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Abstract

Most of the conventional remote sensing (RS) retrieval approaches used today
are often based on a single modality data framework. In today’s date, the need
for multimodal and cross-modal based approaches especially in the RS retrieval
area are growing evident with more and more data being acquired from differ-
ent satellite sensors. This thesis presents a few-shot learning based cross-modal
image retrieval framework for RS images. Few-shot learning was incorporated to
account for label scarcity or when the data available is insufficient and DeepCO-
RAL loss was further integrated for domain adaptation of the cross-modal data.
In addition, a reciprocal points loss is also integrated for generating better dis-
criminative features of images. We evaluate our approach on two cross-source
remote sensing image datasets by training cross-modally and testing uni-modally
on insufficient labeled data and achieve positive results showing our framework
to be helpful.
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CHAPTER 1

Introduction

Image retrieval is a well-researched problem in the field of computer vision, where
images in the database similar to a given query image are retrieved [11]. A simi-
larity measure is used between the query and database/gallery images to rank the
database images in decreasing order of similarity. First, image features obtained
from a reliable feature extractor for the database images are stored beforehand.
During retrieval, given a query image, its features are computed and compared
with the pre-computed database image features. For this, a similarity value is
obtained, and the images are ranked accordingly. Let us denote the query image
as Q, an image in the gallery/database D as I, feature extractor model as fθ, and
similarity measure as S. The similarity is calculated as:

simI = S( fθ(Q), fθ(I)) (1.1)

Figure 1.1 shows the overview of remote sensing image retrieval process.
In recent times, there have been many signs of progress in the remote sensing

(RS) area. Both the quantity and quality of remote sensing images are growing
rapidly. Designing an effective feature extraction method based on remote sensing
images’ characteristics can improve the retrieval performance. Various fruitful
efforts have been made in building efficient and accurate remote sensing image
retrieval methods for use in searching large remote sensing (RS) archives [23].

Early studies particularly emphasized finding various feature representation
methods to improve the accuracy of RS image retrieval, aiming to find features
or feature combinations that discriminates different classes well [33]. In current
times, as the complexity of RS data is increasing, ambiguity has increased for the
visual features [26]. Thus, basic RS retrieval systems no longer give satisfactory
performance. High-level features for RS data were thus derived using convolu-
tional neural networks (CNNs) for high-resolution remote sensing (HRRS) image
retrieval to overcome this difficulty [43, 39, 44]. CNN features have proven them-
selves to be having a solid discrimination ability and improve retrieval perfor-
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Figure 1.1: Remote sensing image retrieval [15]

mance in several computer vision tasks.
Nevertheless, most of the works focused on training feature extractors for uni-

modal retrieval or where only a single modality of data is used [43, 44, 39, 41].
If the training data available is insufficient, which can be the case for some RS
archives, the retrieval performance also drops. Consequently, researchers pro-
posed to use similar data of different modalities to help train reliable retrieval
frameworks [19, 31, 40, 4, 22, 17]. This method to retrieve images of one modality
with the help of data of different modalities is called cross-modal image retrieval.
Different modalities of data such as text, audio, images from different datasets
have been used in these approaches.

As we are considering insufficient training data, it makes sense to bring few-
shot learning into the fold, which is rapidly gaining popularity in the deep learn-
ing community. Few-shot learning is designed for tasks whereonly a limited num-
ber of labeled samples are available, and the task is to generalize from those few
examples only [36]. Some of the research works have leveraged this for solving
problems in the RS domain [5, 42].
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1.1 Problem Definition

In this thesis, we solve the problem of remote sensing image retrieval on databases
that do not have sufficient training data by leveraging a similar remote sensing
database containing co-registered or paired images and having labeled samples
in abundance.

1.2 Key Contributions

The key contributions of this thesis are as follows:

• A reliable deep feature extractor for RSIR is developed for the case of insuf-
ficient training data.

• A few-shot learning based training framework is proposed.

• Cross-modality is integrated in the framework to take advantage of suffi-
ciently available labeled RS data of a different modality by using DeepCO-
RAL loss [30] for domain adaptation of two modalities.

• Reciprocal points loss [6] is used for better clustering of the classes and max-
imizing distance between them, thus enhancing the discriminative ability of
the deep feature extractor.
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CHAPTER 2

Uni-modal Remote Sensing Image Retrieval

The research done in the field of remote sensing image retrieval can be broadly
classified into two categories namely, uni-modal and cross-modal retrieval meth-
ods. In this chapter, we discuss retrieval considering remote sensing images of
a single modality i.e., uni-modal retrieval methods. Cross-modal remote sensing
image retrieval methods are discussed in Chapter 3.

Remote sensing image retrieval task falls under the domain of object detec-
tion. We first talk about approaches using low-level and mid-level features for
the retrieval task, and then move on to high-level features which can be leveraged
using CNNs.

2.1 Low-level and Mid-level Features

The most prominent information in RS images is described by spectral charac-
teristics, which are one of the basic features [24]. Spectral characteristics have
been used to retrieve RS data in a variety of ways. They save the reflectance in-
formation of the comparable areas of the Earth’s surface. This results in extreme
sensitivity to noise and changes in lighting. Features like scale-invariant feature
transform (SIFT) [21] have also proved effective for RSIR.

Mid-level features can be extracted by first computing local image descriptors
like texture, spectral, local invariant features, and combining them into effective
representation using encoding methods like BoW [27], FV [25], and VLAD [18].

BoW [27] is a frequently used basic encoding approach that builds a visual
codebook using k-means clustering and counts local features in the codebook his-
togram. It has been used in various RS image retrieval studies and has yielded
positive results [38, 2].

VLAD [18] is a more advanced variant of BoW that computes the distance
between local features and cluster centres in addition to feature distribution. On
HRRS images, VLAD is used to encode local pattern spectra and produce high-
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precision retrieval results [3].
Next, we discuss some notable methods for the task of RSIR using high-level

features.

2.2 High-level features

With the advent of deep learning, especially convolutional neural networks (CNNs),
extracting useful high-level features has become easy. CNNs trained for the task
of classification can produce some very discriminative high-level features which
can be used for the task of image retrieval.

When a classification network is used for retrieval, feature extraction and sim-
ilarity measurement are implemented independently. A CNN-based classifier, af-
ter training, is used to extract discriminative features as the representation for that
image. The features are typically taken from the last convolutional layers as they
are usually more representative and useful than the output layer fully-connected
features.

Napoletano [23] provided an extensive analysis on visual descriptors for content-
based retrieval from remote sensing images. He found out the CNN features to
be performing much better than global or hand-crafted features. He further high-
lighted the importance of domain adaptation for remote sensing images by eval-
uating the performance of ResNet50 fine-tuned on RS domain image datasets.

Zhou et al. [43] combined a standard CNN with a three-layer perceptron layer
also known as mlpconv layer and proposed a novel CNN architecture called low-
dimensional CNN (LDCNN) for remote sensing image retrieval. As shown in
Figure 2.1, the LDCNN architecture is composed of five linear convolution layers,
an mlpconv layer and a global average pooling layer. The proposed architecture
is based on the assumption that the first several convolutional layers learn lin-
early separable features such as edges and corners, and the last layers learn more
abstract high-level features which are not linearly separable.

Gabor-CA-ResNet by Zhuo and Zhou [44] is another attempt to provide an
efficient retrieval framework. This network is designed by modifying the ResNet
network to get an effective representation that captures the complexity of remote
sensing images. The deep features are first extracted from a modified ResNet50
network. Then a Gabor convolutional layer is added to further obtain a rich rep-
resentation as Gabor has proven to be effective in describing the image space. A
channel attention mechanism is further added to obtain semantic features, further
enhancing the ability of deep features obtained. The authors also proposed a split-
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Figure 2.1: Low-dimensional CNN (LDCNN) architecture [43]

Figure 2.2: Gabor-CA-ResNet architecture [44]

based deep feature transform network to reduce the dimensionality of the deep
features obtained from Gabor-CA-ResNet network. The architecture is shown in
Figure 2.2.

Ye et al. [39] proposed a weighted distance approach to calculate the feature
similarity for retrieval. Pre-trained VGG and ResNet networks are first fine-tuned
on RS domain images to get relevant deep features. Thereafter while calculating
the similarity between query and database image features, a weight parameter
calculated from the class probability of the query image is introduced and mul-
tiplied with the similarity value. This weight gives preference to the retrieved
images in similar classes with the query image. As a result, there are less irrele-
vant images in retrieving and ranking process. The weight of a retrieved image r
belonging to class k is calculated as:

w = 1 − pq
k (2.1)

where pq
k is the predicted probability of query image q being in the class k which

is also the class of retrieved image r. The weighted distance is then obtained by
the following equation,

dw(q, r) = w × d(q, r) (2.2)

where d(q, r) is the distance metric used. The authors used Euclidean distance as
distance metric for evaluating their method.

Zhang et al. in [41] used the concept of non-local neural networks [35] for
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the task and constructed a three branch network design called triplet non-local
neural network (T-NLNN). As shown in the training workflow in Figure 2.3, the
three-branch or triplet-loss based architecture is used to train the non-local neu-
ral network (NLNN) model. They also modified the existing triplet loss to also
consider the distance between positive and negative samples, thus calling it a
dual-anchor triplet loss. During the retrieval stage shown in Figure 2.3, NLNN is
used as a deep feature extractor to extract the features which are then compared
for similarity matching and ranking.
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(a) Training stage

(b) Retrieval stage

Figure 2.3: Architecture of T-NLNN [41]
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CHAPTER 3

Cross-modal Remote Sensing Image Retrieval

Cross-modal retrieval methods are useful when training data in the primary modal-
ity is not sufficiently available or a different modality data can help in improving
the performance. In cross-modal image retrieval, the query data is of a differ-
ent modality than the image database. We will use cross-modality approach in
our framework in the training stage. Most of the works for cross-modal retrieval
for RS domain can be categorized into three retrieval frameworks namely, image-
image retrieval [19, 31, 40, 4], audio-image retrieval [4, 22], and text-image re-
trieval [17].

3.1 Image-Image Cross-modal RSIR

Hashing methods based on cross-modality are widely popular for cross-modal
image retrieval. Many of the cross-modal approaches use a hashing based ap-
proach in which the images are converted into compact hash codes by non-linear
hashing models/functions. After a good hashing function is learned, the original
task can be converted to a hash-code based retrieval task which is much easier.

While uni-modal hashing functions are trained on same modality data, cross-
modal based methods train hashing functions to transform cross-modal data into
hash codes where different modalities of data are projected onto a common Ham-
ming space. The query and gallery/database data here are of different modali-
ties. Li et al. [19] used panchromatic and multispectral images, and proposed a
new source-invariant deep hashing convolutional neural networks (SIDHCNNs).
It can be optimized from scratch and used in an end-to-end manner. They also
contributed a dual source remote sensing image dataset (DSRSID) consisting of
panchromatic and multispectral images to the community.

Sun et al. [31] proposed a semantic preserving deep hashing method for cross-
modal RSIR and created a new cross-domain remote sensing dataset of very high
resolution (VHR) and synthetic aperture radar (SAR) images. The method con-
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Figure 3.1: CMIR-Net architecture [4]

sisted of a novel cross-modal hashing network and an objective function based on
explicitly preserving semantics.

Zhang et al. [40] exploited the low-level image features such as textures and
spectral features and its content for hyperspectral image retrieval. Chaudhuri et
al. [4] proposed CMIR-Net network which learns a unified representation from
different RS data modalities, and thus improves the cross-modal retrieval perfor-
mance. The network consists of an encoder-decoder based neural network archi-
tecture and is optimized using four loss functions. The architecture is described
in Figure 3.1

3.2 Audio-Image Cross-modal RSIR

CMIR-Net proposed by Chaudhuri et al. [4] showed that it also works for the
audio-image cross-domain retrieval by constructing speech signals manually for
land-cover data and testing on it. Chen and Lu [7] used a triplet-based deep hash-
ing network and performed audo-image cross-modal RS image retrieval.

Mao et al. [22] curated a large scale RS image-audio dataset containing man-
ually labelled speech captions and performed cross-modal retrieval on it. The
authors proposed a deep visual-audio network (DVAN) model to learn a direct
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Figure 3.2: DVAN model architecture [22]

correspondence between RS image and its audio caption. Figure 3.2 depicts the
DVAN architecture where the image and audio features are passed through a
multi-modal fusion layer to obtain a fused embedding to decide if the image-
audio pair is related.

3.3 Text-Image Cross-modal RSIR

With advancements in automatic image captioning, caption-based image retrieval
methods have become quite well-known in the RS domain. Hoxha et al. [17]
generated and exploited textual descriptions of RS images to learn to describe
relationships between object and its attributes present in the images with captions.

Abdullah et al. [1] brought to table deep bidirectional triplet network (DBTN)
for text-image remote sensing image retrieval, and also constructed a new dataset
called TextRS. DBTN was trained using two triplet loss functions, one by keeping
the RS image as anchor and the textual descriptions as positive and negative sam-
ples, and another by keeping the text as anchor and RS images as positive and
negative samples. The flowchart for both the approaches of DBTN are shown in
Figure 3.3
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(a) Text as anchor

(b) Image as anchor

Figure 3.3: Deep Bidirectional Triplet Network architecture
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CHAPTER 4

Few-shot Learning

Deep learning models make heavy reliance on labeled data during training. This
is not suited to directly learn from a dataset where labeled examples are limited.
Thus, a new type of machine learning problem called few-shot learning came
into existence. The main aim of few-shot learning is to enable a model to perform
under practical scenarios where the dataset contains only a limited number of
examples with labeled information for the specified machine learning or deep
learning task or where data annotation is infeasible [36]. This exactly describes
problem setting in this thesis, as we have insufficient training data, and hence we
incorporate few-shot learning into our proposed framework.

Specifically, the few-shot learning problem can be termed as a N-way-K-shot
FSL problem where the data contains only few examples, K, from each of N
classes. Existing FSL problems are mainly supervised. Example problems in the
computer vision field include image classification [13, 37, 34, 28, 32] and image
retrieval [5, 42]. In generalized FSL, the goal is to learn a classifier f where the
image/feature x to be recognized at test time may belong to base classes or few-
shot classes. Here base class means the classes for which sufficient samples are
available and few-shot classes are those which do not have enough samples.

Few-shot learning can be addressed by three perspectives (Figure 4.1) using
prior knowledge [36]:

• Data: These methods use previous or prior knowledge to augment the few-
shot data and increase the number of samples, therefore reducing it to a
basic supervised problem. Xian et al. [37] proposed a conditional feature
generating adversarial network (f-CLSWGAN) for generating CNN features
for unseen classes.

• Algorithm: These methods use prior knowledge to learn the parameters
θ, which gives the best possible hypothesis in the hypothesis space. Prior
knowledge provides a good initialization to the model by altering the search

13



Taxonomy of FSL methods

Data Algorithm Model

Feature
Generation

Parameter
Initialization

Embedding
Learning

augment training dataset
using prior knowledge

alter search strategy using
prior knowledge

constrain hypothesis space
using prior knowledge

Figure 4.1: A Taxonomy of few-shot learning methods

strategy, or guiding it while searching. Model agnostic meta learning (MAML)
by Finn et al. [13] meta-learns the parameter set θ, which is then adjusted to
obtain a better parameter set ϕ for some task via a few effective gradient
descent steps:

ϕ = θ − α∇θ LS
train(θ) (4.1)

Here, LS
train(θ) is the sum of losses over the training samples in dataset, and

α is the step-size.

• Model: These methods use prior knowledge to constrain the complexity of
hypothesis space, thus making the hypothesis space smaller and resulting
in faster convergence from few samples. A method in this domain is called
embedding learning which embeds the samples into a lower-dimensional
space, such that similar samples are closer and dissimilar can be easily dis-
criminated. Hence, the hypothesis space becomes small, thus requiring fewer
training samples.

A taxonomy of the FSL methods is shown in Figure 4.1. The taxonomy de-
scribes the types of training strategies for the three ways to approach an FSL
problem. Our proposed framework uses a few-shot framework coming under
embedding-based learning. Thus, we discuss some embedding-based few-shot
learning methods in Section 4.1.
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4.1 Embedding/Metric-based Few-Shot Learning

Embedding learning is based on the assumption that if a model or function can
determine similarity between two images, it can classify an unseen input in re-
lation to labeled instances seen during the learning process. Embedding learn-
ing has three primary components: (i) a function or a model f, which transforms
test samples xtest to the lower-dimensional embedding space, (ii) a function or a
model g, which transforms training samples xtrain to the embedding space, and
(iii) a similarity function s, measuring similarity between lower-dimensional fea-
tures of xtest and xtrain in the embedding space. The test sample is then assigned
to the class of xtrain with the highest similarity. A common embedding function
can also be used for both training and testing. Embedding models are trained by
a process called meta-learning. Some embedding models are discussed next.

4.1.1 Matching Network

Matching Network [34] trains different embedding functions ( f and g) by meta-
learning for xtest and xtrain, computes similarity using cosine similarity function
s and uses softmax on similarities as the attention mechanism a. f and g can be
CNNs or bidirectional LSTMs with different learnable parameter sets depending
on input type. Here xtrain can be called as support set and xtest can be called as
query set in the context of retrieval. As shown in Figure 4.2, the test or query im-
age is passed through f to extract deep features from it. Meanwhile the support
set is mapped to the function g for extracting their features. Both share the same
parameters or weights θ. Thereafter, similarity of query image feature with sup-
port set image features are computed. The softmax attention a is applied onto the
similarity scores to give more importance to the highest similarity value following
which the query image is classified into the category giving the highest similarity.

4.1.2 Prototypical Network (ProtoNet)

Instead of comparing features of xtest or query set computed by f with each fea-
tures of xtrain or support set computed by g, ProtoNet [28] compares the former
with the class prototypes in training set Dtrain. Class prototype for a class n is
given by

cn =
1
K

K

∑
i=1

g(xi) (4.2)
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Figure 4.2: Matching Network architecture [34]

Here the functions f and g both have a shared 4-block CNN structure where each
block consists of a convolutional layer, a batch normalization layer, a max-pooling
layer and a ReLU activation function. ProtoNet uses squared Euclidean distance
as its similarity metric. Prototypical network is relatively simple and easy to im-
plement than the matching network. The architecture for prototypical network is
shown in Figure 4.3.

4.1.3 Relation Network (RelationNet)

The Relation network [32] also uses a CNN to embed xtest and xtrain to embedding
space, then concatenates xtest embedding with the xtrain embeddings. This is then
fed to another CNN (non-linear similarity function) to output a similarity score.
Its architecture can be seen in Figure 4.4

Some remote sensing image retrieval approaches using few-shot learning in-
clude Chaudhuri et al.[5] in which they propose a zero-shot inter-modal retrieval
scheme for sketch-based RS retrieval. They even make their bi-modal dataset
called earth on canvas (EoC) with original sketches and high resolution RS im-
ages. Zero-shot learning aims to solve a specified task without receiving any ex-
ample during the training phase. This makes the network capable of handling
an unseen class sample during the inference or testing phase. In [5], the sketch is
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Figure 4.3: Architecture of prototypical network

Figure 4.4: Relation network architecture [32]

17



used to represent the absent training samples. Zhong et al. [42] used the MAML
few-shot algorithm discussed earlier for retrieving remote sensing images.

18



CHAPTER 5

Domain Adaptation

Domain adaptation (DA) in deep learning can be considered as a special case of
transfer learning (TL) that leverages labeled data in one or more source domains
to execute other tasks in a target domain. Domain adaptation techniques came
into existence as we often require a machine learning model to be trained for a
specific task using training data sampled from one distribution, and deploy on
test data sampled from another distribution. Here the training data is from the
source domain and the test data is from the target domain. As both the data
distributions are different, we see degraded performance of the model on test
data even though it performed well on source domain data.

Abundant amount of shallow DA methods have been proposed to solve for the
data shift between source and target domains [9, 10, 12, 29]. Advances have also
been made in the deep learning field for adaptation. For example, DLID network
by Chopra et al. [8] trains shared CNN networks simultaneously with a couple of
adaptation layers on source and target domains. Their basic idea is to create an
interpolating path between source and target domains by creating interpolating
domains using CNNs.

Deep adaptation network (DAN) proposed by Long et al. [20] tries to minimize
the maximum mean discrepancy (MMD) by using multiple kernels applied to
the last several fully-connected layers of the convolutional neural network. An
overview of DAN is shown in Figure 5.1.

Ganin et al. [14] took a standard CNN classification network and attached a
deep domain classifier network for domain adaptation with the feature extraction
layers. The domain classifier network is attached via a gradient reversal layer
which multiplies the gradients of the network by a fixed negative constant during
the backpropagation phase. The domain classifier network is trained by learning
to classify the feature into its appropriate domain. A negative constant is multi-
plied to the gradients so that the features generated by the feature extractor are
such that they maximize the loss function of the domain classifier network. The
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Figure 5.1: An overview of deep adaptation network [20]

Figure 5.2: Unsupervised deep domain adaptation architecture proposed by
Ganin et al. [14]

architecture of the network is shown in Figure 5.2
The CORAL algorithm by Sun et al. [29] minimizes the distance between co-

variances Csource and Ctarget of source and target domain data respectively by ap-
plying a linear transformation A on the source domain covariance matrix:

min
A

||Ĉsource − Ctarget||2F (5.1)

= min
A

||ATCsource A − Ctarget||2F (5.2)

where Ĉsource is the covariance matrix of source features after applying transfor-
mation A and || · ||2F denotes the squared matrix Frobenius norm.

The linear transformation used in CORAL algorithm first whitens the source
features using source domain covariance matrix and then re-colors it with the
target domain covariance matrix. This is illustrated in Algorithm 1.

Sun and Saenko modified the CORAL algorithm by adapting it for deep learn-
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Algorithm 1 CORAL Algorithm [29]
Input: Source Data FS, Target Data FT
Output: Transformed Source Data F∗

S

CovS = cov(FS) + eye(size(FS, 2))
CovT = cov(FT) + eye(size(FT, 2))

FS = FS ∗ Cov
−1
2

S ▷ whitens source

F∗
S = FS ∗ Cov

1
2
T ▷ re-colors with target covariance

ing networks and thus introducing a new DeepCORAL loss [30] for domain adap-
tation on training and testing data. The DeepCORAL loss also minimizes the dis-
tance between covariance matrices of source and target deep features. A detailed
explanation of it is discussed in Chapter 6 where we incorporate it in our frame-
work.
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CHAPTER 6

Proposed Cross-modal Few-shot Training

To define our architecture in detail, we first introduce some necessary notations.

6.1 Notations

Let A denote the image space of the modality with sufficient/abundant data, S
the image space of insufficient/scarce data modality, and L = {1, 2, ..., C} be the
label space. Furthermore, let ai be the i-th input image from A, si be i-th input im-
age from S, and yi ∈ L be the common class label. In a few-shot training episode,
there is a small support set of N labeled samples Sp = {(a1, y1), ..., (aN, yN)} and
an even smaller set of Q query samples Sq = {(s1, y1), ..., (sQ, yQ)}. In our archi-
tecture, the few-shot learning scenario is cross-modal while training but single-
modal in testing.

6.2 Cross-modal Few-shot Training

An image retrieval framework requires a good feature extractor which can be a
part of a classification neural network. Thus, we train our feature extractor for
the classification task and use it for retrieval. The architecture of the proposed
framework is described in Figure 6.1.

As we are focused on scarce data, we propose to use few-shot learning which
is well suited for learning from limited labels. We use a few-shot architecture
similar to Prototypical network [28] for training but with ResNet-18 as the feature
extractor to gain discriminative representations. The cross-modal meta-training
is done using both abundant A and scarce S data modalities but the meta-testing
is done only using scarce S data modality since our primary objective is to learn a
good feature extractor for scarce data. The prototypes or the mean class vector of
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Figure 6.1: Proposed cross-modal few-shot feature extractor training framework

the support set embeddings belonging to that class are computed as follows:

lk =
1

|Spk| ∑
(ai,yi)∈Spk

fθ1(ai) (6.1)

where Spk suggests set of samples with class label k and fθ1 is the deep feature
extractor with θ1 as the parameters used with support set. The feature vectors
of samples from query set are then projected onto the embedding space and dis-
tances are computed between every class prototype lk with the query feature us-
ing Euclidean distance function d. Finally the logits are obtained by using neg-
ative log softmax of the distances and cross-entropy loss is computed. Thus, we
can describe prototypical loss by the below equation:

p(y = k|si) =
exp (−d( fθ2(si), lk))

∑Q
i=1 exp (−d( fθ2(si), lk))

(6.2)

Lproto = − log p(y = k|s1, s2, . . . , sQ) (6.3)

where fθ2 is the second deep feature extractor similar to fθ1 but with θ2 as its
parameters and which is used with the query and CORAL support sets.

Since A and S will be from different modalities, we further propose to use
DeepCORAL loss [30] for domain adaptation which is simple to integrate and has
achieved better results for the task. DeepCORAL loss minimizes the difference
between second order statistics of the source and target domains so that they are
aligned well. To integrate it into our few-shot episodic training architecture, we
create another support set from S called CORAL support set. The DeepCORAL
loss will then be computed between the feature vectors of support set which will
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be from A and the CORAL support set from S as:

CA =
1

nA − 1
(DT

ADA − 1
nA

(1TDA)
T(1TDA)) (6.4)

CS =
1

nS − 1
(DT

S DS −
1

nS
(1TDS)

T(1TDS)) (6.5)

Lcoral =
1

4d2 ||CA − CS||2F (6.6)

where d is the dimension of feature vector, DA generated from fθ1 and DS gener-
ated from fθ2 are the features of support set and CORAL support set respectively,
and CA and CS are covariance matrices computed from them. nA and nS are the
number of support set and CORAL support set samples in a batch respectively.
Thus, we are computing two losses at the same time namely, prototypical cross-
entropy loss and DeepCORAL loss. The influence of this loss is controlled by a
weight parameter λ. Thus, the combined loss function now can be written as:

Lt = Lproto + λLcoral (6.7)

We also incorporate reciprocal points loss [6] into our training. Though its
main use is for identifying unknown classes, but it also ensures that known classes
are pushed to boundaries and clustered according to their classes which makes
the model achieve better performance. Reciprocal points loss is computed by cal-
culating a custom softmax function based on the distance between query feature
vectors and computed reciprocal points. Let the set of reciprocal points for class
k be denoted as P k = {pk

i |i = 1, ..., M} where M is number of reciprocal points
per class and sq = {s1, s2, . . . , sQ} be the query set samples. The distance between
query set features and reciprocal points are calculated as follows:

d( fθ(sq),P k) =
1
M

M

∑
i=1

|| fθ(sq)−P k||22 (6.8)

The custom softmax probabilities are then calculated as follows:

p(y = k|si, fθ,P k) =
exp (γd( fθ(si),P k))

∑Q
i=1 exp (γd( fθ(si),P k))

(6.9)

Lrpl = − log p(y = k|sq, fθ,P k) (6.10)

where γ is a hyper-parameter. There is also an additional term called open-space
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Figure 6.2: Retrieval framework using the scarce modality trained feature extrac-
tor and nearest neighbours search

risk added with the loss. However it can be ignored in this setting as the term’s
purpose is to better distinguish between known and unknown classes. Thus, the
final loss for the proposed framework consists of three losses as shown in Equa-
tion (6.11).

Lt = Lproto + λLcoral + Lrpl (6.11)

The architecture of the proposed training framework is shown in Figure 6.1.
Here, we train two ResNet-18 feature extractors fθ1 and fθ2 with unshared weights
for abundant and scarce modalities respectively. The support set features are ex-
tracted from fθ1 model and their prototypes are computed. The query set and
CORAL support set features, however, are extracted from fθ2 . The prototypical
loss is thus computed using support set prototypes and query set features with
true labels, the CORAL loss is computed using support set and CORAL support
set features, and the reciprocal points loss is computed using query set features
and true labels. All the losses are minimized simultaneously.

After the few-shot training, image retrieval testing is performed on data from S
using the trained model fθ2 for extracting features and nearest neighbours search
for retrieving images with Euclidean distance as the distance metric which can be
written as:

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (6.12)

where xi and yi are feature vector points. The retrieval framework is depicted in
Figure 6.2.
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CHAPTER 7

Experiments and Results

To validate our cross-modal few-shot retrieval framework, we perform several
retrieval experiments using two dual-modality RS image datasets.

7.1 Simulating abundant and scarce data

As per our best knowledge, there is no dataset available which provides us with
scarce data in one modality and abundant data in the other. Thus, we simulate
data scarcity and abundance from the two dual-modality datasets as per our re-
quirement.

Figure 7.1 provides us a view of how the dataset is partitioned into different
splits. First, the original dataset consists of paired remote sensing image patches
from two modalities M1 and M2. It is partitioned into a 70:30 split of abundant-split
and scarce-split respectively. Let us consider we choose to simulate modality M2
to be the scarce modality giving us the scarce modality image space S from the
scarce-split and modality M1 as the abundant modality giving us the abundant
modality image space A from the abundant-split. Thus, query set and CORAL
support sets used in the cross-modal few-shot training are created from the sim-
ulated scarce modality S and the support set is created from simulated A from
the abundant-split. From the abundant-split, we create retrieval testing partition
from M2 consisting of a query set consisting of 1000 images distributed equally
between the classes and a retrieval set containing the remaining images.

7.2 Datasets

The first dataset we use is CBRSIR-VS [31] consisting of paired very high res-
olution (VHR) and synthetic aperture radar (SAR) RS images. There are in total
26,901 pairs and 10 class labels namely, industrial buildings, residential buildings,
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Figure 7.1: Dataset partitioning to simulate scarce and abundant data, using them
to create subsets for training and testing

annual crop, permanent crop, river, sea & lake, herbaceous vegetation, highway,
pasture, and forest. The geolocation and labels are taken from EuroSAT [16].

Every VHR image is of 256×256 pixels with a spatial resolution of 1 meter
and has RGB channel bands, while every SAR image is of 64×64 pixels with a
spatial resolution of 10 meters and the spectral band containing only vertically
polarized (VV) data. Both the modalities were preprocessed to have a common
spatial size of 64×64 pixels with 3 channels. For that purpose, VHR images were
resized and SAR images band was triplicated. Data scarcity and abundance for
training and testing are simulated as per Figure 7.1. For performing experiments,
we once choose VHR modality as scarce and in the other we choose SAR modality
as scarce.

The second dataset we perform experiments on is the dual-modality DSRSID
[19] dataset. The dataset consists of 80,000 samples of paired panchromatic (PAN)
and multispectral (MUL) RS images and 8 land-cover classes namely, aquafarm,
cloud, forest, high building, low building, farm land, river, and water.

GF-1 panchromatic and multispectral sensors are used to obtain the images.
PAN images are of 256×256 pixels with spatial resolution of 2 meters and single
spectral band, while MUL images have a spatial size of 64×64 pixels with a reso-
lution of 8 meters and 4 spectral bands. Also the PAN images are resized to 64×64
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pixels and the single band is repeated three more times to match with the number
of spectral bands of MUL images. Here also we simulate data scarcity and abun-
dance as per Figure 7.1 and choose PAN modality as scarce in some experiments
and MUL modality as scarce in some others.

An overview of the datasets is shown in Table 7.1.

Table 7.1: Overview of Datasets

Dataset Samples Classes Modality-1 Shape Modality-2 Shape
CBRSIR-VS 26901 10 VHR (256, 256, 3) SAR (64, 64, 1)

DSRSID 80000 8 PAN (256, 256, 1) MUL (64, 64, 4)

7.3 Baselines

To the best of our knowledge, there are no open-source works which performs
cross-modal few-shot remote sensing image retrieval. Thus we create two base-
lines to compare our framework’s performance.

• Uni-modal Baseline: The first baseline is by training a ResNet18 model for
remote sensing image classification using insufficient training data and then
using the feature extractor of the model for performing uni-modal RSIR on
that modality. As only one-modality is used, it is named uni-modal baseline.

• CORAL Baseline: Another baseline is created by using a single shared weights
ResNet18 model, removing the few-shot learning framework. This training
framework will minimize the standard cross-entropy loss and DeepCORAL
loss by training a classification network. The model includes cross-modal
training by keeping the training set from A as the source domain and the test
set from S as the target domain for computing DeepCORAL loss. Evaluation
for the CORAL baseline will be done uni-modally as like other setups.

7.4 Implementation details

All modules from cross-modal few-shot training framework to retrieval frame-
work is implemented using PyTorch framework. SGD optimizer was used with a
learning rate of 1e-3, 0.9 momentum, and 1e-4 weight decay. The λ value for the
DeepCORAL loss was set at 0.3. This value was chosen after some trial and error
as we observed that giving it more weight will produce degenerate feature which
increases the cross-entropy loss. The weights of prototypical cross-entropy loss
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and reciprocal points loss were kept as 1. A learning rate scheduler was used that
halved the learning rate after every 20 epochs.

The few-shot training was done for a total of 100 epochs consisting of 100 meta-
train episodes. The cross-modal few-shot training episodes were done in N-way-
5-shot and N-way-1-shot settings where N is the number of classes in the dataset.
Meanwhile few-shot validation episodes were performed in the 5-way-5-shot and
5-way-1-shot settings. During the validation episodes, fθ2 model is used and the
CORAL loss and reciprocal points loss are not computed as both the support set
and query set are from S. Here, the way or N is set as 5 to evaluate if the model
can distinguish a query image, given any combination of classes. This is also
to evaluate the model performance in generating discriminative features for the
scarce modality. Furthermore, data augmentation was performed on the CORAL
support set and the few-shot support set to compute an effective CORAL loss by
increasing the number of samples. The more the number of samples, better the
model will be able to adapt the source domain to target domain.

7.5 Experimental Setup

We followed two experimental setups and tested it on both the datasets and also
reversed the chosen simulated scarce and abundant modalities resulting in a total
of 8 experiments to perform.

The first and the primary setup is to use abundant data modality in the support
set and the scarce data modality in the query set and CORAL support set while
training as described in Figure 6.1.

The second setup is to use abundant data modality images in both the sup-
port set and query set while restricting the scarce data modality to only CORAL
support set for training. Experiments with this setup are performed to test the
hypothesis that without cross-modality the model will not be able to adjust with
the scarce modality and in consequence will yield worse results.

During retrieval testing, query and retrieval sets as per Figure 7.1 are used. For
each query image from the query set, 100 images are retrieved from the retrieval
set and are used for evaluation. In the next section, we discuss the retrieval results
of these experiments and compare with the baselines discussed earlier.
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7.6 Results

Table 7.2 describes the different types of experimental settings performed using
CBRSIR-VS and DSRSID datasets. In the first row, in the training column, the
support set is from VHR images, query set and CORAL support set are from SAR
images while in the testing column, support set and query set both chosen from
SAR images. The train and test set for CORAL Baseline are chosen from VHR
images and SAR images respectively and the image retrieval setting for this ex-
periment is to select the query and retrieval sets from SAR images. In this setting,
SAR data modality is chosen to be insufficient. Thus, uni-modal baseline in this
setting will be trained using SAR data modality.

Table 7.3 is a continuation of Table 7.2 wherein different evaluation metrics are
reported with the best metrics highlighted. We chose standard evaluation metrics
used for image retrieval namely, mean average precision (mAP), precision at K
(P@K). mAP can be calculated from the following equation:

mAP =
1
N

N

∑
k=1

APk (7.1)

where APk is the average precision of class k and N is the number of classes.
Meanwhile, P@K is the proportion of correctly retrieved images out of K total
retrieved images.

For both the experimental setups and both 5-shot and 1-shot, we observe that
the primary experimental setup where support and query sets are of different
modalities gives overall better mAP than the CORAL baseline and uni-modal
baseline barring one exception for MUL-MUL setting where P@5 and P@10 values
were slightly better. Meanwhile the second setup where the support and query
sets are from the same modality failed to beat the baselines. This proves our hy-
pothesis we were testing that the model with the abundant data modality alone is
not capable for adapting to the scarce domain based on DeepCORAL and recipro-
cal points losses. It needs cross-modality or images from the scarce data domain
in the meta-training episodes to compute a better embedding space where both
the domains are as aligned as possible.

The primary setup showed a 45-65% increase in retrieval performance for VHR
and SAR images while for PAN and MUL images, it showed a 26-30% increase.
We can also observe from the P@K metrics that most of the relevant retrieved im-
ages are in the top. We also observe that by changing the modalities, there is not
much of a performance difference in both the datasets which shows its robust-
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ness. The good results for the proposed approach are mainly due to introducing
cross-modality in the few-shot training process, incorporating deepCORAL loss
for domain adaptation between the two modalities, and the reciprocal loss for
clustering the same class points together further helping in increasing classifica-
tion accuracy. Also the marginal performance gain achieved moving from one-
shot to five-shot is due to the fact that in the support set only four more image
samples per class are added. This is not enough to get a significant gain in the
performance.

Table 7.2: Experimental setups for CBRSIR-VS and DSRSID dataset

Sr.
No. Dataset

Cross-modal Few-shot Setting CORAL Retrieval SettingTraining Testing Baseline Setting

SS QS CSS SS QS Training Testing

1
CBRSIR-
VS

VHR SAR SAR SAR SAR VHR SAR SAR-SAR2 VHR VHR SAR

3 SAR VHR VHR VHR VHR SAR VHR VHR-VHR4 SAR SAR VHR

5

DSRSID

PAN MUL MUL MUL MUL PAN MUL MUL-MUL6 PAN PAN MUL

7 MUL PAN PAN PAN PAN MUL PAN PAN-PAN8 MUL MUL PAN

SS - Support Set, QS - Query Set, CSS - CORAL Support Set

7.7 Ablation Study

The proposed framework consists of various components. To see their effects in
retrieval performance, several ablations were performed by trying out combina-
tions by keeping and removing the components. As the different query and sup-
port set modalities setup performed well, ablations were conducted in this setup
only. The framework adds two new losses namely DeepCORAL loss and recipro-
cal points loss. The CORAL baseline we set up removes the few-shot component.
This can be considered as an ablation and we observed its results earlier. Thus in
this section, we retain the few-shot component and turn on and off the DeepCO-
RAL and reciprocal points losses accordingly. Thus, we get three ablations:

• By turning off only reciprocal points loss.

• By turning off only DeepCORAL loss.
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Table 7.3: Image Retrieval results for the setups in Table 7.2

Sr. No.
mAP P@5

Uni-modal CORAL N-way Uni-modal CORAL N-way

Baseline Baseline 5-shot 1-shot Baseline Baseline 5-shot 1-shot

1 0.5058 0.3749 0.5462 0.5698 0.4542 0.364 0.561 0.5878
2 0.307 0.3067 0.2924 0.2796

3 0.4811 0.3752 0.6188 0.5981 0.4456 0.3678 0.608 0.5926
4 0.328 0.3392 0.3104 0.3326

5 0.9384 0.746 0.9408 0.8812 0.9758 0.738 0.9753 0.895
6 0.6269 0.6526 0.681 0.6708

7 0.8157 0.6798 0.8875 0.8627 0.843 0.6872 0.9522 0.9033
8 0.4942 0.5146 0.4922 0.5215

P@10 P@50

Uni-modal CORAL 5-way Uni-modal CORAL 5-way

Baseline Baseline 5-shot 1-shot Baseline Baseline 5-shot 1-shot

1 0.4892 0.3617 0.5488 0.5974 0.5057 0.3717 0.5521 0.5762
2 0.3012 0.285 0.3024 0.2959

3 0.4326 0.3593 0.5999 0.5636 0.4745 0.3691 0.6161 0.5983
4 0.2895 0.3132 0.3208 0.3366

5 0.9596 0.7332 0.954 0.8718 0.9397 0.7333 0.9461 0.8789
6 0.6333 0.64 0.6236 0.6409

7 0.8224 0.6901 0.9112 0.8663 0.7998 0.6614 0.885 0.8616
8 0.5005 0.5206 0.4863 0.508

∗The Sr. No. column corresponds with the same name column in Table 7.2
N = # of total classes
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• By turning off both DeepCORAL and reciprocal points losses.

The mAP and P@K metrics for these ablations and their comparison with the pro-
posed framework with both the losses can be seen in Table 7.5.

From both the tables we observe that the mAP has increased by removing the
loss components. For VHR and SAR images, we see that though mAP has in-
creased, the P@K values have reduced. This means there are less relevant images
in the top while retrieving. For PAN and MUL images, all the ablations perform
better than the proposed framework. This shows that the few-shot and cross-
modal components are of significant importance. The weights of DeepCORAL
loss and reciprocal points loss can be optimized to further increase the perfor-
mance but with a risk of dropping P@K values.

One more ablation which can be studied is the variation of the parameter λ

used for setting the weight of the DeepCORAL loss Lcoral. We experimented with
the N-way 5-shot setting and compared with λ values 1 and 10. Table 7.6 shows
the result metrics of the lambda ablations. Though the results show some im-
provement in some retrieval settings, they only improve by a small amount. Al-
most all the values do not deviate much from the proposed approach setting.

Table 7.4: Experimental setups for ablations

Sr.
No. Dataset

Cross-modal Few-shot Setting Retrieval
SettingTraining Testing

SS QS CSS SS QS

1
CBRSIR-VS (VHR-SAR images)

VHR SAR SAR SAR SAR SAR–>SAR

2 SAR VHR VHR VHR VHR VHR–>VHR

3
DSRSID (PAN-MUL images)

PAN MUL MUL MUL MUL MUL–>MUL

4 MUL PAN PAN PAN PAN PAN–>PAN

SS - Support Set, QS - Query Set, CSS - CORAL Support Set
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Table 7.5: Retrieval performance of ablation studies

Sr.
No.∗

Shots
(N-way)

mAP P@5

Proposed W/o RP W/o CRL W/o RP-CRL Proposed W/o RP W/o CRL W/o RP-CRL

1 5-shot 0.5462 0.5586 0.5618 0.5736 0.561 0.4988 0.5143 0.5255
1-shot 0.5698 0.5694 0.6035 0.5913 0.5878 0.5232 0.5635 0.5538

2 5-shot 0.6188 0.5938 0.6206 0.6063 0.608 0.541 0.528 0.551
1-shot 0.5981 0.5817 0.5987 0.5909 0.5926 0.498 0.5152 0.4785

3 5-shot 0.9408 0.9442 0.9455 0.9448 0.9753 0.9845 0.9697 0.9618
1-shot 0.8812 0.9162 0.9199 0.922 0.895 0.931 0.9505 0.9598

4 5-shot 0.8875 0.8697 0.8874 0.878 0.9522 0.9245 0.956 0.9195
1-shot 0.8627 0.8763 0.8773 0.8675 0.9033 0.912 0.9212 0.921

P@10 P@50

Proposed W/o RP W/o CRL W/o RP-CRL Proposed W/o RP W/o CRL W/o RP-CRL

1 5-shot 0.5488 0.51 0.5194 0.531 0.5521 0.5294 0.5246 0.5404
1-shot 0.5974 0.523 0.5672 0.5419 0.5762 0.5357 0.5724 0.5594

2 5-shot 0.5999 0.5385 0.562 0.5526 0.6161 0.5936 0.6202 0.6188
1-shot 0.5636 0.5139 0.5281 0.5137 0.5983 0.5804 0.6039 0.5905

3 5-shot 0.954 0.957 0.9511 0.9552 0.9461 0.9488 0.9475 0.95
1-shot 0.8718 0.9312 0.9305 0.9294 0.8789 0.9218 0.9204 0.925

4 5-shot 0.9112 0.9079 0.9144 0.8991 0.885 0.8656 0.8934 0.8743
1-shot 0.8663 0.9012 0.8969 0.899 0.8616 0.8723 0.8777 0.8679

∗The Sr. No. column corresponds with the same name column in Table 7.4
N = # of total classes
RP = Reciprocal points loss
CRL = DeepCORAL loss

Table 7.6: Retrieval performance of lambda ablations

Sr.
No.

Shots
(N-way)

mAP P@5 P@10 P@50

λ = 0.3 λ = 1 λ = 10 λ = 0.3 λ = 1 λ = 10 λ = 0.3 λ = 1 λ = 10 λ = 0.3 λ = 1 λ = 10
(Ours) (Ours) (Ours) (Ours)

1 5-shot 0.5462 0.5462 0.5751 0.561 0.552 0.5912 0.5488 0.5386 0.5977 0.5521 0.5514 0.5818

2 5-shot 0.6188 0.6148 0.6123 0.608 0.5808 0.5786 0.5999 0.5906 0.5717 0.6161 0.6181 0.6121

3 5-shot 0.9408 0.9337 0.9422 0.9753 0.9625 0.9662 0.954 0.9392 0.9498 0.9461 0.9447 0.9453

4 5-shot 0.8875 0.8824 0.8852 0.9522 0.9332 0.942 0.9112 0.9129 0.9169 0.885 0.8801 0.8852

∗The Sr. No. column corresponds with the same name column in Table 7.4
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CHAPTER 8

Conclusion and Future Work

In this thesis, we presented a novel cross-modal few-shot remote sensing image
retrieval framework for when limited data is available for one modality. This re-
port also validated the framework on two datasets and found them to be achiev-
ing better results and beating the baseline suggested. Furthermore, the frame-
work proves to be robust as there is not much performance degradation when
the modalities are swapped. The ablation study showed that the few-shot and
cross-modal components were the main factors resulting in a good retrieval per-
formance. The DeepCORAL loss and reciprocal points loss though not having
significant importance, can improve or degrade the performance depending on
the datasets.

For the future work, different few-shot learning networks like MatchingNet,
RelationNet, MAML, etc. can be trained and evaluated instead of only Prototyp-
ical network. The hyperparameters like λ for the DeepCORAL loss can be varied
to see which parameters work the best. As no similar work was found, the frame-
work can be compared with existing uni-modal retrieval methods by evaluating
them on the same scarce modality experimental setting.
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