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Abstract

The Person Re-identification (Re-ID) task has gained popularity in recent times.
Researchers are continuously looking to improve the accuracy of the existing per-
son Re-ID systems. Identifying the person from the surveillance footage can be an
essential aspect of security concerns. Currently, there are many state-of-art per-
son Re-ID systems available. Nowadays, Deep learning frameworks are adopted
for designing Re-ID systems. Apart from deep learning-based approaches, the
Generative Adversarial Networks (GAN) based approach also gained substantial
interest in person Re-ID tasks. Augmentation of training data has significantly
improved the performance of the system. Our primary objective is to analyze the
effect of applying different reconstruction losses and their combinations on the
GAN-based approach. The Discriminative and Generative Learning (DG-Net)
based approach is chosen for carrying out this study from other existing GAN-
based systems. DG-Net is currently considered benchmarked in the GAN-based
method for person Re-ID. Analysis shows that the proposed idea of using a va-
riety of reconstruction losses simultaneously significantly improves the existing
system’s performance. Using the proposed technique of fusing multiple Losses
simultaneously, we achieved a massive performance gain of 20.57% over the cur-
rent benchmarked approach on the Market1501 dataset. This report includes a
thorough study of different loss functions and their effect on the generated im-

ages for performing person Re-ID task.
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CHAPTER 1

Introduction

Person Re-identification (Re-ID) is crucial in a multi-camera environment, which
is usual in surveillance videos. The main focus of these system types is to as-
sign a stable id to the person appearing from the various non-overlapping camera
views. The cameras from which these images have been taken often have signifi-
cant intra-class variations due to the background, atmospheric changes, person’s
gestures or movements, different camera viewpoints, and many more causes. Ex-

amples of the various types of camera viewpoints are shown in Figure 1.1[1].

Figure 1.1: Example of different camera view points [1]

Person Re-ID involves three significant steps. The first important step is to
detect the person from the frame captured by the surveillance camera. After de-
tecting the person, it becomes essential to track the same person through all the
frames. There is a need to establish a stable id for tracking each person. If a new
person appears in the frame, the system must retrieve its id from the available

database. All this is summarised in Figure 1.2.



Figure 1.2: Steps involved in the Person Re-ID task [1]

Figure 1.3: Steps required to build a Person Re-ID system from scratch [1]

If anyone wants to design a Person Re-ID system from scratch, the required
steps are highlighted in Figure 1.3. Data collection becomes an important part
when the system is designed from scratch. After completing annotating the data,
any Person Re-ID methods can be applied.

1.1 Data Processing

After collecting and processing the dataset, the vital task is to extract the relevant
features from the dataset. There are many ways to extract the features from a
given person’s image. Feature extraction can be performed in two ways. (i.e.,
Global-based processing and Patch-wise processing or local processing). Global-
based processing methods focus on the topology of the cameras. In other words,
the Actual location of the camera can play a significant role. For example, if there
are two cameras at the entrance and the exit, it is evident that the person appears
first at the entrance camera and then on the exit camera. Whereas, Patch-wise

processing focuses on the minor details of the image. It can help discriminate the



intra-class samples. Some of the Patch-wise processing techniques are shown in

Figure 1.4.

Figure 1.4: Various types of patch-wise data processing techniques to get the local
representations of the different features [1]

1.2 General Taxonomy of Person Re-Identification

Person Re-ID systems have many points of view. The global idea of the overall
taxonomy of the Person Re-ID systems is taken from [1]. Various aspects of Per-
son Re-ID systems are beautifully summarized in Figure 1.5. If anyone wants to
develop a new system or wants to start researching in the field of Person Re-ID
domain, this taxonomy has proven essential. This taxonomy includes settings,
learning types, approaches, context, query type, data modeling, and strategy. It
gives a broader picture of Person re-identification in general. Also, it gives the re-

searchers a new dimension of thinking for developing the person Re-ID models.



Figure 1.5: General Taxonomy of the person Re-ID system [1]

1.3 Motivation

Person Re-Identification becomes crucial when security is a concern. From the
security perspective, only person detection and tracking are not sufficient. If the
same person appears with different characteristics, these algorithms may fail to
identify the person correctly. To deal with this issue, Person Re-Identification is
essential. For Person Re-Identification, it becomes essential that the proposed ap-
proach is well generalized to handle different diversities caused by various char-
acteristics of the person. There are many approaches available for doing the same.
These days, Deep Learning based approaches are becoming popular.

The primary issue with training any Deep Learning based model is the avail-
ability of a massive amount of data. The model could not be generalized better
if less data is provided. The data must have enough diversity. Hence, there is
a need to augment the data. However, only data augmentation is not sufficient
every time. To deal with this issue, Generative Adversarial Networks help create
new images that try to mimic the characteristics of the original dataset. For Person
Re-Identification, finding the dataset with enough diversity is challenging. Hence
the GAN-based approaches become significantly crucial for performing the Per-
son Re-Id tasks.



1.4 Objective and Problem Statement

The primary objective of this thesis/study is to enhance the performance of the
person Re-Identification (Re-ID) task by exploring new techniques for the Gen-
erative Adversarial Networks(GAN) based approach. Many complexities are in-
volved with the GAN-based approaches, such as dealing with different camera
viewpoints, feature extraction, and other Re-ID-related features. It is often diffi-
cult when the GAN-based approaches are considered. To generalize the model for
the GAN-based approaches in Person re-ID is an intricate task. The main task for
any GAN-based approach is to generalize the training process from the available
dataset and reconstruct the images with better quality that can be further used. It
becomes essential how these images are processed. The inputs and putting con-
straints are the most vital task in any GAN-based approach.
Discriminative and Generative Network(DG-Net) [8] is currently a benchmarked

GAN-based approach. This thesis work/study mainly focuses on improving the

performance of DG-Net and improving the quality of the generated images.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 contains a comprehen-
sive literature survey in the person Re-ID domain. Chapter 3 gives insights into
the technologies used in the method that is used in this thesis. Mainly, it gives
the idea of Generative Adversarial Networks(GAN) and the Loss functions. In
Chapter 4, the methodology is described in detail. It contains the details about
Discriminative and Generative Networks and the proposed method. Chapter 5
discusses the obtained experimental results. Some of the critical observations are
also highlighted in this chapter. In Chapter 6, the conclusion and the future direc-

tions are written. At the end of the thesis, all the references are included.



CHAPTER 2

Literature Survey

In this chapter, comprehensive idea of the research happening in the domain of
person Re-ID are discussed. From 2008, the researchers showed considerable in-
terest in developing personal Re-ID systems. Approximately person Re-ID sys-
tems are divided into two parts. Feature-based and the Metric-based. Feature-
based approaches try to find an efficient representation of the person as a fea-
ture. In contrast, the primary focus of the Metric-based Approach is to develop
an efficient metric to compute the similarity between two person’s images[2]. The
complete literature survey is divided based on the methods used to develop the
person Re-ID systems. Some of the major works are cited in this paper. Recent
works are mainly in the deep learning domain. Data augmentation using GANs
and other deep learning-based hybrid approaches is famous for developing Re-ID

systems.

2.1 Metric-learning based person Re-ID

This type of approach mainly deals with the similarity metric. In Figure 2.1, the
idea of Metric-learning based approach is highlighted. In early 2000, The Maha-
lanobis distance [11] was introduced in the person Re-ID domain. It was used
to measure the similarity in the Person Re-ID task. It tries to over-fit the model
easily. To solve this issue of overfitting the model, the regularized independent
metric is introduced in [12]. As the need for surveillance video increased, people
put multiple cameras to make it more secure. Traditional metrics are not capable
of dealing with these types of settings. In 2016, an asymmetric distance metric
was introduced in [13] by Chen et al. Apart from cartesian systems, and An et
al. introduced a metric based on hypergraph [14]. In [15], an improved version
of the hypergraph method is introduced to deal with joint learning. Metric learn-
ing algorithms can be classified into majorly two types: classical metric learning

algorithms and Deep-Learning based metric learning algorithms.



Figure 2.1: General Approach for the metric-learning based Person Re-
Identification [2]

2.2 Deep learning based person Re-ID

Some of the very recent approaches to dealing with various aspects of Re-ID sys-
tems are highlighted in this section. These approaches are classified into different
categories. These are well described in Figure 2.2. Also In [16], the limitations of
stationary domain person Re-ID has been handled using a novel framework for
knowledge representation named AKA (Adaptive Knowledge Accumulation). In
unsupervised person Re-ID systems, intra-inter camera similarity computations
are introduced to deal with the variations caused by the multiple cameras [17].
Fusing the inter-camera and intra-camera similarity has tremendously improved
the performance of the person Re-ID system. Kecheng Zhang has introduced a
grouping-based approach to improving the unsupervised person Re-ID [18]. It
uses the idea of unsupervised domain adaptiveness. In other words, a system
trained on some of the labeled domains can be applied to unlabeled domains
without carrying out the annotations. Apart from these, many deep learning-
based approaches are available for person re-identification frameworks. These

can be found in one of the recent survey paper[19].



Figure 2.2: Classification of different methods for Deep Learning based Person
Re-Identification methods [3]

2.3 GAN-Based person Re-ID

Nowadays, This Approach is a very active research area for improving the accu-
racies of the existing models. Zheng et al. was the first one who introduced the
unconditional GANs to the person Re-ID.[20]. He used a deep convolutional gen-
erative adversarial network (DCGAN) to generate the samples. In [21], images
are generated based on pose. Pose normalized GAN (PN-GAN) [6] has achieved
significant accuracy in generating the images based on poses. Mostly the GAN-
based approaches are unsupervised. Least Squares Generative Adversarial Net-
works (LSGANSs) [22] is introduced to generalize the learning process well with
the novel loss function (i.e., least-square loss function). After years of research, the
latest DG-NET [8] has surpassed all the previous GAN-based approaches. More
on DG-NET is discussed in the upcoming chapter.

24 Some Popular GAN-based Approaches

In this section, some of the popular GAN-based approaches are briefed. These

were the revolutionary approaches in their respective times.
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2.4.1 Pose Guided Person Generation Network

It is also considered one of the popular GAN-based approaches. They have in-
troduced a concept of image generation based on the translation of poses. Pose
Guided Person Generation Networks (PG?) [4] mainly have two components in
their architecture. The first component is for pose integration. It tries to translate
the pose of one image to another and gives the intermediate output. This output
is refined in the later section in an adversarial manner. The architectural details

are given in Figure 2.2.

Figure 2.3: Architecture of ose Guided Person Generation Network [4]

2.4.2 Feature Distilling Generative Adversarial Network

Before 2018, almost all the GAN-based approaches used additional pose-related
information. It requires extra computations. To avoid this extra computation, in
2018, Yixiao Ge came up with the idea of using an identity-based approach. They
introduced the Feature Distilling Generative Adversarial Network (FD-GAN) [5]
in 2018. It has a siamese structure for tackling pose-related identifications. For
better image generation, it uses the verification classifier. The architectural details
of FD-GAN are shown in Figure 2.3.



Figure 2.4: Architecture of Feature Distilling Generative Adversarial Network [5]

2.4.3 Pose Normalization Generative Adversarial Networks

Pose Normalization GAN(PNGAN)[6] has become popular as it tries to address
two crucial aspects of feature extraction in person re-identification. (i.e., identity-
sensitive related features and view-invariant features). They used the 8-canonical-
based structure to represent the pose information. The structure of PNGAN is
shown in Figure 2.4. In this, two networks are shown. The first network will focus
on extracting features of different poses, and the other will focus on training those
generated clusters of poses.

10



Figure 2.5: Architecture of Pose Normalization Generative Adversarial Networks

[6]
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CHAPTER 3

Relevant Materials

This chapter provides details about the essential technologies required for the pro-
posed methodology. The Generative Adversarial Network(GAN) is introduced in
this chapter. Also, the importance of the GANs is mentioned. Apart from this, loss
functions are also discussed in brief. The primary usage of the loss function and

its importance is also discussed.

3.1 Generative Adversarial Networks

Generative Adversarial Networks(GAN) are considered the most revolutionary
addition to the neural network family. Thanks to Ian ]J. Goodfellow, who gave
the world the idea about GANs in 2014. The goal of any GAN is to generate
a new piece of content. The content can be images, audio, and video as well.
GAN s are now becoming popular choices for almost all the research domains due
to their consistency. The significant usage of GANSs is to generate more training
samples to get more stability during the training. It causes the regularising effect
for any neural network during training. It generally tries to map the probability
distribution of the input with the generated output distribution. It takes sample

distribution as an input and converts it into the target distribution.

Figure 3.1: Example Block Diagram of Generative Adversarial Network [7]

12



In any GAN architecture, there are two primary components involved. The
first is the generator, and the other is the discriminator. They work oppositely.
Their goals are precisely the opposite. Training is done in an adversarial manner.
They try to fool each other. The primary reason behind this adversarial training is
to reduce the chance of overfitting the model. Figure 3.1 [7] describes the general
idea of how these two components work together in an adversarial manner. More

on the generator and discriminator are discussed in subsequent subsections.

3.1.1 Discriminator

The primary role of the discriminator is to tell whether the data is real or fake. The
discriminator is trained on both actual and the generated images generated from
the generator. Usually, the training of the discriminator starts when the generator
is idle. In general, a significant focus of the GAN training is to ensure that the
discriminator identifies the generated images (i.e., fake images) as the real ones.
It can only happen when the generated images are close to the actual images. The
training stops when the goal is achieved. In most cases, the discriminator is a

binary classifier.

3.1.2 Generator

The primary role of the generator is to generate the images. The architecture of the
generator varies from problem to problem. The training of the generator generally
starts with the random noisy data. After several iterations, it tries to learn the
distribution pattern from the input and generate the images close to the actual
ones. The discriminator determines this. It updates its weights from the feedback
got from the discriminator. Training converges when the generator can produce
a better image matching the actual decision. In other words, training completes

when the generator successfully fools the discriminator.

3.1.3 Importance of GANs

These days, data augmentation has become necessary in almost all cases. Nowa-
days, traditional data augmentation techniques are not sufficient because they try
to augment the same actual data differently. Moreover, GAN tries to generate the
new images, not in the actual dataset but to resemble the same. With the use of
more data, the model can be generalized better. GANs are useful in reinforce-
ment learning as well. Apart from these, GANs can be used to fill up the missing

13



data by generating them. GAN is used in a wide range of applications, such as
Image-to-image translation, Text to image translation, Image inpainting, Image
super-resolution, and Face Generation. With the constant improvements in the
GAN architectures, the quality of the generated images is also improving. GAN

is proven one of the most effective neural network family innovations.

3.2 Loss Function

Loss functions are an integral part of any neural network. It helps to quantify
the error while predicting the output. Formally a loss function can be defined
as a metric to find the cost between the actual and predicted values.[23] Broadly,
the loss function can be categorized into two types (i.e., Classification loss and
Regression loss). As the GAN tries to minimize the distance between the actual
distribution and the generated distribution, in GANSs, the loss functions quantify
the desired distance. Loss functions can be linear as well as non-linear. Many
non-linear loss functions exist, such as Root Mean Square Error, Cosine Similarity;,
cross-entropy loss, and many others. Some of them are used in this thesis work.
They are discussed in detail in the Methodology section.

14



CHAPTER 4

Methodology

This chapter describes the methodology used for carrying out the study. This pa-
per [8] is chosen as the baseline paper to carry out this research work. Apart from
many GAN-based approaches, the Discriminative and Generative Networks(DG-
Net) [8] based approach is benchmarked. It is trying to propose a novel frame-
work that combines the data generation and Re-ID learning features. DG-Net and

proposed scheme are discussed in the following subchapters.

4.1 Discriminative and Generative Learning

41.1 Overview of DG-Net

An effective GAN-based architecture named Discriminative and Generative Learn-
ing (DG-Net)[8] has been considered baseline. It has a unique generative mod-
ule in which encoders decompose the input image (i.e., person’s image) into two
spaces (i.e., Appearance Space and The Structure Space). Clothing styles, shoe
styles, textures, and other look-related features are considered in the appearance
space. The size of the person’s body, hair, pose, background, position, and cam-
era angle/viewpoint is considered in the structure spaces. The design of DG-Net
can produce high-resolution images and generate a diverse set of images. It does
not require any additional data to produce the images. In other GAN-based ap-
proaches, the pose is given as an additional input to give the model more stability.
However, DG-Net does not require any additional data to produce the images. It
can handle intra-class variations and other pose-related diversities. It uses self-
identity generation and cross-identity generation to generate images. Architec-
tural details are given in Figure 4.1[8].

15



Figure 4.1: Architectural design of DG-Net [8]

4.1.2 Self-Identity Generation

In the Self-Identity generation, images are generated having the same identity.
Apart from generating the same image from the training sample, there is also
another image with the same identity given as an input to this module. Loss is
calculated between generated image and the actual image. The equations for the

same are given below.

E;’ZZ?%ZH = _”xi -G (ai/ Si) ||LossType_ (4'1)

‘C;’?C%%? =E _Hxi -G (at/ Si) ”LossType_ (4'2)

Here,

G — Generator

x; — Input Image

a; — Appearance code of the input image x;

a; — Appearance code of some other image x; which has the same identity as x;
s; — Structure code of the input image x;

LossType — Type of the loss function

In equation 4.1, reconstruction from the same image is shown, while in equa-

16



tion 4.2, reconstruction from the other image with the same identity is shown.

4.1.3 Cross-Identity Generation

Cross-Identity generation focuses on generating images of two different identi-
ties. The crucial factor for generating the images from the two different identities
is to identify the correct appearance code and the structure code from the respec-
tive input images. Due to this reason, the reconstruction constraints are put on
the generated codes instead of the generated images. Equations for the same are
shown below.

(4.3)

£52ds = B [l = Ea (G (@6:5)) | serype)

L5652 =B |[ls = Es (G (2659)) | pssrype (4.4)

Here,

G — Generator

E; — Appearance Encoder

Es — Structure Encoder

a; — Appearance code of the input image x;
sj — Structure code of the input image x;

LossType — Type of the loss function

In the base paper, the L1 norm is used as a LossType. In this study, there are
many combinations of losses covered. These are discussed in the following sub-
chapters.

4.1.4 Major Architectural Components of DG-Net

The structure of DG-Net contains mainly four subblocks named structure encoder,
decoder, discriminator, and the appearance encoder. These are also shown in Fig-
ure 4.1. Appearance Encoder is the slightly modified architecture of the ResNet50
[24] which is pre-trained on ImageNet [25]. In that output, the Adaptive Max
Pooling layer is considered as an appearance code for the respective image. A
structure encoder is a shallow convolutional neural network (CNN) based archi-
tecture. For the discriminator, the architecture is taken from the multi-scale Patch-
GAN [26]. Detailed architectural details of all these components are given in [8].

17



4.2 Different Reconstruction Loss Functions

Reconstruction loss can be defined as the loss between the actual values and their
reconstructed values. For this study, for Self-Identity generation, reconstruction
loss is used to optimize the generated images, whereas, in a cross-identity gener-
ation, it is used to optimize the generated appearance and the structure codes. All
the considered loss functions are briefly discussed in the subsequent sections. For
all the loss functions, instead of writing the above equations again, their represen-
tative equations are shown. In all the equations, x and y are used to denote the
inputs. Inputs for the self-identity generation are (x;, G(a;,s;)) and (x;, G(at, s;)).
Whereas, inputs for the cross-identity generations are (a;, E;(G(a;,5;))) and (s},
Es(G(a;, s;))) for all the equations.

42,1 Mean Absolute Error(MAE)

It calculates the mean of the difference between the actual and obtained values.
Sometimes this error function is referred to as the linear loss function or the L1
loss function. The representative equation for the MAE is shown in equation 4.5.
The range of the MAE is [0, oo]. Lower values are considered better.

i=n

Li(x,y) = (1/n) <Z|xi—yi|> (4.5)
i=1

Here,

x — Input data

x; — i'" sample of the input data

y — Generated data

ith

y; — i"" sample of the generated data

n — Total number of pixels in the image

4.2.2 Mean Squared Error(MSE)

It calculates the mean of the squared of the actual and obtained values. This loss
function is mainly referred to as the L2 Loss function. Equation 4.6 shows the
formula used for MSE.The range of the MSE is [0, o]. Lower values are considered
better.

Lo(x,y) = (1/n) (i |x; —in2> (4.6)
i=1
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Here,

x — Input data

x; — i" sample of the input data

y — Generated data

y; — i'" sample of the generated data

n — Total number of pixels in the image

4.2.3 Mean Rooted Absolute Error(MRAE)

It is the variant of the MAE. In other words, this can be defined as a normalized
MAE. Instead of using absolute difference, the square root of that absolute differ-
ence is taken. Sometimes it is referred to as rooted MAE. It is defined in equation

4.7. The range of the MRAE is [0, oo|. Lower values are considered better.

MRAE(x,y) = (1/n) (i Vi —yi|> @)
i=1

Here,

x — Input data

x; — i'" sample of the input data
y — Generated data

ith

y; — i"" sample of the generated data

n — Total number of pixels in the image

4.2.4 Root Mean Square Error(RMSE)

It is a popular choice among researchers for the loss function. The equation for
the RMSE Loss function is shown in equation 4.8. The range of the RMSE is [0, co].

Lower values are considered better.

RMSE(x,y) = J (1/n) (Eﬁq \/xi —yi\2) (4.8)

i=1

Here,

x — Input data

x; — i'" sample of the input data
y — Generated data

ith

y; — i"" sample of the generated data

n — Total number of pixels in the image
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4.2.5 Cosine Similarity(CS)

It calculates the similarity between two vectors. It calculates the cosine angle be-
tween two vectors. The representative equation is shown in equation 4.9. The
range of the CS is [0,1]. In this, higher value is considered better. The value is

more towards 1, the images are more similar.

(Zf:f xi%‘) @9)

<\/Z -1 X \/Z, 1y1>

CS(x,y) =

Here,

x — Input data

x; — i'" sample of the input data
y — Generated data

ith

y; — """ sample of the generated data

n — Total number of pixels in the image

4.2.6 Multiplicative Loss Function(ML)

It is an experimental loss function used for this study. The definition for the multi-
plicative loss function is shown in equation 4.10. Due to multiplication, the values
are becoming too big, and the results are not satisfactory. All these are discussed
in the Results chapter. The range of the multiplicative loss is [0, oo]. Lower values

are considered better.

ML(x,y) = (1/n) (Z |x; *y1|2> (4.10)

Here,

x — Input data

x; — i" sample of the input data

y — Generated data

y; — i'" sample of the generated data

n — Total number of pixels in the image

4.2.7 Huber Loss Function(Huber)

Huber Loss combines the Mean Absolute Error (MAE) and the Mean Square Er-

ror(MSE) with some criteria. It tries to balance both. The absolute difference is
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used to decide between MAE and MSE. It is compared with the § value. ¢ is the
controlling parameter. Definition for the Huber loss is shown in equation 4.11.
Huber loss approximates to MSE when 6 0 and MAE when § co.

(1/m) (1/2) £ |2 yil?) if [ — yil <9,

Huber(x,y) = '
DT ) (S el — (1/20)) i — il > 5

(4.11)

Here,

x — Input data

x; — i'" sample of the input data
y — Generated data

y; — it

sample of the generated data
n — Total number of pixels in the image

0 — controlling factor (i.e., threshold)

4.3 Proposed Method of Fusing Loss Functions

It is analyzed that using the single loss function for reconstruction does not give
better results. We performed several experiments considering multiple loss func-
tions together. The base paper only uses the L1 loss function as a reconstruction
loss function. The issue with the L1 loss function is that it cannot give enough
non-linearity to the training process. As a result, many artifacts have occurred in
the generated images. Hence, we proposed to use more than one reconstruction

loss simultaneously.

Combinations are chosen in such a way that they have enough linear and non-
linear components. To achieve this goal, we have combined all the non-linear loss
functions with the linear loss function (i.e., MAE Loss function). The combina-

tions we have considered for this study are listed below.
1. MAE(L1) + MSE(L,)
2. MAE(L) + RMSE
3. MAE(L) + MRAE
4. MAE(L) +CS

Apart from the above combinations, we have also tried the combination of

losses with the weights (i.e., A1 *linear_loss_function + A, * non-linear_loss_function).
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We chose the cosine similarity loss function for the non-linear loss to test this hy-
pothesis, and 0.4 and 0.6 are chosen for A; and Ay, respectively. The reason behind
choosing these values is to give more importance to the non-linear loss function.
Getting more importance can result into the better optimisation of that loss func-
tion. It was not able to surpass the baseline results. Hence for the study, only
the above combinations are considered. Results are more than evident to claim
that using more than one loss function has consistently performed better than the

usual choice of selecting only L1 loss using the above fusing technique.

4.4 Implementation Details

The whole implementation is done using Python. PyTorch is used as the ma-
jor framework to deal with creating the model, train the model and testing the
model. For creating visual grids, PIL library is used. To calculate the FID score,
the external FID library created by Zhedong Zheng is used as it is available pub-
licly. To calculate the value of various loss functions, NumPy library is used. Also,
Torch is used to create the tensors. For the training of the DG-Net, SGD [27] and
Adam [28] optimiser are used at the various stages. The whole training details are
described in the [8].
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CHAPTER 5

Experimental Results and Analysis

In this section, details of all the experiments are mentioned. All the experiments
are performed on the GeForce-RTX 2080 Ti GPU and Xenon-based CPU. At first,
details of the dataset are included. After that, all the experiments are discussed in

detail. In the end of this chapter, some of the critical observations are highlighted.

5.1 Dataset Details

5.1.1 Market1501

Market1501 dataset [9] is used to evaluate the performance of the system. This
dataset is considered the benchmark dataset for evaluating the Person Re-ID Sys-
tems. It is available publicly, with one thousand five hundred-one identities cap-
tured from six different cameras. The whole dataset has two parts (i.e., training
and testing). The distribution of the images among these two parts is mentioned
in Table 5.1. This dataset is used to evaluate the proposed claim. The dataset
contains a diverse set of images collected from multiple surveillance cameras. An

example of the sample dataset is shown in Figure 5.1.

Table 5.1: Statistical Details of Market1501 Dataset

Market1501 Train | Query | Gallery
Number of IDs 751 750 751
Available number of images | 12936 | 3368 15913
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Figure 5.1: Sample images taken from Market1501 dataset [9]

5.1.2 DukeMTMC

Duke Multi-Tracking Multi-Camera Re-IDentification (DukeMTMC-reid) [29] is
another dataset used for this study for comparison purposes. This dataset is sub-
set of the biggger dataset of DukeMTMC [30]. The images are taken from eight
different cameras. And it has 702 identities available. Other statistical details are
given in Table 5.2. This dataset does not have very diverse set of images.

Table 5.2: Statistical Details of Market1501 Dataset

DukeMTMC Train | Query | Gallery
Number of IDs 702 702 702
Available number of images | 16522 | 2228 17661

Figure 5.2: Sample images taken from DukeMTMC dataset [10]
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5.2 Evaluation Metrics

5.2.1 Frechet Inception Distance

Frechet Inception Distance (FID) [31] score is mainly designed for Generative Ad-
versarial networks. It quantifies how the generated dataset is close to the original
data distribution. Sometimes FID score is referred as Wasserstein-2 distance [32].
A lower FID score indicates better image quality. Contraversouly, a higher FID
score indicates that generated images are not close to the original images. FID
score is currently the widely chosen evaluation metric to evaluate the quality of

synthesized images.

5.2.2 Mean Average Precision

FID score is used to evaluate the quality of the generated images. However,
Mean Average Precision (mAP) will tell how well the model is generalized on
that dataset. Mathematically the mAP can be defined as follows.

1 i=N
mAP = N Y AP, (5.1)
i=1

Here,
N — Total number of queries
AP; — Average precision of the i" query
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Figure 5.3: Flowchart of how Mean Average Precision(mAP) is calculated during
the testing

In all the experiments, the procedure for calculating mAP values is elaborated
in Figure 5.3. Feature map, camera ids, and the corresponding labels are taken
from the gallery and query. Camera ids and labels help find good indices. Those
ids will be considered in the good indices that are taken from different cameras
and presented in the query index. Rest are considered junk indices. After per-
forming Indexing on the good indices, average precision is calculated for each

query. At last, the mean of all of them will give the final mAP value.

5.3 Obtained Results using Market1501 Dataset

The experiments are performed on the GeForce-RTX 2080 Ti GPU and Xenon-
based CPU. All the Quantitative results with the individual loss function are
shown in Table 5.2. Results with the combinations of loss functions are shown
in Table 5.3. It is clear from both the table that if we use a combination of lin-
ear and non-linear loss functions simultaneously, the system’s performance im-
proves. Also, the FID score consistently increases, meaning the generated image
quality increases. In Table 5.2, the first row contains the results for the initially
used method (i.e., using L1 Loss only). The performance gain is visible if any

non-linear loss function is combined with the linear loss function (i.e., L1 Loss
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function). The maximum performance gain is achieved when the RMSE loss func-
tion is combined with the L1 loss function, which is 20.57 % in the FID score and
1.19 % in the mAP value.

Table 5.3: Quantitative analysis of different loss functions

Reconstruction Loss | FID Score | Rank@1 (%) | Rank@5(%) | Rank@10(%) | mAP(%)
L1 19.68 91.09 96.73 97.80 75.96
Smooth L1(Huber) 25.17 90.65 96.73 98.01 75.83
MSE(L2) 21.40 90.29 96.88 98.31 74.75
MRAE 21.73 91.18 96.91 98.16 75.73
Cos 37.95 90.11 96.35 97.62 74.15
RMSE 19.65 91.33 96.79 98.01 75.19
ML 319.82 68.35 84.47 89.07 43.77

Table 5.4: Quantitative analysis of the considered combinations of the loss Func-
tions

Reconstruction Loss | FID Score | Rank@1 (%) | Rank@5(%) | Rank@10(%) | mAP(%)
0.4*L1 + 0.6*Cos 20.55 90.32 96.70 97.74 74.81
L1 + MSE(L2) 17.99 92.37 97.45 98.56 78.63
L1 + MRAE 18.79 91.03 96.82 97.98 77.13
L1+ RMSE 15.63 91.42 97.06 98.16 76.87
L1 + Cos 17.35 91.45 96.44 97.95 76.92

Figure 5.4 visually shows how the generated images differ when the different
loss functions are used. At the top, the FID score is mentioned in the curly braces.
It is observed that when only non-linear loss functions are used (i.e., apart from L1
loss), the results are not that satisfying. The visual artifacts in the generated im-
ages are more in non-linear loss functions than a linear loss function. Also, when
the multiplicative loss is used, the model could not generate the images well,
which are available in the last column of Figure 5.4. Compared with only single
losses, Figure 5.5 compares the combinations of various non-linear loss functions
with the linear loss function(i.e., the L1 loss function). The results clearly say that
combinations of loss functions can generate more realistic images than the single
loss function. One thing is also noticeable here that it may happen that FID score
is better but quality of the image is not better. It is because FID score is calculated
based on the entire dataset. Some images can have degraded quality. Some of
them can be spotted in the Figure 5.5 as well. (i.e., In the case of L1 + cos, FID

score is better but image quality of third image is better in case of L1).
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Figure 5.4: Side by side comparison of generated images using different loss func-
tions. Value of the curly braces in the first row indicates the FID score for respec-
tive loss function.
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Figure 5.5: Side by side comparison of generated images using different loss func-
tions combined with the L1 Loss function. Value of the curly braces in the first
row indicates the FID score for respective combination of the loss functions.

As discussed in the methodology section, the person’s appearance and struc-

ture are considered for generating the images. Images are generated using one
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person’s structure data combined with the other person’s appearance data and
vice versa. Figure 5.6 shows the effect of swapping appearance and structure data
by using different loss functions. In Figure 5.6, The top left images are the original
input images, and the rest are generated using respective loss functions (i.e., Men-
tioned in the curly braces). In contrast, Figure 5.7 compares the combinations of
the non-linear loss function with the linear loss function. In both the figures, the
first two rows show the generated images for each section of images by swapping
respective appearance and structure data (except for the top-left section).

Figure 5.6: Effect of swapping Appearance and Structure codes of Images for dif-
ferent Loss Functions. The type of loss function is identified in curly braces in
each section.
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Figure 5.7: Effect of swapping Appearance and Structure codes of Images for con-
sidered combinations of Loss Functions. The type of loss function is identified in
curly braces in each section.

54 Obtained Results using DukeMTMC Dataset

The same set of experiments are carried out for the DukeMTMC dataset on the
same hardware. The results obtained are not up to the mark. For the DukeMTMC
dataset, a fusion of losses is not working well. It could not be able to regenerate
the colors well. It is evident that by looking at Figure 5.8, non-linear loss or any
combination of linear and nonlinear loss cannot able to produce better results for
DukeMTMC dataset. Quantative results for the same are mentioned in Table 5.5.

This can be caused because of the limitation caused by the dataset itself.

Table 5.5: Quantitative analysis of different loss functions for DukeMTMC Dataset

Reconstruction Loss | FID Score | Rank@1 (%) | Rank@5(%) | Rank@10(%) | mAP(%)
L1 20.84 81.19 90.71 93.18 67.33
L1+L2 97.17 10.80 22.13 22.01 23.71
L1 + MRAE 86.40 14.37 23.71 26.31 26.34
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Figure 5.8: Effect of swapping Appearance and Structure codes of Images for the
DukeMTMC dataset. The type of loss function is identified in curly braces in each
section.

5.5 Observations

Itis hard to see the difference in the two images’ quality from the figures shown in
section 5.3. In Figure 5.9 and Figure 5.10, the sample output is enlarged. It gives
a better idea of how well the technique of combining loss functions produces im-
ages close to the actual images. We can see the clear difference in Figure 5.9 and
Figure 5.10. In Figure 5.9, it is shown that the shoulder part is more detailed when
the loss functions are combined. In Figure 5.10, it is observed that using a com-
bination of loss functions can generate a more detailed image. A clear difference
is shown in the hair part and the shoe part. These observations are only valid for
the Market1501 dataset.
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Figure 5.9: Sample Comparison of generated image using L1 loss function (i.e.,
left image) and using with the combination of L1 and RMSE loss functions (i.e.,
right image)

Figure 5.10: Sample Comparison of generated image by swapping the appear-
ance and structure codes using L1 loss function (i.e., output is shown in second
column) and using with the combination of L1 and RMSE loss functions (i.e., out-
put is shown in third column)
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

The primary target of this study was to improve the quality of the person Re-
Identification dataset and try to enhance the performance of the person Re-ID
systems using those datasets. Results showed that the proposed scheme of com-
bining non-linear losses with the linear loss massively increases the performance
of the existing GAN-based approach for the Market1501 dataset. As DukeMTMC
dataset contains many false identities and also the dataset has not enough diver-
sity, the same approach is not worked well on the DukeMTMC dataset. Results
are evident enough to say that the proposed technique is consistent with almost
all the non-linear losses. Using the proposed method to the existing GAN-based
approach, a considerable performance gain of 20.57 % AND 3.51 % was achieved
on the FID score and the mAP, respectively, on the Market1501 dataset.

6.2 Future Work

There is a scope for improvement in finding better combinations of loss functions
or the individual loss function for the DukeMTMC dataset. Further, this study
can be extended by adding more loss functions. Also, there is further scope to
improve the quality of generated images by accomplishing necessary architectural

changes.
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