned it from.

4. Gerrit provides voting facilities for a review, in which reviewers have choices
to vote from -2 to +2. In GitHub reviewer can either approve the change or
can abandon the change.

5. Compared to GitHub, the feedback loop is easier to follow and it’s very
easy to get up to speed with what’s happened since the last time the author
visited Gerrit. For example, if the author gets a -2 (i.e. rejected) on the Code-
Review part, he can view the reviewer’s comments in the diff view section in
a certain code location. Now when the author is ready with the code change
which fixes the reviewer’s comments, the author can add the changes to his
existing commit instead of creating a new commit locally, resulting in the
author’s feature still being only one commit. Then, the authors are only
needed to simply push to Gerrit by git push gerrit HEAD: refs/for/master and
the code review gets updated.

One may use both the Gerrit and GitHub together. The reason for using GitHub
and Gerrit together are: 1) GitHub is widely recognized and accessible by lots of
worldwide sites. 2) Using a public GitHub repository allows to off-load a lot of gits
pull traffic. 3) Pull-request allows novice users to start getting involved. 4) Gerrit
code-review defines the quality gates for avoiding noise of unstructured contri-

butions. A GitHub plugin allows existing GitHub repositories to be integrated
as Gerrit projects, while a Gerrit plugin can help control the GitHub replica and
import the pull requests as Gerrit change requests.

1.2 Motivation

A typical review contains several fields such as the subject of the change, file
paths, authors, reviewers, last reviewed date, numbers of inserted and deleted
lines. The subject field contains textual information explaining in the abstract
about the change. The reviewer field denotes developers assigned to the review.
The author field specifies the owner of the change who submits the review. The
project field specifies details about the project and sub-project under which the
author has submitted the review. The file path field specifies the file-locations
modified in the change. The last reviewed date specifies the date when the re-
view got completed.

Merged 836629 Remove TripleO job T

Change Info SHOWALL v
Submit Apr 05
ted

Owner Author A

Review Raviewer B
W Reviewer C
Reviewer D 7zuul

Repo| openstack/puppet-swift |
Branch stable/yoga

Topic tripleo-yoga

Submit

requirements

«/ Code-Review +2 Reviewer C
+2 Reviewer D

v/ Verified +2 Zuul
Links gitea

Files Comments Zuul Summary
File Comments Size
.zuul.yam|

Findings
Delta
+0 -19 v

Figure 1.4: Code-Review 836629 - OpenStack project of Gerrit

Subject Stein only: Remove tripleo job
Project/Subproject | openstack/puppet-swift

Author Author A
Reviewers Reviewer B, Reviewer D, Zuul
Files .Zuul.yami

Figure 1.5: Code-Review 798228 - OpenStack project of Gerrit

Subject Ussuri-only: Remove TripleO job
Project/Subproject | openstack/puppet-swift
Author Author A

Reviewers Reviewer B, Zuul

Files .zuul.yaml

Figure 1.6: Code-Review 836814 - OpenStack project of Gerrit

Figure 1.4 shows a code-review 836629 from the Open-Stack project of Gerrit!®.
The Author A modified the code and submitted the code for review. The change
removes the “TripleO job”. The reviewers Reviewer C and Reviewer D reviewed the
change and approved it. Here, the Zuul is a open-source contiguous integration
tool which checks the test cases and only merge changes if they pass the tests.

Figures 1.5 and 1.6 represent reviews 798228!* and 836814!° from the Open-
Stack project of Gerrit. The change reviewed in review-798228 is to remove the
“TripleO job” of Stein as stable/stein branch for all tripleo repositories was moved
to end of life. The change in review 752343 is to remove the “TripleO job” of Ussuri
as stable/ussuri branch for all tripleo repositories was moved to end of life. We
notice that all of these changes were from the same subproject “puppet-swift” and
these changes were proposed by the same author.

1.2.1 Observations and Implications
We make the following observations from the above three reviews:

1. The project/sub-project information can help recommending appropriate

Bhttps:/ /review.opendev.org/c/openstack/puppet-swift/+ /836629
Yhttps:/ /review.opendev.org/c/openstack/puppet-swift/+ /798228
Dhttps:/ /review.opendev.org/c/openstack/puppet-swift/+ /836814

8

reviewers. Reviewer are more likely to review changes which are from the
same projects/sub-projects. For example, change requests shown in Figures
1.4, 1.5 and 1.6 are from the same subproject: “openstack/puppet-swift”. These
three reviews were assigned to the same reviewers.

2. The textual contents in the subject field give the abstract information about
the change and are good measure to recommend suitable reviewers. For
example, the textual contents of the subject in Figures 1.4, 1.5, and 1.6 specify
that the changes are made to remove the “TripleO job”.

3. The review request from the same authors can be reviewed by similar re-
viewers as they know each other because of past collaborations. From Fig-
ures 1.4,1.5 and 1.6, we can see that the code review requests submitted by
the “Author A” were assigned to same reviewers.

4. The files stored in same paths should be reviewed by same reviewers. From
Figures 1.4,1.5 and 1.6, we can see that all the code review requests changes
the file “.zuul.yaml” and thus they were assigned to same reviewers.

1.3 Thesis Contribution

1.3.1 Literature Review

We have searched the literature and conducted the comparative review on the ba-
sis of the features used in commonly used reviewer recommendation approaches
along with their technique, supported platform, source code and data-sets avail-
ability, metrics used. Detailed literature review over 8 such recommendation ap-
proaches is demonstrated in a tabular format.

1.3.2 Mining Code Review Repositories

We built two mining algorithms to mine and analyze the code-reviews from the
most commonly used OSS platforms: Gerrit and GitHub. We mined a total of
30,648 code-reviews from our selected 20 projects.

1.3.3 Automating Reviewer Recommendation Process

We propose a hybrid approach, CORMS (Code Reviewer Recommendation in
GitHub and Gerrit based on Machine Learning and Similarity Analysis), for rec-

ommending active reviewers in code review. The CORMS effectively uses fol-
lowing features of a code-review: 1) subject of the change, 2) file location, 3) au-
thor field, and 4) project/sub-project. The CORMS first builds a similarity model
by computing similarities of the three features: file-paths, author information,
project/sub-project of the current pull request separately with the same three fea-
tures of all the pull requests historically studied by various developers. Then it
builds a Support Vector Machine (S§V M) model by analyzing text in the subject
of the code-reviews. The CORMS then integrates both the SV M and similarity
model to recommend the reviewers with improved performance.

1.3.4 Performance Evaluation

We evaluate the performance of our approach on 20 data-sets collected from both
Gerrit and GitHub platforms. We mined and analyzed 30,648 code reviews from
2020 to 2021. The evaluation was done by computing the values of top-10, top-
5, top-3, and top-1 accuracies, and Mean Reciprocal Rank (MRR) [5]. Next, we
compare our experimental results with the RevFinder [40] and found that CORMS
achieves average top-10, top-5, top-3, and top-1 accuracies, and Mean Reciprocal
Rank (MRR) of 79.9%, 74.6%, 67.5%, 45.1% and 0.58 for the 20 projects, which im-
proves the performance of RevFinder by 12.3%, 20.8%, 34.4%, 44.9% and 18.4%, re-
spectively. The individual models of CORMS when combined with the RevFinder,
also positively improves the RevFinder w.r.t the evaluation criteria and generated
data-set.

1.3.5 Tool Support

A toolis developed based on the implementation of the proposed approach CORMS
with taking all the required features as an input in form of JSON and predicting
the active code-reviewers as output. It also enables the support to handle request
for new projects and collects feedback from users on every predictions and uses it
to demonstrate the effectiveness of CORMS when used in real scenario.

1.4 Organisation of the Thesis

The rest of the thesis is structured as follows. Section 2 provide a brief descrip-
tion of modern code review (MCR). Section 3 presents work related to our study.
Section 4 discusses our approach that extends RevFinder. Section 5 reports and

10

discusses the results of our experiments. The section also discusses threats to va-
lidity and issues in mining data from GitHub/Gerrit. Section 6 demonstrate the
working of our tool. Finally, Section 7 presents conclusions and highlight future
directions.

11

CHAPTER 2

Code Review

This chapter describes the software code reviews, modern code review process,
benefits and challenges of modern code review and factors influencing this pro-
cess.

2.1 Whatis Code Review?

Code review refers to a manual assessment of a code that detects potential defects
such as errors in both low level and high-level design and quality problems such
as coding rule violations. These are the various code review techniques:

1. Code Inspections: Code inspections are one of the first processes for soft-
ware code review. Itincludes planning, preparation, overview, code-inspection
meetings, rework and follow-up [16]. The goal of software code inspections
is to find errors during a synchronized inspection meeting, with reviewers
and authors sitting together to check the code changes. From 2005, research
on code inspection techniques are declined due to the increasing adaptabil-
ity of asynchronous code review process. [34]

2. Asynchronous Review: In this, reviewers evaluate the code changes and
communicate through the the channels such as email. When a change seems
to high enough quality, reviewers allow commit. In this area, Kononenko et
al. [21] find that review acceptance and response time are related to some
social factors such as author experience and reviewer workload which were
not available in software code inspection.

3. Tool-based Review: Several tool has been proposed to support the code
review process. The workflow of most of the tools includes following steps:

(a) Author submits change to the code-review tool

12

(b) Reviewers can view the difference of the proposed code change request
with its previous version.

(c) Reviewers can start discussion on certain lines with the author and
other reviewers.

(d) Author can submit the required changes to address the comments given
by reviewers.

This cycle continues until the reviewers are satisfied or the review is aban-
doned.

Software code reviews help the development process in reducing overall costs and
helps in knowledge transfer. The reviews conducted on the software code identify
logical errors, coding rule violations, and also assisted with the automated tools.
This review process is known as MCR (Modern Code Review) [3]. The MCR are
nowadays used by both the organizations such as Microsoft [24] or Google [34],
and by the open-source software (OSS) platforms such as GitHub!, Gerrit* or
review-board®. Rigby and Bird [32] examine several code review case studies
from projects spanning various OSS platforms and organizations and found five
common best practices of modern code review. These practices showed that mod-
ern code review 1) is a flexible and lightweight process; 2) happens early (before
a change is committed), quickly, and frequently; 3) code change sizes are small; 4)
generally involves two reviewers and 5) has changed from defect finding activity
to a group problem-solving activity.

2.2 Modern Code Review Process

Figure 2.1 describes the working of the MCR process. MCR process has four dif-
ferent roles: author, developer, maintainer, commenter. Review planning consists
of 3 steps. In the preparation step, the author prepares change metadata with a
description providing extra details of the change. Then, reviewers are picked in
the reviewer selection step. Finally, reviewers receive alerts to review the reviewer
notification step. Code review consists of three main steps. In Code checking step,
the reviewer individually performs code checking. They may also interact with
the author and among themselves in the Reviewer Interaction step. In reviewer
decision, reviewers decide on the change request which can be reworked, accept,

Thttps:/ /github.com/
Zhttps:/ /www.gerritcodereview.com /
3http5: / /www.reviewboard.org/

13

Reviewer Planning and Setup

. Reviewer Reviewer
=> Preparation [——= —

Selection Notification
v
Reviewer Reviewer .
. e . <1 Code Checking
Decision Interaction
Code Review

v Qw
) G0 @

Figure 2.1: Working of Modern Code Review (MCR)

or reject. In recent years, MCR gained increasing popularity. Therefore, to under-
stand the comprehensive perspective of MCR and the work that has been done
till now, Nicole Davila et al. [12] presented the results of a systematic literature
review on MCR, which includes 139 studies for drawing inferences.

Multiple approaches to support MCR have been proposed. Most of the ap-
proaches to support authors, focus mainly on the reviewer recommendation tech-
niques which uses a review history of the reviewers and their interests to build
recommendations. Approaches to support reviewers, focus on the code check-
ing, review prioritization, review decision and feedback support. Most of them
focused on the code checking to provide visualizations of code changes by high-
lighting changes to help understanding and the finding defects, which is a chal-
lenge for new reviewers. [12]

2.3 Benefits and Challenges

The benefits of code review are (1) finding defects in both low level and high-
level design, (2) code improvements to handle coding conventions with no defect
identification, (3) alternative solutions, (4) knowledge transfer which gives an-
other developer insight about code, (5) team awareness and transparency with
the code, and (6) sharing code ownership [3].
While challenges of code review include (1) understanding reason for the change,

(2) familiarity with the code - it takes more time to review files for the reviewers
who are not familiar with the code, (3) dealing with understanding needs - re-

14

viewers, in general, may try different paths such as sending emails or talk in per-
son for asking clarifications, (4) lax review means directly approves the change
request, (5) code size and poor quality, (6) delayed feedbacks, (7) difficulties in
finding proper reviewers, (8) lack of developers’ plan for knowledge sharing, (9)
change request rejections, and (10) lack of available reviewing guidelines [3][17].

2.4 Factors Influencing the Modern Code Review

There are several factors influencing the modern code review which are important
for code reviews and where tool support would be beneficial. Table 2.1 describes
the factors influencing modern code review and their impact on code review.

2.4.1 Non Technical Factors

Non technical factors related to author include:
1. Author’s familiarity with the code for a given project.
2. Author’s overall development experience.

Non technical factors related to reviewer includes:
1. Reviewer’s familiarity with the code for a given project.
2. Overall reviewing experience.
3. Reviewer’s participation rate.

Other non technical factors include project’s review workload which is the num-
ber of the code-review requests submitted in a certain period.

2.4.2 Technical Factors

Technical factors related to patch properties include:
1. Presence of poor programming practices that affect the code maintainability.
2. Code change location or the module it belongs to.
3. Number of files and directories in a code review request.

4. Change size, which is equal to the total number of inserted and deleted lines.

15

5. Type of change such as whether the change includes new code or it modifies
the existing files.

Technical factors related to historical patch properties include:

1. Number of comments posted in the reviews of earlier code reviews that
modifies the same files. These review comment involves the discussion top-
ics related to code understanding, improvement, alternate solutions and so-

cial interactions.
2. Prior defects that impact the same files.
3. Overall feedback or review delay of the reviewers.
Other technical factors include:

1. Request description length which is the Number of words an author uses to
describe a change in a code review request.

2. Reviewers notification that includes broadcast notification which is visible
to all developers and unicast notifications which is visible to a specific group
of developers.

3. Classification of changes based on priorities such as high-level or low-level
bug fixing.

16

Table 2.1: Factors Influencing the Modern Code Review

Group

Factor

Description

Influence on code review

Non-Technical factors

Author’s familiarity with

When author’s familiarity with the code decreases, the number of
comments and the number of active reviewers increases. In other

Cod . : . Rl :
Author faL:liari the code for a given words, new authors receive more attention from invited reviewers
ty project. [25][39][23]. When the author’s familiarity with the code increases,
the review duration decreases [7][9][25].
Development Author’s overall When the author’s experience with the code increases, the review
experience development experience. | duration decreases [7][9][25].
Code Reviewer's familiarity When the reviewer’s familiarity with the code increases, reviewer
Reviewer familiari with the code for a may express confusion in comments [15][14]. The reviewer’s code
ty given project. familiarity influences the quality of the feedback [29][10].
B et When the reviewer’s experience increases, the review duration
Experience : 5 decreases [7]. When the reviewer’s experience increases, the
experience.
post-release defects decreases [22].
Participation of reviewers in code review influences a product
Pap At R S PR PAT0 quality. Yang et. al [44] found that in OSS projects, an average of
- e one or two reviewers per request responded to a review request.
) Reviewer who have more experience and have higher review
articipation rate are more likely to respond new invitations [33].
P P s P
A The number of the Authors usually prefer to invite reviewers who have more
Other revilew code review requests experience, leads to increase the burden upon them [26]. Yang et.
B submitted in a certain al. [44] found that inviting inactive reviewers can speed up the code

Perind.

review process and it reduces the burden upon active reviewers.

Technical factors

Patch Code Practices that affect the Presence of poor programming practices such as indentation issues
properties | maintainability | code maintainability. have a negative impact on the performance of the reviewers [1].
E:Eﬁi Module it belongs to. More change locations negatively affects the review team size [33].
Number of files in a Changes that includes more modified files and lines of code
Scatteredness i : : : :
code review request. increases the number of code review iterations [8].
Equal to the total A large change size Pegatwel}r mﬂuerlu.:es the review duration [39].
Change 3 A small change size increases probability of attracting more
; number of inserted : : :
size : reviewers [13]. The more the lines changed in the patch, the more
and deleted lines. 5 I
likely the patch is discussed [39].
Tvpe of New code or
clirfn 2 modifications in Modified files are more vulnerable as compared to new files [9].
5 the existing files.
The review comment involves the discussions related to code
improvement, understanding, social interaction and alternate
;] Number of comments solutions [35][4]. Rajshakhar Paul et al. [27] found that female express less
Historical | Feedback : : : S : : : :
posted in the reviews sentiments in comments than males. Jing Jiang et al. [20] in their study
found an average of seven comments for reopened requests and
two comments for nnn—renpened review requests.
Prior Priin défscts thatimpact Files havj.n.g prior defects, te::u:l to L.l['ldE"l'gllJ reviews that‘have
Aot T more revisions and shorter discussions without any reviewer
; feedback as compared to normal files [38].
st Ovexall feedback delay A largelcha_nge size and havlng: more tea.ms 1nvnlved.mlght have
. a negative influence on the review duration [39]. Reviewer
delay of the reviewers . :) :
assignment problems negatively impact the review delay [40].
Request Number of words author . L. .
e : When the size of change description increases, the probability of
Other description uses to describe a change : : , !
. attracting more reviewers increases [13].
length In a request.
Reviewers notifications Broadcast notifications are visible to all developers while unicast
Reviewers include unicast notifications are visible to a specific group of developers. Code
notification reviews that uses broadcast method receive less iteration than the
broadcast notifications. reviews that uses unicast method [2].
Classification of changes | There is a need of review prioritization as reviewers might be
Task based on priorities such invited to many reviews. Higher priority should be given to
classification as high-level or low-level | high quality tasks such as code changes that impact the critical

bug-fixing.

project deliverables which cover a brad set of products [41].

17

CHAPTER 3

Literature Review

Recommending reviewers is the most common support in MCR. Mostly, recom-
mendation techniques use a review history of the reviewers and their interests to
build recommendations. This chapter provides an overview of algorithms devel-
oped for the recommendation of software code reviewers. Section 3.1 describes
several traditional approaches. Section 3.2 describes the approaches based on re-
viewer expertise. Section 3.3 describes the approaches based on social relations.
Section 3.4 describes the several hybrid approaches and Section 3.5 gives the com-
parative summary of these algorithms with respect to various parameters.

3.1 Traditional Approaches

Traditional recommendation approaches process historical reviews and use im-
perative algorithms to find the most appropriate code reviewers.

3.1.1 ReviewBot

In ReviewBot [6], the author analysed the code review process over Review Board.
This algorithm is based on the line change history (LCH). As it will recommend
same reviewers who has previously worked on the same lines. This algorithm has
two phases: (1) Computing LCH: The ReviewBot algorithm iterates over all lines
modified in the pull request and computes the LCH for all of them. The LHC over
file difference Fd can be computed by

LCHyy, (1) = (rq1, 192, . .., 7qn) (3.1)

where rql,rq2 are the review request which contains Fd affecting line L. LCH
of deleted and updated lines in Fd can be computed easily. For inserted lines,
as there are no change requests in past which affected those lines, in this case
authors chose the nearest line. It then assigns points to review requests related

18

to the lines. The more recent the review was, the more points it is assigned. (2)
Reviewer Ranking: Previous review requests were assigned points in the first step
which is then propagated to appropriate reviewers as points in the second step.
The result of this step is a list of reviewer candidates sorted by their points.

The ReviewBot algorithm has several problems. One of the problems is with
newly created files which don’t have any line change history and thus cannot be
correctly processed using this approach. Another problem is that most of the lines
in average project are only changed once. The accuracy of results returned by the
ReviewBot algorithm is therefore limited.

3.1.2 RevFinder

Previous Reviews New Review

Review R1

Files

video/res/a.xml

Reviewers

Review R2 Review R3

Files

video/src/x.java

video/src/y.java

Reviewers

Files
video/src/a.java
video/src/b.java

Reviewers

A B A ?

Score(A) = Similarity(R3,R1) + Similarity(R3,R2)
Score(B) = Similarity(R3,R1)

Figure 3.1: Working of Revfinder

In RevFinder [40], the author analysed the code review process of Gerrit. It
is based on the file path information as files stored in same paths should be re-
viewed by same reviewers. Figure 3.1 describes the working of RevFinder. It has
two phases. First phase compares previously reviewed file paths with file paths
included in a new change request by using the 4 string comparison techniques
(LCSuffix, LCPrefix, LCSubstr, LCSubseq) to examine the file paths’ similarity be-
tween new and historical file paths. Filepathsimilarities of two file f1 and f2 can
be given by:

StringComparison (fi, f2)
max (Length (f1),Length (f2))

(2) Borda count combination: It combines the results of these string compar-

filePathSimilarity (f1, f2) = (3.2)

ison techniques and returns sorted list of reviewers with their scores. This ap-
proach was tested on more than 42000 reviews of four open source projects and

19

it was 4 times more accurate than the ReviewBot algorithm. RevFinder was able to
correctly recommend 79% reviews considering a top-10 accuracy.

This algorithm has several problems though. It does not consider retired code
reviewers. It is also not able to recommend code reviewers for new files where
no file path similarity is found. Also there are threats to external validity as their
results are only for the 4 data-sets: OpenStack, Android, LibreOffice and Qt.

3.2 Approaches based on Reviewer Expertise

Approaches based on reviewer expertise use historical data to measure expertise
of reviewers and recommends suitable code reviewers.

3.21 CORRECT

Previous Reviews New Review

Revew Ri | el

Libraries
vapi, vauth, vautil vform, vtest, vapi

echnologies Technologies Technologies
Taskqueue, ndb, search pipeline, ndb, search mapreduce, ndb, search

Reviewers Reviewers
A Fd

Score(A) = Similarity(R3,R1) + Similarity(R3,R2)
Score(B) = Similarity(R3,R1) I

Libraries Libraries
vform, vtest, vauth

Reviewers
A B

Figure 3.2: Working of CORRECT

In CORRECT (Code Reviewer Recommendation based on Cross-project and
Technology experience) [28], author analysed the code review process of Github.
It is based on the reviewers’ expertise as it will recommend the same reviewers
who worked on same external libraries or technologies.

Ri=L; | LicLext U T; | T; € Typecial (3.3)

As shown in equation, any change request Ri, can be viewed as a combination
of specialized technologies (Tspecial) and tokens for external libraries (Lext) used

20

in the change request. Authors used Cosine Similarity to estimate similarity de-
gree between current pull request and past pull request. Figure 3.2 describes the
working of the CORRECT. This approach iterates over all files of a newly created
change request and analyzes the imported libraries of these files. The develop-
ers who have the most experience with the attached libraries are considered to be
the most relevant code reviewer candidates. The approach was tested on several
private projects and was compared against the RevFinder algorithm. CORRECT
outperformed the RevFinder algorithm on these projects having top-5 recommen-
dation more than 11% better and MRR value by 0.02 better than RevFinder.

This approach was built only for python,java and ruby. Thus its not gener-
alized to support all languages, ie. the syntax of import statement may differ
language by language. Another problem of this approach is with projects which
don’t have many external dependencies and thus developers” expertise with ex-
ternal libraries would hardly be helpful.

3.2.2 RevRec

First Layer: Reviewer Recommendation Second Layer: Participation Type

Technically parti:ipatanan]

request Recommendation

[Mew review Hybrid

Managerially participatatinn]

Figure 3.3: Working of RevRec

Yang cheng et al. [45] proposed two layer reviewer recommendation approach
RevRec. In the first layer, it recommends appropriate reviewers to review the code-
review requests based on a hybrid recommendation method combining the simi-
larity, expertise, and IR methods. After getting the recommendation results from
the first layer, in the second layer, it specifies the participation type from technical
and managerial perspectives, whether the recommended reviewer will partici-
pate managerially or technically in the reviewing process. As some reviewers will
identify the defects in the code change while other reviewers will just comment
below the review description. The authors tested their results on the two projects
of GitHub.

21

Figure 3.3 describes the working of RevRec. First layer includes hybrid rec-
ommendation consist of three methods: 1) IR-Based method which generates
the technical terms of each code review requests based on its title and descrip-
tion, generates term vectors of each term and then calculates relationship between
these code review requests using cosine similarities. 2) FL-Based method for rec-
ommending reviewers based on their similarities between file-paths computed
using string comparison techniques. 3) Expertise-Based method focusing on the
memory strength of reviewers by considering the lines of code change and cor-
relation time. It is based on the fact that, with the time, the reviewer’s expertise
becomes lower towards that piece of code. First layer gives top-10 reviewers as
a prediction result. For each of these reviewers, their participation type will be
predicted in second layer based on their experience for technical or managerial
review.

Their results showed that for the second layer, they achieved 72.8% accuracy
for the ruby project and 58.6% accuracy for the angular project. Although it has
some drawbacks. There may be the cases where reviewers just managerially par-
ticipate in the code review request, but mention the code change in the comment.
This should be categorised into technical participation instead of managerially
participation. Also, participation types can be further classified into encouraging
authors, asking questions or giving suggestions, testing code and changing the
code.

3.3 Approaches based on Social Relations

Approaches based on social relations analyse the social collaboration between de-
velopers and reviewers.

3.3.1 Comment-Network

Yue yu et al. [46] proposed a Comment-Network (CN) to capture the common inter-
ests in social activities among developers and recommend appropriate reviewers
based on it. The authors tested their results on 84 projects of GitHub. They defined
comment network as a weighted directed graph G, where the vertices indicates set
of developers and edges indicates the set of relations between developers. Their
hypothesis is based on 1) the freshness of comments and 2) comments present in
multiple reviews are more important than those in one review. Their approach
works as follows: 1) They build the collaboration structure for a given project us-
ing developers and reviewers information 2) They introduce time-sensitive factor

22

to ensure the freshness of comments. 3) The introduce decay factor to differentiate
between the comments submitted to multiple reviews against a single review. 4)
They balances these two factors to measure the developer-reviewer relationship.
Their results showed that the CN-based approach combined with traditional rec-
ommendation approaches can achieve significant improvements when compared
with pure traditional algorithms. Though, there are threats to external validity
as their results are based on GitHub only. Also it faces workload issue as a there
were cases when a reviewer joined many discussion of multiple reviews which
results in recommendation of same reviewer as top-1.

3.4 Hybrid Approaches

Hybrid Approaches considers multiple factors for a code reviewer recommenda-
tion.

3.4.1 CoreDevRec

4)(File Paths)—)(Paﬂw Featl,lres)i
Pull Request & ; : ; SVM
s s IntSUn:li:! R?:Iatlt?.nlshlp Cc-reDevREt)
Training eracuaon eatures
Historical Activeness
Records Features
) 4

New Pull 1 Feature] PuII.Request
Request J E:-ctracl:ian Assignment

Figure 3.4: Working of CodeDevRec

In CoreDevRec (Automatic Core Member Recommendation for Contribution
Evaluation) [19] the author analysed the code review process of Github. It is
an approach based on Machine Learning and uses Support Vector Machine al-
gorithm. Its overall process can be described by Figure 3.4. CoreDevRec algorithm
has two phases. The first phase builds a prediction model from past change re-
quests using three feature, while the second phase uses Machine Learning tech-
niques to recommend code reviewers. Several Machine Learning techniques were

23

tried for the Prediction Phase. Support Vector Machine method had the best result
and was hence chosen for CoreDevRec.
Features used for predictions:

1. Path Features It includes File path where Authors used Support Vector Ma-
chine algorithm with TFIDF unlike the four string comparison techniques
used in the RevFinder algorithm.

2. Relationship Features: extracted from social relationship information be-
tween GitHub developer. It includes Follower Relation, Following Relation,
Prior Evaluation, Recent Evaluation

3. Activeness Features: to recommend active and available reviewers. It in-
cludes Total Pull, Evaluate Pulls, Recent Pulls, Evaluate Time, Latest Time,
First Time.

CoreDevRec algorithm was tested on five open source GitHub projects. It was
compared against RevFinder and it outperformed RevFinder in all these projects
with MRR value better by 0.21 on average.

The problems with this approach include (1) follower relation and following
relation are not directly available on some projects (Apache/Mozilla). (2) In other
OSS platform, social Data is not directly available and needed to be gathered using
help from mining mails and other methods. (3) These social relations are not
gathered at the time of every change request (4) It is not known if these results can
be acceptable in another OSS platforms or not as these results are based on only
GitHub (5) did not consider quality of results - whether recommended reviewers
make correct decision of change request or not.

3.4.2 TIE

Xin Xia et al. [42] proposed a TIE that extends the state-of-the-art RevFinder by
building the hybrid approach including the commit message as a new feature
and using a Naive Bayes Classifier. The authors tested their results on the four
projects of Gerrit. Figure 3.5 describes the working of TIE. Here, historical re-
views are used to construct TIECOMPOSER, which is then used to recommend
a set of reviewers for a new review request. They extended the RevFinder by in-
cluding the commit messages and time features and also their file-path similarity
checking technique differs from the one used in RevFinder. This approach was
tested on same data-sets mentioned in RevFinder[40]. It improves the state-of-the-

art RevFinder by 37%, 8%, 23% and 61% in terms of MRR and top-10,5,1 accuracies.

24

(Histnrical reviews] (NEW ReviEW)
: Commit File-paths,
Naive Bayes Similarity
Model Model

Constructtion
>(TIEComposer)

File-paths,
Upload time

Similarity
Model Model

RecummendatmnT

Figure 3.5: Working of TIE

Naive Bayes

Though it outperforms the RevFinder, there are threats to external validity as their
results are only tested for the 4 data-sets: OpenStack, Android, LibreOffice and

Qt.

3.4.3 WhoReview

A Beview Paguest Mutli DbjE{ti'll'E Code Reivewers
Recommendations

Developer
—
[Rewewer Expertise] [Reviewer J

v
Gerrit

Code Review
History

N Wrokload

Collaboration Recommended

Reviewers

Figure 3.6: Working of WhoReview

WhoReview [11] is an approach based on Machine Learning. Here, the author
analysed the code review process of Gerrit. They used the IBEA - Indicator-Based
Evolutionary Algorithm to find the best set of reviewers who are more collabo-
rative as well as experienced and has less workload. IBEA is a multi objective
search based algorithm. Here, we have 2 indicators: 1) maximizing the reviewer
collaboration and expertise 2)minimizing reviewer workload. The main reason

25

Table 3.1: Technique, Platform, Source Code, Data-sets, Metrics Used

Existing Approaches | Year Eﬁﬁ?nrm 'I[;il‘ljmque E::;iﬂts f:::;;::ﬂ“y Metrics
Top - k| MRR | Precision | Recall

ReviewBot 2013 | ReviewBoard | Line Change History |1 Yes Yes No [No No
RevFinder 2015 | Gerrit String Comparison |4 No Yes Yes |No No
TIE 2015 | Gerrit Naive Bayes 4 No Yes Yes |No No
Correct 2016 |GitHub Cosine Similarity 10 No Yes Yes |Yes Yes
CoreDevRec 2015 |GitHub Machine Learning |5 No Yes Yes |No No
Comment Network |[2017|GitHub Comment Network |84 No Yes Yes |Yes Yes
RevRec 2018 |GitHub Cosine Similarity 2 No Yes Yes |Yes Yes
WhoReview 2020 |Gerrit Evolutionary Search |4 No Yes Yes |Yes Yes

Table 3.2: Features used in most common Recommendation Algorithms

Existing Approaches
Feature ReviewBot | RevFinder | TIE | CORRECT | CoreDevRec | Comm. Net| RevRec | WhoReview | Total

File Path No Yes Yes | No Yes Yes Yes No 5
Social Interaction No No No |[No Yes Yes No Yes 3
Line Change History | Yes No No |No No No Yes No 2
Reviewer Activeness | No No Yes |No Yes No Yes No 3
Subject No No No |No No No Yes No 1
Libraries No No No | Yes No No No No 1
Commit Messages |[No No Yes | No No No No No 1
Author No No No |No No No No No 0
Reviewer Workload [No No No |No No No No Yes 1
Sub-Project No No No |No No No No No 0
Total 1 1 3 1 3 2 4 2

to consider workload with the expertise is that usually the most experienced re-
viewer is recommended by most of the tools, which significantly increases her /his
workload. Tools should consider one’s workload too.

The working of WhoReview is given in figure 3.6. It has 3 models (1) reviewers
expertise model - based on recent comment on same file. It is defined by review
frequency(no of comments) and recency(freshness of comments), (2) reviewers
collaboration model - based on number of interactions between developer and re-
viewer and (3) reviewers workload model - which is based on the size of change
and average time spent on the review. Then maximization of the reviewer exper-
tise and collaboration was done with minimizing the reviewer workload. Finally
reviewer ranking was done as reviewer who appears more in near-optimal solu-
tions has more points.

WhoReview was tested on 4 oss projects- OpenStack, Android, QT, LibreOffice
and results showed that it outperformed RevFinder by an average recall of 77%
and precision of 68%. Problems include 1) they didn’t check over/under estima-
tion in expertise and workload model 2) Used very costly, evolutionary search.

26

3.5 Summary

We summarized the well-known algorithms such as ReviewBot [6], RevFinder [40],
TIE [42], Correct [28], CoreDevRec [19], Comment-Network [46], RevRec [45], WhoRe-
view [11]. Table 3.1 represents and compares the technique, platform, source code,
data-sets, metrics used. Table 3.2 represents features used in commonly used
recommendation algorithms such as File-Path, Social Interaction, Line Change
History, Reviewer Activeness, Subject of the change, External Libraries/Tech-
nologies, Commit Messages, Author, Reviewer Workload and Project /Sub-project
information. Although there are multiple approaches available, Vladimir Ko-
valenko et al. [24], showed that there is a need for more user-centric approaches

in reviewer recommendation.

27

CHAPTER 4

Code Reviewer Recommendation: Proposed

Approach

This chapter describes Gerrit and GitHub based proposed hybrid code reviewer
recommendation approach CORMS for a modern code review. Figure 4.1 shows

1 Feature Selection(- G
Data Cleanin . Dupject
Mined Data g Pre-processed
Data Remove stopwords
Remove puntuations
Word Lemmatisation /\

File Paths 4 4

A mﬁ:prs Training Data Testing Data
Sub-Project

: \/
Similarity Model @ N M
\ ode

. V .
CORMS Filtered Data
Controller Filter by activeness

Vectorized Data

>O

ﬁ) Add more reviewersJ V N
=1 >[CORMS |
/J\ Manually add review&rs]
Developer .

Figure 4.1: Proposed Hybrid Approach: CORMS

our hybrid proposed approach — CORMS. It includes the following steps:

1. Data Mining: To mine the required gerrit and github repositories of a given

project.
2. Data Pre-processing: To process to remove the duplicate data and outliers.

3. Natural Language Processing and Vector Transformation: To process the

28

textual content present in subject field and to convert it into a numerical

vectors.

4. Data Splitting: To split the data into training and testing. We used the terms
closed reviews to describe the train data and new reviews to describe the test
data.

5. Similarity Model: To compute similarities of the file-paths, author infor-
mation, project/sub-project of the current pull request separately with the
file-paths, author information, project/sub-project of all the pull requests
historically studied by various developers.

6. Support Vector Machine Model: To predict the reviewer based on the tfidf
vectorized form of subject field.

7. CORMS Controller: To combine and normalize the results of both similar-
ity and Support Vector Machine model and give the top-10 reviewer recom-
mendations by filtering out the retired reviewers.

Each of these steps are briefly explained in this chapter.

4.1 Data Mining

As shown in figure 4.1, the first step includes the data gathered from mining Gerrit
or GitHub repositories. We created two different mining algorithms: one for min-
ing Gerrit reviews, and another for mining GitHub reviews. We selected Python
to implement these algorithms. We mined a total of 30,648 reviews from both Ger-
rit and GitHub in which 27,157 reviews are mined from 10 Gerrit projects while
3,491 reviews are mined from 10 GitHub projects.

4.1.1 Mining reviews from Gerrit

We mined recent code reviews of very popular projects from Gerrit using Python
script. Our mining process for Gerrit is described in figure 4.2. Our script gener-
ated threads to mine parallel data faster compared to sequential mining. Each
thread then built URL pattern required for mining and downloaded response
in JSON. Though some essential extra parameters need to be specified explic-
itly - project, thread count, status, after and before date. In each thread change
details URL! will be created and then thread will query this URL to download

Thttps:/ /review.openstack.org/changes/?q=after:"2015-01-01"+before:"2022-01-
01"&o=all_revisionss&o=all_files&o=messages&o=detailed_labels& 5=1500& n=100

23

Give essential parameters
Project, Status, Before, After, N jobs N Jobs = N Threads

Miner (Each Thread)
- Y
Create
Error Change Details URL
y) (ex. https://review.openstack.org/changes/?q=after:""+before:""&n=100)
\ v
,l, i
Create
DS:EE.H%R]%N Change Details Filename
(ex. Openstack_closed_0_100)
1 o
Yes
File already Exist)
l No
c Load and Dump
uccess JSON in created file

Figure 4.2: Our Mining Workflow for Gerrit

JSON data. For storing data, appropriate filename will be created (ex. open-
stack_closed_0_100). Further, filename will be checked whether similar file exist
or not, if yes, it will give error otherwise it will load and dump JSON data into
that file for storing it in appropriate format.

4.1.2 Mining reviews from GitHub

For mining the GitHub reviews we used GitHub Search API%. The daily API call
limit is 60 for unauthenticated requests, which is not sufficient for mining large
data-sets. Thus we generated Personal Access Tokens through which we can ac-
cess access the GitHub API and can extend this limit to 5000. Our mining algo-
rithm for GitHub is shown in figure 4.3. In a first step, we are making an API
call to list all the repositories of a particular selected project. Then for each repos-
itories we are making API call for mining closed and open issues related to that
repositories. Then for each of these issues, we are making an API call for mining
the pull requests related to that issue. Then from the data collected from these
pull requests we further check that if any reviewers are assigned to pull requests
or not. And if assigned we make a final API call to mine all commits related to

https:/ /docs.github.com /en /rest/reference/search

30

Give essential parameters
Project, Status

Miner
\
Fetch all repositories wh:f::t:tll,ig:m
(ex. api.github.com/orgs/project/repos) (ex. ...Jissues?q=is:closed)
_.J

No

Any reviewer is assigned to pull? Fetch all pulls
(ex. api.github..../pulls)

Fetch all commits Fetch all details related to commit
(ex. api.github..../commits) (ex. api.github..../commits/id)

Process JSON data &
append review details to CSV

Figure 4.3: Our Mining Workflow for GitHub

this pull request. This will return the details about the list of commits related to
this pull requests However, not about the files changed during this pull request.
So to get this detail, we also need to make another API call in which particular
commit id is given in a API call which we got from the results of earlier API call.
So finally we will get details about the files that are changed during the commit
which is the main feature of RevFinder and other details such as total updated /in-
serted /deleted lines. We then finally merge important details which we got from
mining project, repository, issue, pull requests, commits and store or append it in
a csv file.

4.2 Data Pre-processing

As shown in Figure 4.1, the second step includes the pre-processed data. From
the mined data, we extracted the important features: 1) File-Path info 2) All Re-
viewer details 3) Subject of the change, 4) Project/Sub-project Information, 5) Last
reviewed date, 6) Author details, 7) Change size which is equivalent to inserted
lines + deleted lines, 8) Final reviewers details who voted +2 or -2 by making an
important decision.

We then removed the reviews in which change-size was equal to zero. We

31

have also removed reviews that had status="open” or “new” and had duplicate

values.

4.3 Natural Language Processing and Vector Transfor-

mation

As shown in Figure 4.1, the third step includes the natural language processing

and vector transformation of the textual content.

4.3.1 Natural Language Processing

The subject of the change contains the textual contents and we can not pass this

human language to our models. Thus in this step we process this human lan-
guage.

1.

Lowered case: Our first pre-processing step includes the lowering of the
textual content.

Removal of Punctuation: We removed all punctuation from the string using
the string library®. For example, for the string "(There is a tree, near the

river!)", after removing all punctuation, we can get "There is a tree near the

river'.

Removal of StopWords: We removed all stop-words from the subject of
the change using gensim library*. For example, for the same string, after
removing stop-words we can get ‘there’, "tree, 'near’, 'river’.

String Lemmatization: We used string lemmatization to reduce inflectional
and derivationally related forms of a word to a common base form. For
instance “am, are” falls in the same class “b” while “car, cars, car’s, cars”’ falls

in the same class “car”.

Removal of Common Words: Then we removed some most common words
from the subject of the change. These words are: “Insert”, “Update”, “Delete”,
“Add”, etc. So that in the end, we can have only meaningful words for which

we can train and test various machine learning models.

https:/ /docs.python.org/3/library /string.html
*https:/ /pypi.org/project/gensim

32

4.3.2 TFIDF Vectorization

We used the TFIDF vectorizer to transform a string into numeric vectors. It con-
tains the following steps:

1. Tokenization: The first step to implement TF-IDF, is tokenization where a
string is tokenized into a bag of words.

2. Find TF-IDF Values: The TF value refers to term frequency and can be cal-
culated as follows:

No. of instances of word w in sentence s
TF = : (4.1)
Total no. of words in sentence s

IDF refers to inverse document frequency and can be calculated as follows:

Total no. of sentences
IDF = 4.2
No. of sentences that contain word w (*.2)

Here, the IDF value of a word depends upon the total number of documents
thus it remains the same throughout all the documents. On the contrary, TF
values for a word differ from document to document.

For example, if we have 2 sentences: 1) I love playing cricket, 2) Prahar
play cricket. Here, "Prahar"” in the second sentence occurs only once in that
sentence and the total number of words in the second sentence is 3, hence,
TF value for the word "Prahar" for second sentenceis 1/3. Also, we have two

sentences and the word "Prahar"” occurs in the second sentence, therefore the
IDF value of the word "Prahar"is2/1 = 2.

4.4 Data Splitting

As shown in Figure 4.1, the fourth step includes data splitting. Finally, we split
the data into 2 parts: 80% data for training and 20% of data for testing. We define
this data as NewReviews and TrainReviews. NewReviews are the reviews for which
we want to predict the results and TrainReviews are the reviews on which we can
train the model.

4.5 Similarity Model

As shown in Figure 4.1, in the fifth step, our similarity model predicts the re-
viewers using the same string comparison techniques used in the state-of-the-art

33

RevFinder. However, we extended it to compute similarities between project or
sub-projects and author information. These review similarity scores are propa-
gated to each code-reviewer who has involved in. In project or sub-project infor-
mation, we only considered the sub-project, as project information is mostly the
same in GitHub projects. Thus, we removed that constant values and only con-
sidered sub-project information as we wanted to build our approach for a gener-
alized purpose.

Algorithm 1 Similarity Model

Input: nR(NewReview), TrainReviews
Output: Reviewers (Sorted list of reviewers assigned with score)
1: procedure SIMILARITYPREDICTION(nR) > Computes similarity between
NewReview nR and all TrainReviews

2. subProjnR < extractSubProj(nR)
3 authornR <+ extract Author(nR)
4: filesnR < extractFiles(nR)
D! while cR € TrainReviews do > Compare with all TrainReviews
6: subProjcR < extractSubProj(cR)
7 filescR < extractFiles(cR)
8: authorcR « extract Author(cR)
9: reviewercR < extractReviewers(cR)
10: score < dict()
11: while fN € filesnR do
12: while cN € filescR do
13: score < score + similarity(fN,cN)
14: end while
15 end while
16: score <— score + similarity(subProjnR, subProjcR)
17: score <— score + similarity(authornR, authorcR)
18: NormalizationFactor < Eﬂégﬂ =
19: score < score x NormalizationFactor
20: while r € reviewercR do > Propagate similarity scores to reviewers
involved in a closed review cR
21: reviewers|r| < reviewers|r| + score|r|
22: end while
23: end while
24; reviewers <— sortByScore(reviewers)

25: end procedure

We implemented this similarity model in Python. Algorithm 1 shows the al-
gorithm of our similarity model. It takes the NewReview nr and all TrainReviews as
input and then extracts the File-Paths, Sub-Projects, Authors information from it.
It calculates the similarity score as the combination of all similarity scores of File-
Paths, Sub-Projects, Authors between each NewReview and all TrainReviews. For

34

computing the similarities, this algorithm uses the four string comparison tech-
niques namely, longest common sub-sequence, longest common prefix, longest
common suffix, and longest common sub-string.

Finally, it propagates this score to all the reviewers who are involved in each
TrainReviews using normalization methods instead of using the borda count [30]
combination method used in state-of-the-art RevFinder. We defined normalization
factor of a dictionary dict as follows:

1.0

Normalization Factor = Yo € dict (4.3)

where, v is the values of dictionary dict. For instance, if we have a dictionary
with a key-value pair of reviewer-score then it sums all the values of the score and
measures the normalization factor by dividing this value by 1. Now, for nor-
malizing the scores of the reviewers, it multiplies all the reviewers’ scores with
the normalization factor in four dictionaries separately: 1) reviewer-score dictio-
nary obtained from computing similarities using longest common sub-sequence,
2) reviewer-score dictionary obtained from computing similarities using longest
common sub-string, 3) reviewer-Score dictionary obtained from computing simi-
larities using longest common prefix, 4) reviewer-Score dictionary obtained from
computing similarities using a longest common suffix. It then combines all these
dictionaries into the final reviewer’s dictionary and then sorts this set of review-
ers based on their normalized scores in descending order. The final output of this
model is a set of reviewers with a score assigned to them. Our results showed that
for each newly added feature, our similarity model greatly improves the accura-
cies of state-of-the-art RevFinder.

4.6 Ensemble Modeling

As shown in Figure 4.1, our sixth step includes the ensemble technique to predict
the set of reviewers based on the selected classification algorithm. We tested four
classification algorithms of machine learning namely, Support Vector Machine
(S§V M), Random Forest, K Nearest Neighbour, and Multinomial Naive Bayes. Our
results showed that SV M gave the best results when used with the same settings
for all the 20 projects of Gerrit and GitHub.

Algorithm 2 shows the algorithm of the classification model used in our study.
We implemented the SVM Classification Model [36] in Python Language. The
vectorized representation of the subject of change and reviewers of all closed re-

35

Algorithm 2 SVM Classification Model

Input: trainVector, trainRev, test Vector

Output: reviewer
1: procedure SVMPREDICTION(trainVector, trainRev, test Vector)

model < fit(trainVector, trainRev)

2
3
4: reviewer <— model.predict(testVector)
5 > Prediction using Support Vector Machine
6:

end procedure

views is taken as input in our prediction model. The model then predicts (or
recommends) an appropriate reviewer for a given vectorized representation of
the subject of the change of a new review.

4.7 CORMS Controller

As shown in Figure 4.1, in the seventh step of the proposed approach, our CORMS
Controller process all the new reviews.

We implemented CORMS Controller in Python. Algorithm 3 shows the al-
gorithm of our CORMS Controller. It takes all NewReviews and TrainReviews as
input. Then it constructs the reviewer activeness by extracting the closed date
from all TrainReviews and propagating or updating these to all the reviewers who
are involved in it. This controller then sorts this reviewer’s activeness based on
their last reviewed date. Then it processes all the new reviews and passes each
of these pre-processed reviews to both similarity and SV M Models to obtain the
following:

1. Sorted list of reviewers predicted by similarity model.
2. Reviewer predicted by the Support Vector Machine model.

This CORMS Controller then combines these two results and normalizes them
using the same normalization factor defined in the similarity model and builds
the combined list of a set of reviewers with a final score assigned to them. It then
filters the reviewers based on the Reviewer’s Activeness. This filtering can be done
by removing all reviewers whose last reviewed period is greater than 12 months.
The final output of this model is the sorted list of reviewers.

36

Algorithm 3 CORMS Controller

Input: NewReviews, TrainReviews
Output: Reviewers (Sorted list of reviewers assigned with score)

1: procedure HYBRIDPREDICTION(#nR)

2 while cR € TrainReviews do

3 cd < extractClosedDate(cR)

4 trainRev <— extractReviewers(cr)

5 activeness < update(activeness, trainRev, cR)
6 end while

7 activeness < sortByLastReviewedDate(activeness)
8 trainVector < tfidf (extractSubject(TrainReviews))
9: while nR € newReviews do

10: testVector <— tfidf(extractSubject(nr))

11: revSim <— SimilarityPrediction(nr)

12: revSvm < SV MPrediction(trainVector, trainRev, test Vector)
13: reviewer <— revSim + revSom

14: revFact < Et}Erlégiﬁuer

15: reviewer <— reviewer * revFact

16: while r € finalScore do

17: if activeness|r| > 12 then

18: reviewers < remouve(reviewer|r|)

19: end if
20: reviewers <— sortByScore(reviewers)
21 end while

22: end while
23: end procedure

37

CHAPTER 5

Experimentation and Results

In this chapter, we evaluate the performance of CORMS. Our experimental envi-
ronment includes 14 GB of GPU memory and 12 GB RAM.

5.1 Experimental Setup

We mined 30,648 reviews from 20 projects of both Gerrit and GitHub from 2020
to 2021. For the processing of the textual content, we use the Gensim'? library for
removing stop-words and WordNetLemmatizer library of NLTK! for word lemma-
tization and string'! library for removing the punctuation. The state-of-the-art
RevFinder [40] and TIE [42] used the data-sets provided by Thongatanunam et
al. [40] which contain a total of 42,045 reviews mined in time-period 2008-2014.
These approaches have experimented with four projects of Gerrit: 1) OpenStack,
2) LibreOffice, 3) QT, 4) Android.

The proposed approach, CORMS, examines the author’s information and the
subject of the change information which is not available in the data-set provided

by Thongatanunam et al. [40], hence, we created a new data-set by mining from
both Gerrit and GitHub.

5.1.1 Project Selection

We have selected a total of 20 projects for the analysis of CORMS. In which we
selected 10 projects from Gerrit and 10 projects from GitHub. Our selected Gerrit
projects are 1) OpenStack, 2) LibreOffice, 3) QT, 4) Android, 5) Go, 6) Eclipse, 7)
Unlegacy, 8) Cloudera, 9) Opencord, 10) Chromium. While our GitHub projects
are as follows: 1) TWBS, 2) Joyent, 3) Jquery 4) Node]S, 5) Shopity, 6) H5bp, 7)
Nix-Community, 8) BSSW, 9) RenovateBot, 10) FullStorydev.

Thttps:/ /www.nltk.org/_modules /nltk/stem /wordnet.html

38

Table 5.1: Statistics of the data collected from OSS

S.No. Project # Revi.|# Files | # Re. | # Avg. Re.
1 Go 1842 | 11470 | 78 3.64
2 Eclipse 1965 | 17458 | 135 2.46
3 QT 2144 110832 | 116 3.61
1 Openstack 2573 | 5657 | 269 3.99
5 Android 1903 | 1117 | 119 4.45
6 Libreoffice 1879 | 10573 | 54 2.26
7 Unlegacy 2624 | 2342 | 8 1.41
8 Cloudera 2169 | 15597 | 46 3.96
9 OpenCord 6163 | 53788 | 45 443
10 Chromium 3113 | 10501 | 278 2.63
11 TWBS 656 | 6661 | 12 1.09
12 Joyent 139 | 4455 | 24 1.13
13 BSSW 208 | 2588 | 19 1.4
14 RenovateBot 184 |21228 | 6 1.09
15 Shopify 584 | 5360 | 171 1.44
16 |[Nix-Community| 418 | 5072 | 28 1.19
17 GetSentry 781 | 22525 | 66 1.22
18 | FullStoryDev | 310 | 5424 | 27 1.66
19 Node]JS 113 | 2114 | 35 1.58
20 H5bp 98 648 8 1.02

5.1.2 Statistics of collected data

Table 5.1 shows the statistics of the collected data used for the analysis of CORMS
from 2020 to 2021. The columns correspond to the serial number (S.No), the
project name (Project), the total number of collected reviews including both the
closed and open reviews (# Revi.), the total number of modified files (# Files), the
total number of unique code-reviewers (# Re.), and the average number of code-
reviewers per review (# Avg. Re.). The first ten projects correspond to the projects
from Gerrit, and the last ten projects belong to GitHub.

5.2 Evaluation Metrics

To evaluate the performance of the CORMS, we use the Top-K prediction accuracy
and the Mean Reciprocal Rank (MRR) that are common in the evaluation of code
review and software engineering recommendation systems.

39

5.2.1 Top-K

If we have sorted list of reviewers, then Top-K accuracy denotes percentage of
reviewers who are present at the Top-K positions in this sorted list. The Top-K
accuracy is computed as follows:

Y .cr isPresent (r,k)
|Rev|

Top-K accuracy = (5.1)
where, Rev refers to a set of reviews and isPresent (r,k) returns 1 if at least one of
the actual reviewers r is correctly recommended at the Top-k position, otherwise
returns 0. In this paper, wesetk =1, 3, 5, and 10. The higher the k value, the better
a reviewer recommendation technique performs.

5.2.2 Mean Reciprocal Rank (MRR)

MRR corresponds to the average of the reciprocal ranks of a set of recommenda-
tions. It describes a mean position of actual reviewer in the sorted list. The MRR
is computed as follows:

1 1

|Rev)| r; rank(r, slist(r))) (5.2)

Mean Reciprocal Rank =

where, Rev refers to a set of reviews and rank(r,slist(r)) returns the position of a
reviewer r present in the sorted list - slist. Hence, the outcome of 1/rank will be 0,
if no reviewers are present in the list, otherwise if the reviewer appear in the top
positions, then 1/rank will be near to 1, and if reviewer appear far from the top,
then 1/rank will be near to 0.

5.3 Research Questions and Analysis

5.3.1 Research Questions

Our experimental study aims at addressing the three main research questions

(RQs).

1. How efficient is CORMS in recommending reviewers? What is the perfor-
mance of CORMS when compared with the state-of-the-art RevFinder?

40

Table 5.2: Performance evaluation of CORMS and RevFinder

Top-1 Top-3 Top-5 Top-10 MRR
No Project Ext | Rev [Imp% | Ext | Rev [Imp% | Ext | Rev |Imp% | Ext | Rev |Imp% | Ext | Rev |Imp%
1 Go 43.43|25.18| 7248 |70.07 | 43.8 | 59.98 |74.81|58.76| 27.31 |87.96(75.18| 17 |0.58| 0.4 | 31.03
2 Eclipse 55.81|18.31|204.81|72.67 | 31.4 |131.43|82.85|41.57| 99.3 |87.21(58.72| 48.52 |0.67 | 0.3 | 55.22
3 QT 49.45|45.86| 7.83 |64.92(55.52| 16.93 |70.72|59.39| 19.08 |80.39 (63.81| 25.98 |0.59|0.53| 10.17
1 Openstack |40.66| 28.2 | 44.18 |85.98|52.62| 63.4 |93.13|61.34| 51.83 |98.08 |66.28 | 47.98 |0.64 |0.44| 31.25
5 Android 60.94| 50 | 21.88 |65.63(57.81| 13.53 |73.44|60.94| 20.51 |78.13 (65.63 | 19.05 |0.66 |0.55| 16.67
6 Libreoffice |74.57|54.29| 37.35 |80.57|64.57| 24.78 |83.71| 72 | 16.26 |89.43| 78 | 14.65 (0.79|0.62| 21.52
7 Unlegacy 64.79 (47.89| 35.29 |95.77|85.92| 11.46 |97.89(|97.89| 0 100 (993 | 0.7 |0.77(0.67 12.99
8 Cloudera 46.15(41.02| 12.51 |60.51|58.46| 3.51 |71.28|70.26| 1.45 | 84.1 |82.31| 2.17 |0.58|0.55| 5.17
9 OpenCord [28.67|28.67| 0 |71.67|71.33| 0.48 (8833 88 | 0.37 | 9 | 95 | 1.05 |0.53|0.52| 1.89
10 Chromium |37.96|32.64| 16.3 |52.31| 46.3 | 12.98 |57.18|51.62| 10.77 |61.81(55.79| 10.79 |0.47 |0.41 | 12.77
11 TWBS 52.38|51.59| 1.53 |86.51|80.95| 6.87 |89.68| 88.1 | 1.79 |96.83|96.83| 0 |0.7 |0.68]| 2.86
12 Joyent 57.14(35.71| 60.01 |78.57|42.86| 83.32 |85.71|85.71| 0 |85.71|85.71| 0 |0.69|0.48| 30.43
13 BSSW 45 | 35 | 2857 (775|775 O 875|825 | 6.06 [925 (925 0 |0.64/0.57|10.94
14 | RenovateBot |825|625| 32 [96.25(96.25| 0 100 | 100 0 100 | 100 0 (0.89/0.79| 11.24
15 Shopify 892|446 | 100 |16.96| 8.04 |110.95|23.21| 9.82 |136.35|32.14|17.86| 79.96 |0.16|0.09 | 43.75
16 |Nix-Community |55.71(51.43| 8.32 |61.43|61.43| 0 |67.14/64.29| 4.43 |67.14(65.71| 218 |0.59(0.57| 3.39
17 GetSentry 11.59| 5.07 | 128.6 | 41.3 |26.09| 58.3 |55.07|46.38| 18.74 |59.42|57.97| 2.5 |0.29|0.21| 27.59
18 | FullStoryDev (23.21|23.21| 0 |64.29(60.71| 5.9 |66.07|64.29| 2.77 |69.64(69.64| 0 |0.44(0.42| 4.55
19 Node]S 18.75| 125 | 50 |[43.75|31.25| 40 |56.25(43.75| 28,57 | 625|625 | 0 |0.35|0.27| 22.86
20 H5bp 50 |31.82| 57.13 [81.82(45.45| 80.02 |86.36|86.36| 0 |86.36(86.36| 0 |0.66|0.48| 27.27
- AVG 451 (343 | 449 | 675|549 | 344 | 746 | 66.7 | 208 | 799 |73.8 | 12.3 |0.58|0.48| 184

2. How much improvement does CORMS gain with each newly added feature
over state-of-the-art RevFinder?

3. Which problems of state-of-the-art RevFinder are solved in CORMS?

RQ1: How efficient is CORMS in recommending reviewers? What is the perfor-
mance of CORMS when compared with the state-of-the-art RevFinder?

We compare CORMS with RevFinder [40], and evaluate them on 20 projects of
Gerrit and GitHub, and measure the MRR and Top-K accuracies (k = 10, 5, 3, and
1). We define improvement(%) as:

(Extend Accuracy — OrigAccuracy) * 100

Improve(%) = (5.3)

OrigAccuracy

Table 5.2 shows the Top-K accuracies (k = 1, 3, 5, and 10) and MRR values of
CORMS and state-of-the-art RevFinder. Here, column ‘Rev’ corresponds to the ac-
curacies of RevFinder and “Ext’ corresponds to the extended accuracies of CORMS.
We observe that CORMS outperforms state-of-the-art RevFinder by a significant

margin. On average for the 20 projects, CORMS achieves top-1, top-3, top-5, and
top-10 accuracies, and MRR values of 79.9%, 74.6%, 67.5%, 45.1% and 0.58, which
improves the state-of-the-art approach RevFinder by 12.3%, 20.8%, 34.4%, 44.9%
and 18.4%, respectively. Here, the improvement of accuracies of Top-K reduces as
the k value of Top-K increases. The reason for that is greater the k value, the more
accuracy will be there and thus improvement will be less.

41

Table 5.3: Performance of CORMS with Normalization and Borda Count score
propagation techniques

Borda Count| Normalization
Top-1 38.7 % 44.9 %
Tﬂp-3 30.54 % 34.4 %
Top-5 18.3 % 20.8 %
Top-10 12.3 % 12.3 %
MRR 16.9 % 18.4 %

For Gerrit, we observe CORMS achieves the most improvement over state-of-
the-art RevFinder in the project Eclipse; it improves RevFinder by 49%, 99%, 131%,
205% and 55% in terms of top-10, top-5, top-3, and top-1 accuracies, and MRR re-
spectively. For GitHub, we observe CORMS achieves the most improvement over
state-of-the-art RevFinder in the project Shopity; it improves RevFinder by 80%,
136%, 111%, 100% and 44% in terms of top-10, top-5, top-3, and top-1 accuracies,
and MRR respectively.

Table 5.3 shows the evaluation of the performance of CORMS with two score
propagation techniques: ‘Borda count’ [30] used in the RevFinder and our pro-
posed ‘normalization” technique. We can notice that for the 20 projects, CORMS
when used with the normalization technique achieves the Top-1, 3, 5, 10 and MRR
values of 12.3%, 20.8%, 34.4%, 44.9% and 18.4% respectively, which performs bet-
ter than the Borda count combination technique.

RQ2: How much improvement does CORMS gain with each newly added feature
over state-of-the-art RevFinder?

We compare the results of the two prediction models of CORMS: SV M model
and similarity model with state-of-the-art RevFinder. We evaluate these approaches
on 20 projects of GitHub and Gerrit and record the Top-K accuracies, and MRR
values. We define accuracy gain as the difference between the accuracies of our
models built over top of RevFinder, and state-of-the-art RevFinder. Also, we define
Top-K gain as the average accuracy gain of top-5, top-3, and top-1 accuracies.

Table 5.4 presents the average Top-K and MRR gain of:

1. Similarity Model computing similarities of file-paths and sub-projects, which

alone overall improves the state-of-the-art RevFinder in Top-K and MRR ac-
curacies by 8.6% and 7.29%.

2. Similarity Model computing similarities of file-paths and authors, which

alone overall improves the state-of-the-art RevFinder in Top-K and MRR ac-
curacies by 12.1% and 11.11%.

42

Table 5.4: Measurement of Accuracy Gain for each Individual Models

SVM Model| Similarity Model
(Subject) (File-Path) +

+ RevFinder | (SubProject) | (Author)

Overall | Top-K Gain| 7.98 % 8.6 % 12.1 %

MRR Gain 6.31 % 7.29 % 11.11 %

Gerrit T{]p-K Gain 6.05 % 7.3 % 17.58 %

MRR Gain | 392 % 5.88 % 15.69 %

GitHub | Top-K Gain| 9.92 % 9.91 % 6.62 %

MRR Gain 8.7 % 8.7 % 6.52 %

3. SV M Model predicting reviewers based on the textual content(subject), when

added with the RevFinder, overall improves the state-of-the-art RevFinder in
Top-K and MRR accuracies by 7.98% and 6.31%.

Here, we observe that for each of the newly added feature, both the models posi-
tively improves the performance of the state-of-the-art RevFinder.

5.3.2 Analysis Results

How CORMS is different than the RevFinder in terms of methodology and work-
ing?

Our work aims to improve the approach, RevFinder, proposed by Patanamon
Thongtanunam et al. [40]. The RevFinder computes the similarities between the file
paths to recommend code reviewers. Our proposed approach, CORMS, also uses
the same four-string comparison techniques defined in the RevFinder to compute
similarities. However, CORMS uses the more effective ‘normalization” technique
for score propagation compared to the ‘Borda count’ technique used in state-of-
the-art RevFinder. Also, the CORMS computes the similarities between projec-
t/subproject and authors” information too with the file-paths. The CORMS also
includes the SV M model to examine the textual contents in the subject of the code
reviews to recommend appropriate code-reviewers.

Which problems of the state-of-the-art RevFinder is being solved by CORMS?
There are several problems in RevFinder such as:

1. It does not consider retired code reviewers.
2. It is not able to recommend code reviewers for new files.

3. It has threats to external validity as their results are limited to 4 data-sets
only.

43

4. Results are unknown for other repositories (e.g., GitHub).

To address all these problems, CORMS used a hybrid approach combining
both the SVM and similarity model and filtered out the results based on the re-
viewer’s activeness. We solved the following issues:

1. Retired Reviewers Issue: by filtering out the reviewers who reviewed 12
months ago.

2. Issue with newly created files: State-of-the-art RevFinder was based on only
the File-Path information. So it can’t able to predict the reviewers for the
newly created file where no File-Path information is mentioned. We solved
this issue by considering other important features such as Authors, Subject
of the change, and Sub-project details.

3. Accuracy enhancements: On average for the 20 projects of Gerrit and GitHub,
CORMS can achieve top-10, top-5, top-3, and top-1 accuracies, and Mean
Reciprocal Rank (MRR) of 79.9%, 74.6%, 67.5%, 45.1% and 0.58, which im-
proves the state-of-the-art approach RevFinder by 12.3%, 20.8%, 34.4%, 44.9%

and 18.4%, respectively.

4. External Validity: In the state-of-the-art RevFinder paper, authors tested it
on the 4 data-sets of Gerrit. We had extended this to 10 projects of Gerrit
to check and compare the results of our approach with existing RevFinder.
Apart from Gerrit, we also checked the performance of both approaches in
10 GitHub projects.

5.4 Threats to Validity

Threats to construct validity refer to the selection of evaluation criteria. We have
used pre-defined Top-K prediction accuracies and MRR commonly used to eval-
uate the effectiveness of MCR recommendation techniques [6][40][42][28][19][46]
[45][11], and various automated software engineering techniques [31][47][37][43].
Hence, the possibility of evaluation bias is very less. Threats to internal validity
here refer to the code selection and check for error. We have checked, tested, de-
bug our code, and ensured that it would run. However, there is still a possibility
of errors that we missed. Also, in the CORMS approach, the data needs to be
updated on a daily /weekly, or monthly basis based on the organization’s require-
ments and the frequencies of new reviews updated on the project. So, for every

4

new cycle of data, our classification model needs to be trained again. Though
carefully done, one can argue for a potential bias here.

Another threat, external validity, may be related to the generalizability of re-
sults. Mining data from open-source repositories are challenging especially from
GitHub. For instance, in GitHub, for fetching details about the one review, we
need to make 4 API calls in case no reviewer is assigned. And, if the reviewer
is assigned to the pull request then we need to make a total of 6 API calls. This
process makes the mining very complicated for GitHub. However, in Gerrit, we
can mine a bunch of reviews in just a single API call. We have analyzed 30,648
reviews from twenty open-source projects for 2020 to 2021. The currently used
data-set® can be further improved by analyzing more reviews for other projects
from Gerrit and GitHub.

Zhttps:/ / figshare.com /s /d4d2f350b2ddf2bab2fd

45

CHAPTER 6

CORMS: A Tool

This chapter gives the overview of our tool and describes its features and various

interfaces.

6.1 What is CORMS-TOOL?

CORMS-TOOL is a reviewer recommendation tool to support modern code re-
view. It is uses proposed algorithm CORMS and predicts the top reviewers for a

new code review request. We built CORMS-TOOL! using Django MCV frame-

work of python and used MongoDB for providing database connectivity. We
hosted CORMS-TOOL on Heroku?. The current version of CORMS-TOOL pro-

vides support for 34 projects of Gerrit and GitHub.

Heroku
Routers

CORMS-TOOL
lsers

Source
Code

Local Repository Python
Buildpack

P Traffic

Manager

[Hemk.u Cvno

]

Web Dyno 2 (Virtualized Unix Container)

/ Web Dyno 1 (Virtualzed Unix Container)

Heroku Build
gt push heroku master Me chiaii s

]_)

Feguirements -txtﬁ

CORMS Django App

Config

Vars

Source
Gunicorn Code
Weh Server

Procfile I
Dependencies
and assets Heguirements.txt

CORMS Django App
Slug Add-ons D
Release

Figure 6.1: CORMS-TOOL architecture

Thttps:/ / youtu.be/t6qnB3IIGMI
Zhttp:/ /cormstool.herokuapp.com/

46

6.2 CORMS-TOOL Architecture

Fig 6.1 describes the architecture of our CORMS-TOOL, a Heroku based Django
application. It contains following:

1. Local Repository: The local repository of CORMS-TOOL contains the fol-
lowing items:

(a) Source Code: CORMS-TOOL uses Django MVC framework. More de-
tails about this framework is given in section 6.3.

(b) Procfile: Procfile is a simple text file without a file extension. A procfile
declares its process types on individual lines, each with the following
format: <process type>: <command>. <process type> is an alphanu-
meric name of the command, such as web or worker. <command> indi-
cates the command that every dyno of the process type should execute
on startup. Our procfile requires Gunicorn, the production web server
that is used for the Django applications.

(c) Requirements.txt: This file contains all the dependencies along with

version information.

2. Build Mechanism and Python Build-pack: The local repository code is up-
loaded to Heroku using git. Heroku build mechanism analyzes this code
and selects build-pack. As CORMS-TOOL uses Django framework, it selects
python build-pack. This build-pack is composed of a set of scripts that will
perform tasks such as retrieve dependencies mentioned in requirements.txt,
create assets, compiles code and creates an app slug.

3. CORMS-TOOL Users: The users sends http requests to Heroku routers and
receive the http response.

4. Routers: Heroku’s HTTP routers distribute incoming requests for the CORMS-
TOOL across the running web dynos. In case of too much of web requests,
scaling the number of web dynos is required to scale the capacity of CORMS-
TOOL to handle web traffic.

5. Web Dynos: Each time a new release of CORMS-TOOL is created, the Heroku
Dyno Manager kills the running dynos and creates new dynos with a new
release. These dynos are isolated and virtualized Linux containers used to
execute the code. Currently, CORMS-TOOL is limited to 100 total dynos.
Each dyno contains slug, config vars and other addons.

47

6. Slug: After git push to Heroku, code is received by the slug compiler which
transforms the repository into a slug. This slug contains the compressed
copy comprising of CORMS-TOOL git repository and gunicorn web server
along with the CORMS-TOOL dependencies and assets.

7. Gunicorn Web Server: CORMS-TOOL uses Gunicorn web server. Guni-
corn is a pure python HTTP server for Web Server Gateway Interface(WSGI)
applications, which is is Django’s primary deployment platform and the
python standard for web servers and applications. It allows to run python
application concurrently by running multiple python processes within a sin-
gle dyno.

8. MongoDB Database: CORMS-TOOL uses MongoDB database for provid-
ing database connectivity to web sever. Our MongoDB database includes
multiple collections such as feedback collection, project collection, code re-
view collections for each project, and reviewer profiles collections for each
project.

6.3 Django MVC Framework of CORMS-TOOL

Figure 6.2 shows the Django MVC Framework of CORMS-TOOL. It contains fol-
lowing modules:

1. URL Dispatcher (URLs.py): It maps the requested URL to a view function
and calls it. If caching is enabled, the view function can check to see if a
cached version of the page exists and bypass all further steps, returning the

cached version, instead.

2. View Functions: It perform the requested actions such as predict reviewers,
view supported projects, create new project request, etc. After performing
the requested tasks, view returns the HTTP response object.

3. Model/Document: It defines the data in python and are used to interact
with the database. CORMS-TOOL uses MongoDB database, which is a NoSQL
database. Thus the models in Django are replaced by the documents and
fields when used to interact with MongoDB.

4. Template: Template returns the HTML pages.

48

Web Browser
L1
Caching URL
Framework Dispatcher
A Ll
Template
l A 4
View I
Model/Document
A
A 4
MongoDB Database

Figure 6.2: Django MVC Framework of CORMS-TOOL

6.4 Features of CORMS-TOOL

The reviewer recommendation phase of CORMS-TOOL includes following fea-
tures:

1. It provides tool-support to predict reviewers

2. It provides the sorted list of reviewers by their score in descending order
with full details of reviewers along with reviewer activeness and current
workload of the reviewer.

3. It provides support to copy and print the results with filters.

4. It provides support to convert data into pdf, csv or excel sheet with filters.
The feeback phase of CORMS-TOOL includes following features:

1. It allows user to view overall feedback of CORMS given by other users.

2. It allows user to provide feedback for the predictions given by CORMS.

The create or view project phase of CORMS-TOOL includes following features:

49

1. It supports projects from both the GitHub and Gerrit OSS platform
2. It allows creation of new project request
3. It supports view /search/filter operations on all supported projects

4. It supports view /search/filter operations on all requested projects

6.5 Various Interfaces of CORMS-TOOL

6.5.1 Code-Review Interface

CORMS TOOL-SUPPORT

Step |/3: Select OSS Platform

)] Gerrit O GitHub

Figure 6.3: Step-1 Interface: OSS Platform Selection

Step 2/3: Select Project

Currently we are providing recommendations based on following gerrit projects:

Choose project: | android w

Figure 6.4: Step-2 Interface: Project Selection

Step 3/3: Upload JSON file

Format: {"author”: "author_id", "project™ "project/suproject information”, "files":[{"path™:"file-path | info"},{"path":"file-path 2 info"}], "subject”:"subject of the change information” }

If you have any issues with IEUN. please refer our FAOS section at the end of the page

Browse... sample json

Figure 6.5: Step-3 Interface: Upload code-review JSON file

Figure 6.3, 6.4 and 6.5 shows the three simple steps to predict reviewers us-
ing CORMS-TOOL. In the first step, the user needs to select the OSS platform

50

from either Gerrit or GitHub. In the second step CORMS-TOOL will show the
supported projects in the platform selected by the user. The user needs to select
his/her project in this step. In the third step, the user needs to upload the JSON
file containing the code-review details. The format of this JSON file contains the
information about the authors, projects, file paths, and subject.

6.5.2 Results and Feedback Interface

RESULTS

CORMS predicted the following top reviewers for your review based on the data collected from GERRIT OPENSTACK project

{Our models are trained based on the datasets collected in December,2021)

Copy sV Eacel POF Prmt Search:

Scora 4 Raviewer_ 1D Marme Last Raviewad Crngeing Raviaws
I6.5 14828 Mark Goddard 3 menths ago L

F 10EF FFL Y] Michal Masiadka 4 months ago 14

3 Bl 16198 Ihya Popeo 4 months ago L

4 413 14200 Maksirn Malchuk 3 months ago L]

3 LES 13197 Fierre Ritbeauw 4 months ago 10

] 115 3049 Radostaw Piliszek 3 meonths ago 34

7 145 23871 Mar,g'arir.ﬂh:khm 4 maonths ago &

8 .33 30029 likoui 3 manths ago 18

Figure 6.6: Results Interface

Figure 6.6 shows the interface of predictions given by CORMS-TOOL. It in-
cludes the top reviewers sorted by their score in descending order. It also pro-
vides full details of reviewers such as reviewer id and reviewer name along with
the reviewer’s activeness, and current workload of the reviewer. Reviewer work-
load is calculated as the number of ongoing reviews, the reviewer is working on.
Reviewer activeness is calculated as the difference between the current month and
the last reviewed month when the reviewer completed a successful review.

FEEDBACK

Please give us your valuable feedback

Are your actual reviewers available in cur Top- |1 prediction list?

i Yes, All avadable Mo Some are available

Figure 6.7: Submit Feedback Interface

Figure 6.7 shows the submit feedback interface where the user can provide
feedback on the predictions given by CORMS-TOOL, whether it includes all the
appropriate reviewers or some of the appropriate reviewers, or none of the ap-
propriate reviewers. Users can also see the overall feedback given by other users,

51

6.5.3 Create or View Project Interface

ADD PROJECT

Submit New Project Request

Platfoemmc £l Germt CatlHub

aree:
.:: Te&f .j'.-"" 1 k‘\-..'i'l'

LIRL:
Enfer Promect LIEL

Description:

Figure 6.8: Create New Project Request Interface

[f the project is not listed in the supported project list, the user can create a new
project request as shown in figure 6.8. Creating a new project request requires the
information about project platform, name, URL, and a small description of the
project. Once the user has successfully submitted the request, he/she can view his
project inside the requested project list and can track the status. Approval of a new
project request can take about 1 week, as once we receive such requests, we need
to mine, pre-process and test all the relevant code reviews and reviewer profiles
of that project using our mining scripts written in python. Once it is completed
we will upload its data-set to our MongoDB cloud.

SUPPORTED PROJECTS

CORMS currenly provide tool support for following projects:

Show |0 w | entries Search:
Platform4 " Project URL Description
: S https:fandroid- Android is a mobile operating system based on a modified version of the Linux kernel and other open-source
BTt androi
g review pooglesource.com software, designed primarily for touchscrean maobile devices such as smartphones and tablets
hirtps:/fchromium- Chromium is an open-source browser project that aims to build a safer, a faster, and more stable way for all users
2 perrit chromium
review pooglesource.com to experience the web, principally developed and maintained by Google
3 perrit cloudera hteps:/gerrit.cloudera.org Cloudera delivers a hybrid cloud platform for any data, anywhere, from the Edge to Al

; : Eclipse is an integrated development environment used in computer programming. It contains a base workspace
4 gerrit eclipse hetpsy//pitechpse.org'r }) i)
and an extensible plug-in system for customizing the environment

hittps/ipo- Go is a statically typed, compiled programming language designed at Google, It is syntactically similar to C,

Figure 6.9: View Supported Projects Interface

5 pPerTit (i

Figure 6.9 shows the interface of the supported projects. It includes the plat-
form, project name, project URL, and project description. Current version of
CORMS-TOOL supports 34 projects. Once the request for the new project is ap-
proved, the project will be visible to the supported project list and users can pre-
dict reviewers for that project.

52

CHAPTER 7

Conclusions and Future Work

We proposed a hybrid approach, CORMS, which works on similarity analysis
to compute similarities among file-paths, projects/sub-projects, author informa-
tion, and prediction models to recommend reviewers based on the subject of the
change. We conducted a detailed analysis on the widely used 20 projects of both
Gerrit and GitHub to compare our results with the state-of-the-art RevFinder. Our
results show that on average CORMS can achieve top-1, top-3, top-5, and top-10
accuracies, and Mean Reciprocal Rank (MRR) of 45.1%, 67.5%, 74.6%, 79.9% and
0.58 for the 20 projects, which improves the state-of-the-art approach RevFinder by
44.9%, 34.4%, 20.8%, 12.3% and 18.4%, respectively. Finally, We built and hosted
a CORMS-TOOL to provide a tool-support for recommending reviewers using a
hybrid approach, CORMS for Modern Code Review.

The proposed methodology doesn’t consider the reviewer’s workload. Re-
viewer workload defines the number of ongoing reviews per reviewer and there
may be some cases where our approach predicts the same reviewers again irre-
spective of their current workload. Thus the addition of a workload feature is
required considering the user-centric approaches. The proposed approach also
doesn’t consider the effect of social collaborations between the developers and
reviewers. Previous literature showed that it is also an important feature for the
recommendation of appropriate code reviewers. Thus it would be interesting to
investigate the results with considering the social relations. Commit messages
that were used in TIE contains more textual content than the subject field used
in our proposed approach CORMS. Thus it would be interesting to investigate
the performance of CORMS with the commit messages. The current version of
CORMS-TOOL is not integrated with any OSS platform. With complete integra-
tion, the tool would be able to fetch all the details itself rather than asking users to
upload a set of information through the JSON file. Thus, we consider it our future
work.

53

Publications

Prahar Pandya and Saurabh Tiwari, CORMS: A GitHub and Gerrit based Hybrid
Code Reviewer Recommendation Approach for Modern Code Review, In 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2022), Research Paper/Technical Track, Mon
14 - Fri 18 November 2022, Singapore.

[Accepted], Core A* Ranked Conference.

54

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

O. Albayrak and D. Davenport. Impact of maintainability defects on code
inspections. In Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 1-4, 2010.

E. Armstrong, F. Khomh, and B. Adams. Broadcast vs. unicast review tech-
nology: Does it matter? In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 219-229. IEEE, 2017.

A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of mod-

ern code review. In 2013 35th International Conference on Software Engineering
(ICSE), pages 712-721. IEEE, 2013.

A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of mod-

ern code review. In 2013 35th International Conference on Software Engineering
(ICSE), pages 712-721. IEEE, 2013.

R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume
463. ACM press New York, 1999.

V. Balachandran. Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation. In
2013 35th International Conference on Software Engineering (ICSE), pages 931-
940. IEEE, 2013.

O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. Investigating tech-

nical and non-technical factors influencing modern code review. Empirical
Software Engineering, 21(3):932-959, 2016.

M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code reviews
in open-source projects: Which problems do they fix? In Proceedings of the
11th working conference on mining software repositories, pages 202-211, 2014.

A. Bosuy, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni. Identifying the char-
acteristics of vulnerable code changes: An empirical study. In Proceedings

55

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, pages 257-268, 2014.

A. Bosu, M. Greiler, and C. Bird. Characteristics of useful code reviews: An
empirical study at microsoft. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pages 146-156. IEEE, 2015.

M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, and K. Inoue. Whore-
view: A multi-objective search-based approach for code reviewers recom-
mendation in modern code review. Applied Soft Computing, 100:106908, 2021.

N. Davila and I. Nunes. A systematic literature review and taxonomy of
modern code review. Journal of Systems and Software, page 110951, 2021.

E. W. dos Santos and I. Nunes. Investigating the effectiveness of peer code re-
view in distributed software development. In Proceedings of the 31st brazilian
symposium on software engineering, pages 84-93, 2017.

E. Ebert, F Castor, N. Novielli, and A. Serebrenik. Confusion detection in
code reviews. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 549-553. IEEE, 2017.

E. Ebert, F. Castor, N. Novielli, and A. Serebrenik. Confusion in code reviews:
Reasons, impacts, and coping strategies. In 2019 IEEE 26th international con-

ference on software analysis, evolution and reengineering (SANER), pages 49-60.

IEEE, 2019.

M. E. Fagan. Design and code inspections to reduce errors in program devel-
opment. IBM Systems Journal, 38(2.3):258-287, 1999.

N. Fatima, S. Chuprat, and S. Nazir. Challenges and benefits of modern code
review-systematic literature review protocol. In 2018 International Conference
on Smart Computing and Electronic Enterprise (ICSCEE), pages 1-5. IEEE, 2018.

G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen. Work practices
and challenges in pull-based development: The integrator’s perspective. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 358-368. IEEE, 2015.

J. Jiang, J.-H. He, and X.-Y. Chen. Coredevrec: Automatic core member rec-
ommendation for contribution evaluation. Journal of Computer Science and

Technology, 30(5):998-1016, 2015.

56

[20] J.Jiang, A. Mohamed, and L. Zhang. What are the characteristics of reopened

[21]

[22]

[23]

[24]

[25]

pull requests? a case study on open source projects in github. IEEE Access,
7:102751-102761, 2019.

O. Kononenko, O. Baysal, and M. W. Godfrey. Code review quality: How
developers see it. In Proceedings of the 38th international conference on software
engineering, pages 1028-1038, 2016.

O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investigat-
ing code review quality: Do people and participation matter? In 2015 IEEE

international conference on software maintenance and evolution (ICSME), pages
111-120. IEEE, 2015.

V. Kovalenko and A. Bacchelli. Code review for newcomers: is it different? In
Proceedings of the 11th International Workshop on Cooperative and Human Aspects
of Software Engineering, pages 29-32, 2018.

V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli. Does re-
viewer recommendation help developers? IEEE Transactions on Software En-

gineering, 46(7):710-731, 2018.

A. Lee and J. C. Carver. Are one-time contributors different? a comparison
to core and periphery developers in floss repositories. In 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1-10. IEEE, 2017.

[26]]. Liang and O. Mizuno. Analyzing involvements of reviewers through min-

[27]

[28]

[29]

ing a code review repository. In 2011 Joint Conference of the 21st International
Workshop on Software Measurement and the 6th International Conference on Soft-
ware Process and Product Measurement, pages 126-132. IEEE, 2011.

R. Paul, A. Bosu, and K. Z. Sultana. Expressions of sentiments during code
reviews: Male vs. female. In 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pages 26-37. IEEE, 2019.

M. M. Rahman, C. K. Roy, and J. A. Collins. Correct: Code reviewer recom-
mendation in github based on cross-project and technology experience. In
2016 IEEE/ACM 38th International Conference on Software Engineering Compan-
ton (ICSE-C), pages 222-231, 2016.

M. M. Rahman, C. K. Roy, and R. G. Kula. Predicting usefulness of code
review comments using textual features and developer experience. In 2017

57

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pages 215-226. IEEE, 2017.

R. Ranawana and V. Palade. Multi-classifier systems: Review and a roadmap
for developers. International journal of hybrid intelligent systems, 3(1):35-61,
2006.

S. Rao and A. Kak. Retrieval from software libraries for bug localization: a
comparative study of generic and composite text models. In Proceedings of
the 8th Working Conference on Mining Software Repositories, pages 43-52, 2011.

P. C. Rigby and C. Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 202-212, 2013.

S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto. The impact
of human factors on the participation decision of reviewers in modern code
review. Empirical Software Engineering, 24(2):973-1016, 2019.

C. Sadowski, E. Séderberg, L. Church, M. Sipko, and A. Bacchelli. Modern
code review: a case study at google. pages 181-190, 05 2018.

D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli. When
testing meets code review: Why and how developers review tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages
677—-687. IEEE, 2018.

S. Suthaharan. Support vector machine. In Machine learning models and algo-
rithms for big data classification, pages 207-235. Springer, 2016.

A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Fuzzy set
and cache-based approach for bug triaging. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, pages 365-375, 2011.

P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. [ida. Investigating
code review practices in defective files: An empirical study of the gt system.
In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 168-179. IEEE, 2015.

P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. lida. Review partici-
pation in modern code review. Empirical Software Engineering, 22(2):768-817,
2017.

58

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and
K.-i. Matsumoto. Who should review my code? a file location-based code-
reviewer recommendation approach for modern code review. In 2015 IEEE

22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 141-150. IEEE, 2015.

R. Wen, D. Gilbert, M. G. Roche, and S. McIntosh. Blimp tracer: Integrating
build impact analysis with code review. In 2018 IEEE International conference
on software maintenance and evolution (ICSME), pages 685-694. IEEE, 2018.

X. Xia, D. Lo, X. Wang, and X. Yang. Who should review this change?:
Putting text and file location analyses together for more accurate recommen-
dations. In 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 261-270. IEEE, 2015.

X. Xia, D. Lo, X. Wang, C. Zhang, and X. Wang. Cross-language bug localiza-
tion. In Proceedings of the 22nd International Conference on Program Comprehen-
sion, pages 275-278, 2014.

C. Yang, X. Zhang, L. Zeng, Q. Fan, G. Yin, and H. Wang. An empirical
study of reviewer recommendation in pull-based development model. In
Proceedings of the 9th Asia-Pacific Symposium on Internetware, pages 1-6, 2017.

C. Yang, X.-h. Zhang, L.-b. Zeng, Q. Fan, T. Wang, Y. Yu, G. Yin, and H.-m.
Wang. Revrec: A two-layer reviewer recommendation algorithm in pull-
based development model. Journal of Central South University, 25(5):1129-
1143, 2018.

Y. Yu, H. Wang, G. Yin, and T. Wang. Reviewer recommendation for pull-

requests in github: What can we learn from code review and bug assign-
ment? Information and Software Technology, 74:204-218, 2016.

J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more ac-
curate information retrieval-based bug localization based on bug reports. In
2012 34th International Conference on Software Engineering (ICSE), pages 14-24.
IEEE, 2012.

59

