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Abstract

Acquisition of high quality CT images is difficult, because it requires exposing
patients to high doses of radiation .Super resolution algorithms can help in over-
coming this problem and obtain higher spatial resolution in CT images. Much
deep learning based architecture have been proposed in the literature to overcome
this problem. We perform the task of super resolution on a U-Net and study the
effects of 2 pre-processing methods which are scaling and z-score. The evaluation
strategy for the super resolution of CT images in the literature uses the Peak Sig-
nal to Noise Ratio (PSNR) and Structural Similarity (SSIM), however the results
are published for the entire image. This is not a good practice for the evaluation of
SR, we propose a novel region based similarity measurement practice and a lung
specific or region of interest based similarity measurement. We further bifurcate
the SSIM metric into it’s 3 component, i.e. luminance, contrast and structure, and
study the impact of super resolution on each of these components.[5]
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CHAPTER 1

Introduction

1.1 Background

Super-resolution refers to the difficult process of predicting a high-resolution (HR)
image from its low-resolution (LR) equivalent (SR). High-resolution (HR) images
are in high demand for a variety of real-world applications, including medical
imaging for clinical duties, geographic information systems, security video mon-
itoring, finger-print image enhancement and others. The imaging hardware, on
the other hand, usually limits the image resolution and quality. With the dawn of
super resolution algorithms and techniques obtaining HR images from their LR
counterparts became possible without upgrading the hardware, because of these
reasons SR garnered a lot of attention within the research community. The SR be-
ing an ill posed problem, typically the SR reconstructed image lacks textural de-
tails. With the advent of AI and Deep Learning, the performance of SR algorithms
have improved significantly for natural images. However medical images are dif-
ferent from natural images. In contrast to natural images, medical data does not
typically include orientation, and objects in medical photos have no canonical ori-
entation. Tissue slices in digital pathology photographs, for example, are placed
on the glass without any predetermined alignment. Background tissues in a medi-
cal image can have an orientation-dependent structure, the anomalies themselves
do not. For example in a lung CT image, the lungs have a certain shape that
the DL framework can learn, however the anomalies themselves are irregular in
shape These pre-trained models based on real-world images may generate unreal
patterns, affecting clinical interpretation and diagnosis[14].

In the medical field the acquisition of HR images is highly desirable as it would
provide crucial details of the physiological, functional, anatomical and metabolic
information of patients. The aforementioned hardware limitations exist in the
medical field as well. Apart from these hardware limitations in the medical field,
health limitations exist as well. MRI, CT and ultrasound are the widely used imag-
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ing modalities. The technical quality of the device as well as the conditions of the
scan influence the acquisition of a medical image. In MRI, high spatial resolu-
tion usually means a longer scan time, less spatial coverage, and a worse signal to
noise ratio (SNR). Another most used medical imaging technology for screening,
diagnosis, and image-guided intervention is X-RAY computed tomography (CT).
CT scanners use ionized radiations, high doses of such radiations are harmful for
the human body. Therefore in clinical practice CT scans are obtained at low doses
of radiations.

There are two general approaches to increasing CT image resolution: (1) hardware-
oriented and (2) computational. For starters, more complex hardware compo-
nents, such as an x-ray tube with a narrow focal spot size, small-pitch detector el-
ements, and improved mechanical precision for CT scanning, can be used. These
hardware-based approaches are often costly, increase CT system costs and radi-
ation exposure, which can induce genetic damages and be a cause of cancerous
diseases. SR can help overcome the hardware limitations by increasing the spatial
resolution of the LR medical images. In this study we perform the task of SR on a
lung CT dataset.

SR can be applied in the frequency domain as well as the spatial domain. Max-
imum research for SR has been done in the spatial domain. The simplest of these
approaches convert LR images to HR images in the spatial domain is using the
various interpolation methods. The interpolation techniques uses cubic spline or
other polynomial techniques to enlarge or sharpen a 2D grid of pixels. The most
commonly used interpolation technique is the bicubic interpolation. In the spatial
domain there are two approaches : (i) Multiple Image SR (ii) Single Image SR. The
multiple image based algorithm uses multiple LR images and a single target HR
image. The multiple LR observations have some geometric or photometric simi-
larity as that of the HR image. Single Image SR approaches learns the mapping
from a single LR image to the HR image and based on these mapping constructs
the SR image. The multiple image based SR algorithms generally construct SR im-
ages that fail to retain the high frequency information and smoothens the images.
In the medical field retaining this high frequency information and textural details
is important as lack of it can lead to misdiagnosis. In the SISR, learning based
approaches have shown boosted performance with the advent of deep learning.
This is in part because of increase in computational power as well as availability
of big data.

In this study we use the U-Net architecture for the task of super resolution. U-
Net has achieved state of the art performance for the segmentations based tasks
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in the medical domain. We have also performed experiments using two different
pre-processing methods to analyse which pre-processing method gives good re-
sults across datasets. In the literature no study has used both the pre-processing
methodologies, and as a result no proof is available as to which one performs
better across datasets. For evaluation, PSNR and SSIM are the most widely used
performance metrics for the task of super resolution. These are full – reference
metrics, which means that these metrics require a full reference image for eval-
uation. The metric score for a full image makes sense for natural images, as the
information content is spread throughout the image. In medical images the back-
ground information is redundant and is low frequency information, or the pixels
in the background of medical images has a constant pixel intensity. Retaining this
information is an easy task for any DL based method. Subject to this, calculating
the metric score for the entire image will yield a high score. This higher score
however will not give us an accurate evaluation of our SR algorithm or model. To
mitigate this we calculate the ROI based or region specific or tissue specific PSNR
and SSIM scores. We also test our model on a different dataset, using the two
pre-processing methods and performing region specific similarity measurements.

1.2 Outline

The entire thesis is organised in 7 chapters.Chapter 2 contains fundamentals needed
for SR.Chapter 3 contains literature survey.Chapter 4 presents the methodology
proposed.Chapter 5 contains experiments.Chapter 6 elaborates on the results.Chapter
7 concludes the thesis.
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CHAPTER 2

Fundamentals

2.1 Super Resolution

Super resolution is the task of enhancement of low resolution image (LR) to a high
resolution image (HR). Let’s consider a LR image y and HR image x and define a
degradation function F as given in Equation 2.1.

y = F
(
x; θη

)
(2.1)

In the above equation θη refers to the degradation parameters. In theory, these
parameters can be noise and other artifacts but practically such a degradation
function is not possible. It is our assumption that the degradation parameters
degrade the quality of the HR image x and as a result give us a low resolution
LR image y. In reality, we have a LR image y and we need to devise a method,
Super-Resolution, to enhance its quality and get the HR image x. The Equation 2.2
represents the method F−1 super-resolution method.

x
′
= F−1 (y, θζ

)
(2.2)

The θζ refers to the parameters of the function F−1. The resultant image is x
′
,

an approximation of x. Getting x is an ideal scenario and not pragmatic approach.
The equations given above explain the overall scenario of the super-resolution
task i.e. to identify an approximation method to get HR image. However, the
degradation process is very complex and meekly known. It involves several pa-
rameters like blurring, scaling noise etc. and so many research work prefer the
degradation method as given in Equation 2.3.

y = (x ⊗ k) ↓s f +m (2.3)

The k is the blurring kernel and ⊗ represents the convolutional operation be-
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tween the HR image x and k. The ↓ represents the downsampling with scaling
factor of sf and m denotes the additive white Gaussian noise (AWGN).

In image super-resolution the aim is to minimize the data fidelity term with
model y = x ⊗ k + m with a reguliser called Image prior Ψ with a balancing
factor. The entire super-resolution method is denoted in the Equation 2.4. The α

is the balancing factor.

J
(

x
′
, θς, k

)
= ∥x ⊗ k − y∥︸ ︷︷ ︸

data fidelity term

+α Ψ (x, θς)︸ ︷︷ ︸
regularizer

(2.4)

2.2 Lung CT image

In lung CT images, there are 2 types of regions, namely Ground Glass opacity and
consolidations. Ground Glass Opacity is a region of lung that is hazy. There is an
increase in the opacity of lung in that region but vessels and bronchial structures
are still visible. At high-resolution computed tomography, pulmonary ground-
glass opacity (GGO) is characterised as a hazy opacity that does not cover under-
lying bronchial structures or pulmonary arteries (HRCT). Therefore for the dif-
ferential diagnosis it is important that the SR algorithms, or the deep learning
architectures deployed for the task of super resolution successfully retain high
frequency information in the GGO regions of CT images[3]. The second type of
abnormality found in the CT scans is known as consolidations. The small airways
present in the lungs are generally filled with air, consolidations in the lung oc-
cur when these airways are filled with something else. Depending on the cause
the accumulation of inflammatory cellular exudate in the alveoli and surround-
ing ducts causes consolidation.. Induration (swelling or hardening of typically
soft tissue) of a normally aerated lung characterises consolidations. To diagnose
pneumonia, consolidation must be present: the indications of lobar pneumonia
are distinct and clinically referred to as consolidation.
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CHAPTER 3

Related Work

3.1 SR using conventional methodologies

There is an abundance of SR algorithms in the literature, frequency and spatial
domain. SR is the process of constructing a high resolution image from a low res-
olution. The hardware-based solution is to increase the amount of pixels per unit
area. This can be achieved by either of two ways: (i)decreasing the pixel size or (ii)
increasing size of the sensor. But such hardware based approaches are expensive.
Therefore, software based approaches are usually preferred. Classification of SR
algorithms in the literature is based on the domain employed, number of LR im-
ages involved and type of reconstruction methods. On the basis of the LR images
involved, SR algorithms can be calssified into two types single image and multi-
ple image based algorithms. In the frequency domain, images are first converted
into the frequency domain and the HR image is estimated in this domain, after
which it is transformed back into the spatial domain. There are two groups of
methods in the frequency domain ; wavelet based methods and fourier transform
based methods. In the spatial domain, algorithms are classified into two groups
as mentioned earlier. The multiple image based algorithms includes iterative back
propagation(IBP), iterative adaptive filtering, direct methods and maximum like-
lihood estimates. The iterative back propagation method first creates an initial
estimate of the LR image on to the HR image space and then the target image
is generated by refinement . The iterative adaptive filtering algorithms are gen-
erally used to generate super resolved videos from an LR video. It models the
relationship between the current and the previous HR frame. The maximum a
posteriori methods find an estimate of the HR image from one or more LR im-
ages, using the Bayes’s rule. The single image based algorithms can be classified
into two categories: (i) Learning based algorithms and (ii) Reconstruction based
algorithms. One of the first learning based approach used a neural network. Al-
gorithms in this category use a training step to learn the relationship between
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the HR example and its LR counterparts. This newly acquired knowledge is sub-
sequently added into the reconstruction’s a priori term. The Feature pyramids
algorithm creates a pyramid of LR images by applying Gaussian blurs and latter
after training retrieves the best LR image from this pyramid of blurred LR im-
ages. Both the LR image and its HR counterparts are separated into patches by
a belief network such as a Markov network. A so-called observation function is
then used to link the corresponding patches in the two images. After training
the model (parameters), it uses a belief propagation approach to infer the missing
HR details of LR input images, resulting in a MAP super-resolved image. The
other SISR algorithms are the reconstruction based algorithms, which address the
aliasing artefacts in the input LR image.

3.2 SR using Deep Learning

The increase in the computational power and big data has made training deep
learning models efficient. Deep learning has given state of the art results for
many image processing tasks like object detection, semantic segmentation, ob-
ject classification etc. This is because of the tremendous learning capabilities of
deep learning models. Researchers have developed deep learning models for
the task of super resolution as conventional models do not give optimal results
for SR. Although the existing deep learning models for SR vary widely, they can
classified into four model frameworks: (i)Pre-Upsampling (ii)Post-Upsampling
(iii)Progressive Upsampling (iv) Iterative Up-and-down sampling[10]. Because
learning the mapping from low-dimensional to high-dimensional space is com-
plex, using typical upsampling procedures to produce higher-resolution images
and then improving them using deep neural networks is a simple solution, this
type of model architectures are called pre-upsampling architectures. As a result,
Dong et al. propose SRCNN [11] to learn an end-to-end mapping from interpo-
lated LR images to HR images. In the post-upsampling framework researchers
propose performing most computation in low-dimensional space by replacing
predetermined upsampling with end-to-end learnable layers merged at the end
of the models to improve computational efficiency and make full use of deep
learning technologies to raise resolution automatically. In such models LR im-
ages are passed as input and layers that can learn end-to-end upsampling are
added at the end of the networks. The computation and spatial complexity are
greatly decreased because the feature extraction process, which has a high com-
putational cost, occurs only in low-dimensional space and the resolution rises
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only at the conclusion. Although the SR framework with post-upsampling has
greatly decreased the computational cost, it still has certain flaws. These models
only conduct one step of upsampling, which dramatically increases the learning
complexity for big scaling factors. Another issue with these models is that each
scaling factor necessitates the training of a separate SR model, which cannot cope
with the need for multi-scale SR. To overcome these limitations, the progressive
upsampling framework employs a cascade of CNNs to rebuild higher-resolution
images gradually[4].

3.3 SR of lung CT

Recent years have seen rapid rise in utilisation of methods based on deep learn-
ing for image super-resolution. Traditional interpolation methods need prior in-
formation about the images in order to produce a mapping between LR and SR
images. However, deep learning methods directly extract features from images
and learn a mapping function between LR and SR images. Deep learning meth-
ods have powerful learning ability and therefore produce superior results.

The success of Convolution Neural Networks (CNNs) in computer vision tasks
has motivated a plethora of researches to use them for Super-resolution task. The
main reason for its success is the high level feature extraction capability and rep-
resentation capability [13]. More recently, residual learning has also been used
extensively. Coupled with CNN networks residual networks prevent vanishing
gradient issues and helps the model to yield compelling results.

Chen et al. [1] proposed a dual path residual network that leverages the convolu-
tional networks. The dual path is for capturing low and high frequency features
respectively. These feature maps are upsampled to generate HR images.

Yu et al. [13] have also employed convolutional neural networks integrated for
the task of super resolution in single as well multiple CT slices. For single slice,
they have integrated a residual model that helps to fetch high-frequency details
that reconstruct the HR outputs with higher quality. For multiple slices, coherency
between neighboring slices is used in for better reconstruction of SR images.

You et al. [12] proposed a semi-supervised, robust model (GAN-CIRCLE) to pro-
duce denoised, deblurred high resolution (HR) CT images. Its a novel architecture
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with residual CNN-based network in CycleGAN framework. With the generative
adversarial network (GAN) as the foundation model, they have taken care of cy-
cle consistency in order to get non-linear mapping from the LR to HR images to
maintain across-domain consistency. The input images are preprocessed using
BMD3 for noise removal and A+ for super solving. Using the windowed sync
interpolation method they have reconstructed the dataset as the images were not
isotropic.

Farias et al. [2] have proposed a modification in GAN-CIRCLE model. They have
added spatial pyramid pooling (spp) in the discriminator part in order to incor-
porate multiple size inputs. Along with that they have cropped the input images
to get better image qualities. These modifications have, as claimed, improved the
perceptual quality of the HR images.
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CHAPTER 4

Methodolgy

4.1 Introduction to the chapter

In this chapter we discuss the deep learning architecture, the pre-processing meth-
ods used and the evaluation metrcis used in this study. In the first section the
structure of the model is explained layer by layer. In the next section the two
pre-processing methods used for comparative analysis have been discussed along
with their formulas. The final section discusses the evaluation metrics used for the
purpose of evaluation. Peak signal to noise ratio and Structural Similarity index
measurement are the two metrics used for evaluation of Super Resolution meth-
ods, we have used the same in this study.

4.2 Network Architecture

For the task of single image super-resolution many state of the art deep learning
architectures have been proposed, these include SRCNN, VDSR, ESPCN, SRGAN
to name a few. We have hereby used U-NET[7] for the task of super resolution of
biomedical CT images. U-NET has been widely regarded as the best deep learn-
ing network architecture for medical imaging tasks. The U-Net architecture has
two paths, a contracting path and an expansive path. Typically CNNs are used for
the classification task, however in biomedical imaging tasks output should con-
tain information about the localization. Each pixel is expected to be allocated a
class label. The U-net is a fully convolutional network (FCN). FCN is a network
that lacks "Dense" layers (as in typical CNNs) and instead uses 1x1 convolutions
to serve the function of fully connected layers (Dense layers). U-net is designed
in such a way that it can work with very few training images and still yield pre-
cise segmentations. There are two paths in the U-net architecture, the contracting
path and the expansive path. The contracting path is made up of convolutional
blocks, these convolutional blocks are repeated throughout the contracting path.
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It consists of two 3x3 convolutions which are unpadded, these are followed by a
ReLU layer, which is the rectified linear unit layer and finally a 2x2 max pooling
layer with a stride of 2 for the down-sampling operation. The number of feature
channels are doubled after each down-sampling operation. The U-net architec-
ture has a large number of feature channels in the upsampling section, allowing
the network to pass context information to higher resolution layers. As a result,
the expansive path is roughly symmetrical to the contracting path, resulting in a
U-shaped structure. The expansive path consists of an up - convolution layer with
size of 2x2. The number of feature channels are halved after the up-convolution
layer. The feature map generated after this up-sampling layer is then concate-
nated with the feature map from the corresponding block of the contracting path.
As a result the number of feature channels are doubled. The concatenation of
high resolution feature map is done so as to localize. This is then followed by two
3x3 convolution layers and then a ReLU. Because every convolution loses border
pixels, cropping is required. The final layer is a 1x1 convolutional layer. The net-
work consists of 23 convolutional layers, 4 max pooling layers and 4 up-sampling
layers.

Figure 3.1 depicts the U-Net architecture used. Here the input size of the image
is 512x512. A pre-processing layer is added before the input layer to up-sample
the LR images to the spatial resolution of the HR images. Bi-linear interpolation
is used to up-sample the LR images from 128x128 to 512×512. At the first convo-
lution block 16 feature channels are extracted from our original gray scale image
with 1 channel. In the subsequent blocks 32, 64, 128 and 256 feature channels
are extracted before the expansive path. The horizontal gray arrows represent
the concatenation process, the feature map from the contracting path is concate-
nated to the feature map of the corresponding convolution block in the expansive
path. The final layer in the expansive path is 1x1 convolution layer which returns
a SR grayscale image. The U-Net architecture used can be categorised as a pre-
upsampling architecture as the LR image is first up-sampled into the HR spatial
space and then the U-Net learns the mapping between them in the HR spatial
space.
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Figure 4.1: UNET architecture[7]
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4.3 Pre-processing

Natural and radiology images are acquired in different ways to one another. The
technological parameters employed to generate radiography images in each modal-
ity [i.e., computed tomography (CT) and magnetic resonance imaging (MRI)] are
directly related to the technical parameters of the scanners used to obtain of these
images. There are frequently modest variations in picture quality, field of view,
and resolution when a big dataset is produced from data received from differ-
ent patients, scanners, or numerous institutions, which should be taken into ac-
count through a few pre-processing steps before training deep learning models. In
transfer learning, a model is fine-tuned using radiological images after it has been
pre-trained on natural images. Natural images with a globally meaningful range
of intensity levels are obtained, saved, and loaded into memory. Clinical pictures
are often obtained in a variety of methods depending on the situation, with vary-
ing interpretations for their intensity levels. Thus, multiple pre-processing steps
are beneficial to enabling a robust transfer learning from natural images into a
dataset of medical images. Different pre-processing procedures can be seen as a
quality check for radiology images that goes beyond the scanner’s integrated im-
age quality filters. Getting a specified level of image quality in the training dataset
can help with deep learning quantification. The nature of the pre-processing ap-
proach is highly dependent on the following processing algorithm’s specific goal
as well as the image type. The Hounsfield unit is a quantifiable assessment of tis-
sue density relative to water that results from CT acquisition (HU). Following the
conventional temperature and pressure standards, voxel HU values in CT scans
are mainly regarded reproducible, with minor variations across different scanners
and patients. Pre-processing can be applied at a certain level based on the task of
deep networks. For example, data normalisation can be done at the slice level
(each individual slice inside an image), , patient level, image level, scanner level,
institution level, or overall training data level utilising image statistics[6]. Most
of the studies apply pre-processing at the patient-level, but that can change based
on the application. CT images are collected in 12- or 16-bit DICOM format to
display tissue density measurements in HU, which are integer integers between (
1024 Hu and 4000 Hu). After possible de-noising, interpolation, and registration,
these values may transform to real numbers. Direct display of these numbers to
a radiologist as a picture has its limitations. The human eye can only identify
100 shades of grey at a time, yet it can distinguish thousands of colours. Image
windowing can be used to boost contrast over a specific area of interest. In lit-
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erature, the latter is widely employed, with CT image values trimmed around a
specific band of HU values for each organ, based on unique texture-based dictio-
nary requirements. After CT windowing comes the normalisation step which is
performed to stretch or squeeze the CT data intensity values. This is to fit the CT
data intensity values in the data range for provided image type. The data values
are mapped to 0-255 if it is a 8 bit pixel or to 0-65,535 if it is a 16 bit image[6]. If the
normalisation is performed at the data-set level then the minimum and maximum
pixel values among all the patients or all the CT images in the data-set. We have
used two normalisation techniques : (i) Z-score or zero mean unit variance and
(ii) Scaling.

4.3.1 Z-Score

Z-score is a statistical measurement which describes the relation of a value to the
mean of a group of values. To calculate the z-score for a group of values one has
to first compute the mean and the standard deviation for the group of values. A z-
score of 0 indicates that the value of the data-point is identical to 0, and a z-score of
1 would indicate that the value is 1 standard deviation from its mean. The z-score
would have a positive value if the data-point lies above the mean and a negative
value if the data-point lies below the mean. Formula to calculate z score:

Z = (x˘mu)/std (4.1)

Here mu is the mean of the dataset , and std is the standard deviation of the
dataset. In our case the data-points would be the pixel intensity values of the
image. We have applied z-score at the slice-level i.e. mean and standard deviation
are calculated for each slice and then z-score is calculated using this mean and
standard deviation.

4.3.2 Scaling

The second method used in the pre-processing step is scaling. In this method we
divide all the data-points with a scalar value, in our case 512.00.

4.4 Evaluation Metrics

The metrics that are widely used in the super resolution literature are MSE, PSNR
and SSIM [?]. All three metrics are full-reference metrics, which means that they
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require a complete reference image for comparison [?].

4.4.1 PSNR

The MSE is a quantitative similarity measure and it depends on the pixel intensity
range. It compares the pixel wise intensity between two images and does not
match the human perception. This is one of the reasons that degraded images
which are clearly different can have similar MSE scores Formula for MSE is given
as :

eMSE =
1

KL

K

∑
l=1

L

∑
k=1

[ f̂ (l, k)− f (l, k)]2 (4.2)

Here, f̂ is the original or the reference image and f is the degraded image. Peak
signal to Noise Ratio (PSNR) is another highly used metric used in the literature.
PSNR overcomes the issues in MSE by scaling it according to the image range.

PSNR = −10 log10
eMSE

S2 (4.3)

As MSE approaches 0, the value of PSNR reaches infinity which means that higher
values of PSNR means better results. Although PSNR mitigates the problem of
image pixel intensity that MSE poses [5], it is still different than the ways human
perceive images.

4.4.2 SSIM

Structural similarity index is a highly used quality metric which was developed
by Wang et al. [9] . SSIM is a perceptual quality metric that loosely mimics the
human visual system (HVS). SSIM models image degradation by combining three
components – luminance, contrast and structure.

S(x, y) = f (l(x, y), c(x, y), s(x, y)) (4.4)

As shown in equation (3) the structural similarity is a function of l(x, y), which
is the luminance comparison function, c(x, y), which is the contrast comparison
function and s(x, y) which is the structure comparison function. The luminance
of an image is the mean of the pixel intensities.

µx =
1
N

N

∑
i=1

xi (4.5)
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The luminance comparison function is then calculated using the µx and µy of the
two images under comparison. The standard deviation of the image is estimated
as the contrast for an image.

σx = (
1

N − 1

N

∑
i=1

(xi − µx)
2)1/2. (4.6)

Using cx and cy, the contrast comparison function is calculated. For the struc-
ture comparison the image is normalised using it’s own standard deviation, (x −
µx)/σx the image then has a unit standard deviation.The structure comparison
function is calculated using these normalised image signals. The equation for the
luminance comparison function is defined in eq. 4.7.

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4.7)

Here C1 is a constant to avoid instability when denominator reaches 0. The con-
trast comparison function is defined in eq. 4.8.

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4.8)

Here C2 is a constant to avoid instability when denominator reaches 0. The struc-
ture comparison function is defined in eq. 4.9.

s(x, y) =
σxy + C3

σxσy + C3
(4.9)

Here C3 is a constant and is defined as C3 = C2/2.
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CHAPTER 5

Experiments

The environment for the experimentation consists of a workstation (Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz) with GPU NVIDIA GeForce RTX 2080.

5.1 Dataset

We have used a CT lung dataset which is divided into 2 parts: (i) Medseg Part
and (ii) Radiopedia part.

5.1.1 Medseg Part

The medseg part [8] is a dataset with 100 axial CT images from more than 40
different patients. The size of the images is 512 × 512, this dataset also contains
mask with the same number of slices and same size as that of its images.There are
4 channels in the mask array, where channel 0 represents the ground glass opacity,
channel 1 represents consolidations, channel 2 represents ‘lung others’, which is
mask for the remaining parts of lungs apart from GGO (ground glass opacity) and
consolidations, the last channel, channel 3 represents the background, which can
be inverted to obtain the complete lung mask.
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Figure 5.1: Raw high resolution CT images from Medseg data-set

5.1.2 Radiopaedia Part

The second part of this data-set is called Radiopaedia part. It contains 9 seg-
mented axial volumetric CTs from Radiopaedia, this data-set contains both pos-
itive and negative slices, there are a total of 829 slices out of which 373 are as
Covid-19 positive by a radiologist and are segmented. The masks for this data-
set also have 4 channels and follow the same distribution as the previous data-
set. The importance of this data-set lies in the fact that we have segmentation of
ground glass opacity (GGO) and consolidations available which can be used to
observe the result and effects of super resolution on these regions separately.

5.2 Implementation Details

5.2.1 Training and Testing Split

We have trained our U-net network for the up-scale factor of d (d = 4), which is the
most common up scaling factor in the medical super resolution literature. For the
training part 50 CT scans from the Medseg data-set have been used, another 20
CT scans from the same data-set were used for the validation part and remaining
30 CT images were used for the testing part. Testing has also been done on the
Radiopaedia data-set. the Radiopaedia data-set contains both negative as well
as positive CT slices. In this study we focus on the SR results on the lungs and
the various abnormalities present in the lungs and therefore, only the positive CT
slices were used for the testing purpose.
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5.2.2 Pre-processing

Scaling

Two methods were used in the pre-processing step. The first method was a sim-
ple scaling of the pixel intensities, whereby the pixel intensities were divided by
512.00, after which lung mask is applied on the CT image to remove the back-
ground information. Final CT images that were used in the training consisted of
only the lung segmented part.

Z-score

The second method used for the pre-processing part is the z-score. In this method
the mean and standard deviation of the pixel intensities are calculated for the
lung part. The CT images are than normalised using these mean and standard
deviation values. Finally, lung segmentation mask is applied on the CT image to
remove the background information and CT images which contain only the lung
region are obtained.
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(a) (b)

(c) (d)

Figure 5.2: Image (a) is a high resolution CT image from the Radiopaedia data-set. Im-
age (b), (c) and (d) are the Ground Glass Opacity mask, the consolidations mask and the
healthy lungs mask respectively.
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CHAPTER 6

Results

6.1 Image Super resolution Results

In the super resolution literature, the metrics used for similarity measurements are
SSIM and PSNR. These metrics are calculated for full-reference metrics, meaning
they require a prior full reference image. And these metrics are computed for the
entire images, so a manual localisation approach is needed. We compute local
SSIM and PSNR for GGO and consolidations. For local ssim computation, we
first compute the ssim map, the size of this ssim map will be 512 × 512, same as
that of the image size. Local masks are than applied on this ssim map, and values
for that region are extracted into a 1-D array. The mean of this final 1-D array will
give us the local ssim value for the region of interest.

In the case of SSIM we go on further and calculate the values of the its three
components namely luminance, contrast and structure. Similar to the ssim map,
we obtain a map for each of the 3 components. Local masks are applied to each
of these maps, and a 1-D array containing the values for that component will be
returned, the mean of this 1-D array will give us the local component specific
value for that region.

In table 6.1 we have reported the SSIM scores for super resolution using our U-
NET model for an upscale factor of 4. Table 2 contains score for super resolution
using the bicubic interpolation for an upscale factor of 4. It is clearly visible that
the U-Net model proposed by us performs better than the bicubic interpolation.
Table 3 and Table 4 represent super resolution performed by our U-Net model and
bicubic interpolation for an upscale factor of 2 respectively. We report the SSIM
score for the entire image as well as region specific SSIM score. It is reported
that our U-Net model performs better than bicubic for all the local regions. We
further bifurcate the SSIM metrcis into its components. The luminance score and
the contrast is high for both U-Net and bicubic interpolation for both the pre-
processing methods. It is observed that the structure component across all the
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table is highly impacted.

Table 6.1: The results of PSNR computed locally for different tissues for down -
sampling factor of 4 on the Radiopedia dataset between U-Net(using z-score as
normalization), U-Net(using scaling as normalization) and Bicubic

Medseg U-Net(Z-score) U-Net(Scaling) Bicubic
PSNR PSNR PSNR

Lungs 21.25 dB 21.68dB 18.84 dB
Healthy Lungs 21.00 dB 21.51dB 19.12 dB

GGO 21.76 dB 22.11 dB 19.98 dB
Consolidations 19.87 dB 20.71 dB 18.00 dB

Table 6.2: The results of SSIM and score for each of it’s components i.e.
L(luminance), C(contrast) and S(structure) for a downsampling factor of 4 on
the Medseg dataset between U-Net(using z-score as normalization), U-Net(using
scaling as normalization) and Bicubic.

Medseg U-Net(Z-Score) U-Net (Scaling) Bicubic
SSIM L C S SSIM L C S SSIM L C S

Lungs 0.66 0.99 0.97 0.68 0.65 0.99 0.97 0.67 0.53 0.98 0.95 0.56
Healthy 0.66 0.99 0.97 0.70 0.67 0.99 0.97 0.67 0.53 0.98 0.94 0.57

GGO 0.68 0.99 0.97 0.69 0.69 0.99 0.97 0.76 0.56 0.99 0.96 0.58
Conso 0.66 0.94 0.97 0.71 0.66 0.93 0.97 0.60 0.55 0.92 0.97 0.59

Table 6.3: The results of SSIM and score for each of it’s components i.e.
L(luminance), C(contrast) and S(structure) computed locally for different tissues
for downsampling factor of 4 on the Radiopedia dataset between U-Net(using
z-score as normalization), U-Net(using scaling as normalization) and Bicubic.

Radiopedia Unet(Z-score) Unet(Scaling) Bicubic
SSIM L C S SSIM L C S SSIM L C S

Lungs 0.58 0.99 0.97 0.60 0.58 0.99 0.97 0.60 0.46 0.99 0.96 0.48
Healthy 0.62 0.99 0.97 0.64 0.61 0.99 0.96 0.63 0.49 0.99 0.95 0.52

GGO 0.54 0.99 0.97 0.55 0.54 0.99 0.97 0.56 0.43 0.99 0.96 0.44
Conso 0.60 0.99 0.97 0.56 0.58 0.97 0.97 0.60 0.46 0.95 0.96 0.48
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Table 6.4: The results of PSNR computed locally for different tissues for down-
sampling factor of 4 on the Radiopedia dataset between U-Net(using z-score as
normalization), U-Net(using scaling as normalization) and Bicubic

Radiopedia U-Net(Z-score) U-Net(Scaling) Bicubic
PSNR PSNR PSNR

Lungs 18.96 dB 18.31 dB 18.00 dB
Healthy Lungs 18.86 dB 18.24 dB 17.83 dB

GGO 18.74 dB 18.35 dB 19.56 dB
Consolidations 16.81 dB 17.06 dB 18.00 dB

Table 6.5: The results of SSIM and PSNR computed for the full image for down-
sampling factor of 4 on the Medseg dataset between U-Net(using z-score as nor-
malization), U-Net(using scaling as normalization) and Bicubic

Medseg Unet(scaling) Unet(z-score) Bicubic
SSIM 0.89 0.91 0.86
PSNR 27.97 dB 27.96 dB 25.83 dB

Table 6.6: The results of SSIM and PSNR computed for the full image for down-
sampling factor of 4 on the Radiopedia dataset between U-Net(using z-score as
normalization), U-Net(using scaling as normalization) and Bicubic

Radiopedia Unet(scaling) Unet(z-score) Bicubic
SSIM 0.90 0.92 0.88
PSNR 26.87 dB 30.84 dB 29.87 dB
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(a) (b)

(c) (d)

Figure 6.1: Here (a) is the HR CT image which has is of size 512x512, (b) is the LR of (a)
down-sampled by a factor of 4,size 128x128, (c) is the up-scaled image using the bicubic
interpolation and (d) is the SR image using our U-Net model.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.2: Image (a) is an HR image, size 512 × 512, (b) is the SR obtained by U-Net and
(c) is the image obtained using bicubic interpolation from LR of (a). (d),(e)(SSIM = 0.64)
and (f)(SSIM = 0.55) are healthy lung tissue from (a), (b) and (c) respectively. (g),(h)(SSIM
= 0.53) and (i)(SSIM = 0.44) are consolidation tissue from (a), (b) and (c) respectively.
(j),(k)(SSIM = 0.56) and (l)(SSIM = 0.50) are GGO tissue from (a), (b) and (c) respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.3: Image (a) is an HR image, size 512 × 512, (b) is the SR obtained by U-Net and
(c) is the image obtained using bicubic interpolation from LR of (a). (d),(e)(SSIM = 0.35)
and (f)(SSIM = 0.33) are healthy lung tissue from (a), (b) and (c) respectively. (g),(h)(SSIM
= 0.44) and (i)(SSIM = 0.34) are consolidation tissue from (a), (b) and (c) respectively.
(j),(k)(SSIM = 0.47) and (l)(SSIM = 0.36) are GGO tissue from (a), (b) and (c) respectively.
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CHAPTER 7

Discussion and Conclusion

7.1 Introduction to the chapter

This chapter discusses the results, interpret the meaning of the results and discuss
it’s relevance.

7.2 Discussion

As mentioned in the earlier sections we have evaluated similarity metrics for dif-
ferent tissues. There are 4 different types of tissues: (i)Lungs ( this comprises of
entire lung, i.e. the healthy tissue along with the abnormalities, (ii) Healthy Lungs
(this is the region apart from the abnormalities), (iii)Ground Glass Opacity(GGO)
and (iv) Consolidations. Table 6.1 contains tissue specific PSNR scores of medseg
test dataset for U-Net with Scaling as normalization technique, U-Net with Z-
score as the normalization technique and Bicubic interpolation. We obtain equiv-
alent PSNR scores for all tissues for the 3 methods. We also se an improvement
for 2-3 dB between Bicubic and both U-Net. Table 6.2 contains the tissue specific
SSIM, Luminance, Contrast and Structure scores for the medseg dataset. We can
observe an improvement of 10 % between the U-Net and bicubic. We further ob-
serve that among the 3 components of SSIM only Structure is affected while the
other two components are preserved. We observe similar results in table 6.3 for
radiopedia dataset. In table 6.2 no difference is observed in the scores among tis-
sues, however in table 6.3 we observe that healthy tissue has the best SSIM score,
while GGO has the least SSIM score. Tables 6.5 and 6.6 contain SSIM and PSNR
scores for full images for medseg dataset and radiopedia dataset respectively. We
observe that the SSIM score for medseg for full image is 0.91 in case of U-Net
while the SSIM score for the tissues is between 0.66 to 0.68. This is because the
CT images contain a lot of low frequency information in the background while
the high frequency information is only present in the lung tissue region. It is a
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difficult task for SR algorithms to retain this high frequency information and so
although the tissue specific scores are low, they provide an accurate evaluation of
our model compared to scores for entire image.

7.3 Conclusion

• From the results we conclude that calculating the similarity scores for full
images yields a high score in comparison to the tissue specific scores.

• This is because most of the high frequency information in a chest CT is
present in the lung tissue.

• Secondly, our hypothesis that using z-score as the normalization technique
can mitigate the inter subject variablity present in the medical field fails. Our
results are equialent for both the normalization techniques.

• An improvement of 1-2% is observed for z-score.

• In the medical field test subjects are bound to change, therefore it is impera-
tive to perform cross data analysis.

• Upon cross data testing we see that we get equivalent results for the full
image metrics calculations.

• However, the results deteriorate significantly for the tissue specific metrics
measurements
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