
Position Estimation of Intelligent Artificial
Systems Using 3D Point Cloud

by

VRAJ PATEL
202111016

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

I hereby declare that
Declaration

i) the thesis comprises of my original work towards the degree of Master of Technology in Information and Communication Technology at Dhirubhai Ambani Institute of Information and Communication Technology and has not been submitted elsewhere for a degree,
ii) due acknowledgment has been made in the text to all the reference material used.

Certificate

VRAJ PATEL

This is to certify that the thesis work entitled POSITION ESTIMATION OF IN
TELLIGENT ARTIFICLAL SYSTEMS USING 3D POINT CLOUD has been carried
out by VRAJ PATEL for the degree of Master of Technology in Information and
Communication Technology at Dhirubhai Ambani Institute of Information and Com
munication Technology under my supervision.

PROF. TAPAS KUMAR MAITI

Thesis Supervisor

Acknowledgments

I would like to express my heartfelt gratitude to my supervisor, Prof. Tapas Ku-
mar Maiti, whose expertise and unwavering commitment to academic excellence
have guided me throughout this thesis. His insightful feedback, constructive crit-
icism, and constant motivation have been instrumental in shaping the direction
and quality of my research. I am truly grateful for his guidance and the opportu-
nities they have provided me to grow as a researcher.

I would also like to extend my sincere thanks to Mr. Aditya Bhope, a fellow
researcher, for his invaluable support. His willingness to lend a helping hand and
his contributions have enriched my understanding and significantly improved
the outcomes of this research. I am grateful for his intellectual synergy and the
camaraderie I have developed throughout this journey.

Furthermore, I would like to express my deep appreciation to my dear friend,
Harsh. His unwavering belief in my abilities, encouragement during challenging
times, and willingness to provide a fresh perspective have been a constant source
of inspiration. His support and friendship have played a crucial role in keeping
me, motivated and reminding me of the importance of balance and well-being
during this demanding process. I am truly grateful for his presence in my life and
the impact he had on my personal and academic growth.

ii

Contents

Abstract vi

List of Principal Symbols and Acronyms vi

List of Figures vii

1 Introduction 1
1.1 Introduction to Point Cloud . 1
1.2 Applications of Point Cloud . 2
1.3 Challenges in Working with Point Cloud 4
1.4 Point Cloud for Intelligent Artificial Systems 5
1.5 Literature Review . 6

2 Robot Operating System 10
2.1 Introduction . 10
2.2 ROS Communication . 11
2.3 Libraries and Tools . 13

2.3.1 Gazebo Simulator . 13
2.3.2 Point Cloud Library . 14
2.3.3 Ceres Solver . 16
2.3.4 OctoMap . 17
2.3.5 OpenCV . 18
2.3.6 ROS Bag . 18
2.3.7 Rviz . 18
2.3.8 Catkin . 19
2.3.9 ROS bash . 19
2.3.10 ROS launch . 19

3 Edge Device 20
3.1 Raspberry Pi . 20

3.1.1 Introduction . 20

iii

3.1.2 Components of Raspberry Pi 20
3.2 Intel Realsense LiDAR Camera L515 22

3.2.1 Introduction . 22
3.2.2 Specifications . 22
3.2.3 Stereo-LiDAR Technology . 22

4 Position Estimation 23
4.1 Simultaneous Localization and Mapping (SLAM) 23

4.1.1 Types of SLAM . 26
4.1.2 Challenges of SLAM . 30

4.2 Methodology . 32
4.2.1 Feature Extraction . 32
4.2.2 Odometry Estimation . 33
4.2.3 Probablity Map Construction 34
4.2.4 Novelty of the Proposed Methodology 35

5 Experimental Verification 36
5.1 Experimental Setup . 36
5.2 3D Point Cloud Dataset Prepared Using LiDAR 38
5.3 Result and Discussion . 41

6 Conclusions 50

References 53

iv

Abstract

The three-dimensional reality collected by various sensors such as LiDAR scan-
ners, depth cameras and stereo cameras, is represented by point cloud data. The
capacity of point clouds to provide rich geometric information about the sur-
roundings makes them essential in various applications. Robotics, autonomous
cars, augmented reality, virtual reality, and 3D reconstruction all use point clouds.
They allow for object detection, localization, mapping, scene comprehension, and
immersive visualization. Working with point clouds, on the other hand, presents
substantial complications. Some primary issues are managing a vast volume
of data, dealing with noise and outliers, dealing with occlusions and missing
data, and conducting efficient processing and analysis. Furthermore, point clouds
frequently necessitate complicated registration, segmentation, feature extraction,
and interpretation methods, necessitating computationally costly processing. Ad-
dressing these issues is critical for realizing the full potential of point cloud data
in a variety of real-world applications.
SLAM is a key technique in robotics and computer vision that addresses the chal-
lenge of estimating a robot’s pose and constructing a map of its environment. It
finds applications in driverless cars, drones, and augmented reality, enabling au-
tonomous navigation without external infrastructure or GPS. Challenges include
sensor noise, drift, and uncertainty, requiring robust sensor calibration, motion
modeling, and data association. Real-time speed, computing constraints, and
memory limitations are important considerations. Advanced techniques such as
feature extraction, point cloud registration, loop closure detection, and Graph-
SLAM optimization algorithms are used. Sensor fusion, map representation, and
data association techniques are vital for reliable SLAM performance.
The aim is to create a compact and lightweight LiDAR based SLAM that can be
easily integrated into various platforms without compromising on the accuracy
and reliability of SLAM algorithms. Hence, we implemented a lightweight SLAM
algorithm on our dataset with various background situations and a few modi-
fications to the existing SLAM algorithm to improve the results. We have per-
formed SLAM by using LiDAR sensor without the use of IMU or GPS sensor. The

v

lightweight LiDAR SLAM has significant implications for various fields, includ-
ing robotics, autonomous navigation, and augmented reality. Developing com-
pact and efficient LiDAR SLAM systems makes it possible to unlock the potential
of lightweight platforms, enabling their deployment in a wide range of applica-
tions that require real-time position mapping, and localization capabilities while
ensuring practicality, portability, and cost-effectiveness.

vi

List of Figures

1.1 Demo Point cloud . 1
1.2 Applications of Point Clouds . 3

2.1 ROS Architecture . 11

3.1 Raspberry Pi Components . 21

4.1 Method Overview . 32

5.1 Physical Experimental Setup . 37
5.2 Experimental Setup . 39
5.3 Dataset Description . 40
5.4 Results obtained with existing algorithm on demo dataset [9] 42
5.5 Results obtained with our improved algorithm on demo dataset . . 42
5.6 [9]’s Code on our bright dataset . 43
5.7 Our Code on our bright dataset . 44
5.8 [9]’s Code on our dark dataset . 45
5.9 Our Code on our dark dataset . 47
5.10 [9]’s Code on our completely dark dataset 48
5.11 Our Code on our completely dark dataset 48
5.12 Estimated Odometry vs Actual Odometry 49

vii

CHAPTER 1

Introduction

1.1 Introduction to Point Cloud

Point clouds are 3D representations of a collection of points in space as depicted
in Fig. 1.1. Each point in a PointCloud is represented by its position in 3D space,
which is described by the coordinates (x, y, z) relative to a given reference frame.
Furthermore, each point may have related attributes such as color, intensity, or
reflectivity, which can provide extra information on the physical properties of the
surroundings. A Point cloud can be described mathematically as a set of points in
3D space, each defined by a vector:

p = [x, y, z, r, g, b, ...] (1.1)

Where x, y, and z are the point’s 3D coordinates, and r, g, and b are the color values
(red, green, and blue, respectively) associated with the point. This depiction can
also incorporate other qualities, such as intensity or reflectivity.

Figure 1.1: Demo point cloud [1]
Image courtesy: https://www.sigarch.org/point-clouds-are-eating-the-world/

1

PointClouds are often captured using sensors such as LiDAR or depth cam-
eras, which emit a beam of light to measure the time it takes to reflect off an object
in the environment and return to the sensor. This is known as time-of-flight mea-
surement, enabling the sensor to estimate the distance between itself and the item.
The sensor may build a 3D picture of the environment as a PointCloud by inte-
grating information from several beams fired at different angles. The density of
PointClouds refers to the number of points per unit area or volume, is an impor-
tant factor. PointClouds with a higher density include more points, providing
a more detailed depiction of the surroundings. Higher-density PointClouds, on
the other hand, necessitate more storage and processing power and is often more
challenging to work with.

To extract relevant information from point cloud data, a variety of techniques,
such as point cloud registration, segmentation, or grouping, can be used. Point
cloud registration, for example, entails aligning two or more PointClouds that
record the same environment from multiple perspectives to form a unified, coher-
ent representation of the environment. This is extensively utilized in 3D scanning,
robotics, and virtual reality applications.

In summary, PointClouds are 3D representations of a collection of points in
space often generated by LiDAR or depth cameras. They are theoretically rep-
resented as vectors, each corresponding to a point in 3D space and perhaps in-
cluding other qualities such as color or reflectivity. PointClouds have a plethora
of uses and are processed using various algorithms to extract useful information
from the data.

1.2 Applications of Point Cloud

PointClouds have numerous uses in a variety of areas as illustrated in Fig. 1.2.
Because of their ability to record and represent comprehensive 3D spatial infor-
mation, they are a valuable tool for activities such as perception, modeling, and
analysis. Their use is likely to increase as more sectors recognize their potential.
Because of its ability to gather and represent precise 3D spatial information, point
clouds have extensive applications in a wide range of sectors. Here are a few
examples of how PointClouds are used in different fields:

1. Robotics and Driverless Vehicles: PointClouds are used to sense and navi-
gate the surroundings in robotics and driverless vehicles. Robots and auto-
mated vehicles can recognize obstacles, determine paths, and prevent colli-

2

sions by analyzing PointCloud data. For example, self-driving cars generate
PointClouds of their surroundings using LiDAR sensors, which are subse-
quently processed to recognize road signs, traffic signals, and other vehicles.

2. 3D Modelling and Scanning: PointClouds are frequently used to build de-
tailed digital representations of physical objects or settings in 3D modeling
and scanning applications. Architects and designers, for example, can uti-
lize PointClouds to scan existing buildings or landscapes and create precise
digital models for planning and design. PointClouds can also construct re-
alistic virtual settings for video games, movies, or VR experiences.

3. Augmented Reality and Mixed Reality: PointClouds give a more immer-
sive and realistic experience in augmented reality and mixed reality applica-
tions. Augmented reality apps can generate a more convincing appearance
of interaction between the real and virtual worlds by superimposing vir-
tual objects on a PointCloud of the real environment. An augmented reality
program, for example, may use a PointCloud of a room to insert virtual fur-
niture or other objects in the real world.

Figure 1.2: Applications of point clouds: robotics and driverless vehicles, aug-
mented reality, archaeological and cultural heritage, and 3D modelling [This
work] [2, 3, 4]
Adapted from: https://lidarnews.com/articles/the-zamani-project- heritage-
documentation-beyond-the-point-cloud/
https://www.bisinfotech.com/top-technologies-shaping-metaverse
https://mobilitybehaviour.eu/2017/08/07/perspectives-on-the-future-of-the-
car/

3

4. Archaeology and Cultural Heritage: Archaeological and cultural heritage
sites can be captured and preserved using PointClouds. Researchers and
historians can better comprehend the layout and construction of these places
by creating precise 3D models, allowing them to analyze them in greater
depth than standard 2D images or sketches. For example, a PointCloud of
a historic structure or landmark may create an interactive digital tour or
educational experience.

5. Environmental Monitoring: PointClouds track and analyze environmental
changes over time. PointClouds created by satellite photography or drone
surveys, for example, can be used to track changes in vegetation, water lev-
els, or land usage over time. This information can be used to predict natural
disasters, evaluate ecosystem health, and detect regions of possible environ-
mental damage.

1.3 Challenges in Working with Point Cloud

Working with 3D PointClouds is difficult due to their colossal size, intricacy, and
lack of organization. The most significant issues associated with dealing with 3D
PointClouds are as follows:

1. Data Size and Storage[5]: 3D PointClouds can be massive, with millions or
even billions of points. This can make data storage and processing difficult,
especially with real-time applications like robotics or autonomous cars. Pro-
cessing activities such as registration, segmentation, or classification may
also necessitate extensive computational resources.

2. Lack of Structure: PointClouds lack inherent structure and can be con-
structed in any form. This can make analyzing or extracting relevant in-
formation from data challenging. To make sense of PointCloud data, al-
gorithms such as segmentation or clustering are frequently used to group
points together based on their qualities. Machine learning techniques are
used to detect patterns or links in the data.

3. Noise and Incomplete Data: Due to sensor limits, ambient conditions, or
occlusions, PointCloud data can be noisy or incomplete. This can make ex-
tracting correct information from data challenging and may necessitate pre-
processing techniques like filtering or smoothing to remove undesired noise
or fill in missing data.

4

4. Registration[6] and Alignment: When working with several PointClouds
taken from different sensors or views, it is frequently required to align and
register the data to build a coherent picture of the environment. This can
be difficult since it entails recognizing common features or landmarks in the
data and understanding how they correspond across the many PointClouds.

5. Visualization: Visualising PointCloud data might be complex due to the
enormous amount of points, making it difficult to display the data clearly
and relevantly [7]. PointClouds can be visualized in various ways, such
as displaying the points as spheres or discs or using surface reconstruction
algorithms to produce a mesh representation of the data.

To summarise, complexity in working with 3D PointClouds high due to data size
and storage, a lack of structure, noise and incomplete data, registration and align-
ment, and visualization. Overcoming these obstacles frequently necessitates the
employment of specialized methods and approaches, as well as substantial pro-
cessing resources. However, as 3D data becomes increasingly important in vari-
ous businesses, attempts are being made to develop more efficient and effective
methods for working with PointClouds.

1.4 Point Cloud for Intelligent Artificial Systems

3D point clouds are essential to many autonomous driving systems since they
allow the car to observe and navigate its surroundings in real time. Here are a
few examples of how PointClouds are utilized in autonomous driving:

1. Object Detection and Tracking: Detection and tracking of items in the en-
vironment: PointClouds are used to detect and track objects in the environ-
ment, such as other vehicles, pedestrians, or obstructions. The system can
recognize possible dangers and take appropriate action to avoid collisions
by analyzing the form and position of the points in the PointCloud.

2. Localization and Mapping: PointClouds may generate a detailed map of
one’s surroundings, which can be utilized for localization and navigation.
The system can establish its position and orientation by comparing the cur-
rent PointCloud to the map and plan a safe and efficient journey through
the surroundings.

3. Semantic Segmentation[8]: PointClouds can be segmented into different
regions based on their semantic meaning, such as road surfaces, sidewalks,

5

or buildings. This allows the system to better understand the structure of the
environment and make more informed decisions about navigating through
it.

4. Obstacle Avoidance: PointClouds are utilized in real-time to detect and
avoid obstructions. The system can detect possible risks and avoid collisions
by analyzing the distance and position of the points in the PointCloud.

5. Sensor Fusion: Data from additional sensors, such as cameras or radar, can
be integrated with PointClouds to produce a more complete and accurate
image of the surroundings. The system may overcome the limits of individ-
ual sensors by fusing input from several sensors and making more reliable
judgments about how to move around the environment.

3D PointClouds are essential to autonomous driving systems because they al-
low the vehicle to perceive and comprehend its surroundings in real-time. Au-
tonomous cars may navigate complex and dynamic settings with great accuracy
and safety by using PointClouds for object recognition and tracking, localization
and mapping, semantic segmentation, obstacle avoidance, and sensor fusion.

Traditional LiDAR sensors are often bulky, heavy, and power-hungry, mak-
ing them unsuitable for many applications, such as small autonomous vehicles,
drones, or wearable devices. The solid-state LiDAR has become popular since it
provides a lightweight and cost-effective solution for small-scale robotics applica-
tions. Compared to mechanical LiDAR, solid-state LiDAR sensors have higher an-
gular resolution and update frequency but also have a smaller field of view (FoV),
which is very challenging for existing LiDAR SLAM algorithms. Hence, making
it necessary to develop a computationally efficient, accurate, and robust SLAM al-
gorithm for solid-state LiDAR. Taking inspiration from [9], we have developed a
Lightweight SLAM to address this issue. We have performed several experiments
on hand held device to prove the effectiveness of our method to eradicate the use
of IMU sensors, along with validating the use of LiDAR-based lightweight SLAM
in different lighting scenarios.

1.5 Literature Review

The literature review section provides a comprehensive overview of the existing
research and developments in 3D Point cloud-based SLAM. It examines relevant
studies, methodologies, and findings in order to establish the current state of

6

knowledge and identify gaps that the present research aims to address. By criti-
cally analyzing and synthesizing the existing literature, this review sets the stage
for the subsequent sections of the thesis, highlighting the significance of the cur-
rent research and the unique contribution it aims to make.
The Point cloud Library (PCL), an open-source library developed for 3D Point
cloud processing, was introduced in [10]. It provides an overview of PCL’s moti-
vation and architecture. The authors cover a plethora of PCL functions, such as fil-
tering, segmentation, registration, and feature extraction. They emphasize PCL’s
flexibility and modularity, allowing users to handle and analyze Point cloud data
efficiently. The report also discusses numerous real-world applications where
PCL has been used successfully.

In [11], the authors focuse on visual vimultaneous localization and mapping
(SLAM) using RGB-D data, frequently represented as 3D point clouds. The au-
thors thoroughly overview the various methods and strategies used in visual
SLAM employing RGB-D sensors. They go over the fundamentals of visual SLAM,
such as point cloud registration, loop closure detection, and map optimization.
The study discusses several approaches and methodologies, emphasizing their
advantages and disadvantages. It also identifies research problems and future
directions in RGB-D SLAM.

The fast point feature histograms (FPFH) approach, which is extensively used
for 3D Point cloud registration, is introduced in [12]. The authors describe a ro-
bust and efficient method for computing local feature descriptors based on point
geometric parameters. FPFH gathers information about the local surface struc-
ture, allowing for precise and dependable 3D point cloud registration. The report
includes experimental data and comparisons with alternative registration meth-
ods that demonstrate the efficacy of FPFH in a variety of settings.

The challenge of surface reconstruction from unorganized 3D point clouds is
addressed in [13]. The authors give an insight into various methodologies and
techniques for regenerating smooth surfaces from Point cloud data. They re-
view techniques, including Delaunay triangulation, Poisson surface reconstruc-
tion, and implicit surface representations. The research investigates the benefits
and drawbacks of each approach, shedding light on the trade-offs involved in sur-
face reconstruction using point clouds. There are numerous examples of recreated
surfaces.

The authors of provide an in-depth examination of 3D local feature descriptors
used in Point cloud analysis and matching. The authors look at various descrip-
tors, such as spin pictures, 3D form contexts, and 3D histograms. Extensive tests

7

assess each descriptor’s robustness, discriminative strength, and processing effi-
ciency [14]. The paper sheds light on the performance and applicability of numer-
ous descriptors for diverse applications, assisting researchers and practitioners in
picking acceptable descriptors for their needs.

The authors of aim to introduce Open3D, a new open-source toolkit built for
3D data processing, such as Point cloud manipulation, visualization, and recon-
struction [15]. The authors give a high-level overview of the library’s function-
ality, emphasizing its efficient algorithms and user-friendly APIs. Open3D pro-
vides various functions, including filtering, registration, and surface reconstruc-
tion, making it an invaluable tool for researchers and practitioners working with
3D Point cloud data. The document contains examples of how to use Open3D for
various 3D Point cloud processing applications.

In [16], the authors discuss effective SLAM employing 3D laser rangefinders,
which generate 3D Point cloud data in the form of surfels (surface components).
The authors offer a surfel-based SLAM approach with a compact surface rep-
resentation and a hierarchical surface map structure. The approach enables the
processing of large-scale settings in real-time while preserving accuracy. The re-
search provides experimental evaluations and comparisons with previous SLAM
methodologies, demonstrating the proposed method’s efficiency and effective-
ness.

The authors of [17] provides an effective technique for estimating the motion of
a LiDAR sensor in real time that combines the point-to-plane ICP (iterative closest
point) algorithm with scan-to-scan odometry. The technique provides accurate
registration between consecutive scans using the point-to-plane ICP approach,
which aligns point clouds based on surface normals. The technique also uses
scan-to-scan odometry to determine the sensor’s motion, allowing for accurate
localization and mapping.

In [18], the authors describe a voxel-based mapping strategy for autonomous
cars that incorporates real-time LiDAR odometry. The technique employs a volu-
metric representation, breaking the surroundings into voxel grids. It uses efficient
map update algorithms to enable the real-time operation and to keep the map
constantly updated with new sensor input. The technique enables accurate local-
ization and mapping for autonomous navigation by combining LiDAR odometry,
which estimates the vehicle’s velocity using LiDAR readings.

The authors of [19] offer a quick and robust 3-D mapping method utilizing a
single scanning LiDAR sensor. The method prioritizes efficiency without sacrific-
ing mapping accuracy. It uses adaptive voxel subsampling, which dynamically

8

adjusts voxel size based on local point density, decreasing computer complex-
ity while preserving adequate map representation. Furthermore, the algorithm
employs a scan-to-model registration technique, which makes use of a pre-built
model to improve the registration process and provide accurate mapping results.

The authors of [9] describe a simple method for real-time 3-D localization
and mapping with a solid-state LiDAR sensor. The approach combines a visual
odometry system, which uses picture data to predict camera motion, with LiDAR
odometry to provide precise and robust localization, particularly in harsh condi-
tions. The technique increases the accuracy and reliability of the localization and
mapping findings by combining information from both sensors.

In [20], the authors propose a series of efficient variations of the point-to-plane
ICP algorithm for real-time LiDAR odometry. To reduce computational complex-
ity while retaining accurate registration, the variants employ adaptive point sam-
pling algorithms, which select points based on their saliency and distribution.
Improved convergence criteria are also implemented to improve odometry esti-
mates’ convergence speed and accuracy.

These studies collectively contribute to lightweight 3-D localization and map-
ping for solid-state LiDAR and the application of 3D Point clouds. By addressing
the challenges of computational efficiency while ensuring accurate mapping and
localization results, these algorithms pave the way for the practical implementa-
tion of solid-state LiDAR technology in various applications, such as autonomous
vehicles, robotics, and environmental mapping.

9

CHAPTER 2

Robot Operating System

2.1 Introduction

The Robot Operating System (ROS) is a free and open-source platform for creat-
ing and programming robots. ROS is a set of software frameworks and tools that
assist developers in creating robot applications. Willow Garage created ROS in
2007, and the Open Robotics organization now maintains it.
This chapter provides a detailed overview of how ROS works and the pivotal
libraries and components of ROS that are essential for the implementation of pro-
posed system. The chapter begins by introducing ROS, followed by explaining
the internal working of ROS and finally all the essential components and libraries
used.

ROS is modular, with a wide variety of libraries and tools that can be used
separately or in conjunction with other components. ROS is versatile because of
its modularity, allowing developers to add new features to their robots. ROS has
a distributed design, meaning that different components of a robot’s software can
operate on separate computers and communicate via a message system. This ar-
chitecture enables greater flexibility in the design and construction of robots and
better dependability and scalability. The ROS Core is a core component of ROS
that provides the messaging infrastructure and other vital services to the rest of
the system. ROS also contains a plethora of libraries for a variety of applications,
such as robot navigation, sensor processing, and image recognition. Figure 2.1 de-
picts the ROS architecture. It comprises various components that work together to
provide a distributed system for building and directing robots. The ROS-master is
at the heart of the architecture. The ROS master handles communication between
various aspects of the system, such as nodes, topics, services, and the parameter
server. The ’roscore’ command starts the ROS master, which must be running for
other ROS components to communicate with each other.

The basic building elements of ROS applications are nodes. A node is a pro-

10

Figure 2.1: ROS architecture is illustrated.

cess that does something specialized, such as driving a robot’s motors or analyz-
ing sensor data. Nodes communicate with one another using messages described
in message files. Messages can be of simple data like integers, floats, and texts
or more complicated data structures like arrays or custom data types. Topics are
referred to as buses, through which nodes communicate. A topic may have multi-
ple publishers and subscribers. Subscribers are nodes that receive messages from
a topic, while publishers are nodes that post messages to a topic. Topics enable
asynchronous data exchange between nodes. Services enable synchronous com-
munication between nodes. A service is characterized by two messages: one for
the request and another for the response. A client node sends a request message to
a service server node, which processes the request and replies to the client node.
ROS also contains a set of tools for visualizing and analyzing robot data. Rviz for
example, is a 3D visualization application that allows users to view robot models,
sensor data, and other data in 3D. RQt is a set of graphical user interface tools
used to design and debug ROS applications.

2.2 ROS Communication

Nodes in ROS (Robot Operating System) connect via topics and services. In a
distributed system, these communication channels allow nodes to share data and
invoke remote functions. Let us take a closer look at each of these modes of com-
munication.

1. ROS Topic
ROS topics allow for publish-subscribe communication. A node that wants
to communicate data publishes it to a specific topic, which other interested
nodes can subscribe to receive the data. Topics are commonly used for asyn-

11

chronous communication in which the sender and receiver nodes do not
sync in time. Here is how topics are used to communicate:

A. Publishing Node: The publishing node is the node that publishes data on
a topic. It generates a publisher object with the subject name, message type,
and other parameters specified. The publisher object is in charge of sending
data via the topic. The publishing node then uses the publisher object to
generate messages of the given kind and publish them.
B. Subscribing Node: The subscribing node is a node that wishes to receive
data from a subject. It generates a subscriber object with the specified topic
name, message type, and callback method to handle the incoming data. The
callback function is registered with the subscriber object by the subscribing
node. The subscriber object calls the callback method whenever new data is
published on the topic, sending the received message as an argument.
C. Message Types: Messages in ROS are defined using a message description
language known as.msg files. These files specify a message’s structure and
data fields. Each message type has a distinct name, and nodes must agree
on the message type to communicate properly.
D. Message Flow: Messages are sent to the topic by the publishing node and
received by all subscribing nodes registered to that topic. Each message is
delivered to each subscriber, who processes the data individually.

2. ROS Service
ROS services support synchronous request-response communication. A node
can provide a service, and other nodes can request it. The node providing
the service processes the request and responds to the requesting node. Ser-
vices are often used for synchronous actions that require a response before
progressing. Here, we discussed how services are used to communicate:

A. Service Provider Node: A service provider node is a node that provides
a service. It defines a service by naming it and providing the request and
response message types. In addition, the service provider node includes a
callback function to receive requests and generate responses. The callback
function is registered with the service by the service provider node.
B. Service Client Node: A service client node is a node that wants to request a
service. It generates a client object with the service name, request message
type, and response message type specified. The service client node then uses
the client object to call the service, delivering the relevant request data. The
call is held until the service provider responds.
C. Message Types: Service messages, like topics, are specified using .srv files

12

that explain the request and response message structure.
D. Communication Flow: A request message is sent by the service client node
to the service provider node. The request is received, processed, and the ser-
vice provider node generates a response message. The response is returned
to the service client node, and the call is unblocked, allowing the client node
to resume operation.
In summary, topics enable asynchronous publish-subscribe communication
by allowing nodes to send and receive messages on specific topics. Services
enable synchronous request-response communication, which allows nodes
to send requests to services and get responses. These communication pro-
tocols serve as the foundation of ROS distributed design, allowing nodes in
robotic systems to communicate and collaborate successfully.

2.3 Libraries and Tools

2.3.1 Gazebo Simulator

The Gazebo ROS package is a powerful tool for modeling complicated physical
systems in a virtual environment in robotics and automation. It is made up of
various parts that work together to create smooth integration between ROS and
the Gazebo simulator.

The Gazebo simulator, responsible for constructing the virtual world, simu-
lating the physics of the environment, and producing the visuals, is the primary
component of the Gazebo ROS package. The simulator can simulate the mobil-
ity of robots and other types of sensors, such as cameras, LiDARs, and sonars.
The ROS Gazebo Interface communicates between ROS and the Gazebo simula-
tor. This interface connects ROS nodes to the Gazebo simulator, allowing users to
control the simulation and retrieve sensor data.

Another component of the Gazebo ROS package is the ROS Control pack-
age, which offers the framework for controlling robots in Gazebo using ROS con-
trollers. Before installing controllers on physical robots, users can build and test
them in simulation. The Unified Robot Description Format (URDF) describes the
robot model in the Gazebo simulator. The model defines the robot’s physical
properties, such as geometry, mass, and joints.

Finally, ROS nodes are discrete ROS system components that interface with
the Gazebo simulator. They can operate the robot model in Gazebo by subscrib-
ing to topics, publishing messages, using services, and using actions. The Gazebo

13

ROS package, when combined, provides a wholesome simulation environment
for testing and developing ROS-based robotic systems. Users may simulate com-
plicated environments and test their robots under diverse conditions by combin-
ing Gazebo and ROS, allowing them to design more robust and reliable robots.

2.3.2 Point Cloud Library

The point cloud library (PCL) is a prominent open-source point cloud data pro-
cessing library. It is incorporated into the Robot Operating System (ROS) environ-
ment, giving ROS users sophisticated point cloud processing capabilities. PCL of-
fers a comprehensive range of point cloud processing algorithms, including filter-
ing, segmentation, feature extraction, registration, and 3D reconstruction. These
algorithms are intended to work with various sensors, including LiDAR, RGB-D,
and stereo cameras.

PCL is used as a core library for point cloud processing in ROS. It includes a
collection of ROS nodes that is used for a variety of point cloud processing tasks.
These nodes are linked to form complicated point cloud processing pipelines. The
key components of PCL Library are:

1. Point Cloud Representation [21]: Typically, point clouds are represented
as a collection of points in a 3D Cartesian coordinate system. Each point
is specified by its (x, y, z) coordinates and may or may not contain extra
information like color, intensity, or surface normals.

2. Data Structures: PCL provides point cloud data structures such as pcl::Point-
Cloud and pcl::PointXYZ, which contain point cloud data and individual
point information.

3. Filtering: Filtering procedures in PCL remove point cloud noise, outliers,
and irrelevant points. The voxel grid filter and the statistical outlier elimi-
nation filter are two extensively used filters.

(a) Voxel Grid Filter: The voxel grid filter separates the input point cloud
into voxels of equal size and keeps just one representative point per
voxel [22]. It aids in reducing point cloud density while keeping overall
structure.

(b) Statistical Outlier Removal Filter: This filter finds outliers based on
a statistical analysis of point neighborhoods [21]. The mean and stan-
dard deviation of the distances between each point and its neighbors

14

are computed. Outliers are points with distances greater than a defined
criterion (mean + multiple * standard deviation).

4. Segmentation: In PCL, segmentation divides a point cloud into different
sections based on characteristics such as planarity, curvature, or color. The
RANSAC (Random Sample Consensus) algorithm is a common segmenta-
tion technique [23]. The RANSAC algorithm fits a model (for example, a
plane) to a subset of randomly sampled points from the point cloud. It then
computes the number of inliers, which are points within a given distance of
the model. This method is repeated for a set number of iterations, and the
model with the most inliers is deemed the best match.

5. Registration [24]: The goal is to align many point clouds into a single co-
ordinate frame. PCL offers many registration strategies, including Iterative
Closest Point (ICP) and Feature-based registration.

(a) ICP[25]: Iterative Closest Point (ICP): The ICP algorithm minimizes the
distance between matching points in two-point clouds iteratively. It
begins with approximating the transformation between the source and
target point clouds and refines iteratively. A 4x4 homogeneous matrix
is commonly used to illustrate the transformation. The following ob-
jective function is minimized using the ICP algorithm:

minimize ∑ ||pi − T · qi||2 (2.1)

where pi and qi are corresponding points in the source and target point
clouds, and T is the transformation matrix.

(b) Feature Extraction: To create correspondences between different view-
points, feature-based registration uses different features collected from
point clouds. Keypoints, descriptors, and local surface characteristics
are examples of these features. PCL includes feature extraction algo-
rithms such as the SIFT (Scale-Invariant Feature Transform) and FPFH
(Fast Point Feature Histograms) [12] .

6. Feature Extraction: PCL provides feature extraction algorithms for calculat-
ing descriptors from point clouds that capture local geometry or appearance
information. These descriptors can be used to perform tasks like object de-
tection, registration, and scene reconstruction. Normal Estimation, Principal
Component Analysis (PCA), and Local Reference Frames (SHOT) are exam-
ples of PCL descriptors.

15

7. Visualization[26] : PCL contains visualization tools for displaying point
clouds and the outcomes of their processing. The visualization tool allows
you to build windows, add point clouds, color code them, alter camera set-
tings, and interactively examine the Point cloud data.

8. Surface Reconstruction : PCL includes techniques for regenerating surfaces
from point clouds. One prevalent method is the Poisson surface reconstruc-
tion approach, which calculates a smooth surface based on the input Point
cloud. It generates a waterproof surface mesh using a signed distance func-
tion and solving a Poisson equation.

9. Octree Data Structure : Octrees are hierarchical data structures that divide
3D space into smaller sections, making Point cloud processing and spatial
querying more efficient. PCL provides an octree data structure for neighbor
finding, voxelization, and spatial occupancy analysis.

2.3.3 Ceres Solver

Ceres Solver is a Google Research open-source C++ framework for tackling large-
scale optimization problems [27]. It provides a solid foundation for modeling and
solving nonlinear least squares, bundle adjustment, and generic nonlinear opti-
mization problems [28]. It is widely used in various domains, such as computer
vision, robotics, and scientific computing. It has an expressive and flexible syntax
for defining optimization problems [27]. Users can construct cost functions, which
indicate the goal to be minimized, as well as constraints, which define additional
relationships or limitations on the variables. A nonlinear least squares problem is
formed by combining these cost functions and restrictions.

Cost Function =
1
2

(
f (x1, x2, . . . , xn)

TW f (x1, x2, . . . , xn)
)

(2.2)

In this equation, the x1, x2, . . . , xn represent the variables being optimized, and
f (x1, x2, . . . , xn) is the vector-valued function that computes the residuals. The W
is an optional weighting matrix that assigns different weights to different resid-
uals. The equation is multiplied by 1

2 for convenience, as it does not affect the
optimization process. Ceres solver employs a variety of numerical optimisation
techniques to efficiently solve the defined issues. It is compatible with both local
and global optimisation algorithms, such as resilient loss functions, trust region
methods, and line search methods. To minimise the cost function, these meth-
ods iteratively update the variable values. The following steps demonstrate the

16

typical workflow of Ceres Solver:

1. Define the Problem: Define the variables, cost functions, and restrictions
that will be used to solve the optimization problem. This entails defining
the residual functions and assigning the variables’ initial values.

2. Configure the Solver: Configure the solver parameters, such as the opti-
mization algorithm, termination criteria, and optimization process control
choices.

3. Solve the Problem: In order to minimize the cost function, use the solver
to change the variables. Ceres Solver employs numerical optimization ap-
proaches to enhance variable values iteratively.

4. Retrieve the Results: Obtain the optimized variable values and other perti-
nent information, such as the ultimate cost value and convergence status.

2.3.4 OctoMap

OctoMap is a prominent open-source package used in robotics and computer vi-
sion for three-dimensional mapping [29]. It uses an octree data structure to give
an efficient and compact representation of the environment. The octree divides
space into cubic cells, allowing adaptive resolution and memory utilization. Here
are some of the functionalities of OctoMap:

1. Octree Data Structure: In OctoMap, the environment is represented using
the Octree data structure. It is a tree-like structure, each node representing
a cubic cell in space. If the cell has a mixture of occupied and vacant space
or is not sufficiently refined, the octree is recursively partitioned into eight
child nodes, generating an octant. The root node represents the total map
volume, whereas the leaf nodes hold occupancy information.

2. Occupancy Probability: OctoMap uses probability values to model the oc-
cupancy of each cell. The occupancy probability measures the chance of an
obstacle occupying a cell. The occupancy probability is often updated and
stored using a log-odds representation.

3. Ray-Casting and Update Equations: OctoMap updates the occupancy prob-
ability of cells based on sensor measurements using ray-casting. When a
sensor measurement is received, a ray is thrown from the sensor’s origin to
the measurement’s endpoint. The cells crossed by the ray are updated based
on the measured value.

17

4. Occupancy Threshold: An occupancy threshold is used by OctoMap to as-
sess whether a cell is occupied or free. Cells with occupancy probabilities
greater than the threshold are considered occupied, whereas cells with prob-
abilities less than the threshold are considered free.

2.3.5 OpenCV

OpenCV is a free and open-source machine learning and computer vision algo-
rithm library [30]. This library contains methods that have already been imple-
mented for computer vision applications. This library includes over 2000 opti-
mized algorithms, including a mix of classic and state-of-the-art computer vision
and machine learning techniques. ROS integrates with OpenCV, allowing us to
leverage significant capabilities like object detection, tracking, and identification.
ROS extends OpenCV with libraries like image pipelines that may be used for
camera calibration, monocular image processing, stereo image processing, and
depth image processing.

2.3.6 ROS Bag

ROS bag is a ROS file type used to record and play back messages on ROS top-
ics. ROS bags save data from a ROS system to a file, which played back later for
analysis, testing, or other uses.

A ROS bag file stores data in binary format, allowing for efficient storage and
playback of enormous amounts of data. ROS bags can include messages from one
or more topics, allowing data from various sensors or components to be recorded
and played back in a single file.

Data logging and analysis are two of the most typical applications for ROS
bags. For example, while doing a task, a robot may collect data from its sensors,
which can then be saved to a ROS bag file. The data can then be analyzed to eval-
uate the robot’s performance, discover flaws or issues, and improve the system’s
performance.

2.3.7 Rviz

The Robot Operating System (ROS) ecosystem includes the 3D visualization tool
rviz. It allows you to visualize robot models, sensor data, and other information
in a virtual environment, making debugging and understanding mechanical sys-
tem behavior easier. Rviz enables users to see and interact with various forms of

18

data, such as point clouds, laser scans, pictures, and 3D models. Its versatile and
adjustable interface allows users to arrange and configure the shown data to meet
their specific requirements.

2.3.8 Catkin

The ROS structure is built using catkin. Based on CMake, Catkin is likewise cross-
platform, open-source, and language-independent.

2.3.9 ROS bash

The utility to extend the capabilities of the bash shell is provided by the rosbash
package. These tools, which replicate the functions of ls, cd, and cp, include rosls,
roscd, and roscp. We can now use the ROS package name instead of the file path
where the package is placed, thanks to recent updates to the ROS.

2.3.10 ROS launch

ROS launch is a Robot Operating System (ROS) method that allows you to start
and configure numerous ROS nodes simultaneously. It allows you to design and
manage the launch of multiple nodes in a single configuration file, set node set-
tings, remap topic names, and specify node dependencies. The launch file is writ-
ten in XML and is the main entry point for starting a ROS system. ROS launch
streamlines starting and configuring numerous ROS nodes, making system con-
figuration, modularity, and reusability easier. It offers a centralized method to
manage the launch process and freedom in customizing node parameters, remap-
ping topics, and dealing with node dependencies.

19

CHAPTER 3

Edge Device

This chapter intends to introduce the edge devices that have been used in this
thesis. We have used two devices: (1) Raspberry Pi (2) LiDAR which are explained
in detail in this chapter.

3.1 Raspberry Pi

3.1.1 Introduction

Raspberry Pi (see Fig. 3.1) is a lightweight single-board computer initially pub-
lished in 2012 and then released several versions. It is divided into three distinct
models: A, B, and Zero Raspberry pi. This device comprises a system-on-a-chip
comprising an integrated CPU and GPU, onboard memory, and a 5V DC power
unit. All Raspberry pi versions include a port for connecting with a dedicated
camera and general-purpose Input/Output (GPIO) pins that can be used to con-
nect with a variety of devices, such as LEDs, buttons, motors, power relays, and
various types of sensors. In addition, some versions provide Ethernet and wire-
less communication options such as wifi and Bluetooth. Additionally, this ma-
chine has all of the capabilities of a standard computer. It also allows to connect
the mouse, keyboard, and screen without any settings and an easy-to-use Linux
desktop environment. It is not limited to one operating system; another OS can
also be used in lightweight devices.

3.1.2 Components of Raspberry Pi

1. General Purpose Input/Output (GPIO): This is the Raspberry Pi’s most im-
portant component. It connects various electronic components such as LED
lights, motors, inductors, and relays. They read the electronic signal from
the devices and also transfer it to the linked device.

20

2. Ethernet/USB/HDMI ports: The Ethernet connector allows to connect to
the network through a cable. A USB connector is also available for connect-
ing a mouse, keyboard, web camera, and USB devices. Moreover, the HDMI
connector allows the screen to be shown on a projector or monitor.

3. Audio Jack: This component of the raspberry pi enables audio functioning.
Connect headphones or a speaker to this component to make the system
audible.

4. Camera Module Port: This port connects the Raspberry pi camera. Do not
connect the web camera since it can connect to a USB port.

5. Micro USB power: Raspberry pi necessitates a 5V steady power supply. The
power supply is therefore attached to this port.

6. Micro SD Card: Micro SD card is used to store the data. Here, the SD Card
serves as the bootable card by storing the operating system and enabling the
raspberry pi board to boot from it. It also functions as a hard drive, storing
all the users’ private files.

Figure 3.1: Illustrates the Raspberry Pi used in this work.

21

3.2 Intel Realsense LiDAR Camera L515

3.2.1 Introduction

The Intel RealSense L515 is a high-resolution LiDAR camera designed for various
applications, including robotics, 3D scanning, and virtual reality. The L515 uses
a unique " Stereo-LiDAR " technology to capture the depth and RGB data in real
time.

3.2.2 Specifications

The Intel RealSense L515 has the following specifications:

• Field of View (FoV): 70° H x 55° V

• Range: Up to 9 meters

• Resolution: 1024 x 768

• Frame Rate: Up to 30 FPS

• Depth Accuracy: ±2cm (at 0.25-1m), ±3cm (at 1-2m), ±5cm (at 2-3m), ±7cm
(at 3-4m), ±10cm (at 4-5m), ±15cm (at 5-6m), ±20cm (at 6-7m), ±30cm (at
7-8m), ±40cm (at 8-9m)

3.2.3 Stereo-LiDAR Technology

The Intel RealSense L515 employs a novel " Stereo-LiDAR " technique to gather
depth and RGB data in real-time. A high-resolution RGB camera and a LiDAR
sensor are used in this technique to create a very accurate and detailed Point
cloud. The LiDAR sensor emits light via a laser beam, subsequently reflected
by the environment. The time taken by the light to return is used to compute the
distance between the item and the observer.

The RGB camera records color information for each point in the Point cloud,
resulting in highly detailed 3D data that may be used for a variety of purposes:
the L515’s LiDAR sensor and RGB camera record depth and color data in real
time.

22

CHAPTER 4

Position Estimation

This chapter discuses the backbone of this thesis SLAM. The chapter commences
by Introducing SLAM with appropriate mathematical expressions, followed by
describing the types of SLAM with their pros and cons along with their typical use
cases and finally the major challenges for SLAM have been described to conclude
this chapter.

4.1 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping is popularly known as SLAM. It is a fun-
damental challenge in robotics and computer vision that involves creating a map
of an unfamiliar environment while determining the robot’s position. Without
pre-existing maps, SLAM algorithms allow autonomous systems to navigate and
investigate their surroundings.

SLAM involves the robot collecting sensor measurements such as odometry
(motion) data and observations from multiple sensors such as cameras, laser scan-
ners, and depth sensors. These measurements are used to calculate the robot’s
pose (position and orientation) and to generate an environment map.

Consider a discrete-time formulation of SLAM, in which an intelligent system
such as the robot’s movements and sensor readings are recorded at discrete time
steps. The following variables are defined:

1. Robot Pose: At time step t, the robot’s pose can be represented by a vector
xt.

xt =

x
y
θ

 (4.1)

where (x, y) denotes the position coordinates, and θ represents the orienta-
tion.

23

2. Robot Control: The control input

ut =

ux

uy

uθ

 (4.2)

represents the robot’s motion command between time steps t − 1 and t. It
includes the translational displacement (ux, uy) and rotational displacement
uθ.

3. Landmark Positions: The environment can be represented by a set of land-
marks, denoted by li

li =

[
li
x

li
y

]
(4.3)

Each landmark i has a 2D position (li
x, li

y) in the world frame.

4. Robot Observation: The robot’s observations at time step t can be denoted
by zk

t , where k represents the k-th observation. Each observation consists of
a measured range and bearing to a landmark.

Given the control inputs and observations, the core principle behind SLAM is
maintaining a probability distribution across the robot’s pose and landmark posi-
tions. The joint probability distribution commonly represents the posterior belief
distribution:

P(xt, l1, . . . , lN|z1, . . . , zt, u1, . . . , ut) (4.4)

SLAM methods estimate this posterior using recursive filtering techniques such
as the Particle Filter or the Extended Kalman Filter (EKF). Based on control inputs,
these filters anticipate the robot’s attitude (motion model) and update the belief
using sensor data (measurement model).
The SLAM problem has two significant steps:

1. Prediction (Motion Model): The motion model predicts the robot’s pose
based on control inputs. It estimates the distribution P(xt|xt−1, ut).

2. Update (Measurement Model): The measurement model updates the belief
using sensor measurements. It computes the distribution

P(xt, l1, . . . , lN|zt, xt−1, l1, . . . , lN, ut) (4.5)

Typically, the prediction stage entails modeling the robot’s motion with a motion
model, such as an odometry or velocity-based model. Based on the prior stance

24

at time step t− 1 and the control input ut, the motion model predicts the robot’s
pose at time step t. Sensor measurements are incorporated into the belief during
the update stage. It employs a measuring model associating the observed land-
marks with the robot’s attitude. Given the current pose and landmark positions,
the measurement model computes the likelihood of witnessing the sensor mea-
surements.

SLAM aims to find the best a posteriori (MAP) estimate of the robot’s pose and
landmark placements. This estimate is derived by iteratively updating the belief
in response to fresh measurements. Equations in SLAM can vary depending on
the specific formulation and algorithm used. However, here are some commonly
used equations:

1. Prediction Step (Motion Model)

xt = f (xt−1, ut) + wt (4.6)

Here, f () represents the motion model that predicts the robot’s pose, and wt

is the process noise.

2. Update Step (Measurement Model)

zk
t = h(xt, lk) + vk

t (4.7)

The measurement model h() connects the robot’s stance and landmark posi-
tion to the sensor measurements. The measurement noise is represented by
vk

t .

3. Bayes’ Filter Update

P(xt, l1, ..., lN|zt, xt−1, l1, ..., lN, ut) ∝ P(zt|xt, l1, ..., lN, ut)P(xt, l1, ..., lN|xt−1, l1, ..., lN, ut)

(4.8)
The belief update combines the prediction and measurement steps using
Bayes’ rule. The likelihood P(zt|xt, l1, ..., lN, ut) represents the compatibility
between the predicted measurements and the actual measurements.

To improve the accuracy of the estimated map and robot pose, SLAM algorithms
frequently employ additional techniques such as data association (matching ob-
served measurements with landmarks) and loop closure detection (detecting re-
visited sites).

25

4.1.1 Types of SLAM

There are different types of SLAM algorithms, each with its own approach and
equations. Let’s explore the most common types:

1. EKF-SLAM (Extended Kalman Filter SLAM): EKF-SLAM is a popular SLAM
technique that combines state estimation with feature-based mapping using
the Extended Kalman Filter (EKF) [31]. It is assumed that a robot having
range and bearing sensors is used to detect landmarks in the area. Land-
marks, such as visible features or radio beacons, can be anything with a
prominent position.

EKF-SLAM’s state estimation consists of two components:

(a) Estimation of robot pose: This provides the position (x, y) and orien-
tation (θ) of the robot in the world frame.

(b) Landmark locations: The world frame positions of detected landmarks.

The EKF-SLAM algorithm is divided into two steps:

(a) Prediction: The algorithm anticipates the robot’s next pose using mo-
tion models and control inputs.

(b) Update: The algorithm updates the predicted coordinates of the land-
marks and the robot’s pose using sensor measurements (range and bear-
ing).

Advantages

• EKF-SLAM is a well-known method with a solid theoretical base.

• It is capable of handling nonlinear motion and sensor models.

• The method estimates the robot’s stance and landmark positions con-
sistently.

• In comparison to other SLAM algorithms, EKF-SLAM is computation-
ally efficient.

• It is appropriate for settings with a reasonable amount of landmarks.

Disadvantages

• When operating in highly nonlinear situations, EKF-SLAM implies lin-
earization of motion and sensor models, which may result in inaccura-
cies.

26

• The algorithm presumes that all landmarks are viewed at each time
step, which may not be possible in practice.

• EKF-SLAM is vulnerable to the data association problem, which in-
volves appropriately associating measurements with landmarks, espe-
cially in cases with comparable or ambiguous features.

• Because of the buildup of linearization mistakes, the algorithm’s per-
formance can decrease in large-scale systems.

Typical use cases: EKF-SLAM is frequently utilized in applications requir-
ing real-time performance and moderate-sized environments. It is appro-
priate for situations with a reasonable number of landmarks, range, and
bearing sensors. Some typical use cases are as follows:

• Mobile Robotics: EKF-SLAM can navigate and map indoor and out-
door areas in mobile robots [32] such as autonomous cars or drones.
It allows the robot to determine its position and map its surroundings
using onboard sensors such as LiDAR or cameras.

• Augmented Reality: EKF-SLAM can be used in augmented reality ap-
plications to correctly overlay virtual items on the actual world. It pro-
vides realistic augmentation and interaction with the user’s surround-
ings by estimating the device’s pose and mapping the environment as
mentioned in [33].

• Robot Manipulation: EKF-SLAM can help with robot manipulation
tasks in which the robot must recognize and interact with things in its
surroundings. It enables accurate manipulation and object recognition
by creating a map of the items and calculating the robot’s pose.

2. FastSLAM: FastSLAM is a particle filter-based SLAM technique that ad-
dresses the computational cost of EKF-SLAM by estimating the robot pose
and separate EKFs for each landmark using a particle filter [34]. FastSLAM
displays the map as a collection of particles containing a robot posture hy-
pothesis and a collection of landmark estimates.

FastSLAM employs a recursive Bayesian filter framework and proceeds as
follows:

(a) Particle prediction: Each particle’s pose is updated using motion mod-
els and control inputs.

27

(b) Measurement update: The algorithm adjusts the particle weight based
on the likelihood of the sensor measurements for each particle.

(c) Resampling: Higher-weight particles are duplicated, while lower-weight
particles are discarded. This stage assists in directing computing re-
sources toward more likely hypotheses.

Advantages

• FastSLAM solves the data association problem by modeling the map
as a set of particles, which is more robust in the circumstances with
ambiguous features or many hypotheses.

• It can work in environments with a high density of landmarks.

• FastSLAM is computationally efficient since the particle filter method
enables computation parallelization.

• The approach generates a complete posterior distribution of the robot’s
pose and landmark positions, allowing uncertainty to be estimated.

Disadvantages

• FastSLAM employs a particle filter, which requires a large number of
particles to represent the posterior distribution accurately. As a result,
the technique may necessitate more computational resources than EKF-
SLAM.

• FastSLAM performance can suffer when the environment varies signif-
icantly or when the number of landmarks is too high to be efficiently
represented by particles.

• Because the typical FastSLAM formulation does not explicitly reflect
loop closures, it may struggle with scenarios with significant loop clo-
sures.

Typical use cases: FastSLAM works well in situations with a high density
of landmarks or scenarios with ambiguous features. It excels when the data
association problem is complex and requires handling several hypotheses.
Some typical use cases are as follows:

• Robot Exploration: FastSLAM can be utilized in exploration missions
where a robot must traverse and map an unknown environment au-
tonomously. The particle filtering method enables the robot to manage
uncertain and ambiguous measurements, allowing for fast exploration
and map construction.

28

• Autonomous Mapping: FastSLAM is appropriate for autonomous map-
ping applications that aim to map an environment using onboard sen-
sors. It can be utilized when a robot needs to map large-scale settings
with various landmarks, such as environmental monitoring or search
and rescue missions.

• Humanoid Robotics: FastSLAM can be used in humanoid robotics sce-
narios where the robot interacts with a changing and dynamic envi-
ronment [35]. It allows the robot to precisely estimate its stance while
tracking and mapping dynamic objects or landmarks.

3. GraphSLAM: GraphSLAM considers SLAM to be a graph optimization prob-
lem. The environment is represented as a graph, with nodes representing
robot postures and landmarks and edges representing constraints between
them (for example, mobility and measurement constraints) [36].

GraphSLAM seeks the most likely approximation of the graph given the ob-
served observations. It solves the optimization problem by minimizing an
objective function. It is frequently written as the sum of error terms indicat-
ing the disparities between actual and anticipated measurements based on
estimated poses and landmarks.

Nonlinear optimization approaches, such as the Gauss-Newton or Levenberg-
Marquardt algorithms, are commonly used to minimize the objective func-
tion.

Advantages

• GraphSLAM provides a versatile framework for representing and solv-
ing SLAM issues via graph optimization.

• It can explicitly handle loop closures, allowing for more accurate and
robust mapping in contexts with frequent revisits.

• Because the optimization process analyses all constraints simultane-
ously, the technique produces a global map representation.

• GraphSLAM can handle a variety of sensor modalities as well as non-
Gaussian noise models.

Disadvantages

• The formulation and solution of a nonlinear optimization problem are
required for GraphSLAM, which can be computationally expensive, es-
pecially for large-scale maps.

29

• It presumes that the motion and measurement models are known and
accurate enough, which may only sometimes be true in real-world cir-
cumstances.

• In dynamic contexts, when the assumptions of static landmarks and
consistent motion models are violated, GraphSLAM may struggle.

• GraphSLAM’s success depends on accurate graph setup and effective
handling of loop closures.

Typical Use Cases: GraphSLAM is commonly utilized in scenarios requir-
ing loop closures and global map consistency [37]. It excels in contexts with
frequent revisits and requires a thorough map representation. Some typical
use cases are as follows:

• Autonomous Driving: GraphSLAM is often utilized in self-driving ap-
plications when precise localization and mapping are required. It al-
lows the vehicle to have a globally consistent map while dealing with
loop closures caused by repeated journeys or returning sites.

• Robotics Simultaneous Localization and Mapping: In robotics SLAM
research and development, GraphSLAM is widely employed. It en-
ables researchers to investigate and create novel methods and approaches
for simultaneous localization and mapping while ensuring global con-
sistency in map representation [38].

• Large-scale Mapping: GraphSLAM is well-suited for mapping large-
scale settings with many landmarks and frequent loop closures. It is
used in outdoor mapping, construction site monitoring, and urban plan-
ning.

4.1.2 Challenges of SLAM

SLAM encounters numerous issues due to the inherent uncertainties in robot per-
ception and mobility. Sensor noise and calibration, data association, computa-
tional complexity, and dynamic settings are the key areas where these issues can
be found. Let us go over each challenge in depth.

1. Sensor Noise and Calibration: As explained in dealing with sensor noise
and accurately calibrating sensors is one of the critical issues in SLAM [39].
Robotic sensors, such as cameras and range finders, introduce noise into
readings, leading to errors in calculating the robot’s position and building

30

the map. Gaussian distributions can be used to model the noise. xt repre-
sents the robot’s condition at time t, and zt represents the measurements at
time t. The following equation shows the link between the true state and
noisy measurements:

zt = h(xt) + vt (4.9)

Where h() is the sensor model, and vt represents the measurement noise.

2. Data Association: The process of appropriately linking measurements with
map features is called data association [40]. This difficulty increases when
the environment contains recurrent or confusing elements. The data associ-
ation problem can be expressed as a correspondence problem to determine
the proper relationships between measurements and map characteristics.
Probabilities can be used to represent the data association problem. Let zt

and xt be the measurements and state, respectively, at time t. The likelihood
of linking a measurement zt with a map feature mi is given by:

P(Association|zt, xt, mi) (4.10)

3. Computational Complexity [41]: Due to the vast amount of data to analyze
and the complexity of the underlying optimization problems, SLAM tech-
niques frequently necessitate substantial computational resources. Given all
measurements in these optimization situations, the combined probability of
the robot’s trajectory and the map is often maximized. The computational
complexity grows as the number of features, map size, and trajectory length
grows. This can become computationally difficult in large-scale ecosystems.
The computational complexity can be defined as O(NK2) in terms of the
number of map features (N) and poses (K).

4. Dynamic Environments: SLAM algorithms are typically built for static sit-
uations, where it is assumed that the scene does not change over time. Mov-
ing objects, however, might pose problems for SLAM in dynamic situations.
Moving objects contradict the static world assumption, resulting in mapping
and localization issues. As suggested in the dynamics of the environment
can be modeled by incorporating motion models for moving objects into the
SLAM framework [42].

31

4.2 Methodology

We developed a system that can perform real-time localization and mapping while
adhering to size, weight, and power consumption constraints. Furthermore, an-
other challenge is the limited range and resolution of lightweight LiDAR sensors.
Due to their reduced size and weight, these sensors often have a lower detec-
tion range and less precise measurements compared to their heavier counterparts.
This can lead to difficulties in accurately perceiving the environment, especially
in scenarios that require long-range perception or fine-grained mapping.

This section describes the suggested method in depth. As shown in Fig. 4.1,
the system is separated into three key modules: feature extraction, odometry es-
timation, and probability map production. First, the rotation invariant feature
extraction method is demonstrated, followed by odometry estimation using local
feature matching. Finally, we demonstrate how to generate a probability map and
recreate a scenario.

Figure 4.1: Method Overview

4.2.1 Feature Extraction

Solid-state LiDAR technology has various advantages over mechanical LiDAR,
including better resolution and frequency of update. However, improved data
quality comes at the expense of greater computational requirements for process-
ing. In this research, we offer an approach that uses edge and planar matching
techniques, which are more computationally efficient than previous methods such
as LOAM (LiDAR Odometry and Mapping).

To prepare the data for processing, we first use the computed distance to de-
tect and remove noisy areas. Noisy zones are frequently found within the Li-
DAR’s maximum detection range when the reflected energy is low, resulting in
less accurate results. We improve the overall accuracy of the upcoming analysis
by filtering out these noisy sites beforehand.

32

A LiDAR scan often yields an unsorted Point cloud that can be difficult to work
with directly. The Point cloud is projected into a 2D point matrix to address this.
This transformation makes it easier to compute edge and planar features. Each
point in the LiDAR scan, denoted by pi = (xi, yi, zi), has a vertical and horizontal
angle, denoted by αi and θi, respectively.

αi = arctan
(

yi

xi

)
(4.11)

θi = arctan
(

zi

xi

)
(4.12)

The Point cloud is then segmented by equally dividing the vertical detection
range [αmin, αmax] and horizontal detection range [θmin, θmax] into M and N sec-
tors, where αmin, αmax, θmin, θmax are the sensor specifications’ minimum vertical
angle, maximum vertical angle, minimum horizontal angle, and maximum hori-
zontal angle. As a result, the Point cloud is divided into MxN cells. In [9] M and
N are chosen as half of the total points in a single direction for a solid-state LiDAR
with vertical angular αr resolution and horizontal θr resolution, i.e., M = αmax−αmin

2×αr

and N = θmax−θmin
2×θr

. In each cell (m, n), where n ∈ [1, N], m ∈ [1, M] and the sym-

bol [1, M] represents {1, 2, · · · , M}, we calculate the mean measurement p(m,n)
k by

finding the geometric center of all points in each cell.

4.2.2 Odometry Estimation

The process of estimating the robot location is termed as Odometry estimation.
current pose Tk ∈ SE(3) in global coordinates based on the previous laser scan
P1, P2, ..., Pk−1. Historically, the trajectory is computed using either a scan-to-map
or a scan-to-scan match. The fastest frame from the previous scan is aligned to the
current frame in scan-to-scan match. A single laser scan contains less surrounding
information as compared to a local map. In the long run, this creates drift. As a
result, we apply the scan to map match to boost performance. To mitigate the
computational costs, the sliding window method is used . The planar and edge
features from surrounding frames are used to construct the local feature maps.
We define the local map Mk for the current input Pk as Mk = (Pk−1, Pk−2, .., Pk−q),
where q is the number of frames utilized to generate the local map. Algorithm 1
describes the method of iterative odometry estimation.

33

Algorithm 1: Pose estimation for Solid-state LiDAR
Data: Current Scan Pk, Robot Trajectory T1:k−1
Result: Current pose Tk
if Not Initialized then

T0 ← 0;
end
Calculate local smoothness and perform feature extraction;
Compute initial alignment T0

k ← Tk−1T−1
k−2Tk−1;

while Pose estimation is not optimized do
instructions;
for each pk ∈ Pk do

Transform to map coordinate pk ← Ti−1
k pk

if pk is an edge then
add edge cost factor;

end
if pk is a plane then

add edge cost factor;
end
if nonlinear optimization converges then

Compute Ti
k;

end
end
Update current scan and remove the oldest scan from local map;
Return current pose Tk;

end

4.2.3 Probablity Map Construction

The global map is frequently enormous, and updating it with each frame could
be more computationally efficient. As a result, we solely update and recreate the
map using critical frames. The key frames are chosen using the following criteria:

1. If the robot’s displacement is significant enough (i.e., larger than a pre-defined
threshold).

2. If the change in rotation angle (including roll, pitch, and yaw angle change)
is significant.

3. If the time elapsed exceeds a specific period.

In practice, the sensor’s field of view determines the rotation and translation
thresholds, while the processor’s processing power determines the minimum up-
date rate. The global map is built using an octree to improve search efficiency.

34

Searching for a given node in an octree of depth n only takes O(log n) compu-
tational complexity, which can considerably reduce mapping cost [8]. We use
P(n|z1:t) to present the probability of the existence of an object for each cell in an
octree [9]:

P (n | z1:t) =

[
1 +

1− P (n | zt)

P (n | zt)
· 1− P (n | z1:t−1)

P (n | z1:t−1)
· P(n)

1− P(n)

]−1

, (4.13)

Here, P(n) is the prior probability, which is set to 0.5 in the case of an unknown
region, zt is the current measurement and z1:t1 is the historical measurement from
key frames.

4.2.4 Novelty of the Proposed Methodology

We have taken inspiration from [9] and developed a light weight SLAM algo-
rithm. Our method mitigates the use of the IMU sensor. Moreover, we have made
changes in the Feature Extraction used in [9] In order to improve results we have
taken M = αmax−αmin

αr
and N = θmax−θmin

θr
. Due to increase in value of M and N the

density of points in resultant 3D mapping has increased whereas the time taken
by algorithm has marginally gone up. Moreover, We have not used IMU sensor
which was used in [9]. Also, [9] uses warehouse robot to conduct experiments
whereas we have used handheld system to conduct the experiments in order to
make it more realistic.

35

CHAPTER 5

Experimental Verification

5.1 Experimental Setup

This chapter focuses on the experiments and the experimental setup used to con-
duct various experiments. We begin by describing the procedure of the exper-
iments, followed by explaining the physical experimental setup, and finally by
explaining the internal working of the proposed system.
We have conducted several experiments with our dataset on both versions of the
code: the original and our code. We have recorded the entire Robotics Lab using
an Intel Realsense L515 LiDAR camera in different light situations and different
translational and rotational speeds. We have used the ROS Noetic version of ROS
with Ubuntu 20.04 LTS. Rviz was used to display the final output of the experi-
ments. Figure 5.1 depicts the experimental setup which was used for conducting
the experiments. As we can see a window depicting ROS Master which connects
all the ROS nodes and maintains the list of all the topics and nodes. We can also
see raw input Point cloud as well as camera input in Rviz.

The internal working and how data flows through various components are
depicted in Figure 5.2. The Intel Realsense L515 LiDAR camera captures the RGB
camera feed along with the 3D point clouds. The raw data is then processed in
the ssl_slam node, which generates the odometry and 3D mapping using raw
data. Finally, the Rviz node displays the processed final output in a user-friendly
manner. In ROS, data processing involves a pipeline of nodes performing spe-
cific data tasks. Let us explore how data flows and is processed in the proposed
framework, which includes a LiDAR node, a SLAM node, and an output display-
ing(Rviz) node.

1. LiDAR Node: The LiDAR node captures images from an Intel Realsense
L515 LiDAR camera. It publishes these images as messages on a specific
topic, such as "/camera/image." The camera node acts as a publishing node,
continuously sending image data to the topic.

36

Figure 5.1: Physical experimental setup.

2. SLAM Node: The SLAM processing node subscribes to the "/camera/image"
topic to receive the image data along with 3D point clouds published by the
camera node. This node performs various image processing operations on
the received images.

(a) Subscribing to the Topic: The SLAM node creates a subscriber object,
specifying the topic ("/camera/image") and the image message type. It
registers a callback function invoked whenever a new image message
is published on the topic.

(b) SLAM Operations: Inside the callback function, the SLAM node re-
trieves the received image data and 3D point clouds and applies var-
ious algorithms or operations to process the image. This can include
image filtering, feature extraction, object detection, or image manipu-
lation or analysis.

(c) Generating Processed Image: After the SLAM operations are performed,
the SLAM node generates a new image message containing the pro-
cessed data. This new message can have a different topic, such as
"/ssl_slam_mapping," "ssl_slam_mapping_odometry," and a correspond-
ing message type.

(d) Publishing Processed Image: The image processing node creates a
publisher object for the "/ssl_slam_mapping," "ssl_slam_mapping_odometry,"
topic and publishes the processed image message. Other nodes inter-
ested in the processed image can subscribe to this topic.

37

3. Output Displaying(Rviz) Node: The output displaying node subscribes
to the "/ssl_slam_mapping" and "ssl_slam_mapping_odometry" topics to
receive the processed image messages generated by the image processing
node. It is responsible for displaying the processed images in a user-friendly
format, such as on a graphical user interface (GUI) or a screen.

(a) Subscribing to the Topic: The output displaying node creates a sub-
scriber object, specifying the "/ssl_slam_mapping" and "ssl_slam_mapping
_odometry" topics and the corresponding message type. It registers a
callback function triggered whenever a new processed image message
is published on the topic.

(b) Displaying the Processed Image: Inside the callback function, the out-
put displaying node retrieves the processed image data from the re-
ceived message and displays it on the output device, such as a screen
or GUI. The specific implementation may vary depending on the dis-
play mechanism used.

By connecting these nodes, the data flow from the LiDAR node to the SLAM
node and finally to the output displaying(Rviz) node. Each node performs its des-
ignated task, enabling a pipeline for image capture, processing, and display in a
ROS system. This modular approach allows flexibility and scalability in designing
complex robotic systems with multiple interconnected nodes.

We have conducted two types of experiments on handheld devices:

1. Real-time: For this, we used direct input from LiDAR as input for SLAM. It
gives real-time mapping along with the estimated path of the bot.

2. Recorded ROS bag file: For this case, we recorded the data in the ROS bag
file and then used the ROS bag file as input for the SLAM algorithm.

The results in both cases are identical; hence we have conducted all the experi-
ments on the recorded ROS bag files, described in detail in the next chapter.

5.2 3D Point Cloud Dataset Prepared Using LiDAR

This chapter describes the datasets that have been used to conduct various experi-
ments. Initially an image is shown describing the contents of the ROS bag file and
its interpretation, followed by describing the various scenarios which have been
used to conduct the experiments.

38

Figure 5.2: Illustrates the schematic representation of data flow of the proposed
method.

A ROS bag file is a file format in ROS that is used to capture and playback data
sent between nodes. It lets you preserve messages published on topics over a
specific time period and playback them afterward, making it easy to analyze or
reproduce data.

We recorded a ROS bag file for conducting various experiments for each sce-
nario. Let us go over the topics that are listed in Figure 7.1, which depicts the
content of one of the recorded ROS bag files and how they are documented in a
ROS bag file:

1. /camera/color/camera_info: This item often provides information on cam-
era calibration, such as intrinsic characteristics, distortion coefficients, and
image dimensions. It contains critical metadata and is often published as a
sensor_msgs/CameraInfo message type. When you record a ROS bag file,
the messages published on this subject and their timestamps are saved in the
bag file. The bag file will contain all the camera calibration data published
on this topic during the recording period.

2. /camera/color/image_raw: This item includes the camera’s raw color pho-
tos. Image data and metadata such as image dimensions, encoding format,
and timestamp are often published as sensor_msgs/Image message type.
When a ROS bag file is recorded, each message published on the /cam-

39

Figure 5.3: Dataset description in ROS.

era/color/image_raw topic is saved in the bag file, together with the image
data and metadata. Over time, the bag file will collect a succession of color
photos.

3. /camera/depth/camera_info: The /camera/depth/camera_info subject, like
the /camera/color/camera_info topic, provides camera calibration infor-
mation for the depth sensor. It typically contains intrinsic characteristics,
distortion coefficients, and depth-specific image dimensions. Typically, the
messages are published as sensor_msgs/CameraInfo message types. All the
camera calibration data presented on this topic will be saved during bag file
recording, allowing you to obtain the depth of camera calibration informa-
tion upon playback.

4. /camera/depth/color/points: This subject provides the depth sensor’s three-
dimensional Point cloud data. It gives a set of 3D points as well as the RGB
color information for each of them. The sensor_msgs/PointCloud2 message
type is commonly used to publish Point cloud data. When a ROS bag file
is recorded, the messages published on the /camera/depth/color/points
topic are preserved with the Point cloud data and its accompanying meta-
data. The bag file will save the Point cloud data, allowing you to replay and
process it later.

Overall, a ROS bag file comprising the mentioned topics will save the messages
published on each topic over the recording period. Camera calibration data, raw
color photos, depth camera calibration information, and 3D Point cloud data are
all included. When replayed, the bag file allows you to extract and analyze the

40

recorded data and perform things like debugging, testing, and designing algo-
rithms without actual equipment. We have three different types of datasets, which
are as follows:

1. Standard Lighting: For this case, we turned on all the lights in the Robotics
Lab and recorded the data using the setup described in the previous section.

2. Less Lighting: For this case, we turned off all the lights except three in the
Robotics Lab and recorded the data using the setup described in the previ-
ous section.

3. No Light: For this case, we turned off all the lights in the Robotics Lab and
recorded the data using the setup described in the previous section.

We have a precise and accurate path on which the LiDAR camera had moved for
the first two cases, whereas for the last case, as it was very dark, the actual path’s
ground truth is less accurate than in previous cases.

5.3 Result and Discussion

This chapter compares the results of various experiments on our dataset as well as
the dataset provided by [9] using our proposed method and the method used by
[9]. We have performed several experiments to compare and contrast our results
with the existing method in order to evaluate our method. In this chapter, we will
compare the results obtained on our dataset as well a demo dataset using two
versions of code: the original and our code. Figure 5.4 and 5.5 depicts the result
on a demo dataset of a warehouse that was used in [9]. The ROS bag file contains
similar data types, as shown in Figure 5.3. We observed that the Figure 5.5 has
more detailed features as well as a more dense 3D mapping of the warehouse
compared to Figure 5.4.

Figure 5.6 shows the results of the original algorithm used in [9]. First part
shows the top view in which we can see the 3D shape of the Robotics Lab, whereas
the later part shows the estimated odometry of the Robot. From Figure 5.6(a), we
conclude that the original algorithm works properly and gives an almost perfect
cuboidal shape of the Robotics Lab. Figure 5.b(b) shows that the SLAM algorithm
accurately identifies the Odometry of the Robot. Similarly, Figure 5.7 proves the
effectiveness of our algorithm in Localization and Mapping. The mapping of 5.6
is denser as compared to 5.5, which further proves that our method gives more
precise results.

41

Figure 5.4: Results obtained with existing algorithm applied on demo dataset [9].

Figure 5.5: Results obtained with our improved algorithm applied on demo
dataset.

42

(a)

(b)

Figure 5.6: Results obtained with the algorithm [9] used on our bright dataset.

43

(a)

(b)

Figure 5.7: Results obtained with improve algorithm used on our bright dataset.

44

(a)

(b)

Figure 5.8: Results obtained with existing algorithm used on our dark dataset [9].

45

Figure 5.8 shows the result obtained on our dark data dataset, which was
recorded to simulate an environment with little less lighting. Figure 5.8(b) shows
that the Odometry is unaffected despite insufficient lighting, and Figure 5.8(a)
shows that the mapping is less dense as compared to Figure 5.8(b). Due to the
scarcity of light, points reflected in the LiDAR camera are fewer as compared to
the previous case, Hence a less dense mapping. Figure 5.9 shows the result ob-
tained on our dark data dataset using our algoritham, which was recorded to
simulate an environment with little less lighting. Figure 5.9(b) shows that the
Odometry is unaffected despite insufficient lighting, and Figure 5.9(a) shows that
the mapping is denser as compared to Figure 5.9(b).

Figures 5.10 and 5.11 show the results of our completely dark dataset on the
[9]’s algorithm and our improved algorithm, respectively. This dataset was recorded
in a completely dark environment; hence the trajectory is a little irregular com-
pared to previous cases. Due to the scarcity of light, walking on the path we were
supposed to walk on was impossible. Despite all these limitations, the Odometry
estimation is nearly perfect, further solidifying the SLAM algorithm’s effective-
ness in mapping. Although in Figures 5.10 and 5.11, we are not able to clearly
see the 3D mapping, we observed a very light mapping in Rviz. This proves the
effectiveness of the LiDAR camera as well as our SLAM algorithm in an entirely
dark environment. A graph comparing the actual path and the estimated path
by our SLAM algorithm, which the LiDAR camera followed, is shown in Figure
5.12. The actual path was estimated with the help of the tiles in the Robotic Lab
@ DA-IICT. We tried to follow the same tiles every time we recorded the data.
Then we measured the distance of tiles from the walls and edges to get the actual
path. Then we scaled the actual path to the same scale as the estimated path. To
get the estimated path, we saved the results of the ssl_slam\Odometry node in a
ROS bag file. Followed by extracting and plotting the co-ordinates using a python
script. Figure 5.12 shows how accurate our localization is. We clearly identified
that the estimated path almost overlaps the actual path. The slight deviation is
due to human error while recording the dataset, as we cannot walk in a straight
line.

46

(a)

(b)

Figure 5.9: Resuls obtained with improved algorithm used on our dark dataset.

47

Figure 5.10: Results obtained with existing algorithm used [9] applied on our com-
pletely dark dataset.

Figure 5.11: Results obtained with iproved algorithm used on our completely dark
dataset.

48

Figure 5.12: Estimated odometry vs. actual odometry.

49

CHAPTER 6

Conclusions

We used a handheld LiDAR sensor to construct and test a LOAM-based SLAM
algorithm in a simulated environment. The purpose was to precisely estimate
the robot’s trajectory and create an environment map. Compared to the existing
algorithm, we have not used an IMU sensor as well as a handheld device rather
than a mobile bot. Moreover, we have also modified the algorithm to give better
results.

The SLAM algorithm produced very encouraging results. Throughout the ex-
periment, the projected robot trajectory displayed negligible drift and accurately
mirrored the robot’s actual motion. The smooth trajectory, with no abrupt jumps
or irregularities, showed that the optimization procedure effectively minimized
errors. Furthermore, the created map has a high level of detail and accuracy.
Structures in the area, such as walls, corners, and barriers, were precisely cap-
tured and depicted on the map. The map displayed a consistent and cohesive en-
vironment representation that corresponded well to ground truth measurements.

The algorithm demonstrated robustness in dealing with a variety of challeng-
ing conditions, such as loop closures and sensor noise. It effectively detected loop
closures, resulting in loop constraint optimizations that enhanced the map’s accu-
racy and consistency. Noise in sensor measurements was reduced, yielding clean
and precise mapping findings. Furthermore, the SLAM algorithm’s computing
speed was remarkable. The method runs in real-time, allowing for live map con-
struction and trajectory estimation. Because the memory needs were acceptable,
it was appropriate for resource-constrained robotic systems.

Finally, the SLAM system accurately calculated the robot’s course and built a
thorough picture of the area. Because of its capacity to manage loop closures, limit
sensor noise, and deliver real-time performance, it is a dependable and efficient
SLAM solution for various robotic applications.

Several areas for further development and improvement can be recognized

50

based on the findings of comparing the SLAM algorithms in different background
situations:

1. Robustness in Dynamic Environments: Improving the robustness of SLAM
algorithms in dynamic environments is one potential area for future inves-
tigation. This could include creating strategies to handle better-moving ob-
jects, such as dynamic object identification and tracking, to keep them from
interfering with the mapping and localization processes. Furthermore, in-
vestigating ways for adaptive or online map updates to accommodate envi-
ronmental changes might increase the algorithms’ performance in dynamic
circumstances.

2. Occlusion Handling: Another area for future development is the develop-
ment of more effective occlusion handling systems. Occlusions, when ob-
jects or impediments obscure the sensors’ line of sight, might present dif-
ficulties for SLAM algorithms. It would be beneficial to investigate ways
for robustly predicting the robot’s pose and sustaining accurate mapping
even in the presence of occlusions. This could entail combining data from
different sensor modalities, such as LiDAR and RGB-D cameras, to tackle
occlusion-related concerns.

3. Optimization of Real-Time Performance: While the evaluated SLAM algo-
rithms displayed real-time performance, more optimization can be explored
to improve efficiency. This can include investigating parallel computing ap-
proaches, hardware acceleration with GPUs or specialized CPUs, or algo-
rithmic optimizations to lower processing requirements while maintaining
accuracy. Improving the algorithms’ efficiency would allow them to be used
on resource-constrained systems or in scenarios requiring even faster pro-
cessing.

4. Benchmarking and Comparison: Standardised benchmarks and evaluation
metrics help validate and compare the performance of SLAM algorithms in
diverse contexts. Creating benchmark datasets such as [43] with variable
background circumstances, ground truth data, and typical performance in-
dicators will help academics to statistically analyze their advancements and
improvements and facilitate fair comparisons across different algorithms.

5. Use Deep Learning in SLAM: As point clouds are not structured, it is im-
possible to use parallel processing like CUDA, so Deep Learning architec-
tures are not typically preferred. Recently a CNN-type architecture for 3D

51

point clouds was proposed [44]. One can use such type of deep learning
architecture for edge and corner detection to improve the results of SLAM
further.

52

References

[1] Point Clouds are Eating the World, One Application at a Time,
https://www.sigarch.org/point-clouds-are-eating-the-world, Jan. 2021.

[2] G. Roe, "The Zamani Project - Heritage Documentation Beyond the Point
Cloud - LiDAR News," https://lidarnews.com/articles/the-zamani-project-
heritage-documentation-beyond-the-point-cloud, jan. 2016.

[3] Top Technologies Shaping Metaverse, https://www.bisinfotech.com/top-
technologies-shaping-metaverse, Feb. 2022.

[4] L. Pickup, "Perspectives on the future of the car – MIND-sets Knowl-
edge Center," https://mobilitybehaviour.eu/2017/08/07/perspectives-on-
the-future-of-the-car/, aug 7 2017.

[5] Y. Bisheng, L. Fuxun, and H. Ronggang, "Progress, challenges and perspec-
tives of 3D LiDAR point cloud processing," Acta Geodaetica et Cartographica
Sinica, vol. 46, no. 10, pp.1509, 2017.

[6] X. Huang, G. Mei, J. Zhang, and R. Abbas, "A comprehensive survey on point
cloud registration," arXiv preprint, arXiv:2103.02690, 2021.

[7] F. Remondino, "From point cloud to surface: the modeling and visualization
problem," International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, pp. 34, 2003.

[8] X. Xie, L. Bai, and X. Huang, "Real-time LiDAR point cloud semantic seg-
mentation for autonomous driving," Electronics, pp.11, vol. 1, no.11, 2021.

[9] H. Wang, C. Wang, and L. Xie, "Lightweight 3-D localization and mapping
for solid-state LiDAR," IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
1801–1807, 2021.

[10] R. B. Rusu and S. Cousins, "3D is here: Point cloud library (PLC)," In 2011
IEEE international conference on robotics and automation, pp. 1–4, 2011.

53

[11] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor, and
S. Scherer, "Tartanair: A dataset to push the limits of visual SLAM," In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
4909–4916, 2020.

[12] R. B. Rusu, N. Blodow, and M. Beetz, "Fast point feature histograms (fpfh) for
3D registration," In 2009 IEEE international conference on robotics and automa-
tion, pp. 3212–3217, 2009.

[13] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuet-zle, "Surface
reconstruction from unorganized point clouds," 1992.

[14] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, "A compre-
hensive performance evaluation of 3D local feature descriptors," International
Journal of Computer Vision, vol. 116, pp. 66–89, 2016.

[15] Q.-Y. Zhou, J. Park, and V. Koltun, "Open3D: A modern library for 3D data
processing," arXiv preprint, arXiv:1801.09847, 2018.

[16] J. Behley and C. Stachniss, "Efficient surfel-based slam using 3D laser range
data in urban environments," In Robotics: Science and Systems, pp. 59, 2018.

[17] J. Zhang and S. Singh, "LOAM: LiDAR odometry and mapping in real-time,"
In Robotics: Science and Systems, vol. 2, pp. 1–9, Berkeley, CA, 2014.

[18] A. Broggi, S. Cattani, M. Patander, M. Sabbatelli, and P. Zani, "A full-3D
voxel-based dynamic obstacle detection for urban scenario using stereo vi-
sion," In 16th International IEEE Conference on Intelligent Transportation Systems
(ITSC2013), pp. 71–76, 2013.

[19] D. Wang, M. Hollaus, E. Puttonen, and N. Pfeifer, "Fast and robust stem re-
construction in complex environments using terrestrial laser scanning," Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, pp. 41, 2016.

[20] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. Goulette, "CT-ICP: Real-time
elastic LiDAR odometry with loop closure," In 2022 International Conference
on Robotics and Automation (ICRA), pp. 5580–5586, 2022.

[21] X.-F. Han, J. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, "A review of
algorithms for filtering the 3D point cloud," Signal Processing: Image Commu-
nication, vol. 57, pp. 5, 2017.

54

[22] F. Poux and R. Billen, "Voxel-based 3D point cloud semantic segmentation:
Unsupervised geometric and relationship featuring vs deep learning meth-
ods," ISPRS International Journal of Geo-Information, vol. 8, no. 5, pp. 213, 2019.

[23] E. Grilli, F. Menna, and F. Remondino, "A review of point clouds segmenta-
tion and classification algorithms," The International Archives of Photogramme-
try, Remote Sensing and Spatial Information Sciences, vol. 42, pp. 339, 2017.

[24] F. Pomerleau, F. Colas, R. Siegwart, et al., "A review of point cloud registra-
tion algorithms for mobile robotics," Foundations and Trends in Robotics, vol. 4,
no. 1, no. 1–104, 2015.

[25] S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm," In
Proceedings third international conference on 3-D digital imaging and modeling,
pp. 145–152, 2001.

[26] D. Teijeiro, M. Amor, R. Doallo, and D. Deibe, "Interactive visualization of
large point clouds using an autotuning multiresolution out-of-core strategy,"
The Computer Journal, pp. 12, 2022.

[27] S. Agarwal, K. Mierle, and T. C. S. Team, Ceres Solver, 3 2022.

[28] K. Levenberg, "A method for the solution of certain non-linear problems in
least squares," Quarterly of applied mathematics, vol. 2, no. 2. pp. 164–168, 1944.

[29] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, "Oc-
tomap: An efficient probabilistic 3D mapping framework based on octrees,"
Autonomous robots, vol. 34, pp.189–206, 2013.

[30] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[31] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A. Y. Ng, "Simul-
taneous mapping and localization with sparse extended information filters:
Theory and initial results," Springer, 2004.

[32] J.-A. Fernández-Madrigal, Simultaneous Localization and Mapping for Mo-
bile Robots: Introduction and Methods: Introduction and Methods, IGI
global, 2012.

[33] T. A.-Q. Tawiah, "A review of algorithms and techniques for image-based
recognition and inference in mobile robotic systems," International Journal of
Advanced Robotic Systems, pp. 17, no. 6, pp. 1729881420972278, 2020.

55

[34] M. Montemerlo and S. Thrun, FastSLAM: A scalable method for the simul-
taneous localization and mapping problem in robotics, 7th Edition, Springer,
2007.

[35] D. Li, W. Yang, X. Shi, D. Guo, Q. Long, F. Qiao, and Q. Wei, "A visual-inertial
localization method for unmanned aerial vehicle in underground tunnel dy-
namic environments," IEEE Access, vol. 8, pp. 76809–76822, 2020.

[36] R. Eustice, M. Walter, and J. Leonard, "Sparse extended information filters:
Insights into sparsification," In 2005 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 3281–3288, 2005.

[37] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, "A tutorial on graph-
based SLAM," IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4,
pp.31–43, 2010.

[38] Z. Xuexi, L. Guokun, F. Genping, X. Dongliang, and L. Shiliu, "SLAM al-
gorithm analysis of mobile robot based on LiDAR," In 2019 Chinese Control
Conference (CCC), pp. 4739–4745, 2019.

[39] S. Thrun and J. J. Leonard, Simultaneous Localization and Mapping, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[40] J. Neira and J. D. Tardós, "Data association in stochastic mapping using the
joint compatibility test," IEEE Transactions on robotics and automation, vol. 17,
no. 6, pp. 890–897, 2001.

[41] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, "G2O: A
general framework for graph optimization," In 2011 IEEE International Con-
ference on Robotics and Automation, pp. 3607–3613, 2011.

[42] C. Stachniss, G. Grisetti, and W. Burgard, "Information gain-based explo-
ration using rao-blackwellized particle filters," In Robotics: Science and sys-
tems, vol. 2, pp. 65–72, 2005.

[43] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving?
the kitti vision benchmark suite," In 2012 IEEE conference on computer vision
and pattern recognition, pp. 3354–3361, 2012.

[44] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets
for 3D classification and segmentation," In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 652–660, 2017.

56

	Abstract
	List of Principal Symbols and Acronyms
	List of Figures
	Introduction
	Introduction to Point Cloud
	Applications of Point Cloud
	Challenges in Working with Point Cloud
	Point Cloud for Intelligent Artificial Systems
	Literature Review

	Robot Operating System
	Introduction
	ROS Communication
	Libraries and Tools
	Gazebo Simulator
	Point Cloud Library
	Ceres Solver
	OctoMap
	OpenCV
	ROS Bag
	Rviz
	Catkin
	ROS bash
	ROS launch

	Edge Device
	Raspberry Pi
	Introduction
	Components of Raspberry Pi

	Intel Realsense LiDAR Camera L515
	Introduction
	Specifications
	Stereo-LiDAR Technology

	Position Estimation
	Simultaneous Localization and Mapping (SLAM)
	Types of SLAM
	Challenges of SLAM

	Methodology
	Feature Extraction
	Odometry Estimation
	Probablity Map Construction
	Novelty of the Proposed Methodology

	Experimental Verification
	Experimental Setup
	3D Point Cloud Dataset Prepared Using LiDAR
	Result and Discussion

	Conclusions
	References

{ "type": "Document", "isBackSide": false }

