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Abstract

Big-data sectors such as the Internet of Things (IoT) generates enormous volumes
of data. As IoT devices generate a vast volume of time-series data, the Time
Series Database (TSDB) popularity has grown alongside the rise of IoT. Several
large firms, such as Facebook and eBay use time series databases rather than re-
lational databases. Time series databases are developed to manage and analyze
huge amounts of time series data. However, it is not easy to choose the appro-
priate one from them. The most popular benchmarks compare the performance
of different databases to each other but use random or synthetic data that applies
to only one domain. It is required to comprehensively compare the performance
of time series databases with a real world dataset. We have experimented with
real-world applications and summarised all the fundamental query types. Work-
loads are categorized into data loading, space consumption, and historical data
access using basic queries. It compares three TSDB systems: TimescaleDB, Druid,
and InfluxDB. We also compared the performance of Cassandra(a non-relational
database) against the performance of these three TSDB systems to see if some-
thing is interesting in the results. Our experiment shows significant performance
differences for data injection time and query execution time when comparing real
and synthetic datasets. The results are reported and analyzed.

Keywords: Timeseries database, benchmark, real-world application
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CHAPTER 1

Introduction

The importance of sensors has been growing in recent years as the fourth indus-
trial revolution has begun. The increased use of sensors results in a rise in the
volume of sensor data that must be stored and processed. The Database Manage-
ment System must be scaled appropriately to handle that volume of data. There
are differing opinions on whether typical Relational Database Management Sys-
tems can handle such a large volume of data[1]. Knowing that sensor data has a
timestamp associated with it most of the time and can thus be utilized as an index,
a trade-off between RDBMS and NoSQL DBMS arose: Time Series Databases[2].

Time series data are utilized in the finance business (e.g., historical stock perfor-
mance research), the IoT industry (e.g., capturing the reading from sensors), and
the analytics industry (e.g., tracking performance over time). Time series data is

Figure 1.1: TSDB Rankings [3]
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used for sensors, networks, the stock market, and other applications[4]. Time se-
ries databases make it easy to manage events that are tracked, monitored, down-
sampled, and aggregated over time[2, 5]. A few years ago, Time Series Database
was only used by some trading applications or any other applications where you
required data monitoring. Everyone else was using relational database or NoSQL
back then. But in the last three-four years, TSDBs like InfluxDB, OpenTSDB, and
TimescaleDB have gained popularity. According to the DB Engine ranking of
Time Series Databases [3], there are many TSDBs, and their ranking is given in
Figure 1.1. This ranking is based on search engine popularity, social media men-
tions, the number of job offers, and technical discussion frequency.

1.1 Objective

There is no standard set of functionalities or even a standardized query language
for time series databases. It is necessary to compare the characteristics provided
by various TSDBs. When selecting a TSDB, one of the most significant elements
to consider is performance, which is divided into queries and storage. The first
portion refers to how quickly a TSDB can process queries sent to it by an applica-
tion. The query type is crucial since there is a distinction between an application
using simple READ queries, Time Range queries, and more complicated queries.
The storage part refers to the amount of data kept inside and regularly written to
the TSDB might also have an impact on performance. Data storage can also be
more or less effective, as it can be stored as compressed as possible or in a very
space-consuming manner.

1.2 Motivation

There are numerous time series benchmarks available, which are used to com-
pare database performance, such as IoTBenchmark, TSDBBench, TS-Benchmark,
etc. However, all of these benchmarks measure the performance of time series
databases using random or synthetic datasets. The biggest issue with using pre-
captured or pre-calculated data is that it only applies to one circumstance. The
queries in these benchmarks are also based on the datasets. It is required to study
how the time series databases perform on real datasets of different domains like fi-
nance, analytics, and IoT. It is also important to consider various types of queries,
such as queries with aggregate functions, exact point queries, queries with time
range filters, etc. These are frequently used queries in industries to access histori-
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cal data.

The structure of the remaining thesis is organized as follows: In Chapter 2, ba-
sics about databases, existing benchmarks for TSDBs, metrics, and other back-
grounds for understanding this thesis are presented. Chapter 3 introduces the
experimentation work we have done on different databases using real datasets
and queries. In Chapter 4, the results of comparing the TSDBs are shown and
discussed. Chapter 5 concludes the thesis by identifying problems and potential
areas for improvement in future work.
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CHAPTER 2

Literature Review

This chapter represents the literature survey and is structured as follows: Sec-
tion 2.1 summarises all the types of databases, like relational and non-relational
databases. Section 2.2 presents the detailed information about time series databases
and it’s use cases. Section 2.3 has the information about some existing time series
benchmarks.

2.1 Databases

A database is a structured collection of data that can be accessed and managed
efficiently. Databases are used to store, maintain, and access any type of data.
They gather data on people, places, or things. That data is collected in one location
so that it can be observed and analyzed.

2.1.1 Database Management System

A database management system (or DBMS) is the application used to manage
databases. The system provides users with the ability to perform various op-
erations such as create, read, write, and delete. MySQL, Oracle, etc., are some
popular examples of DBMS used in different applications.

2.1.2 Relational Databases

Relational databases are based on the relational model, a simple and obvious man-
ner of representing data in tables. Each row in the table is a record with a unique
ID known as a key in a relational database. The table’s columns carry data at-
tributes, and each record typically includes a value for each attribute, making it
simple to construct links between data points. SQL is a query language used to
manipulate and retrieve the data from the relational database.
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2.1.3 Non-Relational Databases

Most of the companies began to move away from traditional databases when ap-
plications began to scale for the following reasons:

• The performance of a relational database is always determined by the num-
ber of tables. The response time to queries will be slower as the number of
tables increases.

• The underlying cost of a relational database is relatively high.

• Because of the rows and columns, a relational database requires a large
amount of physical memory.

• Although a relational database does not require complicated structuring, it
can become complex occasionally.

These factors caused a move to non-relation databases. Non-relational databases
are often known as "NoSQL," which stands for Not Only SQL. It is a database that
does not use the tabular schema of rows and columns that is common in most
traditional database systems. Non-relational databases, on the other hand, use a
storage model that is optimized for the specific needs of the data being stored.
Following are the some characteristics of non-relational databases:

• The scalability of the non-relational database is very high, which makes it
suited for massive amounts of data.

• NoSQL databases, in comparison to SQL databases, are not complex. They
store data in an unstructured or semi-structured format that does not require
any relational or tabular structure.

• NoSQL databases are schema-independent, which means they can be run
without any specified schemas.

• NoSQL databases are highly durable as they can accommodate data ranging
from heterogeneous to homogeneous.
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2.2 Time Series Databases

Time series databases are used to manage time series data. A time series is an
ordered sequence of variable values over a specified time interval. Time Series is
a popular format for representing and analyzing data that changes over time[2].
Formally, a time series is a description of a stochastic process consisting of a col-
lection of pairs [(p1, t1), (p2, t2), ... (pn, tn)] where pi is the information collected in
time ti. A DBMS that can (i) store a record consisting of a timestamp, value, and
optional tags, (ii) store multiple records aggregated, (iii) query for records, and
(iv) contain time ranges in a query is called time series database.

2.2.1 Properties

S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi et al.[2] have the following charac-
teristics of time series data:

• Scalability: The volume of time-series data is rapidly increasing. Every
hour, for example, the linked car will send 25 GB of data to the cloud. Reg-
ular databases are not built to handle this level of scalability. On the other
hand, Time series databases are designed to account for scale by introducing
functions that are only possible when time is prioritized. This can improve
performance, such as higher insertion rates, faster queries at scale, and bet-
ter data compression.

• Usability: TSDBs often incorporate time series data analysis capabilities and
processes. They use data retention policies, continuous queries, flexible tem-
poral aggregations, range queries, etc. As a result, this improves usability
by improving the user experience while dealing with time-related analysis.

• Data Compression: Time Series data is mostly recorded per second or even
less time, so there will be a lot of data to handle. A good data compression
technique is required to handle this kind of data.

• Data Location: The queries on data are slow when the related data is not
together. Time series databases co-relate the chunks of data of the same
device and time range to access the data more efficiently.

• Fast and Easy Range Queries: As data location is there in TSDB, the range
queries are very fast compared to traditional databases. The query language
in TSDB is also like SQL, so it is easier for users to write queries.
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• High Write Performance: In peak load, most databases cannot quickly serve
the read and write request. TSDBs should ensure high availability and per-
formance for both read and write operations during peak loads because they
are usually designed to stay available in these conditions.

2.2.2 Uses and benefits

• Time Series Analysis: Time series analysis means to analyze the variable
which changes over time. Ex. The temperature of different cities.

• Time Series Forecasting: Time Series Forecasting means predicting future
activity by using information regarding associated patterns and historical
values. For example, Weather Forecasting, Earthquake Forecasting, Sales
Forecasting, etc.

• Regression Analysis: Regression analysis means how the changes of any
one variable affect another variable, like in the stock market, how one stock
price changes affect any other stock.

2.2.3 Industry use cases

Internet of Things

The Internet of Things revolution has enabled gadgets that were previously only
available as offline systems to be connected to the internet. These devices are clas-
sified into two types: actuators, which operate on commands, and sensors, which
sense the current environment and convert physical quantities into digital values.

The values transmitted by these sensors and the standard analyses performed on
them are a natural fit for time series databases[4]. A timestamp is assigned to
each data point generated by a sensor. The application domain determines the
frequency at which data is generated. The intervals used by sensors are usu-
ally every minute, every 10 minutes, or every hour. Getting the most recent data
points, averaging data points over time periods, and flexible visualization are all
common operations on sensor data. IoT data sets are typically regular and low in
volume for small numbers of sensors.
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Analytics

Time series can be used in the analytics domain to track website visits, adver-
tisement clicks, or E-commerce orders. The data volume may be affected by a
variety of factors, such as time (e.g., orders on Tuesday versus orders on Sunday),
weather (e.g., the number of air conditioners sold in a specific store), or other
arbitrary circumstances (e.g., the number of cars per hour on a day with a taxi
strike).

Financial

In the financial domain, time series data is commonly used. Time series can be
used to illustrate stock prices, currency rates, and portfolio valuations. As a re-
sult, storing financial data points in a time series database is a sensible choice. For
example, Kx Systems’ kdb+, a time series database, is frequently used in high-
frequency trading. Other financial use cases specifically presented by kdb+ in-
clude algorithmic trading, FX trading, and regulatory management.

Financial time series are regular, although the volume varies dramatically. Data
points can be generated every day, every minute (for example, stock closing prices),
or every few seconds (e.g., high-frequency trading).

Asset tracking

Physical systems are frequently monitored using time series databases. Most time
series databases feature spatial data storage and querying capabilities. It is pos-
sible to link location data in this manner. Asset tracking (e.g., storing the current
position of all taxis) and geographical filtering (e.g., a number of taxis within a
range) are examples of use cases. Asset tracking use cases produce data points
with geospatial information. Time series produced can be regular (e.g., location is
sent every minute) but is often irregular.

2.2.4 Some Databases and Their Designs

TimescaleDB is an open-source time series database that is entirely based on
PostgreSQL[6]. It inherits PostgreSQL’s functionality and provides adaptive tem-
poral chunks to reduce system resource usage. TimescaleDB offers full SQL sup-
port.
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Druid is a columnar data storage that is open source and designed for OLAP
queries[7]. It consists of many nodes that support a specific set of functionalities.
Interactions between nodes have been reduced to a bare minimum.

InfluxDB is the most commonly used time series database. InfluxDB employs
two protocols for data intake: a text-based protocol known as "Line Protocol"
and a deprecated JSON protocol[8]. It uses its own query language, Flux. In-
fluxDB’s storage engine is built on a time-structured merge tree (TSM) derived
from a log-structured merge tree[9]. TSM significantly improves InfluxDB’s per-
formance when writing and reading data.

Cassandra is a NoSQL database that provides the always-on availability, fast read-
write speed, and limitless linear scalability required by modern applications. Thou-
sands of businesses trust Cassandra for its scalability and high availability with-
out sacrificing performance. It is the ideal platform for mission-critical data be-
cause of its linear scalability and verified fault-tolerance on commodity hardware
or cloud infrastructure[10].

2.3 Time Series Benchmarks

There are some existing time series benchmarks available in the market, which
are examined in more detail in this section. The one common thing about these
benchmarks is that they all use any random or generated dataset.

2.3.1 IoTDB-Benchmark

The paper on IoTDB-benchmark was published by Rui Liu and Jun Yuan in 2019.
IoTDB-benchmark is built exclusively for TSDBs and IoT application scenarios. It
focuses on specific data ingestion scenarios[11]. IotDB-benchmark has 10 types
of queries, ranging from the exact point queries to time range queries with value
filters. The IoTDB-benchmark’s data generator generates random values within
the provided range. Therefore, it is not using any real-world data. Many data
generating factors, such as the data type of fields, the number of tags per device,
and many other things, can be configured using the IoTDB-benchmark.

Performance metrics measured by IoTDB-benchmark:

• Query latency: The time required to run all the ten queries is measured.
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• Space consumption: The space used by a particular dataset is measured.

• Throughput: Data points appended to an existing time series, measured in
points appended per second.

• System resource consumption: System resources like the system CPU, mem-
ory and disk I/O usage, memory used by TSDB service process, network
receiving rate, disk I/O transfer number per second (tpc), disk write/read
speed, etc., are measured[11].

The IoTDB-benchmark currently supports IoTDB, InfluxDB, KariosDB, OpenTSDB,
QuestDB, Sqlite, and TimescaleDB. This benchmark focuses solely on IoTDB, and
not all functions are supported by databases other than IoTDB. For example, only
IoTDB supports the generation and insertion of customized time series.

2.3.2 TSDBBench

Andreas Bader developed TSDBBench in 2015. So, it is a very old benchmark
designed for time series databases. In a project called YCSB-TS, it enhances the
Yahoo! Cloud Serving Benchmark (YCSB) for use with time series databases[1].
All the databases are divided into four groups: Requirement on NoSQL DBMS,
No requirement on any DBMS, RDBMS, and Proprietary. In practice, the bench-
mark seems unmaintained. The documentation is outdated, and the required files
are hosted on an inactive domain. The databases version used in this benchmark
is also ancient.

Performance metrics measured by TSDBBench:

• Query latency: The time required to run all the queries is measured.

• Space consumption: The space used by a particular dataset is measured.

2.3.3 TS-Benchmark

TS-Benchmark is the latest benchmark proposed by Yuanzhe Hao, Xiongpai Qin,
Yueguo Chen, and Yaru Li in 2021. The TS-Benchmark is another TSDB bench-
mark centered on the requirements of managing huge time series data. It uses
DCGAN based model to generate the high-quality synthesized data after being
trained with real time series data[12]. For the benchmark, they used data from
wind turbines. The number of wind farms, devices, and sensors utilized to gen-
erate data is viewed as a benchmark scale factor. TS-Benchmark can compare the
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performance of different TSDBs under various workloads such as data injection,
data loading, and data fetching. It uses 6 queries with a different parameter to test
the query latency of various TSDBs. The TS-Benchmark currently supports four
types of TSDBs: InfluxDB, Druid, TimescaleDB, and OpenTSDB.

Performance metrics measured by TS-Benchmark:

• Query latency: The time required to run all the ten queries is measured.
There are total six queries in TS-benchmark.

• Compression ratio: The ratio of data size stored in the database to the orig-
inal data size is measured.

• Throughput: Data points appended to an existing time series, measured in
points appended per second.

• Appending Throughput: The overall throughput of a target database is
measured when streaming data is continuously injected via multi-thread
connections.
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CHAPTER 3

Experimentation

Time series datasets can be categorized as synthetic data and real data. In the
previous chapter, we have seen that all the benchmarks use synthetic data for
comparison. It may represent the problem for the generalization of their results.
This chapter describes our study focusing on real-world data. It also includes
synthetic data to examine the performance differences. This chapter is structured
as follows: Section 3.1 has the three performance metrics used to compare the
databases. Section 3.2 represents the experimental setup of the experiment. Sec-
tion 3.3 has details about the datasets we have used in the experiment. Section 3.4
represents all the types of quires used in the experiment.

3.1 Performance Metrics

Benchmarking requires defining what should be measured and how to evaluate
the outcomes in order to create a ranking and distinguish between different re-
sults. A performance metric must be specified in order to do so. First, we used
throughput to measure the data loading performance of individual databases.
The time required to load the local dataset is called throughput.

Second, the space used to store a particular dataset is measured for every database.
It will be interesting to see if there is any difference in space efficiency between
TSDBs when storing the same data. If the space consumption of any database is
low, it means that the database compresses the data at a higher rate.

Third, we used query latency to measure the time required to run the particular
query. It measures how long a query takes to run from the time it is sent to the
database until a result is delivered and received by the client. A query must be
successfully and thoroughly completed. All eight types of queries will be exe-
cuted and measured for each database.
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3.2 Experimental Setup

When comparing different TSDBs, the results must be comparable if developed in
the same environment. It is also essential that each TSDB executes the task under
similar conditions, implying that the benchmark utilized does not give any TSDB
an advantage or disadvantage. It is not expected that results from different sit-
uations (for example, measuring TSDB 1 on system A and TSDB 2 on system B)
will be comparable. The databases are tested on Intel(R) Core(TM) i5-9500 CPU @
3.00GHz, 8GB of RAM, 500GB of hard disk, and the operating system of Ubuntu
20.04.1 64-bit.

InfluxDB v2.1, TimescaleDB v2.6, Druid v0.22.1, and Casandra v3.11.12 were eval-
uated and compared in this experiment. InfluxDB’s cluster version is not free, and
TimescaleDB has no cluster version. We considered single-node versions to com-
pare them fairly.

3.3 Datasets

All the TSDB benchmarks available are using only one particular dataset. In the
workload dataset in our experiment, four different datasets of different domains
are considered, like financial domain, analytics domain, and IoT domain. Of
course, four distinct datasets are insufficient to cover every industry or use case.
However, analyzing the results of benchmarks using these workload datasets will
allow comparisons to show whether the examined use case has an impact on per-
formance.

3.3.1 Financial Dataset

In the financial domain, time series data are frequently used. Time series are cre-
ated by the prices of commodities, futures, assets, and other financial instruments.
This historical data can be utilized to calculate performance, price predictions, and
financial ratios.

The dataset used for this experiment was created by Harsh Kumar and published
on Kaggle[13]. This dataset currently contains the 1-minute dataset of 150 NSE
stocks (50 Nifty 50 stock, 100 Nifty Midcap stocks) and nine indices starting from
2017–01–01.
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• Fields: Seven different fields are there: stock name, timestamp, the open-
ing, high, low, closing prices for the stock, and the volume of the stock per
minute.

• Regularity: The dataset is regular. Every minute, an update is published,
except on weekends and market closings (such as holidays).

• Volume: The dataset is high in volume. Data are published every minute,
so there is a lot of data. The dataset is around 4GB.

• Data type: Data type of the stock name field is a string, and a double data
type represents all other fields.

3.3.2 Analytics Dataset

Time series data is used in the analytics domain to analyze the things based on
the previous data, like rain prediction, sell prediction, etc. The analytics dataset
used in this experiment was created by Elemento and published on Kaggle[14].
In this dataset, we have only considered the Yellow Taxis Data for the months of
Jan 2015.

• Fields: The fields are VendorID, pickup datetime, dropoff datetime, passen-
ger count, trip distance, pickup longitude, pickup latitude, dropoff latitude,
payment type, fare amount, extra, tax, tip amount, tolls amount, improve-
ment surcharge, and total amount.

• Regularity: The dataset is irregular. The data points are events, produced
when a customer books a taxi.

• Volume: The dataset is high in volume. The dataset is around 2GB.

• Data type: Data type of the vendorID, passenger count, and payment type
fields is an integer, and a double data type represents all other fields.

3.3.3 IoT Dataset

IoT applications, particularly sensor applications, generate a large amount of data.
This can include information like temperature, power consumption, and location.
IoT data is virtually always time-indexed. So, a time series database is a logical fit.

The IoT dataset used in the experiment is published in Chicago Data Portal. The
Chicago Park District maintains sensors in the water at beaches along with Chicago’s
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Lake Michigan lakefront[15]. These sensors generally capture the indicated mea-
surements hourly while the sensors are in operation during the summer.

• Fields: The fields are Beach name, Measurement Timestamp, Water tem-
perature, Turbidity, Wave Height, Wave period, Battery life, Measurement
timestamp label, and MeasurementID.

• Regularity: The dataset is semi-regular. The data points are inserted every
hour.

• Volume: The dataset is low in volume. The dataset is around 4MB.

• Data type: Data type of the Beach name, Measurement timestamp label, and
MeasurementID field are strings, and a double data type represents all other
fields.

3.3.4 Synthesized Dataset

In this experiment, there is also one synthesized dataset to compare the perfor-
mance of synthetic data and real data. We used the timeseries-generator library
in python to generate the random time series data for synthetic data. Timeseries-
Generator package is an exciting and excellent way to generate time-series data.
A generator is a linear function with several factors and a noise function in this
case. It is the data of some fast food item sales in different countries.

• Fields: The fields are date, country, product, base amount, white noise,
country GDP factor, weekend boost factor, industry product factor, holiday
trend factor, total factor, and value.

• Regularity: The dataset is irregular. The data points are events, produced
when a customer buys a food item.

• Volume: The dataset is low in volume. The dataset is around 130MB.

• Data type: Data type of country and product field are strings, and a double
data type represents all other fields.

3.4 Queries

In this experiment, we have considered total eight kinds of queries. There are
almost all kinds of the queries like exact point queries, queries with aggregate
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functions(min, max, sum, avg, count), group by queries, and queries with a time
range.

3.4.1 Queries for Financial Dataset

1. Exact Point Query

• Get the price of some stock on some particular day

2. Aggregation Queries

• Get the total volume of a particular stock

• Get the minimum price of the particular stock

• Get the maximum price of the particular stock

• Count number of times when the particular stock volume is greater
than 5000

• Get the avg value of the stock price of a particular stock

3. Group By Query

• Get the maximum volume group by stock

4. Time Range Query

• Get the lowest and highest price of a particular stock from 2017 to 2019

3.4.2 Queries for Analytics Dataset

1. Exact Point Query

• Get the amount paid on some particular taxi

2. Aggregation Queries

• Get the minimum distance

• Get the maximum distance

• Get total distance travel

• Get the total number of passengers who travels alone

• Get the average tip amount
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3. Group By Query

• Get the total toll amount paid group by vendor

4. Time Range Query

• Get the total amounts from 1 Jan 2015 to 25 Jan 2015

3.4.3 Queries for IoT Dataset

1. Exact Point Query

• Get the turbidity on some particular day and time

2. Aggregation Queries

• Get the date and time when the temperature is lowest at Ohio street
beach

• Get maximum turbidity at calumet beach

• Get the total turbidity of montrose beach

• Count when the temperature at calumet beach went below 19

• Get average wave height of Montrose Beach

3. Group By Query

• Get the average battery life group by beach

4. Time Range Query

• Get top 50 days in 2018 when the temperature is highest

3.4.4 Queries for Synthetic Dataset

1. Exact Point Query

• Get the sale value of some particular day and time

2. Aggregation Queries

• Get the minimum sale value of pizza

• Get country name with maximum gdp factor

• Get the total value of sandwich
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• Get the number of count when value is above 15000

• Get the average value of Netherlands

3. Group By Query

• Get the average value group by product

4. Time Range Query

• Get the value data from 2005 to 2015
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CHAPTER 4

Results

This chapter represents the results of the experiment. It is structured as follows:
Section 4.1 represents the results of data loading, Section 4.2 represents the results
of space consumption, and Section 4.3 represents the results of queries.

4.1 Data Loading

The local data files are imported using the different database’s built-in import
tool. Before data import, the databases are restarted to ensure that no cache is
used. Table 4.1 shows the time required to load all the dataset in seconds.

Database IoT Financial Analytics Synthetic
TimescaleDb 8 949 604 44

Druid 6 695 303 106
InfluxDB 2 576 283 19

Cassandra 2.23 1068 388 24.993

Table 4.1: Load Performance (seconds)

Based on the experiment results, we can say that InfluxDB beats all of the datasets
in terms of load performance. After InfluxDB, Druid is the best option. Druid re-
quires permanent backup storage for the distributed file system, known as deep
storage. Because each segment is repeated in deep storage, the time required
to load the data increases. It outperforms TimescaleDB and Cassandra in real
datasets, but it is the worst performer in synthetic datasets. So, here you can
see the performance difference of Druid in real and synthetic data. Cassandra
beats TimescaleDB in all datasets except the financial dataset. We can say from
the results that InfluxDB is the best choice, followed by Druid, Cassandra, and
TimescaleDB. If we compare the best and the worst performer, InfluxDB outper-
forms TimescaleDB in the IoT dataset by 4 times, the financial dataset by 1.5 times,
the analysis dataset by nearly 3 times, and the synthetic dataset by almost 2 times.
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4.2 Space Consumption

All four datasets are inserted in particular databases in CSV format. Afterward,
the space occupied by the data for the specific database is measured. Table 4.2
shows the data loading performance for every dataset. In terms of space con-
sumption, Druid outperforms all other databases by a wide margin. It took only
25% space of the original data, which is exceptional. It compresses data to a high
degree using data granularity. The level of detail in a data structure is measured
by data granularity. The granularity of measurement of time-series data, for ex-
ample, could be based on intervals of years, months, weeks, days, or hours.

Database IoT Financial Analytics Synthetic
CSV 3.9 3844.83 1985.96 130.9

TimescaleDb 9.7 5222.4 2355.2 179.4
Druid 6.14 946.43 489.76 56.15

InfluxDB 3.6 3276.8 1536 126
Cassandra 3.9 4526.08 1433.6 94.51

Table 4.2: Space Consumption (MB)

InfluxDB is the next option after Druid. InfluxDB uses many compression tech-
niques for various data types. It also takes up less space than the original file, but
it is more than Druid. Cassandra also takes less space than the original in all the
datasets. However, Cassandra takes up more space in the financial dataset than
the original. So, as data size grows, Cassandra’s performance decreases. In terms
of space utilization, TimescaleDB is the worst performer. Because TimescaleDB
is built on Postgres, storing data in tabular format takes much space. If we com-
pare the best and the worst performer, Druid outperforms TimescaleDB in the IoT
dataset by 1.5 times, the financial dataset by 5 times, the analysis dataset by nearly
3 times, and the synthetic dataset by almost 5 times.

4.3 Query Latency

The results of queries are divided into four groups. It is structured as follows:
Section 4.3.1 represents exact point query, Section 4.3.2 represents aggregation
queries, Section 4.3.3 represents group by query and Section 4.3.4 represents time
range query.
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4.3.1 Exact Point Query

When we performed the exact point query on all databases, TimescaleDB per-
formed better than all other databases. This is because TimescaleDB is based on a
relational database, PostgreSQL, and uses time as the primary key, which is spe-
cially indexed. The results of this single query are shown in Fig 4.1. In the finan-
cial domain, Druid beats TimescaleDB because that dataset is the largest. After
TimescaleDB, Druid is the second-best option, followed by InfluxDB and Cassan-
dra. TimescaleDB outperforms Cassandra in the IoT query workload by 3 times,
the financial query workload by 14 times, the analysis query workload by nearly
9 times, and the synthetic query workload by nearly 4 times. Clearly, the query
workload has a significant impact on performance.

Figure 4.1: Exact Point Query

4.3.2 Aggregation Queries

We have used the aggregation functions MIN, MAX, COUNT, SUM, and AVG in
aggregate queries in the experiment. The results are pretty similar for all aggre-
gate functions. The results of MIN, MAX, COUNT, SUM, and AVG are shown
in Fig 4.2, 4.3, 4.4, 4.5, and 4.6 respectively. Except for the financial dataset, the
results show that InfluxDB outperforms all other databases in every aggregate
function query. InfluxDB beats the weakest performer, TimescaleDB, by around
300 times, which is impressive. In terms of query latency performance, Druid is
pretty close to InfluxDB. Cassandra is a NoSQL database. However, it outper-
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formed TimescaleDb, which is specifically designed to handle time series data.
For the IoT query workload, InfluxDB performs 5 times better than TimescaleDB,
for the financial query workload 56 times better, for the analysis query workload
nearly 4 times better, and for synthetic data almost 18.5 times better.

Figure 4.2: MIN Aggregation Query

Figure 4.3: MAX Aggregation Query
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Figure 4.4: COUNT Aggregation Query

Figure 4.5: SUM Aggregation Query
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Figure 4.6: AVG Aggregation Query

4.3.3 Group By Query

The most common query type in the industries is a group by queries. We ran
group by queries on various datasets across all databases. The results are shown
in Fig 4.7. Druid and InfluxDB performed equally well across all datasets in this
query type. Druid outperforms InfluxDB by a hair, but it’s a razor’s edge. After

Figure 4.7: GROUP BY Query

Druid and InfluxDB, Cassandra outperforms TimescaleDB in the IoT and financial
domains, whereas TimescaleDB outperforms Cassandra in the analytics domain.
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4.3.4 Time Range Query

The time range query is the essential query type of time series data. It is used to
retrieve data from a specific time range. The results of all the databases are shown
in Fig 4.8. In the time range query workload, we can see that Druid outperforms
all other databases. Druid is just ahead of InfluxDB. In this query type also,

Figure 4.8: Time Range Query

Cassandra and TimescaleDb are the worst performers. Cassandra performs well
in IoT and financial scenarios, and in other cases, TimescalDB performs better.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this experiment, the performance of TSDBs is evaluated by several real-world
scenarios such as the IoT domain, the Financial domain, and the Analytics do-
main. We have also considered the synthesized data for comparison. Performance
metrics are more suited to evaluate the effectiveness of TSDBs. It includes data
loading, database space usage, and query performance. We have done the exper-
iments and examined the findings on three common TSDBs, TimescaleDB, Druid,
InfluxDB, and one NoSQL database, Cassandra. InfluxDB is a native TSDB with a
storage engine that uses a Time-Structured Merge Tree (based on a log-structured
merge tree). TimescaleDB, based on PostgreSQL, uses row-wise storage to repre-
sent databases. Druid saves data in columnar format and creates indexes when
data is injected. Cassandra is the most popular column-oriented NoSQL database.

From the experiment results, we draw following conclusions:

• InfluxDB has a high injection and query throughput because it has unique
storage mechanism, namely a time-structured merge tree that supports high-
speed writing,

• Druid achieves high query throughput, sometimes it beats InfluxDB. During
pre-processing, a granularity component in Druid separates data into seg-
ments and generates a bitmap index. Druid stream processing also struggles
with excessive concurrency. Columnar storage format and indexes, on the
other hand, pay off later.

• TimescaleDB uses a row-wise storage format borrowed from PostgreSQL, so
it has poor query speed. The reason for low performance is that TimescaleDB
does not automatically create indexes.
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• Cassandra is the NoSQL database that uses column format to store data. It
gives better read and write performance than TimescaleDB.

We have also used one synthetic dataset with the other real datasets. The reason
to use a synthetic dataset is to see if we can find any interesting results. There
is a lot of difference between the synthesized and real datasets in data loading.
Druid performs better in the real datasets, but it is the worst performer in synthe-
sized data. The financial dataset also has different query performance and space
consumption results than the other datasets. Following are the recommendations
based on the performance comparison:

• If the focus lies on load performance, InfluxDB is the best choice, followed
by Druid, Cassandra, and TimescaleDB.

• Druid is far better than others if the focus lies on the lowest space consump-
tion. InfluxDB is the second-best choice.

• If there are more aggregate queries, one can use InfluxDB. It performs very
well, followed by Druid and Cassandra. If there are queries containing data
filters like time range, Druid is the best choice.

5.2 Future Work

From the results of our experiments, we concluded that benchmarks based on real
datasets are more usable. We think that more experiments can be performed. Few
are listed below:

• The query workload could be extended to include data mutations (such as
create, update and delete queries). Benchmarks using this query workload
might produce even more accurate results.

• In production environments, TSDBs are often used in multi-node setups.
The experiment can be extended to test clustered TSDBs.

• We can also add relational databases and specialized non-relational databases
(such as graph, triple, or document stores) to see the interesting results.
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