
Modeling and Formal Verification of The
Dining Philosophers Problem Using SPIN

by

Kripalsinh Makvana
202011054

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

June, 2022

Acknowledgments

I want to express my gratitude to Dr.Puneet Bhateja my thesis supervisor for his
continuous support and advice throughout the program. Working with him is a
great honour for me. His pleasant personality, willingness to help, and superior
subject knowledge have all helped me to bring out the best in me. Without his
guidance, doing this work would have been extremely difficult.

Finally, I want to thank my parents for believing in me and supporting me.
Thank you for your blessings and motivation.

ii

Contents

Abstract iv

List of Figures v

1 Introduction 1
1.1 Thesis Objectives and Problem Description 2
1.2 Contributions . 2
1.3 Thesis Organization . 3

2 The basic structure of the SPIN model checker 4
2.1 The basic structure of the SPIN . 5
2.2 The essential components of the PROMELA 5
2.3 Verification in SPIN . 6
2.4 Summary . 6

3 The first solution of the dining philosophers problem 7
3.1 Approach 1 . 8
3.2 PROMELA model . 8
3.3 Problems . 9
3.4 Summary . 10

4 The second solution of the dining philosophers problem 11
4.1 Approach 2 . 12
4.2 PROMELA model . 12
4.3 Analyzing and Verification of the model 14
4.4 Summary . 15

5 Conclusion 16

References 17

iii

Abstract

The SPIN tool is used for verifying the correctness of the system. SPIN stands for
simple PROMELA interpreter. It’s been used to find design problems in systems.
The main idea behind the thesis is to provide an overview of the spin model’s
architecture and functionality using the dining philosophers problem. The dining
philosophers problem is a standard synchronization-related concurrency prob-
lem. One solution to the problem is chosen for modeling and verification. For
modeling, PROMELA is used, and SPIN is used for verification.

SPIN can verify the model by running random simulations or creating a C
program. It can do a complete verification to determine whether the system’s
behavior is error-free or not with mathematical certainty. PROMELA is used for
modeling system models in formal verification that allows for the dynamic devel-
opment of concurrent processes and identifies interactions between processes in a
distributed system. We examined and validated various properties of the Dining
Philosophers Problem, such as the absence of deadlock and the absence of indi-
vidual starvation. Using simulation, we determined the expected execution of the
solution. There were no invalid end-states or non-progress cycles discovered.

iv

List of Figures

1.1 Philosophers sitting around food. [1] 1

2.1 The basic structure of the SPIN. G. J. Holzmann. The model checker
spin. IEEE Transactions on software engineering, 23(5): 279–295,
1997 Page No- 280. [2] . 4

3.1 States of the philosopher and forks for solution 1. C. Baier and J.-P.
Katoen. Principles of model checking. MIT Press, 2008. Page No-
92. [1] . 7

4.1 States of the philosopher and forks for solution 2. C. Baier and J.-P.
Katoen. Principles of model checking. MIT Press, 2008. Page No-
93. [2] . 11

v

CHAPTER 1

Introduction

Formal verification is the act of checking model specifications for flaws that could
result in incorrect operation. Formal verification is better than testing because it
can prove the absence of errors such as deadlock, livelock, etc.; it is entirely auto-
mated, less expensive to fix the errors, and is independent of implementation.[4]
The goal of SPIN verification models is to prove the correctness of process inter-
actions by abstracting as much as possible from internal sequential calculations.
SPIN generates C sources code for a model checker rather than performing model
checking itself. This method saves memory and increases efficiency while also
allowing sections of C code to be directly inserted into the model. The notations
in SPIN are selected such that the tool can mechanically demonstrate the logical
consistency of a design.

Figure 1.1: Philosophers sitting around food. [1]

1

1.1 Thesis Objectives and Problem Description

Dijkstra created the Dining Philosophers Problem in 1965 to demonstrate the hor-
ror that is deadlock. In Figure 1.1, one can observe that, A group of five philoso-
phers sits around a table. A philosopher’s sole goal in life is to think, yet in order
to feed their thinking body, they occasionally have to take some time off to eat. For
this reason, the table has in its center a large bowl of spaghetti. Unfortunately, be-
cause of their university department’s tight budget, there are only as many forks
as there are philosophers. However, because they are not of Italian descent, none
of them has mastered the technique of eating spaghetti with only one fork; each
philosopher eats with exactly two forks. They agree to place each fork between
two philosophers so that each fork is shared between two of them.

When a philosopher gets hungry, he seeks to acquire the forks to his left and
right one at a time. It is non-deterministic which side he begins on. After receiving
two forks, they will eat for a while, then return their forks and return to thinking.

In this thesis, we use the SPIN(Simple PROMELA Interpreter) model checker
because SPIN is freely available on the Internet and is the world’s most widely
used logic-based model checker. Bell Labs developed it and has been awarded the
"Software System Award" by the ACM (Association for Computing Machinery).
SPIN can validate most of the models that are written in PROMELA(PROcess
MEta LAnguage), so we use PROMELA as a modeling language and SPIN as a
simulator and verifier in our thesis. [2] The dining philosophers problem is a
classic example problem in concurrent algorithm design for displaying synchro-
nization problems and possible solutions.

The Dining Philosophers problem demonstrates the difficulties of handling
shared states in a multithreaded environment. In this thesis, we model the dining
philosophers problem in PROMELA, verify that model in SPIN and check if there
are any invalid end-states(deadlock) or non-progress cycles discovered or not.

1.2 Contributions

The following is the thesis contribution :

• Modeling and formal verification of dining philosophers problem. We

2

Modeled a simple solution of the dining philosophers problem and verified
that model in SPIN. After verification, we found two errors in that approach,
so we changed that approach a little bit and modeled the second solution,
and verified it in SPIN without getting any errors.

1.3 Thesis Organization

The thesis report is further divided into the following chapters:

• Chapter 2 presents the basic structure of the SPIN model checker.

• Chapter 3 presents the first approach for solving the dining philosophers
problem.

• Chapter 4 presents the second approach for solving the dining philosophers
problem.

3

CHAPTER 2

The basic structure of the SPIN model checker

In this chapter, we show the basic structure of the SPIN model checker and see
how it works and see some basics of PROMELA modeling Language.

Figure 2.1: The basic structure of the SPIN. G. J. Holzmann. The model checker
spin. IEEE Transactions on software engineering, 23(5): 279–295, 1997 Page No-
280. [2]

4

2.1 The basic structure of the SPIN

Figure 2.1 represents the basic structure of the SPIN model checker. Here xspin is
a graphical front-end of the SPIN model checker. ispin is written in Tcl/tk. Tcl is
a high-level, general-purpose, dynamic programming language.[3]

SPIN takes PROMELA code compile and checks for syntax errors and gives
a report in the first step. In the second step, interactive simulation is run until
fundamental confidence in the design’s behavior is obtained.

And in the third step, SPIN Verifier Generator compiles the code into c, and
then If a counterexample to the claims of correctness is discovered. These may be
input back into the interactive simulator and examined in depth to determine and
eliminate the source of the problem.

2.2 The essential components of the PROMELA

Processes, message channels, and variables are the three categories of objects in
SPIN models. Processes are global objects. Within a process, message channels
and variables can be defined either globally or locally. Processes determine be-
havior, whereas channels and global variables create the context in which they
operate.

The PROMELA model consists to a declaration of type, a declaration of the
channel, a declaration of a variable, and a declaration of the process. A process
type consists of a name, a list of formal parameters, declarations of local variables,
and the process body. The body is made up of a series of sentences. Processes may
be created with the run command, which returns the process id; alternatively, ac-
tive can be included before the proctype declaration to generate processes.

A variable declaration begins with a keyword specifying the variable’s data
type, such as bit, bool, byte, short, or int, followed by one or more identifiers, and
optionally an initializer: bit, bool, byte, short, or int. byte a, byte b = 4 If one is
supplied, the initializer must be a constant. Variables are initially set to zero by
default.

5

2.3 Verification in SPIN

In verification spin, check for if there any INVALID END-STATE, any NON-PROGRESS
CYCLE, or any NEVER CLAIMS are present.

Valid end-states are those in which the process instance and the init process
have either completed or are stuck at a statement in their defining program body
with a label that begins with the prefix ’end.’ End-state that is valid must also
have empty channels. The remaining states are all invalid end-states.

A non-progress cycle (NPC) is an execution that does not loop through a progress
state infinitely. With PROMELA, a simple verification of ’tasks’ or requirements
can be modeled as never claims, and Spin can swiftly prove or disprove that claim
using the Linear Time Temporal logic (LTL) formula.[2]

2.4 Summary

In this chapter, we explain the basic structure of the SPIN model checker, how it
works, and some essential components of the PROMELA modeling language. We
also explain how SPIN verifies the model that is written in PROMELA.

6

CHAPTER 3

The first solution of the dining philosophers
problem

In this chapter, we solve the dining philosophers problem with a simple approach,
create a model for that solution, and verify the model for checking the presence
of any errors.

Figure 3.1: States of the philosopher and forks for solution 1. C. Baier and J.-P.
Katoen. Principles of model checking. MIT Press, 2008. Page No- 92. [1]

7

3.1 Approach 1

The first approach for a problem to get and release forks is as follows.
While the philosopher is in a thinking state and wants to eat, then first philoso-
pher picks the left fork, if it is available, then the right fork. After eating, the
philosopher can quickly release both forks, as shown in Figure 3.1. Figure 3.1 also
shows the states of the fork. When the philosopher requests the fork, the fork goes
into an occupied state, and when the philosopher releases the fork, the fork goes
back to the available state. Note that in this method, any philosopher can request
the fork.

3.2 PROMELA model

#define PHIL 5

mtype={fork}

#define le forks[no]

#define ri forks[(no+1)% PHIL]

chan forks[PHIL] = [1] of {int};

proctype p(int no)

{

do

::le?fork->ri?fork;

le!fork;

ri!fork

od

}

init

{

int philoso=PHIL;

atomic

{

do

::philoso>0->philoso--;

run p(philoso);

forks[philoso]!fork

8

::philoso==0->break

od

}

}

Here PHIL is defined as 5, fork is the mtype variable, lf and rf are channels. There
are five channels of int with a capacity of one each. The execution starts from the
init process. First process p is run with the argument philoso-1, and one is sent to
channel forks[philoso-1]. If the philoso variable is zero, then the break statement
is executed.

In proctype p first fork receive one from channel lf, which is similar to picking
up the left fork if it is available; if fork receives one from the lf, then it does the
same operation with channel rf, same as picking right fork and then after some
time send one to both channel one by one same as putting both forks on the table
after eating. This whole process runs infinitely.

3.3 Problems

After verifying the above model in SPIN, we found two problems with this ap-
proach.

The most prominent issue with this program is the possibility of a deadlock.
What if all philosophers sat down at the exact moment and picked up their left
fork simultaneously?

In this case, all forks are locked, and none of the philosophers can successfully
lock his right fork. As a result, we get circular waiting; each philosopher waits for
his right fork, which his right neighbor is now locking, and a deadlock arises.

The second problem is starvation. Suppose two philosophers are both fast
thinkers and fast eaters. They think quickly and get hungry fast. They then take
their seats in opposing chairs. They may be able to choose their forks and eat since
they are so fast. After they finish eating and before their neighbors can pick the
fork and eat, they return again and pick the forks and eat.

9

In this situation, even though the other three philosophers have been seated
for a long time, they have no opportunity to eat. This is known as starvation. It is
important to note that this is not a deadlock because there is no circular waiting,
and everyone gets a chance to eat.

3.4 Summary

In this chapter, we discuss a simple solution to the dining philosophers problem;
we modeled it in PROMELA, verified it in SPIN, and found that this approach has
two problems.

10

CHAPTER 4

The second solution of the dining philosophers
problem

In this chapter, we solve the dining philosophers problem with an improved ap-
proach, create a model for that solution, and verify the model for checking the
presence of any errors.

Figure 4.1: States of the philosopher and forks for solution 2. C. Baier and J.-P.
Katoen. Principles of model checking. MIT Press, 2008. Page No- 93. [2]

11

4.1 Approach 2

The main issue with Approach 1 is that a single fork is desired by two philoso-
phers simultaneously; however, if just one philosopher may access the fork at a
time while the other philosopher waits for its turn, we can address this problem.

The forks in this approach have two states: red and blue. In the red state, fork
i can only be used by philosopher i, and philosopher i+1 cannot use it. In the blue
state, fork i can only be used by philosopher i+1, and philosopher i cannot use it.
After eating, the forks’state will shift from red to blue or blue to red as shown in
Figure 4.1.

The initialization states of the forks are fixed in this approach. The initialize
state of the fork i can be red or blue, but if the initialize state is red for fork i, then
for fork i+1, it will be blue or vice versa; when the philosopher has done eating,
the forks’ states change.

If the states are initialized with blue, there are three blue and two red forks,
and vice versa. Note that in this method, only two philosophers can eat simulta-
neously; others must wait for their turn, and when the philosopher has satisfied
his hunger, he puts down both forks, so the states of the forks have to change, and
other philosophers can eat. So after a few turns, all forks return to the initial state,
and this cycle restarts again.

4.2 PROMELA model

#define PHIL 5

mtype={fork}

#define lf forks[a]

#define rf forks[(a+1)%PHIL]

chan forks[PHIL] = [1] of {int};

int i=1;

proctype p(int a)

{

do

12

:: if

::i==1&&(a==2||a==4) ->

lf?fork->rf?fork;

lf!fork;

rf!fork

i++

::i==2&&(a==3||a==1) ->

lf?fork->rf?fork;

lf!fork;

rf!fork

i++

::i==3&&(a==2||a==5) ->

lf?fork->rf?fork;

lf!fork;

rf!fork

i++

::i==4&&(a==1||a==4) ->

lf?fork->rf?fork;

lf!fork;

rf!fork

i++

::i==5&&(a==5||a==3) ->

lf?fork->rf?fork;

lf!fork;

rf!fork

i++

::i==6||i>6->i=1;

::else->i++;

fi

od

}

13

init{

int philoso=PHIL;

atomic {

do

::philoso>0->philoso--;

run p(philoso);

forks[philoso]!fork

::philoso==0->break

od

}

}

Here PHIL is defined as 5, fork is the mtype variable, lf and rf are channels.
There are five channels of int with a capacity of one each. The execution starts
from the init process. First process p is run with the argument philoso-1, and one
is sent to channel forks[philoso-1]. If the philoso variable is zero, then the break
statement is executed.

In proctype p it checks for i and a variables. Receive and send operation is
only executed where if condition is fulfilled; for example, if i is equal to two and
a is equal to one or three, then only receive and send operation will happen, and
then i is increased by one, and if i is equal to or greater than six, then it’s value
change to one. This whole process runs infinitely.

4.3 Analyzing and Verification of the model

The main issue with Approach 1 is that a single fork is desired by two philoso-
phers simultaneously. So if just one philosopher may access the fork at a time
while the other philosopher waits for its turn, then this problem can be addressed.

In the second approach, only one philosopher can access the fork at a time,
and the solution is based on turns no one can pick forks if it is not there turn so
this way we solve both problems of deadlock and individual starvation.

14

INVALID END-STATE(DEADLOCK): In PROMELA, valid end-states are sys-
tem states in which all process instances and the init process have either com-
pleted their defining program body or are stuck at a statement with the label be-
ginning with the prefix ’end.’ Valid end-states require empty channels. All of the
other states are invalid end-states.[2]

SPIN did not find any errors like invalid end state, assertion violation, or ac-
ceptance cycle during verification of the second solution.So we can verify that the
second solution is error-free.

4.4 Summary

In this chapter, we discuss an improved solution to the dining philosophers prob-
lem; we modeled it in PROMELA, verified it in SPIN, and explain how this solu-
tion solves the problem of deadlock and individual starvation.

15

CHAPTER 5

Conclusion

Most well-developed engineering fields contain a process for building and ana-
lyzing design prototypes. SPIN is a tool for distributed systems design to develop
the basic methodology for on-the-fly automated verification.

We modeled the original dining philosophers problem and demonstrated that
the system is vulnerable to deadlock. The design was then modified slightly,
demonstrating that the system was free of deadlock and starvation using SPIN.

The work also demonstrates how simple it is in PROMELA to model any prob-
lem and the necessary corrective claims. SPIN has also been discovered to be quite
useful and efficient in the formal verification of the PROMELA model.

16

References

[1] C. Baier, J. Katoen, and K. Larsen. Principles of Model Checking. MIT Press,
2008.

[2] G. J. Holzmann. The model checker spin. In IEEE Transactions on software
engineering, volume 23, pages 279–295, 1997.

[3] M. J. Hornos and J. C. Augusto. Installation process and main functionalities
of the spin model checker. In Electronic version available at http://digibug. ugr.
es/handle/10481/19601. Universidad de Granada, 2012.

[4] S. M. Islam, M. H. Sqalli, and S. Khan. Modeling and formal verification of
dhcp using spin. In Int. J. Comput. Sci. Appl., volume 3, pages 145–159, 2006.

17

	Abstract
	List of Figures
	Introduction
	Thesis Objectives and Problem Description
	Contributions
	Thesis Organization

	The basic structure of the SPIN model checker
	The basic structure of the SPIN
	The essential components of the PROMELA
	Verification in SPIN
	Summary

	The first solution of the dining philosophers problem
	Approach 1
	PROMELA model
	Problems
	Summary

	The second solution of the dining philosophers problem
	Approach 2
	PROMELA model
	Analyzing and Verification of the model
	Summary

	Conclusion
	References

{ "type": "Document", "isBackSide": false }

