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Abstract

Atmospheric phenomena like haze, fog, and smoke degraded image visibility. As
a result, there is less contrast, colour distortion, etc. in the obtained image. In
remote sensing, computer vision, and photography, haze reduction is greatly de-
sired. in photography, dehazing can increase the visibility and quality of outdoor
images and landscapes, making them more vibrant and appealing. In computer
vision, dehazing can improve the quality of object detection task, recognition,
and tracking algorithms, especially in outdoor and low-light environments. In
remote sensing, dehazing can improve the quality of satellite and aerial images,
making them more useful for environmental monitoring, disaster management,
and urban planning. Dehazing removes haze, improves scene vision, and ad-
justs the airlight’s colour change. There are two types of haze, homogeneous and
non-homogeneous. To increase the dehaze quality for both homogeneous and
nonhomogeneous haze, several techniques were used. Methods —classical, Deep
learning-based, and GAN-based. For non-homogeneous haze, it is challenging to
estimate the spread of haze. Due to the less availability of real world ground-truth
images, many recent methods focus on the unsupervised approach to solve this
issue. GAN, and cycle-GAN based unsupervised methods are highly used in this
technique. But still, there is not any prominent unsupervised technique for non-
homogeneous haze removal. This paper proposed the unsupervised cycle-GAN
based approach, which has worked on both homogeneous and non-homogeneous
haze. Specifically, we use cycle-GAN with non-homogeneous and homogeneous
haze removal generator. Generator use modified Unet with pixel, channel atten-
tion and pretrained resnet as haze removal. Overall proposed architecture gives
better results for both non-homogenous and homogeneous images compared to
the existing unsupervised methods.

Index Terms: Unsupervised, Non-homogeneous haze, Homogeneous haze, Image
Dehazing, GAN, Attention mechanism
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CHAPTER 1

Introduction

Atmospheric particles, such as haze and fog, can impede the visibility of a scene
by attenuating the reflected light along its path and scattering the atmospheric
light. This scattering effect, as shown in Fig. 1.1, adds a portion of atmospheric
light (known as airlight) to the direct light received by a camera. As a result,
the captured image exhibits lower contrast, color distortion, and other undesir-
able effects, rendering it less visually appealing and useful for various applica-
tions. These atmospheric phenomena can have a significant impact on the quality
of outdoor and other types of images, underscoring the importance of dehazing
techniques for enhancing their visibility and usefulness.

Figure 1.1: Atmospheric Scattering Model (ASM)

This type of degraded image is not desirable for vision-related applications. As a
result, the impact of haze and other atmospheric phenomena must be minimised.
For example, we must create a picture similar to Fig.1.3(b) from 1.3(a), which is
degraded because of haze.
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(a) Hazy Image (b) Haze-free Image

Figure 1.2: Example of homogeneous image dehazing

(a) Hazy Image (b) Haze-free Image

Figure 1.3: Example of non-homogeneous image dehazing

There are two types of Haze.: i) homogeneous, and ii) non-homogeneous. In
homogeneous hazy images, haze is evenly distributed at the same depth level.
As illustrated in Fig.1.2(a), the haze is evenly spread throughout the entire scene.
Haze presence is unequally distributed in non-homogeneous hazy images, which
means that some part of the scene is highly affected by haze or has a high density
of haze compared to other regions. As shown in Fig.1.3(a), the haze is distributed
unevenly across the entire scene, with some areas having high-density haze and
others having very low-density haze.
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The atmospheric scattering model (ASM) [24, 25, 26] can approximate haze degra-
dation. Mccartney initially proposed this model [24], and later Narasimhan and
Nayar [25] improved it.

The atmospheric scattering model:

I(x) = J(x)t(x) + A(1 − t(x)) (1.1)

In this equation, the hazy image captured by the camera, the haze-free image,
and the transmission map are represented as I(x), J(x) and t(x) respectively. The
global atmospheric light is denoted as A, and x represents the pixel location in
the image. The term J(x)t(x) represents the direct attenuation, while the term
A(1− t(x)) is known as the airlight. In this method, we aim to find the unknowns
t(x) and A from the input hazy image I(x). The transmission map d(x) is directly
related to the distance d(x) of the scene point from the camera.

t(x) = e−βd(x) (1.2)

This equation demonstrates that the intensity of the scene decreases exponentially
with depth. If we can recover the transmission, we can estimate the depth up to
an unknown scale.

Here β is the scattering coefficient. Several dehazing methods follow this model
to find out a haze-free image. However, the ASM can not reflect the nonhomo-
geneous nature of haze. As a result, methods developed based on ASM find it
difficult to produce an optimal dehazing result on non-homogeneous hazy im-
age.
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1.1 Objective

The objectives of the thesis can be summarized as follows:

1. Developing an architecture that can handle both non-homogeneous and ho-
mogenous haze.

2. Developing an architecture that can overcome the challenges posed by lim-
ited data and the non-homogeneous nature of haze, using an unsupervised
approach due to the limitation of real-world ground truth images.

3. Even when a dataset is available, designing an architecture that can handle
the various density levels seen in non-homogeneous haze images..

4. Including a module in the architecture to address the issue of color distortion
and ensure the preservation of accurate colors and structure in the dehazed
images.

1.2 Contribution

The contributions of the thesis can be summarized as follows:

The thesis makes significant contributions by developing a novel architecture
that utilizes unsupervised learning based on Cycle-GAN to overcome the un-
availability of real-world ground truth images. To address color distortion, the
proposed method incorporates channel and pixel attention mechanisms. Addi-
tionally, the proposed model effectively handles varying density levels of haze
using the U-Net architecture, enabling the removal of both homogeneous and
non-homogeneous haze.

Extensive evaluations comparing the proposed architecture against state-of-the-
art methods demonstrate its superior effectiveness in haze removal tasks, as mea-
sured by objective metrics such as PSNR and SSIM. The adaptability and general-
izability of the architecture make it suitable for various applications in fields such
as photography, computer vision, and remote sensing.
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1.3 Organization of Thesis

Chapter 2 provides an overview of existing techniques for image dehazing, in-
cluding classical methods, supervised learning-based methods, and unsupervised
learning-based methods.

Chapter 3 presents the first proposed method, which introduces a cycle-GAN net-
work architecture. It explains how the two-branch Generator network utilizes
pretrained models and attention mechanisms to handle both non-homogeneous
and homogeneous haze.

Chapter 4 focuses on the modification of the second branch of the generator ar-
chitecture by replacing the pretrained ResNet with a pretrained ConvNet model.

Chapter 5 introduces a single-branch generator architecture that incorporates a
UNet with channel attention (CA) and pixel attention (PA), pretrained ResNet,
and an enhancer network.

Chapter 6 discusses the definition of cycle loss, GAN loss functions, and the total
loss function.

Chapter 7 presents the results of the experiments conducted in the study. This
chapter compares the obtained results with existing state-of-the-art methods. The
model is directly tested on the I-haze 2018 dataset and also evaluated on real-
world images.

Chapter 8 concludes the thesis, summarizing and contributions.

Chapter 9 outlines potential areas for future research and development.
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CHAPTER 2

Literature Survey

Haze is a phenomenon that occurs when light passes through a medium, such
as air, that is filled with small particles of haze, fog, smoke etc. These particles
scatter the light, making the image appear hazy. The amount of haze depends
on the particles’ density, the distance between the camera and the object, and the
atmospheric light.

Image dehazing is the process of removing haze from an image. This is a chal-
lenging task because the hazy image does not contain any haze-related informa-
tion. To deal with the density of haze in hazy images, the distance between the
object and the camera is difficult to measure, Because hazy images do not carry
this distance information.

There are a number of different methods that have been proposed for image de-
hazing. These can be generally divided into Three categories:

1. Classical methods

2. Supervised learning-based methods

3. Unsupervised learning based methods

2.1 Classical methods

According to equation 1.1, the process of getting haze-free images depends on de-
termining two unknowns: the atmospheric light A and the transmission map t(x).
The transmission map is dependent on the depth or distance of each scene point
from the camera. However, since this depth information is not directly available
in the image, estimating the distance values can be challenging. This limitation
has led to the development of classical methods [7, 13, 23, 25, 29] that focus on
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addressing this issue.

Classical methods determine priors on haze-free images based on statical obser-
vations. Most approaches compute A the atmospheric light and t(x) the transmis-
sion map in the ASM model.

He et al. introduced the dark channel method [16], which is based on the ob-
servation that the haze-free images mostly have at least one color channel with a
noticeably lower pixel intensity. This approach, known as the dark channel prior,
is derived from statistical analysis of haze-free outdoor photographs. The study
discovered that in most local regions excluding the sky, certain pixels referred to
as dark pixels have very low intensity values in at least one of the RGB channels.

D(x) = miny∈Ωr(x)(minc∈r,g,b Ic(y)) (2.1)

Here, Ωr(x) represents a local patch of size r×r entered at pixel x and Ic denotes
the intensity value of the RGB color channel c of image I. he dark channel method,
as indicated by this equation, provides an estimate of the amount of haze present
in the image. It is directly related to the transmission map t(x). implying that a
higher value of D(x) suggests a higher level of haze in the corresponding region.

t(x) ∝ 1 − D(x) (2.2)

The dark channel method is a type of statistics, it not work for all images. The
dark channel prior is invalid when the scene objects are similar to the atmospheric
light, and no shadow is cast on them. The scene’s radiance dark channel contains
bright values near such objects. As a result, the DCP [16] method will overesti-
mate the haze layer while underestimating the transmission of these objects.

The color attenuation prior [36]. This method discover that the brightness and
saturation of pixels in a hazy image change dramatically as the haze concentra-
tion changes. They argue that In a linear model, the difference between the value
and saturation of pixels should be positively correlated to the scene’s depth.

D(x) ∝ C(x) ∝ V(x)− S(x) (2.3)

Where D(x) is the scene depth, C(x) is the concentration of the haze, V(x) is the
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brightness of the scene and S(x) is the saturation

Classical methods methods are based on certain assumptions about the charac-
teristics of hazy images and the atmospheric scattering process.

These assumptions may not always hold true for real-world hazy images, leading
to inaccurate results. Real-world hazy scenes might have complex lighting con-
ditions, different atmospheric properties, and variations in picture depth, which
can challenge these classical methodologies into question. As a result, the perfor-
mance of these methods may be limited in handling the wide range of hazy image
scenarios encountered in practical applications.

To overcome these limitations, more advanced and data-driven approaches, such
as deep learning-based methods, have been proposed. These methods can learn
complex mappings between hazy and haze-free images from large-scale datasets,
allowing them to capture and model the characteristics of real-world haze more
effectively.

2.2 Supervised learning-based methods

Instead of relying on hand-crafted features like classical approaches, deep learn-
ing methods learn features automatically from training data. Hence, it has become
accurate for many vision applications, including image dehazing. Cai et al. have
developed DehazeNet [8] as a deep-learning method for determining medium
transmission. DehazeNet takes a hazy image as input and produces a medium
transmission map as output. After computing t(x), it employs the ASM to gener-
ate a dehaze image.

Unlike DehazeNet, AOD-net [19] calculates the atmospheric light and transmis-
sion map simultaneously and then uses ASM to produce a haze-free image. Sev-
eral deep learning approaches calculate haze-free images directly without using
ASM by end-to-end mapping between haze-free and hazy images.

Qin et al. suggested FFA-net [27], an attention-based neural network that can
directly generate haze-free images without calculating atmospheric light or trans-
mission map. These approaches perform well on homogeneous hazy images but
fail to produce satisfactory results on non-homogeneous datasets.
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Jing Liu suggested the Trident Dehazing method [21] for dense and non-homogeneous
haze. The Trident Dehazing method learns the hazy to hazy-free image mapping
with automatic haze density recognition using unet style architecture. TDN com-
prises three sub-nets: the Encoder-Decoder Net (EDN), which is the main net of
TDN and helps reconstruct the coarse hazy-free feature. The Detail Refinement
sub-Net (DRN) helps refine the high-frequency details that were easily lost in the
max pooling layers in the encoder, and the Haze Density Map Generation sub-
Net (HDMGN), which can automatically distinguish the thick haze region from
the thin one.

Supervised learning methods for haze removal, such as Dehazenet [3], AOD-net
[4], Trident [5], DMPHN [10],and KTDN [30], have been proposed in the litera-
ture. These methods rely on paired training data, where pairs of hazy and corre-
sponding haze-free images are available for training the models.

However, these supervised approaches face certain limitations. One of the chal-
lenges is the availability of real-world ground truth images, which are required
for training the models effectively. Obtaining such ground truth data is often dif-
ficult and time-consuming, which restricts the applicability of these methods in
practical scenarios.

Another limitation is the risk of overfitting, where the trained models may be-
come too specialized and perform poorly on new or unseen data. Overfitting
occurs when the models excessively adapt to the training data and fail to general-
ize well to diverse real-world hazy images.

To address these limitations, alternative approaches such as unsupervised learn-
ing methods, which do not require paired training data, have been explored.
These methods aim to overcome the reliance on ground truth images and miti-
gate the risk of overfitting, offering more flexibility and applicability in real-world
scenarios.

2.3 Unsupervised learning based methods

Unlike the supervised methods, unsupervised learning methods do not required
paired dataset for training. Some unsupervised methods can be directly trained
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on hazy images, which disentangles the hazy image into the clean image and
other components.

Hodges et al.[17] introduced a model consisting of two separate networks: the
dehazing and the discriminator networks. The dehazing network estimates the
transmission map to obtain an initial haze-free image using the dehazing for-
mula. The second network, the discriminator, helps fine-tune the earlier weights
obtained.

The primary objective of the structure is to create an abstract measure of the de-
hazing model’s performance, which helps to enhance the weights of the input
parameters via the feedback mechanism.

Engin et al. proposed an enhanced cycle-GAN called Cycle-Dehaze [12] by com-
bining cycle consistency and perceptual losses to preserve the textural informa-
tion of the dehaze images.

Most unpaired dehazing methods are based on cycle-GAN with additional spe-
cific designs. However, these methods usually ignore the density and the spread
of haze when generating hazy images. Neglecting these factors leads to unrealis-
tic haze generation, which will further affect the dehazing performance. To deal
with these problems, our proposed framework focuses on exploring haze density
and the spread of haze in non-homogeneous hazy images.

2.4 Chapter Summary

In the field of image dehazing, researchers have shifted towards unsupervised
approaches due to the lack of real-world ground truth data for hazy images. Un-
supervised methods aim to learn the underlying characteristics of hazy images
without relying on pre-existing paired datasets.

For homogeneous hazy images, where the haze is uniformly distributed, several
methods have been proposed, such as Enhanced cycle-GAN and CycleDehaze.
These methods leverage the power of generative adversarial networks (GANs)
and cyclic training to generate haze-free images from hazy counterparts.

When it comes to non-homogeneous haze removal, where the haze varying den-
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sities and spatial distributions, developing effective unsupervised methods still
needs improvement. Non-homogeneous haze poses additional challenges due to
its complex nature, making it difficult to capture and model the diverse character-
istics of such hazy scenes.

In brief, these methods usually ignore the density and the spread of haze when
generating dehaze images. The absence of these factors leads to unrealistic haze
generation, which will further affect the dehazing performance. To deal with
these issues, our proposed Unsupervised Cycle-gan based framework focuses on
exploring haze density and the spread of haze in non-homogeneous hazy images.
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CHAPTER 3

Proposed Method-I

In our proposed method, we adopt a cycle-GAN based architecture to address
the problem of non-homogeneous haze removal. This architecture consists of two
generator networks and two discriminator networks, which are trained on an un-
paired dataset.

The first generator network is designed to remove haze from a given hazy image.
It takes a hazy image as input and generates a corresponding haze-free image as
output. By learning the mapping from hazy images to haze-free images, this gen-
erator aims to effectively restore the underlying scene information and eliminate
the adverse effects of haze.

The second generator network in our architecture is responsible for generating
haze. Unlike traditional methods that generate haze using simple heuristics or
predefined models, our generator takes into account factors such as haze den-
sity and haze spreading. By considering these factors, the generator can produce
more realistic and diverse hazy images that closely resemble real-world hazy con-
ditions.

The discriminator networks play a crucial role in training the generators. They are
responsible for distinguishing between real haze-free images and generated haze-
free images, as well as between real hazy images and generated hazy images. By
providing feedback to the generators based on the discriminators’ prediction, the
generators can continuously improve their performance and generate more accu-
rate results.

Overall, our proposed method combines the power of cycle-GAN with the con-
sideration of haze density and spreading, enabling effective non-homogeneous
haze removal using an unsupervised approach. By leveraging unpaired data and
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training two generators with specific objectives, our method aims to achieve more
accurate and realistic haze removal results.

3.1 Proposed Method Architecture

Figure 3.1: cycle-Dehaze network with G and F as Generators and Dx and Dy as
Discriminators

Our network architecture incorporates two distinct branches to enable bidirec-
tional conversion between hazy and clean images. The first branch is responsible
to converting hazy images to clean images and then hazy images, while the sec-
ond branch focuses on the reverse conversion from clean to hazy images and then
clean images again. This two-branch approach ensures that the network learns a
consistent mapping between the hazy and clear image domains, which is impor-
tant for generating high-quality dehazed images.

The primary objective of the first branch is to remove haze from hazy images
and produce clean versions. Through a series of learnable transformations and
feature extraction operations, this branch effectively learns to recover the under-
lying scene details and restore the original appearance of the image. By training
the network to perform hazy to clean image conversion, it becomes adept at rec-
ognizing and mitigating the effects of haze, resulting in visually pleasing dehazed
images.

13



The second branch of the network serves as a complementary component by fo-
cusing on the clean to hazy and hazy to clean images. This branch aims to capture
the essence of the hazy appearance and generate realistic hazy versions of clean
images. By incorporating this branch, the network gains a deeper understanding
of the characteristics of hazy images, including factors such as haze density, haze
spreading, and atmospheric effects. This knowledge enables the network to gen-
erate accurate and convincing hazy counterparts of clean images.

The two-branch approach plays a important role in ensuring a consistent map-
ping between the hazy and clear image domains. By training the network to han-
dle both hazy to clean and clean to hazy conversions, it learns to model the com-
plex relationship between these domains effectively. This consistency in mapping
is crucial for generating high-quality dehazed images, as it enables the network
to capture the details and visual characteristics of the scene while removing haze.

During the testing phase, only the hazy to clean generator network is utilized.
This means that the network is specifically designed to generate clean images
from hazy inputs. The training process of the network focuses on learning the
transformation from hazy to clean images, which is the primary task of image
dehazing. By specializing in this direction, the network becomes proficient in
producing visually pleasing and realistic dehazed images during testing.
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3.1.1 Generator Architecture

Generator Architecture

Figure 3.2: Generator Architecture - I

The Generator contains two branches. The first haze removal branch contains
three subnets, and the second attention branch [14] contains a pre-trained resnet
with channel and pixel attention parallelly.

Haze removal branch architecture

1. Encode-Decoder

2. Unet

3. Enhancer

Attention branch architecture

1. Pre-trained Resnet + CA || PA

3.1.2 Encode-Decoder

The haze-free feature is achieved using. Downsampling factor of encoder is 2 and
upsampling factor of decoder is also same. This architecture allows the network
to capture and encode features at different scales, which can be beneficial for haze
removal tasks.
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Figure 3.3: Generator Detailed Architecture

3.1.3 Unet

This sub-network incorporates a U-Net [28]. The U-Net architecture is a generally
used in various image processing tasks due to its effectiveness in capturing both
local and global features of an image. It consists of an encoder-decoder structure
with skip connections that allow for the transfer of information between different
resolution levels.

In this particular case, a standard U-Net architecture is utilized, which consists
of six downsampling (encoding) layers followed by six upsampling (decoding)
layers.

3.1.4 Enhancer network

The Enhancer sub-network plays a important role in refining the image generated
by the previous stages. It operates on the downsampled image, reducing its size
by a factor of 4. The network applies non-linear feature mapping to enhance the
image quality further.
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To achieve this, the Enhancer network utilizes inverse pixel shuffle layers, which
transform the feature maps from a spatial dimension to a depth dimension. This
transformation allows the network to process the image more compactly and effi-
ciently. Subsequently, pixel shuffle layers are used to reverse the process, convert-
ing the feature maps from the depth dimension back to the spatial dimension.

The Wide Activation Blocks (WAB) [32] are employed in the Enhancer network
to provide non-linear feature mapping. These blocks consist of two 3x3 convolu-
tional layers and a wide activation laye. The wide activation layer helps capture
complex patterns and details in the image, enhancing the overall output quality
of the network.

Finally, a 3x3 convolutional layer is used as the final concatenation operation. This
layer combines the features obtained from the different modules within the net-
work, enabling the integration of valuable information from each stage.

The Enhancer network is essential in refining the image generated by the pre-
vious stages. By leveraging inverse pixel shuffle layers, Wide Activation Blocks,
and concatenation operations, the network is able to produce sharper and more
precise image outputs, resulting in improved image quality and visual appeal.

3.1.5 Pre-trained Resnet + CA || PA network

The pre-trained ResNet-based network employed in this approach takes advan-
tage of transfer learning [11, 33] to enhance the dehazing process. By using prior
information gained from image classification tasks and applies it to the task of
dehazing. Using a pre-trained Res2Net [15], a variant of ResNet architecture that
improves the representation power, as the backbone of the encoder, the network
benefits from the learned features and hierarchical representations from the Ima-
geNet [9] pretraining.

In the decoder module, pixel-shuffle layers are utilized for upsampling. This
technique helps in reducing computational overhead by avoiding the use of tradi-
tional upsampling methods such as transposed convolutions. Pixel-shuffle layers
rearrange the channel-wise information to progressively recover the size of fea-
ture maps to the original resolution. This progressive recovery helps in maintain-
ing the spatial details and fine-grained information, contributing to the generation
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of high-quality dehazed images.

To further improve performance, channel attention and pixel attention mecha-
nisms are incorporated in parallel with the pre-trained ResNet in each decoder.
These attention mechanisms allow the model to focus on relevant features and en-
hance the dehazing process, leading to visually appealing and accurate dehazed
images.
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CHAPTER 4

Proposed Method-II

4.0.1 Generator Architecture

We have changes generator architecture in second method. Generator architecture
is given below.

Figure 4.1: Generator Architecture - II

Haze removal branch architecture

1. Encode-Decoder

2. Unet

3. Enhancer

Attention branch architecture

1. Pre-trained Convnext + CA || PA
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4.0.2 Convnext + CA || PA network

In our second method, we opted to replace the pre-trained ResNet with a pre-
trained Convnext model [22] in the generator architecture. Convnext is similar
to ResNet. It is composed of multiple layers of convolutional and pooling oper-
ations. However, Convnext offers certain advantages over ResNet that make it
suitable for our task.

One key benefit of Convnext is its ability to handle non-homogeneous datasets
more effectively. The Convnext architecture is specifically designed to capture and
model complex spatial dependencies within images. This makes it well-suited for
addressing the challenges posed by non-homogeneous haze, where the haze dis-
tribution and density vary across different regions of the image.

Additionally, Convnext has demonstrated better performance in tasks that require
capturing fine-grained details and intricate patterns. Its architecture enables the
extraction of more localized and specific features, which can be advantageous
when dealing with images affected by non-uniform haze.

By replacing ResNet with Convnext in our generator architecture, we aimed to
leverage these benefits and explore whether Convnext can offer improved perfor-
mance for non-homogeneous haze removal compared to the ResNet architecture
that we have studied in Chapter I. This experimental comparison allowed us to
gain insights into the strengths and weaknesses of different pre-trained feature
extraction model and their impact on haze removal results.

It’s important to note that while ResNet is known for its ability to extract deep fea-
tures and perform well in various tasks, Convnext can still be effective in certain
scenarios. By training the Convnext on dataset and evaluating its performance,
we aimed to assess its suitability for the specific task of dehazing.

By conducting experiments and comparing the results obtained with the Convnext-
based method to those achieved with the pre-trained ResNet-based method, we
can gain insights into the effectiveness and limitations of both approaches. This
comparison allows us to make informed decisions about which model architec-
ture to use for dehazing based on their performance on the dataset.

All other architectures are the same as we have seen in the first method.
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CHAPTER 5

Proposed Method-III

5.0.1 Generator Architecture

Figure 5.1: Generator Architecture - III

Our final method utilizes a single branch in the generator network, as we found
extra branch channel and pixel attention branch increase overhead in the model.
Instead, we merged the channel and pixel attention mechanisms with the U-Net
architecture. We made this decision based on the observation that U-Net has su-
perior capabilities in identifying the distribution of haze in images.

In our approach, we removed the encoder-decoder module used in the previ-
ous method because the pre-trained ResNet already provide a powerful encoder-
decoder architecture. ResNet has the ability to capture haze-free features from
hazy images, making it suitable for the dehazing task. One of the key advantages
of ResNet is its effectiveness in training deep networks, even with hundreds of
layers, while maintaining good optimization and performance. This is achieved
through skip connections, which facilitate the direct flow of gradients, overcom-
ing the vanishing gradient problem and enabling better information propagation
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throughout the network.

By combining the U-Net architecture with channel attention and pixel attention,
we observed improved results in addressing haze. U-Net’s capability to identify
the distribution of haze, coupled with the integration of channel attention and
pixel attention, led to more effective haze removal and enhanced visual effects in
the non-homogeneous dehazed images.

Overall, our final method leverages the powerful encoder-decoder architecture of
ResNet while taking advantage of U-Net’s capabilities in haze distribution iden-
tification. The combination of channel attention and pixel attention with U-Net
enhances the model’s ability to address haze and improve the visual quality of
the dehazed images.

Generator architecture

1. Unet + CA || PA

2. Pre-trained resnet

3. Enhancer

5.0.2 Unet + CA || PA network

This sub-network incorporates a U-Net [28] structure along with Channel Atten-
tion (CA) and Pixel Attention (PA) modules. The U-Net architecture is a generally
used in various image processing tasks due to its effectiveness in capturing both
local and global features of an image. It consists of an encoder-decoder structure
with skip connections that allow for the transfer of information between different
resolution levels.

In this particular case, a standard U-Net architecture is utilized, which consists
of six downsampling (encoding) layers followed by six upsampling (decoding)
layers. Each upsampling module is augmented with both the Channel Attention
(CA) and Pixel Attention (PA) modules. This means that at each stage of upsam-
pling, the network incorporates the CA and PA modules in parallel.

The Channel Attention (CA) module helps the network to selectively focus on
important channels or feature maps, enabling it to capture and highlight signifi-
cant image features during the upsampling process. On the other hand, the Pixel
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Attention (PA) module allows the network to attend to specific pixels within their
local contexts, preserving fine-grained details and enhancing the overall spatial
information during the upsampling operation.

By combining the U-Net architecture with the CA and PA modules in a paral-
lel fashion, the sub-network can effectively leverage the benefits of both local and
global feature extraction, as well as channel-wise and pixel-wise attention mech-
anisms. This enables the network to generate high-quality dehazed images with
enhanced color, structure, and spatial details.

Pre-trained Resnet [15] and Enhancer subnet are similar to those we used in our
first method.
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CHAPTER 6

Loss Function

In this section, we discuss the loss used to train our model.

6.1 Cycle Loss

Cycle Loss imposes that an intermediate image transferred from one domain to
another should be able to transfer back. The cycle loss in our method can be
written as follows

Lcyc = ∥c − ĉ∥1 + ∥H − Ĥ∥1 (6.1)

6.2 GAN Loss

GAN Loss It checks whether a generated image belongs to a specific domain. It
means that the output of the Dehaze network belongs to a clean set and the same
for the Rehaze network.
For the Dehazing network Gd and corresponding discriminator Dc, the GAN loss
can be expressed as follow:

Ladv(Dc) = E[(Dc(c)− 1)2] + E[(Dc(Ĉ))2] (6.2)

Ladv(GD) = E[(Dc(Ĉ)− 1)2]

The total loss function is defined as

L = λ1Lcyc + λ2Ladv (6.3)

We have set values λ1, λ2 are 1, 0.2 respectively.
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CHAPTER 7

Experiments and Results

In this section we will discuss regarding the datasets, training details, and evalua-
tion metrics. Then, we compare our method quantitatively and qualitatively with
state-of-the-art dehazing methods. Finally, to further understand the effects of the
various modules, we undertake ablation studies.

7.0.1 Dataset for Training

In our study, we trained our model on two datasets separately: NH 2021 [6] and
Reside [20]. For the NH 2021 dataset, we selected 20 images for training. To effec-
tively handle these images, we divided them into smaller patches with a size of
256x256 pixels, considering a stride value of 118 pixels. Similarly, for the Reside
dataset, we utilized 45 images and used the same patch size of 256x256, with a
stride value of 50 pixels.

For testing our model, we chose 5 images from each dataset.

During the model training phase, we employed the Adam optimizer [18] with
β1 = 0.9, β1 = 0.999. A batch size of 1 was used for training. We set 0.0001 as
the initial learning rate. In order to increase the training data’s diversity, we used
horizontal flip augmentation.

We calculated two generally used metrics to evaluate the performance of our
model: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
These metrics provide insights into the quality of the dehazed images generated
by our model. We compared our results with state-of-the-art methods and the
base paper [31] to assess the effectiveness of our approach.

In our experiments, we followed the official train and test split for the NH-Haze
2021 dataset. The computed PSNR and SSIM values, along with the visual results,
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are presented in the next section, providing a comprehensive assessment of our
model’s performance.

We tested our model directly on the whole I-haze 2018 [5] dataset without any
prior training on that dataset. This approach allowed us to assess the adaption
capability of our model and its performance on unseen data.

By testing our model on the I-haze 2018 [5] dataset and comparing the results
with other methods, we aimed to demonstrate the effectiveness and competitive
performance of our model in the field of image dehazing.

7.0.2 Comparison with state-of-the-art Methods

We compared our proposed method with several state-of-the-art methods, includ-
ing DCP [16], AOD [19], FFA-Net [27], TDN [21], Non-homogeneous Dehazing
of Images by Attention Mechanism in Deep Framework [3], Homogeneous and
Non-homogeneous Image Dehazing [2], Cycle-GAN [35], CycleDehaze [12], and
D4 [31]. It is worth noting that some of these methods, such as DCP, Cycle-GAN,
CycleDehaze, and D4, do not require paired data for training and follow an un-
supervised learning approach. On the other hand, methods like DCP, AOD, FFA-
Net, and TDN follow a supervised learning method, which relies on paired data
for training.

Our proposed method also follows an unsupervised learning approach and achieves
better results compared to other unsupervised methods. The results are presented
in Figure 7.2.

7.0.3 Non-homogeneous, Homogeneous PSNR and SSIM com-

parison with state-of-the-art methods

The results presented in Table 6.1 demonstrate the effectiveness of our method in
addressing both types of haze removal. Our approach does not rely on any atmo-
spheric formula for homogeneous haze removal, making it versatile in various
environmental conditions. Moreover, it is capable of identifying and effectively
removing the spread of non-homogeneous haze.
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Figure 7.1: Non-homogeneous, Homogeneous result comparison with state-of-
the-art methods

Training Method Method NH 21 SOTS-Indoor I-Haze
PSNR SSIM PSNR PSNR PSNR SSIM

Supervised

AOD [19] 13.3 0.469 19.06 0.852 15.61 0.712
FFA [27] 20.45 0.804 36.36 0.993 12.00 0.592
TDN [21] 20.23 0.762 34.59 0.975 19.33 0.828

NH-Haze Dehazing [3] 22.87 0.893 - - - -
NH-Haze and H-Haze Dehazing [2] 16.93 0.695 - - 16.43 0.698

Unsupervised

DCP [16] 11.68 0.709 13.10 0.699 13.10 0.699
CycleGAN [35] - - 21.34 0.898 15.29 0.756

CycleDehaze [12] - - 20.11 0.854 14.69 0.751
D4 [31] 10.83 0.699 25.42 0.932 15.61 0.78

Proposed Method-I 14.5 0.521 25.4 0.948 16.13 0.668
Proposed Method-II 15.52 0.641 21.96 0.861 14.48 0.515
Proposed Method-III 18.04 0.78 - - - -

Table 7.1: PSNR and SSIM comparison

For the homogeneous dataset, our method achieves a PSNR value of 25.4 and
an SSIM value of 0.948, indicating high-quality dehazing results. Similarly, for
the non-homogeneous dataset, our method attains a PSNR value of 18.04 and an
SSIM value of 0.78. These results highlight the robustness and adaptability of our
method in handling different types of haze, leading to significant improvements
in image quality.
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7.0.4 Non-homogeneous result comparison with state-of-the-art

methods

Figure 7.2: Non-homogeneous result comparison with state-of-the-art methods

The analysis of Figure 7.2 for a non-homogeneous dataset reveals several impor-
tant observations regarding different image dehazing methods. The Dark Chan-
nel Prior (DCP) method generates dehazed results with noticeable color distor-
tion. This can be attributed to its reliance on an atmospheric scattering model and
a prior-based approach, which struggles to effectively remove haze with varying
density. Both DCP and D4 exhibit a tendency to produce bluish results, further
indicating their limitations in effectively removing haze.

D4, a unsupervised learning approach, encounters difficulties in removing non-
homogeneous haze due to its sequential process of predicting a transmission map
and then generating a dehazed image based on atmospheric scattering. While this
approach works reasonably well for homogeneous haze removal, it fails to accu-
rately identify and address varying density haze.

In our proposed method, we leverage a U-Net style sub-module that demon-
strates efficient identification of varying density haze. This sub-module plays a
crucial role in accurately removing haze. The encoder-decoder sub-module helps
to produce haze-free features from hazy images, while the enhancer network is
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utilized to restore sharpness to the image that may be lost during the encoding
and decoding procedure.

While FFAnet and TDN methods are capable of properly removing haze, they
heavily rely on a supervised approach, which necessitates access to paired datasets.
This reliance on paired data restricts their applicability in real-world scenarios
where acquiring such datasets is challenging.

Our proposed method distinguishes itself by combining the benefits of unsu-
pervised learning while effectively addressing the limitations of other unsuper-
vised methods, including cycle-GAN, cycle-Dehaze, and D4. CycleDehaze, an
improved version of cycle-GAN for image dehazing, employs a perceptual loss in-
spired by EnhanceNet to enhance visual quality metrics such as PSNR and SSIM.
However, it still fails to handle varying haze density and color distortion. In con-
trast, our model uses the power of U-Net and channel and pixel attention mecha-
nisms parallelly to efficiently tackle these challenges. Consequently, our proposed
method demonstrates superior performance in haze removal, producing visually
pleasing results.

Overall, our approach showcases a compelling solution by combining the advan-
tages of unsupervised learning and effectively addressing the limitations encoun-
tered by other unsupervised methods. By effectively handling varying haze den-
sity and color distortion, our method outperforms existing techniques in the task
of image dehazing.

7.0.5 Method-I,II,III comparison

We evaluated three different methods for non-homogeneous haze removal on the
NH21 dataset. The first method utilized a two-branch generator network, where
the first branch consisted of an encoder-decoder subnet, Unet, and an enhancer,
while the second branch incorporated a pre-trained ResNet with channel atten-
tion (CA) and pixel attention (PA). However, this method resulted in dehazed im-
ages with over-saturated color information, indicating a limitation in effectively
removing haze from non-homogeneous hazy images.

In the second method, we replaced the pre-trained ResNet with a pre-trained Con-
vNet architecture (Convnext) in the second branch of the generator network.
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The third and final method involved a single-branch generator network that com-
bined three different subnets: a pre-trained ResNet, Unet with channel attention
(CA), and pixel attention (PA), along with an enhancer. This method proved to
be highly effective in accurately removing haze from non-homogeneous hazy im-
ages. The combination of Unet with CA and PA allowed for better identification
of the spread of haze and its removal without causing color saturation artifacts.
This method achieved a PSNR value of 18.04 and an SSIM value of 0.78, which
were higher compared to the results obtained from method-I and method-II, as
shown in Table 6.1. The visual results displayed in Figure 6.3.

Figure 7.3: Method-I,II,III comparison on Non-homogeneous dataset
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7.0.6 Homogeneous result comparison with state-of-the-art meth-

ods

Figure 7.4 show the homogeneous result comparison with state-of-the-art-methods

Figure 7.4: Homogeneous result comparison with state-of-the-art methods
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7.0.7 I-haze 2018 results

Figure 7.5: I-haze 2018 results

We conducted experiments on the entire I-haze 2018 dataset without any prior
training specifically on that dataset. We achieved a PSNR value of 16.13, which
was the highest among the unsupervised approaches evaluated. Additionally, we
obtained an SSIM value of 0.668 on this dataset.

These results demonstrate the effectiveness of our model in handling different
datasets without the need for dataset-specific training. The ability to achieve com-
petitive performance on the I-haze 2018 dataset without prior training highlights
the robustness and adaptability of our proposed method. It suggests that our
model has learned meaningful representations of haze and can effectively remove
it from images across various datasets.

7.0.8 Testing on real world images

Figure 7.6 and 7.7 present the output results of our method on real-world images
that lack ground truth image. The photographs used in our experiment was taken
at GIFT City, located in Gandhinagar, India.
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(a) Hazy Image (b) Output

Figure 7.6: Real world image testing

(a) Hazy Image (b) Output

Figure 7.7: Real world image testing
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CHAPTER 8

Conclusions

In our study, we addressed the problem of image dehazing, aiming to improve
visibility and image quality under hazy conditions. We introduced a novel two-
branch architecture based on cycle-GAN, which effectively removes both homo-
geneous and non-homogeneous haze from images in an unsupervised manner.
Our approach incorporates haze density map generation for a better way to ad-
dress the spread of the haze and attention mechanisms to preserve color and struc-
ture information in the dehazed images.

Our proposed model is the first to address the unsupervised approach for re-
moval of non-homogeneous haze. We successfully integrated pixel and channel
attention mechanisms into our model. Pixel attention is employed to preserve
structural details, while channel attention helps maintain accurate color informa-
tion.

Comprehensive experiments on multiple datasets, we demonstrated that our method
outperforms state-of-the-art techniques in terms of PSNR and SSIM within an un-
supervised framework. Our model exhibits robustness and generalizability, effec-
tively handling various types of haze with different densities and spread patterns.
This contributes significantly to the field of image restoration, offering a novel
and effective solution for image dehazing that can benefit applications in pho-
tography, computer vision, and remote sensing. Overall, our proposed method
demonstrates better performance for both homogeneous and non-homogeneous
datasets within an unsupervised approach.
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CHAPTER 9

Future Work

Incorporating self-attention GAN to enhance further the feature extraction and
domain adaptation capabilities of our model. Self-attention GAN [34] can capture
long-range dependencies and global context information, which could improve
the quality and realism of the generated images.

Extending our method to other image restoration tasks, such as denoising and
super-resolution [1, 4]. Our approach can be easily adapted to different domains
by changing the input and output data. It would be interesting to explore how
our method performs on other image degradation and enhancement types.

35



References

[1] J. johnson, a. alahi, and l. fei-fei. perceptual losses for real-time style trans-
fer and super-resolution. in european conference on computer vision, pages
694– 711. springer, 2016.

[2] Manan gajjar and srimanta mandal. “homogeneous and nonhomogeneous
image dehazing using deep neural network.” in computer vision and image
processing: 6th international conference, cvip 2021, rupnagar, india, decem-
ber 3–5, 2021, revised selected papers, part i, pages 375–386. springer, 2022.

[3] Srimanta mandal, a. dhedhi, rajib lochan das. “non-homogeneous dehazing
of images by attention mechanism in deep framework” mtech thesis, daiict,
2022.

[4] Y. zhang, k. li, k. li, l. wang, b. zhong, and y. fu. image super-resolution using
very deep residual channel attention networks. in proceedings of the euro-
pean conference on computer vision (eccv), pages 286–301, 2018.

[5] C. Ancuti, C. O. Ancuti, R. Timofte, and C. De Vleeschouwer. I-haze: a de-
hazing benchmark with real hazy and haze-free indoor images. In Advanced
Concepts for Intelligent Vision Systems: 19th International Conference, ACIVS
2018, Poitiers, France, September 24–27, 2018, Proceedings 19, pages 620–631.
Springer, 2018.

[6] C. O. Ancuti, C. Ancuti, F.-A. Vasluianu, and R. Timofte. Ntire 2021 nonho-
mogeneous dehazing challenge report. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 627–646, 2021.

[7] D. Berman, S. Avidan, et al. Non-local image dehazing. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1674–1682,
2016.

[8] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. Dehazenet: An end-to-end sys-
tem for single image haze removal. IEEE Transactions on Image Processing,
25(11):5187–5198, 2016.

36



[9] D. Chen, M. He, Q. Fan, J. Liao, L. Zhang, D. Hou, L. Yuan, and G. Hua.
Gated context aggregation network for image dehazing and deraining. In
2019 IEEE winter conference on applications of computer vision (WACV), pages
1375–1383. IEEE, 2019.

[10] S. D. Das and S. Dutta. Fast deep multi-patch hierarchical network for non-
homogeneous image dehazing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages 482–483, 2020.

[11] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition.
In International conference on machine learning, pages 647–655. PMLR, 2014.

[12] D. Engin, A. Genç, and H. Kemal Ekenel. Cycle-dehaze: Enhanced cyclegan
for single image dehazing. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 825–833, 2018.

[13] R. Fattal. Single image dehazing. In ACM SIGGRAPH 2008 Papers,
SIG?GRAPH ’08, page 72:1–72:9. ACM, New York, NY, USA, 2008.

[14] M. Fu, H. Liu, Y. Yu, J. Chen, and K. Wang. Dw-gan: A discrete wavelet
transform gan for nonhomogeneous dehazing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 203–212, 2021.

[15] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr.
Res2net: A new multi-scale backbone architecture. IEEE transactions on pat-
tern analysis and machine intelligence, 43(2):652–662, 2019.

[16] K. He, J. Sun, and X. Tang. Single image haze removal using dark chan-
nel prior. IEEE transactions on pattern analysis and machine intelligence,
33(12):2341–2353, 2010.

[17] C. Hodges, M. Bennamoun, and H. Rahmani. Single image dehazing using
deep neural networks. Pattern Recognition Letters, 128:70–77, 2019.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[19] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng. Aod-net: All-in-one dehazing
network. In Proceedings of the IEEE international conference on computer vision,
pages 4770–4778, 2017.

37



[20] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang. Reside: A bench-
mark for single image dehazing. arXiv preprint arXiv:1712.04143, 1, 2017.

[21] J. Liu, H. Wu, Y. Xie, Y. Qu, and L. Ma. Trident dehazing network. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 430–431, 2020.

[22] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet
for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11976–11986, 2022.

[23] S. Mandal and A. Rajagopalan. Local proximity for enhanced visibility in
haze. IEEE Transactions on Image Processing, 29:2478–2491, 2019.

[24] E. J. McCartney. Optics of the atmosphere: scattering by molecules and par-
ticles. New York, 1976.

[25] S. G. Narasimhan and S. K. Nayar. Contrast restoration of weather de-
graded images. IEEE transactions on pattern analysis and machine intelligence,
25(6):713–724, 2003.

[26] S. K. Nayar and S. G. Narasimhan. Vision in bad weather. In Proceedings of
the seventh IEEE international conference on computer vision, volume 2, pages
820–827. IEEE, 1999.

[27] X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia. Ffa-net: Feature fusion attention
network for single image dehazing. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 11908–11915, 2020.

[28] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[29] R. T. Tan. Visibility in bad weather from a single image. In 2008 IEEE confer-
ence on computer vision and pattern recognition, pages 1–8. IEEE, 2008.

[30] H. Wu, J. Liu, Y. Xie, Y. Qu, and L. Ma. Knowledge transfer dehazing network
for nonhomogeneous dehazing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages 478–479, 2020.

[31] Y. Yang, C. Wang, R. Liu, L. Zhang, X. Guo, and D. Tao. Self-augmented un-
paired image dehazing via density and depth decomposition. In Proceedings

38



of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2037–2046, 2022.

[32] J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and T. Huang. Wide ac-
tivation for efficient and accurate image super-resolution. arXiv preprint
arXiv:1808.08718, 2018.

[33] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 818–833.
Springer, 2014.

[34] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention gener-
ative adversarial networks. In International conference on machine learning,
pages 7354–7363. PMLR, 2019.

[35] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–2232, 2017.

[36] Q. Zhu, J. Mai, and L. Shao. A fast single image haze removal algorithm using
color attenuation prior. IEEE transactions on image processing, 24(11):3522–
3533, 2015.

39


	4c6f2540c628d9634443182640d9ebc12fba9444bcaa22c496698150224eacab.pdf
	23ca613391b4a864dbab00f0548a9e02f1e4c7e93ebdaec38f0b1b8438240b7b.pdf
	4c6f2540c628d9634443182640d9ebc12fba9444bcaa22c496698150224eacab.pdf
	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Objective
	Contribution
	Organization of Thesis

	Literature Survey
	Classical methods
	Supervised learning-based methods
	Unsupervised learning based methods
	Chapter Summary

	Proposed Method-I
	Proposed Method Architecture
	Generator Architecture
	Encode-Decoder
	Unet
	Enhancer network
	Pre-trained Resnet + CA || PA network


	Proposed Method-II
	Generator Architecture
	Convnext + CA || PA network


	Proposed Method-III
	Generator Architecture
	Unet + CA || PA network


	Loss Function
	Cycle Loss
	GAN Loss

	Experiments and Results
	Dataset for Training
	Comparison with state-of-the-art Methods
	Non-homogeneous, Homogeneous PSNR and SSIM comparison with state-of-the-art methods
	Non-homogeneous result comparison with state-of-the-art methods
	Method-I,II,III comparison
	Homogeneous result comparison with state-of-the-art methods
	I-haze 2018 results
	Testing on real world images


	Conclusions
	Future Work
	References


