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Abstract

Semantic segmentation of image groups is a crucial task in computer vision that
aims to identify shared objects in multiple images. This work presents a deep
neural network framework that exhibits congruity between images, thereby co-
segmenting common objects. The proposed network is an encoder-decoder net-
work where the encoder extracts high-level semantic feature descriptors and the
decoder generates segmentation masks. The task of co-segmentation between
the images is boosted by an attention mechanism that leverages semantic simi-
larity between feature descriptors. This attention mechanism is responsible for
understanding the correspondence between the features, thereby determining the
shared objects. The resultant masks localize the shared foreground objects while
suppressing everything else as background. We have explored multiple attention
mechanisms in 2 image input setup and have extended the model that outper-
forms the others for dynamic image input setup. The term dynamic image con-
notes that varying number of images can be input to the model, simultaneously,
and the result will be the segmentation of common object from all of the input im-
ages. The model is trained end-to-end on image group dataset generated from the
PASCAL-VOC 2012 [7] dataset. The experiments are conducted on other bench-
mark datasets as well and we can infer superiority of our model from the results
achieved. Moreover, an important advantage of the proposed model is that it runs
in linear time as opposed to quadratic time complexity observed in most works.
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CHAPTER 1

Introduction

1.1 Image Segmentation

Image segmentation is one of the most fundamental problems in computer vision
[3]. Image is segregated into smaller segments which are termed image groups.
These segments are formed based on either similarity or discontinuity. There are
various groups of image segmentation namely semantic segmentation, instance
segmentation and panoptic segmentation. Semantic segmentation is a pixel wise
classification of image. The aim is to assign a class or label to each pixel of an
image by devising methodologies that partition the image into several seman-
tic segments. It invariably draws a boundary around different objects present
in an image. Foreground-Background segmentation is a special type of seman-
tic segmentation that classifies the pixels belonging to specific class or classes as
foreground and everything else as background. Segmentation finds its use-case
in critical applications like autonomous driving, robotic navigation, localization,
and scene understanding.

1.2 Common Object segmentation in Image group

The semantic segmentation of image groups [13] [22] is a task of segmentation of
common objects from multiple images. It can be considered as a similarity mea-
sure between multiple images. Figure 1 shows segmentation of image pairs with
and without common objects present. Many computer vision applications, such
as interactive image segmentation, 3D reconstruction and object co-localization,
to name a few, require this method to enhance their results.

The main idea behind joint segmentation of image groups is to identify the
synergistic relation between the images and localise the common objects between
them [13]. Significant work has been done on unsupervised models [18] [10] [8],
however, their performance is dependent on the image feature selection and tun-
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(a) An image pair with common object and
their co-segmentation masks

(b) An image pair with no common object
present and their co-segmentation masks

Figure 1.1: Co-segmentation results on PASCAL-VOC 2012 [7] dataset

ing methods. Image features are the most important descriptors that can model
the commonalities between the images, and hence, it is vital that these features
are as unerring as they can be. Traditional feature representation techniques like
color histograms, SIFT descriptors [21, 12] cannot handle object scale variations
and background clutter issues.

Recent years have seen a rapid surge in the use of deep learning models namely
U-NET [6] and DeepLab [16] in segmentation architectures as well as feature ex-
traction architectures and have shown superior results.Along with the success of
deep learning models, the attention mechanism [20] has also boosted the perfor-
mance of several deep learning models. The attention mechanism is based on the
perceptual mechanism of human brain and eyes, and helps the model to focus on
only the needed part of the image, which in this case is the common object.

1.3 Motivation

Segmentation of common objects in multiple images finds its application in vari-
ous computer vision areas like 3D reconstruction, object co-localisation etc. Note-
worthy work has already been done in common object segmentation from two
images, however, for more than two images this area has been meekly explored.
This forms the motivation of my thesis to devise a multiple model architecture
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that aims at segmentation of common objects for a dynamic image collection. The
term dynamic here implies that the model can take variable number of images in
one group for joint segmentation.

1.4 Objective

The main objectives of my thesis are as follows:

• To develop a robust model that takes in variable number of images and gen-
erates segmentation masks that localise the common foreground objects.

• To draw comparison of proposed model with state-of-art baseline models
and outperform them.

1.5 Main Contribution

The main contribution of my thesis are as follows:

• We have proposed four different attention models as bottleneck in a Siamese
Encoder-Decoder model for a 2 image collection setup. We have drawn com-
parison between each model for segmentation results.

• We have extended the 2 image model to handle dynamic image input setup.
We have proposed a recursive attention model to achieve this.

• Furthermore, we have extended the model with a classification head to han-
dle negative image pair i.e. image group that has no common object.

1.6 Thesis Outline

This thesis is organised in 5 chapters

• Chapter 2 contains literature survey on single as well as multiple image seg-
mentation.

• Chapter 3 presents the experimental setup and research methodology.

• Chapter 4 contains the results of the experiments and related discussion.

• Chapter 5 concludes the thesis and defines scope of future work.

3



CHAPTER 2

Related Work

This section entails the work done in the field of single image as well multiple
image segmentation.

2.1 Single Image Segmentation

Many state-of-the-art deep learning architectures like U-net and DeepLab are built
on the underlying encoder-decoder model to yield excellent image segmentation
results. The encoder model exctracts high level semantic features of images at
lower resolutions. These feature capture the semantic information of the image
and thereby enhance the segmentation process of the image. The decoder scales
back the lower resolution feature maps to the original image size along with seg-
mentation results.U-Net [16] identifies that the spatial information is lost in the
decoding phase in a basic encoder-decoder segmentation structure and so intro-
duces skip connections to retain spatial information while decoding the image
features.

DeepLab v3 [6] highlights two important challenges in segmentation tasks. First
issue entails that due to mutliple pooling operations for the downsampling of im-
age in deep convolutional networks the spatial information is lost which hampers
segementation results. To overcome this issue, the model has removed down-
sampling from the last layers of the encoder layer and have upsampled the filter
kernels by using atrous convolutions. The second issue is that objects exist at
different scales in the image which makes the segmentation slightly difficult. To
overcome this issue the paper has defined an approach called the spatial pyramid
pooling, that applies filters at multiple atrous rates and multiple effective field-
of-views on the feature maps, thereby identifying the objects at multiple scales.
With these developments the DeepLab v3 model has acheived much enhanced
results as compared to its previous models. It is also used in many state-of-the-
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art segmentation and co-segmenatation model as feature extractor or backbone
model.

2.2 Segmentation of Image Groups

Rother et al. [17] first proposed the term co-segmentation as the method of seg-
menting the common objects of an image pair simultaneously. They concluded
that the segmentation achieved with more than one image was far more superior
than single image segmentation. Post that, significant work have been done on
multiple image segmentation, mostly 2 input image. Banerjee et al. [2] proposed a
class-agnostic, twofold deep neural network (siamese network) architecture that
segments common objects between two images. The masks generated for both
the images have common objects classfied as foreground and rest of the image
as background. The network is an encoder-decoder architecture, where VGG-16
architecture is adopted for the encoder to fetch high level semantic features from
the images. Here, the decision network is of key importance as it tells whether
there are common objects between the two images or not. Li et al. [13] proposed a
robust, novel recurrent deep neural network that handle the variation of co-object
in appearance.

Models proposed in [15] [14] and [22] also adopt similar encoder-decoder archi-
tecture, however, in [14] the image pairs are selected such that there always exists
only one common object between them. For identification of common object, a
mutual correlation network is introduced between encoder and decoder that per-
forms feature matching over the encoded feature space produced. This correlation
network helps to identify the common object in the image pairs.

Kim et al. [11] proposed a clustering approach that eliminates intra-class het-
erogeneity and builds intra and inter image connections. Hierarchial clustering is
implemented that leverages multiple clustering to gain inter image connections
and thereby co-segment images simultaneously. Joulin et al. [9] also proposed
clustering based method for images with both low and high intra-class variations.
They have used traditional bottom-up segmentation methods involving kernels,
normalization cuts etc. within discriminitive clustering method based on positive
definite kernels to obtain forground-background segmentation.

Chen et al. [4] proposed Siamese encoder-decoder architecture, however, in this
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approach an attention learner is selected for the bottleneck layer. The main mo-
tivation behind this approach is to leverage the semantic and spatial similarity
between the image pairs. They have proposed three different architectures for at-
tention mechanism. The have claimed that the background and appearance of the
objects in the image may not always be consistent and so the key to get accurate
results is by leveraging semantic relations between images.

In [22] the authors have generated multi-resolution features for images. The coarse
localisation of the common objects are achieved via supervised semantic and un-
supervised spatial network modulators. The images are fed to multi resolution
backbone structures to yield multi resolution features. These are passed to se-
mantic and spatial modulators. The spatial modulator uses an unsupervised clus-
tering approach to generate heat maps. The semantic modulator uses 2nd order
pooling to get semantic relations between set of images. A classification module
is also added to classify the presence of multiple classes in the images in order to
handle mutliple common object case.

6



CHAPTER 3

Approach

3.1 Model Architecture

The architecture adopted for the segmentation task is an encoder-decoder ar-
chitecture with the bottleneck of attention mechanism. Since, the segmentation
task is for more than one images, we naturally require siamese encoder-decoder
model. Siamese model refers to a model that has same weights when its working
with more than one input images alongside each other. The overview of the gen-
eral model is presented in Figure 3.1. The model can be divided into three main
modules, Encoder, Attention and Decoder. Each of the modules are elaborated in
the following subsections.

3.1.1 Siamese Encoder

The first part of the architecture is a siamese encoder that contains identical fea-
ture extraction convolution layers with shared parameters. The main objective
of the encoder is to extract image features. The popularity of VGG-16 [19] mo-
tivated us to use its feature extraction module. The VGG-16 has 5 convolution
blocks, comprising of combination of convolutions, ReLU and max pooling func-
tions. Feature extractor module of VGG-16, pretrained on the ImageNet dataset,
is used to initialize the encoder to produce low resolution, high level semantic in-
formation feature maps for the respective images. These feature maps are passed
to a global average pooling module (GAP) to reduce the dimensions of the feature
maps. This is achieved by pooling the channel information by spatially averag-
ing each channel. These pooled features are then passed to the channel attention
module.
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VGG -16
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256 128
64

32
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232
64

128
256

Attention
ModuleShared Parameter

Figure 3.1: Base Architecture of the Segmentation model

3.1.2 Attention Module

The main motivation behind leveraging the attention mechanism as the bottle-
neck for encoder-decoder model is to recognise the semantic similarity between
images. Attention mechanism will train the model to keep attention on feature
channels that have high activation in all input images, and suppress other irrele-
vant feature channels. The high activation feature channels will invariably corre-
spond to the image regions that have common objects. Thus, the model will learn
to identify the properties of common objects.

There are two attention modules that are used, in different combinations, in the
proposed model. First is the channel attention module that learns semantic sim-
ilarity by activating those channels that are common between the image pairs.
Second is the spatial attention module that learns to localise the common object
in the respective image. The channel attention module is comprised of 2 fully
connected layers separated by ReLU activation function. At last there is sigmoid
activation which constricts the activation values in the range of 0-1. The spatial
attention layer also has a similar structure with just one difference, the fully con-
nected layers are replaced with convolution layers.

3.1.3 Siamese Decoder

As mentioned earlier, the output from the channel attention module contains the
common object information. Hence for the task of common object extraction, we
can use this to modulated the encoder features of the respective images. Thus,
this output is up-sampled using bi-linear interpolation, and then pixel wise mul-
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tiplied with the feature maps images. These fused feature maps are then passed to
the Siamese decoders. The decoder consists of 5 blocks of deconvolution blocks,
where each block has several deconvolution layers followed by ReLU activation
except the last block. These blocks up-samples the output channel attention maps
to localise the common objects as per the original image dimensions. Drop out lay-
ers are added after each up-sampling to avoid over fitting. After the last decoder
block, there is a softmax layer with two channels that segments the foreground
and background regions of the image group.

3.2 Image Pair Segmentation

Based on the base model, we have proposed four different kind of implementation
for the attention modules for 2-image input. Chen et al. [4] have proposed three
channel and spatial attention bottlenecks explained in the baseline section below.
On those attention models we have proposed changes to boost the results. The
proposed changes are elaborated after the baseline model.

3.2.1 Baseline

Chen et al. [4] have proposed encoder-decoder architecture with three combina-
tions of channel and spatial attention as bottlenecks. We will elaborate on the
Fused Channel Attention Module (FCA) which forms the basis of the modifica-
tions we have introduced.

Figure 3.2 outlines the FCA’s channel attention architecture. The feature maps
from the encoder for the two input images of spatial dimension of 16x16 and 512
channel features are passed to the channel attention layer. These are then passed
to a global average pooling layer that performs spatial averaging for each channel
feature to create 1x1x512 dimension pooled features. Then, they are individually
passed to 2 fully connected neural networks and then finally to a sigmoid acti-
vation function that learns to activate features that are important and suppress
those channels that are not important. These activated channel outputs of the two
images, from the attention learners, are added with each other. The authors have
claimed that the addition of the results will further activate only those channels
or features that are common between the two images. This added channel output
is then pixel wise multiplied to all the spatial pixels of the respective channels of
the feature maps of the images. This is then passed to decoder to generate the
segmentation maps.
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Figure 3.2: Fused Channel Attention (FCA) Model proposed by Chen et al. [4]

3.2.2 Proposed Changes

Proposed Method 1 with Channel Attention Module (M1C)

*

shared weights

16x16

16x16

512

512

*

1x1x512

Channel Attention

16x16
512

512
16x16

VGG-16

VGG-16

shared weights
*

1x1x5121x1x512

1x1x512

Decoder

Decoder

Figure 3.3: Architecture of M1C model

As the name suggests, M1C is similar to the M1C model proposed in [4] with a
critical modification. After the pooled feature maps are passed to the fully con-
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nected network and sigmoid activation function they are pixel wise multiplied
instead of being added as in M1C. These multiplied activation values are the
attention maps of the respective image. The reason for replacing addition with
multiplication is to increase the gap between attention’s activation values of the
common features and the divergent features. The features present in one of the
image will have higher value at the corresponding channel activation of that im-
age but relatively low in the other image’s channel activation. In case of addition,
these values will add up to give relatively higher value, however, if we multiply
them this value will be less. Therefore, intuitively, the values of common features
in the channel activation will be closer to 1 and for the divergent features, it will
be closer to 0. Finally, when this fused attention map will be multiplied with the
feature maps the divergent features will be suppressed, thereby highlighting the
common features with more effect.The entire architecture of M1C model is picto-
rially represented in Figure 3.3 and mathematically represented in Equation (3.1).

αc
A = σ

(
WT ∗ AvgPool channel ( fA) + b

)
αc

B = σ
(

WT ∗ AvgPool channel ( fB) + b
)

αC = αc
A ∗ αc

B

f ′A = αC ∗ fA

f ′B = αC ∗ fB

(3.1)

where:

fA, fB = feature maps of image pair (A,B)
αc

A, αc
B = channel attention features maps

f ′A, f ′B = attended feature maps
WT = weight
b = bias
σ = sigmoid
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Proposed Method 1 with Channel and Spatial Attention Modules (M1CS)

*

shared weights

Spatial Attention network

Spatial Attention network

16x16

16x16

512

512

*16x16

16x16

16x16

16x16

1 1

11

1x1x512

Channel Attention

16x16
512

512
16x16

VGG-16

VGG-16

shared weights
*

1x1x5121x1x512

1x1x512

Decoder

Decoder

Figure 3.4: Architecture of M1CS model

In the M1C model the fused attention maps do not take into consideration the
spatial information. They focus on finding only the semantic similarity between
the images. Hence, a spatial attention layer, denoted by the green doted lines, is
added. This attention layer constitutes of 2 convolutional modules followed by
sigmoid activation function. They output spatial attention maps which is then
pixel wise multiplied across all the channels. The channel attention activation
maps are, as earlier, multiplied with all the spatial pixels of the respective channel.
The entire architecture of M1CS model is pictorially represented in Figure 3.4 and
mathematically represented in Equation (3.2).

αc
A = σ

(
WT ∗ AvgPool channel ( fA) + b

)
αc

B = σ
(

WT ∗ AvgPool channel ( fB) + b
)

αs
A = σ

(
Conv

(
AvgPool spatial ( fA)

))
αs

B = σ
(

Conv
(

AvgPool spatial ( fB)
))

αC = αc
A ∗ αc

B

f ′A = αC ∗ fA ∗ αs
A

f ′B = αC ∗ fB ∗ αs
B

(3.2)

where:
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fA, fB = feature maps of image pair (A,B)
αc

A, αc
B = channel attention features maps

αs
A, αs

B = spatial attention features maps
f ′A, f ′B = attended feature maps
WT = weight
b = bias
σ = sigmoid

Proposed Method 2 with Channel Attention Module (M2C)

*

shared weights

16x16

16x16

512

512

*

Channel Attention

16x16

16x16

1x1x512

1x1x512
1x1x512 1x1x512

*

VGG-16

VGG-16

shared weights

Decoder

Decoder

Figure 3.5: Architecture of M2C model

This approach focuses on reducing the network complexity of the channel atten-
tion without losing vital information. Instead of fusing the attention’s activation
features, the feature maps extracted from the VGG-16 encoder are pixel wise mul-
tiplied together and the resultant feature map is fed to the channel attention net-
work. Apart from reduced complexity, another motivation behind this model is
that concatenation of the feature maps will ensure that common semantic infor-
mation’s i.e. objects in the features maps value will be increased and the ones that
are different will not add to the other, thereby boosting performance of the learner.
The attention mechanism will produce a single channel activation map which is
multiplied with all the spatial pixels of the respective channel of both the image’s
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encoded feature maps. The entire architecture of the M2C model is pictorially
represented in Figure 3.5 and mathematically represented in Equation (3.3).

f = AvgPool channel ( fA) ∗ AvgPool channel ( fB)

αc = σ
(

WT f + b
)

f ′A = αc ∗ fA

f ′B = αc ∗ fB

(3.3)

where:

fA, fB = feature maps of image pair (A,B)
f ′A, f ′B = attended feature maps
WT = weight
b = bias
σ = sigmoid

Proposed Method 2 with Channel and Spatial Attention Modules (M2CS)

*

shared weights
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Figure 3.6: Architecture of M2CS model

In the M2C model the fused attention maps do not take into consideration the
spatial information. They focus on finding only the semantic similarity between
the images. Hence, a spatial attention layer, denoted by the green doted lines, is

14



added. This attention layer constitutes of 2 convolutional modules followed by
sigmoid activation function. They output spatial attention maps which is then
pixel wise multiplied across all the channels. The channel attention activation
maps are, as earlier, multiplied with all the spatial pixels of the respective channel.
The entire architecture of M2CS model is pictorially represented in Figure 3.6 and
mathematically represented in Equation (3.4).

f = AvgPool channel ( fA) ∗ AvgPool channel ( fB)

αc = σ
(

WT f + b
)

αs
A = σ

(
Conv

(
AvgPool spatial ( fA)

))
αs

B = σ
(

Conv
(

AvgPool spatial ( fB)
))

f ′A = αc ∗ fA ∗ αs
A

f ′B = αc ∗ fB ∗ αs
B

(3.4)

where:

fA, fB = feature maps of image pair (A,B)
αs

A, αs
B = spatial attention features maps

f ′A, f ′B = attended feature maps
WT = weight
b = bias
σ = sigmoid

3.3 Semantic Modulator

Zhang et al. [22] proposed semantic modulator as channel attention mechanism
along with an unsupervised spatial modualtor network for the segmentation task.
We have integrated their channel attention mechanism with our encoder-decoder
architecture as the channel attention module. This channel attention module is
two fold, and the features here are directly taken from the encoder. The modu-
lator, called SP(Spatial pooling) block, is shown in Figure 3.8. The features are
passed to convolution layer to reduce the number of channels for better compu-
tations. The resultant feature map are passed onto a pooling layer that extracts
higher order statistics. The resulting enhanced features from this SP layer for each
image is concatenated. This concatenated enhanced features are again passed to
the SP layer, in order to capture long range dependency between the features to
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yield a activation value for each channel. This entire module is termed as HSP (Hi-
erarchical second-order pooling) block and is pictorially represented in Figure 3.7

Additionally, in order to identify presence of multiple common classes in images,
classification module is introduced here. The results from the channel modulator
are passed to a fully connected layer followed by a sigmoid function to learn the
co-category classes present. The motivation behind adding this classifier is to en-
able the model to learn presence of multiple classes in the images.

Concatenate
d

d l
d

N

h
w

d

d
w

h

Channel
modulation

Channel
modulation

Channel
modulation

l

d

Figure 3.7: HSP(Hierarchical second-order pooling) model
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Figure 3.8: SP(Spatial pooling) model

3.4 Handling negative image pairs

Until now, the image pairs taken for training as well as for testing of the model
have at least one object common amongst them. Such image pairs are termed
positive image pairs. However, there can be cases where the image pairs have no
object in common, which are called negative image pairs. To check whether our
model can handle the negative image pairs, we have conducted an experiment.
We have tested the M2C model with dataset comprising of 50:50 mix of positive
and negative PASCAL-VOC 2012 image pairs. The jaccard score 4.2 obtained was
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21 percent, which is deemed far too low. Therefore to take care of this scenario,
we have proposed a modification in the model architecture.

We have introduced a classifier in M2C model. The Figure 3.9 shows a simpli-
fied diagram to understand the change in the architecture. We have introduced
the classifier that takes input from the 4th block of the decoder and passes it to
2 fully connected layer followed by a sigmoid learning function. This classifier
determines whether the image pairs have any common object between them or
not. There are two learning processes in this architecture, first the segmentation
task and second the classification task. The back-propagation for the segmenta-
tion task happens only if the 2 images have a common object otherwise only the
classification path is back-propagated. This helps the network to learn attention
weights only if the common object is present in the image.

Figure 3.9: Segmentation Model with classifier

3.5 Multiple Image Segmentation Model

The multi-image segmentation model is an extension of the M2C model proposed
in the previous section to incorporate dynamic number of images. It also fol-
lows the Siamese encoder-decoder architecture. The model takes a set of n images
I = {Ix}n

x=1 as input, and produces corresponding masks {mx}n
x=1 with common

objects segmented as the foreground. Figure 3.11 entails the overall architecture
proposed for four images only. All the images are passed to VGG-16 based en-
coder to fetch feature maps F1, F2, F3 and F4 which are passed to global average
pooling layer to get pooled feature maps F

′
1, F

′
2, F

′
3 and F

′
4. F

′
1 and F

′
2 are first passed

to M2C attention module to get attention map G2. This activation map is passed
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as an input to the M2C along with the pooled feature map F
′
3. This gives attention

map G3, which is again passed as an input to the M2C with the pooled feature
map F

′
4. The resultant attention map G4 is then multiplied with all the feature

maps of the 4 images and then passed to the decoder for further generation of the
segmentation masks.

Generalised description of the above explained model is presented by the recur-
sive model in Figure 3.10. The feature maps of n images Fn extracted from the
encoder are individually passed to Global average Pooling Modules to extract F

′
n

pooled features. The recursive steps are followed with the pixel wise product of
two pooled feature maps F

′
1, and F

′
2 of dimension as G2

in. In every iteration x, Gx
in

is passed to the fully connected network to produce the output Gx
out as given in

Equation (3.5). The variables W1 and W2 represent the weight parameters of the
two fully connected network respectively. Variables b1 and b2 represent the biases
of the respective networks.

Gx
out = σ(W2(ReLU(W1Gx

in + b1)) + b2), (3.5)

The output from the fully connected network is, recursively, pixel wise multi-
plied with the pooled feature map of the images next in line. This is then passed
again to the fully connected network. This process is continued till the feature
maps of all images are incorporated. The recursive input to the module can be
inferred as in Equation (3.6).

Gx
in = F

′
x ∗ Gx−1

out . (3.6)

The motivation for adopting this recursive channel attention mechanism is
that there exists lot of noise in each image. This noise is due to the uncommon
objects as well as background components in the images. Fusing all the feature
maps as an input to the channel module will escalate the noise and result in poorly
learned attention feature maps. Therefore in each iteration, we use the synergis-
tic relationships between the explored image feature maps and the current image
feature map to maximally suppress the noise data. The attention maps so learned
will essentially capture common objects effectively resulting in more accurate seg-
mentation masks. The final output from this recursive network is denoted as α

and defined as α = Gn
out, which is the final channel attention map for all the im-

ages in the collection. The entire algorithm is summarised in algorithm 1.

18



X ∈ {3, 4, ...., n}

FC FC

1x1x512 1x1x512

*
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Figure 3.11: Multiple image segmentation model

Algorithm 1 Channel Attention Module

procedure CHANNELATTENTION(F
′
1, F

′
2, . . . , F

′
n)

Initialize G1
out ← F

′
1, i← 1.

for i← 1 to n do
i← i + 1
Gi

in ← F
′
i ∗ Gi−1

out

Gi
out ← σ(W2(ReLU(W1Gin + b1)) + b2)

end for
return Gn

out

end procedure
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The number of images during training of the model is fixed. However, during
testing stage we can give image group of any size as an input. Lets say that we
have m number of input images I = {Ix}m

x=1. The entire method of generating
their segmentation mask is outlined in the algorithm 2.

Algorithm 2 Multiple Image Segmentation (Test stage)

procedure MULTIPLESEGMENTATION(I1, I2...Im)
for i← 1 to m do

Features Fi ← VGG16(Ii)

Pooled features F′i ← GAP(Fi)

end for
α = CHANNELATTENTION(F

′
1, F

′
2, . . . , F

′
m)

for i← 1 to m do
Fused feature FFi ← Fi ∗ α

Masks Mi ← DECODER(FFi)

end for
return masks

end procedure

20



CHAPTER 4

Experiment and Results

4.1 Dataset

The standard PASCAL VOC 2012 dataset [7] is used to train the models.There are
20 total distinguishable object classes: person, bird, cat, cow, dog, horse, sheep,
aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, pot-
ted plant, sofa and tv/monitor. There are total 2913 images with the class fre-
quency as depicted in Figure 4.1. Image groups containing common classes are
created from this dataset for training and testing purpose. For 2 image segmenta-
tion models there are two set of training dataset created. One with only positive
image pairs with total of 25k image pairs and another with a 50:50 mix of positive
and negative image pairs with total of 25k image pairs. The M1C, M1CS, M2C
and M2CS are trained on positive image pair dataset while M2C with classifier is
trained on mixed dataset. For testing purpose, positive image pair test data of size
169k and mix pair test data of size 50k is created from PASCAL VOC 2012 dataset.
Moreover, these models are tested on MSRC sub dataset[1] as well. MSRC sub-
dataset contains 7 classes: bird, car, cat, cow, dog, plane, sheep with total of 10
images in each class. Total of 315 image pairs are generated from these images for
testing the models.

The multiple images segmentation model is trained on image groups of size 4.
30k sets of such image groups are created from PASCAL VOC 2012 dataset. The
image groups contains images that have atleast one object common among each
other. For purpose of testing we have created 7 datasets D1, D2, D3, D4, D5, D6,
and D7 using images from PASCAL VOC 2012 dataset. Dataset D1, D2, D3, D4,
D5, D6, and D7 comprises of image groups of size 2, 3, 4, 5, 6, 7 and 8 respectively.
Each dataset has 50k sets of image groups. Individual and average jaccard score
is calculated for these datasets.
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Figure 4.1: Class frequency graph of PASCAL-VOC 2012 [7] dataset.

4.2 Implementation details

The VGG-16 encoder implementation details (only convolution blocks for en-
coder) are given in Table 4.1. The channel attention network layers are 2 fully
connected neural networks. The attended feature maps are up-sampled using de-
convolution layers followed by ReLU activation units. The objective function is
the cross entropy loss function Equation (4.1) and optimiser used is the Adams
optimiser. The model is evaluated using the Jaccard score metric (Equation (4.2)).
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Index Layer Type Filter
1 Convolution + ReLU 3x3x64

2 Convolution + ReLU 3x3x64

3 Max Pooling

4 Convolution + ReLU 3x3x128

5 Convolution + ReLU 3x3x128

7 Max Pooling

8 Convolution + ReLU 3x3x256

9 Convolution + ReLU 3x3x256

10 Convolution + ReLU 3x3x256

11 Max Pooling

12 Convolution + ReLU 3x3x512

13 Convolution + ReLU 3x3x512

14 Convolution + ReLU 3x3x512

15 Max Pooling

Table 4.1: Model architecture for VGG-16 convolutional blocks.

L = −1
2

c

∑
i=1

yi · log (ŷi) (4.1)

where:

c = no. of classes (foreground and background)
yi = Probability

Jaccard =
{n}

∑
i

1
n
|mi ∩ gi|
|mi ∪ gi|

(4.2)

where:

n = Number of Images
mi = predicted segmentation mask
gi = ground truth segmentation mask

4.2.1 Results

Two Image Segmentation Models

The Table 4.2 compares the score for 2 image pairs for our proposed attention
models with the baseline paper [4] and our implementation of the semantic mod-
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Model Pascal-VOC 2012 MSRC sub dataset
Chen [4] (CA) 74.24% 76.49%
Chen [4] (FCA) 76.41% 76.94%
Chen[4] (CSA) 74.36% 77.70%
Chen[5] 75.50% 94.30%
Semantic Modulator[22] 78.90% 77.7%
M1C 78.60% 75.45%
M1CS 78.49 % 70.67%
M2C 80.24 % 76.45%
M2CS 79.94 % 73.67%

Table 4.2: Comparison of Jaccard score between baselines Chen[4] , Chen[5] and
our proposed attention models. The models are trained and on image pairs of
PASCAL-VOC 2012 [7] dataset. Additionally, the models are also tested on MSRC
sub dataset [1].

ulator inspired from [22]. The results prove to outperforms the baseline model
results. The proposed channel models M2C, where the encoded features are mul-
tiplied and then passed onto the channel attention model outperforms the other
models as well as the baseline models for PASCAL VOC 2012 dataset. For MSRC
subset, the M2C model outperforms the other models and baselines except the
Chen [5]. This could be because their model is trained on coco-stuff dataset which
has 78 classes and more training dataset. Additionally, upon observation of the
results, we collect that the presence of spatial attention mechanisms do not con-
tribute in boosting the performance of the model.

M2C model with classifier

Attention model coupled with classifier handles the presence of negative image
pairs as we can see from the results in Table 4.3. The classifier helps the model
to learn to identify images that do not have common objects. This prevents the
model from segmenting these images and we can directly infer the negative image
pair.

Model Jaccard Score

M2C model 21.00 %

M2C model with classifier 74.00 %

Table 4.3: Comparison of model trained with positive and positive-negative mix
image pairs on PASCAL-VOC 2012 [7] dataset.
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Model Pascal-VOC 2012
Li[13] 63.00%
Zhang [22] 66.00%
Ours 68.53%

Table 4.4: Comparison of Jaccard score between Zhang[22], Li[13] and our pro-
posed multiple image model trained and tested on PASCAL-VOC 2012 [7] image
group dataset

Dataset Jaccard Score
D1 70.23%
D2 68.43%
D3 68.51%
D4 68.33%
D5 68.54%
D6 68.78%
D7 66.90%

Table 4.5: Respective Jaccard score for D1, D2, D3, D4, D5 , D6 and D7 datasets.

Multiple Image Segmentation Model

The Table 4.4 compares the score for multiple image model with the models pro-
posed by [22] and [13]. The results prove that our proposed multiple image seg-
mentation model outperforms the [13] and [22] results on PASCAL VOC-2012
dataset. We have also presented the individual score for the aforementioned
datasets D1, D2, D3, D4, D5, D6 and D7 in Table 4.5. Figure 4.2 presents visual
results of segmentation for 4 input images. The multi image model successfully
segments the common class amongst image groups. Along with the segmenta-
tion of common class objects the model also suppresses non-common objects into
the background. For instance, in the Figure 4.2, the second input group the com-
mon class among the images is person and non-common class in table and car.
The model has learned to put attention only to the common class in all images
and therefore the generated masks have segmented the non-common objects as
background.

Moreover, we have performed dynamic image input testing on our model. In
Figure 4.3 the first row contains 8 images comprising the image group passed as
an input to the model. First the model is tested for all the images and their re-
sulting segmentation masks are superimposed on the images to detect common
objects. The second row shows these results for 8 images. Then, one image is
remove (last one) and the image group is again passed to the model to fetch seg-
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Figure 4.2: Segmentation results for input image group of size 4 to the proposed
model. The model is trained on PASCAL-VOC 2012 [7] dataset. The test image
group is also of the same dataset.

mentation masks. This process is repeated until we have only 2 image inputs.
Row third to eighth displays the segmentation masks for input sizes 7, 6, 5 , 4,
3, and 2 respectively. As we can observe, the segmentation masks generated for
the images are not affected by the number of input images. In all the cases the
segmentation masks generated are almost same for the same input images. These
results confirm the efficiency and accuracy of our model. More visual results for
dynamic input images are given in Figures 4.4, 4.5, 4.6 and 4.7.

26



Figure 4.3: Comparison of segmentation between varying sizes of input image
groups of PASCAL-VOC 2012 [7] dataset. The model is trained on image group
of size 4 on the same dataset.
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Figure 4.4: Segmentation results for 5-image input to the proposed model trained
on image group of size 4 of PASCAL-VOC 2012 [7] data

Figure 4.5: Segmentation results for 6-image input to the proposed model trained
on image group of size 4 of PASCAL-VOC 2012 [7] data

Figure 4.6: Segmentation results for 7-image input to the proposed model trained
on image group of size 4 of PASCAL-VOC 2012 [7] data
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Figure 4.7: Segmentation results for 8-image input to the proposed model trained
on image group of size 4 of PASCAL-VOC 2012 [7] data

4.3 Ablation Study

It could be argued that the segmentation model gives promising results due to the
encoder-decoder mechanism or powerful VGG-16 for feature extraction and that
the channel attention mechanism has little or no effect on the results acquired.
Therefore, in order to gauge the importance of the channel attention mechanism
we have conducted an experiment.

We have removed the channel attention mechanism from the encoder-decoder
architecture. Instead, we have taken the pooled feature maps of the image pair,
pixel wise multiplied them and passed them through sigmoid activation func-
tion. We have removed the attention mechanisms of the fully connected networks.
Trained this model with the same dataset (PASCAL VOC 2012) of size 25k gen-
erated image pairs and tested with the same 169k test image pairs. The jaccard
score obtained for the segmentation model without channel attention is 52.34%
which is quite less than the score obtained with the channel as well as the spatial
attention layers which thereby proves the power and importance of the attention
mechanism in the segmentation task.
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CHAPTER 5

Conclusion and Future work

In this thesis, we have proposed four different attention mechanisms that act as
bottleneck for an encoder-decoder mechanism devised to perform common seg-
mentation of image groups. The proposed models help to analyse the significance
of channel and spatial attention in the segmentation task. The M2C model outper-
forms the other models as well as the baseline papers. We proposed modifications
to this model to handle scenarios where there is no common object between a pair
of image.

Furthermore, we have extended this attention mechanism, M2C, into a recursive
model that handles multiple, dynamic number of images. This recursive, multi-
ple image segmentation model module ensures that the model is capable of jointly
segmenting a collection of an arbitrary number of images, which is a strong aspect
of this method. Our proposed model has outperforms the baseline state-of-the-art
models.

We intend to refine the multiple image segmentation model to handle various
combinations of negative and positive image pair combinations. For this, we in-
tend to create an appropriate dataset that handles all the possible combination of
images in order to achieve a robust model. This summons the future scope of the
thesis.
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