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Abstract

For the development of a machine learning model both parameter tuning and fea-
ture selection are necessary . The model’s hyper parameters need to be tuned to
achieve the best values because they have a significant impact on how well the
model works and the objective of feature selection is to identify the most impor-
tant subset of features that contribute to reliable predictions and model under-
standing.

The primary goal of this study is to examine the effectiveness of feature selection
techniques when used Twin Support Vector Machines (TWSVM) and traditional
Support Vector Machines (SVM). We want to determine that the feature selection
technique results is the best performance increase for TWSVM and SVM by con-
ducting extensive experiments on multiple datasets. The results of this study will
give important information about how feature selection will improve the classifi-
cation accuracy and effectiveness.

The methodology used in this study involves applying different kinds of param-
eter tuning and feature selection techniques for Support Vector Machines (SVM)
and Twin Support Vector Machines (TWSVM) using linear and RBF kernels. We
used a hybrid approach to parameter tuning and feature selection. Optimized the
hyper parameters using the Grid Search and Simulated Annealing (SA) methods.
Then, with SA-based parameter tuning, we combined the Binary Gravitational
Search Algorithm (BGSA) and Teaching-Learning-Based Optimization (TLBO) for
feature selection.

We use these techniques to enhance the performance of SVM and TWSVM models
by tuning their parameters and selecting useful features. Our results show that
feature selection methods are more effective at selecting relevant features while
using less computation time in TWSVM compare to SVM.
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CHAPTER 1

Introduction

Machine learning plays a vital role in real life,particularly in fields that involve
data analysis, pattern recognition, and prediction.Firstly, machine learning facili-
tates advanced data analysis by efficiently handling large and complex datasets.
It involves the development of algorithms and models that enable computers to
learn and make predictions or decisions without explicit programming. The abil-
ity of machines to automatically learn from data has revolutionized various in-
dustries, including healthcare, finance, marketing, and more.

Supervised learning and unsupervised learning are the two main categories for
machine learning algorithms. In supervised learning, the input features and asso-
ciated output labels or target values are both included in the training data. Based
on the given labels, the model learns to map the input features to the desired
output. Common applications of this kind of learning include classification and
regression.

On the other side, unsupervised learning uses datasets without labelled outputs.
Finding hidden patterns or structures in the data is the aim. Unsupervised learn-
ing is frequently used for clustering, dimension reduction, and anomaly detec-
tion.These methods can help in identifying groups or clusters of related data
points and provide important information about the distribution of the under-
lying data.

There are numerous well-known machine learning algorithms that fall under these
categories that have been successful in a variety of applications. For instance,
decision trees classify or forecast using a hierarchical framework of rules. Sup-
port Vector Machines (SVM) identify the optimal hyperplane for classifying data
points. Artificial neurons are arranged in interconnected layers in neural net-
works, which are modelled after the structure of the human brain and are capable
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of learning complex patterns.

The algorithm that is used depends on the particular issue at hand as well as the
type of data that is easily accessible. Every algorithm has its own advantages,
constraints, and underlying assumptions. Some algorithms better at handling big
datasets, while others better at high-dimensional data or handling classes with
imbalances. Additionally, a number of variables like features selection, parameter
tuning, and the quality of the training data affect an algorithm’s effectiveness.

Among the various machine learning algorithms, Support Vector Machines (SVM)
have gained significant popularity due to their effectiveness and versatility. SVM
are particularly well-suited for complex problems with high-dimensional data.
They can handle both classification and regression tasks.One of the key advan-
tages of SVM is their ability to generalize well, meaning they can make accu-
rate predictions on unseen data. This robustness against overfitting is crucial for
achieving reliable and dependable results.

1.1 Support Vector Machine (SVM)

1.1.1 Introducation of SVM

The Support Vector Machine (SVM) algorithm, introduced by Vapnik in the 1990s,
SVM [6] is a popular type of machine learning algorithm that is widely used for
classification and regression tasks [2] [4] [1] [3]. SVM is particularly useful in
cases where the data is non-linearly separable and a non-linear decision bound-
ary is needed to classify the data accurately.

SVM work by finding the hyperplane that best separates the data into different
classes. The hyperplane is chosen so as to maximize the distance between the
closest data points of each class, also known as the margin. The data points clos-
est to the hyperplane are known as support vectors and are used to define the
decision boundary. This characteristic of SVM makes it a robust classifier, capable
of handling complex decision boundaries and addressing the challenges of non-
linearly separable data.

The main objective of SVM is to maximize the margin between the decision bound-
ary and the nearest data points of each class. By maximizing this margin, SVM
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aims to achieve better generalization performance, reducing the risk of overfitting
and improving the ability to classify new, unseen samples accurately. The margin
serves as a measure of the model’s robustness and its ability to handle noise and
variations in the data. Additionally, SVM can handle class imbalance issues by
incorporating various techniques such as soft-margin regularization or adjusting
class weights.

In addition to linear separation, SVM can handle nonlinear decision boundaries
by employing kernel functions such as the polynomial, Gaussian radial basis func-
tion (RBF), sigmoid, or custom-defined kernels. These kernel functions allow
SVM to capture complex patterns and relationships that might not be apparent
in the original input space.

1.1.2 Limitations of SVM

SVM can run into problems when working with huge datasets, especially when
there are more features than training samples. In such circumstances, SVM may
underperform or have trouble determining the right decision boundary.

When one or more classes have significantly fewer samples than the others, SVM
may be particularly sensitive to this imbalance.This imbalance may cause classifi-
cation results to be biassed in favour of the dominant class.

The kernel function and its associated parameters can have an impact on SVM.
For the best performance, choosing the right kernel function and adjusting the
parameters can be essential.

Particularly for large datasets and high-dimensional features spaces, SVM train-
ing can become computationally demanding in terms of memory and time re-
quirements.

SVM look for the maximum-margin hyperplane that divides several classes. Find-
ing a clear separation might be difficult, though, when working with noisy or
overlapping data. SVM may struggle to function satisfactorily in some circum-
stances or may need more preparation or data modification.

To get around some of the drawbacks of conventional SVM, one option to in-
vestigate is twin support vector machines (TWSVM). TWSVM has a number of
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characteristics that make it a potential option in some situations.

1.2 Twin Support Vector Machine (TWSVM)

1.2.1 Introduction of TWSVM

Twin Support Vector Machine (TWSVM) was proposed as an improvement over
traditional SVM to address certain limitations. However, TWSVM also has a
specific shortcoming related to the accuracy of points in the intersection of two
planes.

Traditional SVM aims to produce a single hyperplane that maximises the margin
between two classes. The categorization accuracy, however, could not be suitable
for locations located in the area where the two planes overlap.

In order to get over this restriction, Jayadeva et al. [13] developed TWSVM in
2007. TWSVM tries to generate two nonparallel planes that are as far from the
other class as possible and as close to one of the classes as possible. This helps in
improving intersection region point accuracy.

TWSVM’s formulation is relatively similar to that of regular SVM, however there
is one key distinction. In TWSVM, two quadratic programming problems (QPPs)
are solved, whereas in SVM, only one QPP is solved. The distribution of the data
points ensures that the patterns from one class match the QPP constraints from
the other class and vice versa. This data point distribution enables TWSVM to
solve two smaller-sized QPPs rather than one huge QPP, leading to a faster calcu-
lation.

TWSVM is more computationally efficient than regular SVM since it solves two
smaller QPPs rather than one bigger QPP.

1.2.2 Advantage of TWSVM

Proximal SVM based on Generalised Eigenvalues (GEPSVM) is the paradigm
from which Twin Support Vector Machines (TWSVM) are formed. TWSVM’s goal
is to identify two nonparallel planes by resolving two associated SVM-type is-
sues. TWSVM divides the task into two smaller quadratic programming issues
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as opposed to the conventional SVM, which requires resolving a single, larger
quadratic programming problem.

The computational complexity of the TWSVM training phase is greatly reduced
by this method. In fact, TWSVM only requires a quarter of the computing power
compared to standard SVM. TWSVM is a more effective and scalable alternative
for SVM-based classification tasks because of its computational benefit, requiring
only 1/4 the computer resources of regular SVM [6].

1.3 Problem Statement

Twin Support Vector Machines (TWSVM) is a well-known variation of the con-
ventional SVM that has shown enhanced classification accuracy in a number of
real-world applications [13] [6].TWSVM’s drawback, like with other conventional
machine learning models, is that it requires a collection of informative and rele-
vant features in order to produce precise predictions.

Unlike neural architectures, which can learn features representations directly from
the data, TWSVM relies on a fixed set of supplied features. This means that the
quality and relevance of the features used as input can significantly impact the
performance of TWSVM.

One of the challenges in using TWSVM is the lack of an automated method for fea-
tures extraction. features extraction involves transforming the original data into
a new representation that highlights the most relevant information for the given
task. While TWSVM itself does not provide a built-in mechanism for automated
features extraction, researchers and practitioners often employ separate features
selection or dimensionality reduction techniques to identify the most informative
features prior to applying TWSVM.

By carefully selecting or extracting a strong set of features, TWSVM can overcome
the limitations associated with fixed features sets and improve its classification
accuracy.

In addition to that Twin Support Vector Machines (TWSVM) performance can
be greatly improved through parameter adjustment, which is an essential com-
ponent of machine learning. TWSVM, like other machine learning models, has
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hyperparameters that need to be carefully selected to achieve the best possible
performance.

1.3.1 Features Selection

In many situations in the real world, datasets often consist of a large number of
features, not all of which may be informative or relevant for the given task. This
abundance of features can introduce noise, increase computational complexity,
and potentially lead to overfitting. features selection methods provide a solu-
tion to these challenges by identifying the most relevant features that accurately
capture the underlying patterns and relationships in the data while discarding re-
dundant or noisy features.

Selection of features is the process of choosing a subset of features or variables
from the original dataset. The aim is to reduce the dimensionality of the data
by retaining only the most informative and discriminative features. By doing so,
features selection helps improve model accuracy, enhance interpretability, reduce
computational complexity, and mitigate the risk of overfitting.

The benefits of features selection are manifold. Firstly, it improves model perfor-
mance by focusing on the most relevant features, thereby reducing the potential
influence of irrelevant or noisy features. By discarding redundant features, fea-
tures selection simplifies the model and enhances its interpretability, making it
easier to understand and draw meaningful insights. Additionally, features selec-
tion can significantly reduce computational requirements, as models trained on a
reduced set of features are more efficient to train, test, and deploy.

features selection methods encompass various approaches, including filter meth-
ods, wrapper methods, and embedded methods. These techniques employ sta-
tistical measures, machine learning algorithms, or domain knowledge to evaluate
and rank the importance of features. They consider various criteria such as fea-
tures relevance, correlation with the target variable, and features redundancy.

By employing features selection techniques, researchers and practitioners can im-
prove the efficiency, accuracy, and interpretability of machine learning models.
These methods enable the extraction of the most informative features, allowing
for more robust and reliable predictions while reducing the impact of irrelevant
or noisy features.
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1.3.2 Parameter Tuning

Parameter tuning involves selecting the values of hyperparameters, which are not
learned from the data during training but are set by the user or model developer
before the training process. These hyperparameters control various aspects of the
model’s behavior and performance. By tuning these hyperparameters, we aim to
find the best combination of values that maximize the model’s performance on a
specific dataset or task.

Support Vector Machines (SVM) have several hyperparameters that need to be
tuned for optimal model performance. Here are some of the key hyperparameters
in SVM:

• C Parameter (Cost): The trade-off between increasing the margin and reduc-
ing the training error is managed by the C parameter, sometimes referred to
as the regularisation parameter. While a bigger C value focused on correctly
identifying training points but may result in a narrower margin, a smaller
C value focuses on correctly classifying training points but may cause more
training errors. It affects the degree of misclassification the model can toler-
ate.

• Kernel Parameters: If you are using a kernel-based SVM, such as the poly-
nomial kernel or the radial basis function (RBF) kernel, there are specific
parameters associated with each kernel. For example, in the polynomial
kernel, you need to choose the degree of the polynomial, while in the RBF
kernel, you need to determine the gamma parameter. These kernel parame-
ters control the shape and flexibility of the decision boundary and influence
the model’s ability to capture non-linear relationships in the data.

1.4 Research Objective

The research objectives of features selection methods in Twin Support Vector Ma-
chines (TWSVM) can include:

• Investigate the impact of features selection on TWSVM performance: The
objective is to examine how different features selection methods affect the
classification performance of TWSVM. This involves comparing the accu-
racy of TWSVM with and without features selection.
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• Explore the effectiveness of different features selection algorithms in TWSVM:
Evaluation of the effectiveness of various features selection algorithms is the
goal, such as BGSA and TLBO specifically in the context of TWSVM. This
involves comparing the selected features subsets and the resulting classifi-
cation performance.

1.5 Significance of the Study

The significance of studying features selection in Twin Support Vector Machines
(TWSVM) can be summarized as follows:

• Improved Accuracy: features selection improves the classification accuracy
of TWSVM models by selecting the most relevant features.

• Overfitting Reduction: TWSVM models with a large number of features can
be prone to overfitting, where the model becomes too complex and fails to
generalize well to unseen data.features selection helps in reducing overfit-
ting by reducing the complexity of the model.

• Enhanced Generalization: By selecting informative features, features selec-
tion improves the generalization capability of TWSVM models, allowing
them to perform well on unseen data.

• Interpretability: features selection provides insights into the important fea-
tures, enhancing the interpretability of TWSVM models and facilitating bet-
ter understanding of the classification process.

8



CHAPTER 2

Related Work

An overview of the literature and research papers on features selection in Twin
Support Vector Machines (TWSVM) is provided in this section. The significance
of features selection is discussed, along with improvements in features selection
methods for Support Vector Machines (SVM) and how these methods have been
used to TWSVM.

features selection has garnered significant attention in recent years, with numer-
ous methods and approaches proposed to overcome the challenges and limita-
tions of traditional techniques. The choice of an appropriate features selection
method depends on the particular application and dataset characteristics, neces-
sitating careful consideration of various factors, including the number of features
and the correlation among them.

Different features selection methods employ various strategies to evaluate the rel-
evance of features and select the most informative subset. Three different features
selection techniques are available.

2.0.1 Filter Methods

Filter methods evaluate the intrinsic characteristics of features, such as their statis-
tical properties or information content, without considering the specific learning
algorithm. They are computationally efficient and independent of the classifier.
Commonly used filter methods include statistical tests, correlation-based features
selection, and information theory-based measures.

Statistical tests such as t-tests or analysis of variance (ANOVA) have been widely
used in features selection. They assess the statistical significance of the relation-
ship between each features and the target variable. For instance, in their work [12]
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employed statistical tests to rank features based on their p-values.

Correlation-based features selection methods measure the relationship between
features and the target variable. They evaluate the statistical dependency or corre-
lation between each features and the target. One popular correlation-based mea-
sure is the Pearson correlation coefficient, as discussed in the work by Hall [11].

Information theory-based measures, such as mutual information or entropy, quan-
tify the amount of information shared between a features and the target. Peng et
al.[17] proposed a features selection method based on mutual information that
considers the criteria of maximum dependency, maximum relevance, and mini-
mum redundancy.

2.0.2 Wrapper Methods

Wrapper approaches train and test the learning algorithm on various features
combinations in order to evaluate features subsets. The effectiveness of the learn-
ing algorithm is immediately incorporated into the features selection procedure.
Although being computationally expensive, they frequently provide more precise
features subsets for particular classifiers.

The concept of "wrappers" for features subset selection was introduced by Kohavi
and John [14]. They explored the use of different search algorithms and evaluation
criteria within the wrapper framework. Their work highlighted the importance
of considering the interaction between the learning algorithm and the features
subset during selection.

2.0.3 Embedded Methods

Embedded approaches take advantage of the unique characteristics of the learn-
ing algorithm through including features selection within the algorithm. These
techniques choose features as the model is being trained, ensuring that the fea-
tures chosen match the goals of the learning process.

Embedded methods have been particularly popular in the context of Support Vec-
tor Machines (SVM). Weston et al.[27] proposed a features selection method for
SVM, where features selection is incorporated into the SVM training process. By
leveraging the inherent properties of SVM, they achieved efficient and unified
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features selection and classification

2.0.4 Hybrid Methods

In order to take use of their complimentary qualities, hybrid methods combine
various features selection strategies. These techniques use filter and wrapper
methods, among other combinations, in an effort to produce better features sub-
sets.

One example of a hybrid features selection method is the work by Yu et al.[29].
They introduced a hybrid approach that combines a correlation-based filter with
a wrapper technique. Their method utilizes a fast correlation-based filter solution
to select a subset of features based on relevance and redundancy measures.

We emphasise the importance of features selection in machine learning and con-
centrate on how Support Vector Machines (SVM) are particularly affected by it.
We talk about improvements made to features selection methods designed for
SVM and look at how these methods might be used to Twin Support Vector Ma-
chines (TWSVM).

Enhancing the performance and interpretability of SVM models requires careful
features selection. Several studies have concentrated on creating features selec-
tion techniques specifically designed for SVM. In order to increase classification
accuracy, decrease overfitting, and improve the model’s ability to generalise, these
techniques aim to identify the most informative subset of features from the initial
features space [10].

We used the Binary Gravitational Search Algorithm (BGSA) and Teaching Learning-
based Optimisation (TLBO) to select features for Twin Support Vector Machines
(TWSVM), which is the subject of this research. To demonstrate BGSA and TLBO’s
usefulness in features selection tasks, we give an outline of the related research
that has been done on these two algorithms.

2.1 Previous Study of features Selection using BGSA

Yang and Honavar [28] introduced Genetic Algorithms (GA) as a features selec-
tion method, while Firpi and Goodman [7] utilized Particle Swarm Optimization,
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and Diao and Sheng [5] employed Harmony Search for the same purpose. Zhang
and Sun [30] applied Tabu Search in the context of features selection. It is worth
noting that while various methodologies exist for tackling this problem, there is
currently no consensus on which approach is superior to others. The suitability
of different techniques may vary depending on the specific problem at hand and
the domain of application.

In recent years, Rashedi et al. [20] introduced an innovative optimisation method
called as Gravitational Search Algorithm (GSA). GSA has shown promise in find-
ing solutions for both unimodal and multimodal functions. The algorithm is in-
spired by the law of attraction between masses, as described by Newtonian grav-
ity. This law states that the force between particles in the universe is directly
proportional to their masses and inversely proportional to the square of their dis-
tance. Rashedi et al. [21] also extended GSA to handle problems in multidimen-
sional binary spaces and presented Binary GSA (BGSA), a Version of the original
that has been modified slightly algorithm.

The introduction of GSA and its binary variant, BGSA, has opened up new av-
enues for optimization problems, showcasing their potential in various domains.
These algorithms leverage the concept of gravitational attraction to guide the
search process and discover optimal or near-optimal solutions. The successful
application of GSA and BGSA in solving complex optimization problems has fur-
ther fueled research interest in these algorithms.

2.2 Previous Study of features Selection using TLBO

Teaching Learning-based Optimization (TLBO) has emerged as a valuable ap-
proach for solving discrete and binary features selection (FS) problems. This
method is known for its simplicity in implementation and the minimal number
of control parameters it requires [25]. TLBO is based on the teaching and learning
phenomena observed in human beings, where teachers influence the quality of
results achieved by learners. More comprehensive information about TLBO can
be found in previous studies [24].

Research in the literature has demonstrated that TLBO has outperformed exist-
ing metaheuristic methods when applied to both unconstrained and constrained
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benchmark problems [18]. For instance, Shahbeig et al.[23] introduced a combi-
nation of teaching learning-based optimization and diffused Particle Swarm Op-
timization (PSO) to identify the minimal subset of genes associated with breast
cancer with maximum accuracy. Various modifications of TLBO have also been
explored in the available literature, which have exhibited improved performance
compared to the original TLBO in terms of convergence rate.

TLBO’s suitability for discrete and binary features selection problems, along with
its successful application in different domains, highlights its potential as an effec-
tive optimization technique. Its advantageous characteristics, such as easy imple-
mentation and superior performance compared to other metaheuristic methods,
make it a promising choice for features selection tasks. Researchers continue to in-
vestigate and enhance TLBO to further improve its convergence rate and overall
performance.
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CHAPTER 3

Methods

This section outlines the approach we took in our study to address the issue of
parameter tuning and features selection in the context of machine learning. For
features selection and parameter tuning, we used Support Vector Machines (SVM)
and Twin Support Vector Machines (TWSVM) as classification algorithms. Addi-
tionally, we used the grid search and simulated annealing (SA) methods for pa-
rameter tuning and the binary gravitational search algorithm (BGSA) and teach-
ing learning-based optimisation (TLBO) methods for features selection.

3.1 Support Vector Machine(SVM)

Let the patterns to be classified be denoted by a set of m row vectors Ai(i =

1, 2, ...., m) in the n-dimensional real space Rn, where Ai = (Ai1, Ai2, ...., Ain)
T.

Also, let yi ϵ {-1,1} denote the class to which the ith pattern belongs. We first
consider the scenario in which the patterns belonging to the two classes can be
separated strictly linearly. Then, we need to determine w ϵ Rn and b ϵ R such that

Aiw ≥ 1 − b f or yi = 1 and Aiw ≤ −1 − b f or yi = −1, (3.1)

The plane described by
wTx + b = 0 (3.2)

lies midway between the bounding planes given by

wTx + b = 1 and wTx + b = −1 (3.3)

and separates the two classes from each other with margin of 1/||w||2 on each
side. In other words, the margin of separation between the two classes is given by
2/||w||2. Here ||w||2 denotes the L2 norm of a vector w. Data samples which lie
on the planes given by (3.3) are termed as support vectors. The maximum margin
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classifier, which is the standard SVM, is obtained by maximizing this margin and
is equivalent to the following problem

(SVM1) min
w,b

1
2

wTw (3.4)

subject to Aiw ≥ 1 − b f or yi = 1 and Aiw ≤ −1 − b f or yi = −1
When the two classes are not strictly linearly separable, there will be an error in
satisfying the inequalities (3.1) for some patterns and we can modify (3.1) to

Aiw ≥ 1 − b f or yi = 1 and Aiw ≤ −1 − b

f or yi = −1, qi ≥ 0, i = 1, 2, ..., m,
(3.5)

where qi denotes the error variable associated with the ith data sample. In this
case, the classifier is termed as a “soft margin” one, and it approximately classifies
points into two classes with some error. The classification of a given test sample
x is obtained by determining the sign of wTx + b. The soft margin depends on
the value of the non negative error variables qi. In this case, one needs to choose
a trade-off between the margin and the error and the standard SVM formulation
for classification of the data points with a linear kernel is given by

(SVM2) min
w,b,q

ceTq +
1
2

wTw (3.6)

subject to

Aiw + qi ≥ 1 − b f or yi = 1,
Aiw − qi ≤ −1 − b f or yi = −1,

qi ≥ 0, i=1,2,...,m.

Here, c denotes a scalar whose value determines the trade-off, a larger value of
c emphasizes the classification error, while a smaller one places more importance
on the classification margin.

The application of kernels in the context of Support Vector Machines (SVMs) is
an essential method to solve nonlinear classification issues. Kernels allow an im-
plicit transformation rather than directly transferring the input data to a higher-
dimensional features space. SVMs can successfully capture complicated patterns
and perform nonlinear separation in the original input space by using kernels.
This method is advantageous since it saves the extra computational work required
for explicit features mapping[9].
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3.2 Twin Support Vector Machine(TWSVM)

In our study, we employed a novel method called Twin Support Vector Machines
(TWSVM) for SVM classification. TWSVM differs from traditional SVMs in its
approach to generating nonparallel planes that cluster the data points of each re-
spective class. Although TWSVM utilizes a distinct formulation, each of the two
quadratic programming problems in the TWSVM pair follows the general struc-
ture of a typical SVM. However, it is important to note that the constraints of nei-
ther problem contain all of the patterns simultaneously. This unique formulation
and the use of nonparallel planes distinguish TWSVM as an innovative approach
for SVM classification.

The TWSVM classifier is obtained by solving the following pair of quadratic pro-
gramming problems

(TWSVM1) min
w(1),b(1),q

1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1e2

Tq (3.7)

subject to (Bw(1) + e2b(1)) + q ≥ e2, q ≥ 0 and,

(TWSVM2) min
w(2),b(2),q

1
2
(Bw(2) + e2b(2))T(Bw(2) + e2b(2)) + c2e1

Tq (3.8)

subject to (Aw(2) + e1b(2)) + q ≥ e1, q ≥ 0
where c1, c2 > 0 are parameters and e1 and e2 are vectors of ones of appropriate
dimensions.

The Twin Support Vector Machines (TWSVM) algorithm aims to classify points by
determining two hyperplanes, one for each class, and assigning points based on
their proximity to these hyperplanes. The objective function of TWSVM consists
of two terms.

The first term in the objective function corresponds to the sum of the squared
distances from the hyperplane to the points of one class. Minimizing this term
encourages the hyperplane to remain close to the points belonging to that specific
class, such as class 1.

The constraints in TWSVM require that the hyperplane maintains a minimum dis-
tance of 1 from points of the other class, for example, class -1. To measure the error
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when the hyperplane is closer than this minimum distance, a set of error variables
is introduced. These error variables quantify the misclassification of points from
class -1.

The second term in the objective function aims to minimize the sum of these error
variables, thereby reducing the overall misclassification due to points belonging
to class -1.

By minimizing the objective function and optimizing the placement of the hyper-
planes, TWSVM seeks to effectively classify points based on their proximity to the
respective hyperplanes and minimize misclassification between the classes.

In TWSVM, the data points of one class are observed to cluster around the plane
defined by the equation xTw(1) + b(1) = 0, while the data points of the other class
cluster around the plane defined by xTw(2) + b(2) = 0 in TWSVM2. Comparing
the performance of TWSVM to a standard SVM, it has been observed that TWSVM
is approximately four times faster on average.

The improved efficiency of TWSVM can be attributed to the fact that it solves two
problems, specifically equations (3.7) and (3.8), each of which is roughly of size
m/2. In contrast, the standard SVM typically has a complexity of no more than
m3. As a result, the runtime ratio between TWSVM and the standard SVM is ap-
proximately reduced, leading to faster computation time.

Thus, the ratio of run-times is approximately

(m3)/(2 ∗ (m
2
)3) = 4

The Lagrangian corresponding to the problem TWSVM1 (3.1) is given by

L(w1, b1, q, α, β) =
1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1))+

c1e2
Tq − αT(−(Bw(1) + e2b(1)) + q − e2)− βTq,

(3.9)

Lagrange multipliers. The Karush-Kuhn-Tucker (K.K.T) necessary and sufficient
optimally conditions [15] for (TWSVM1) are given by

AT(Aw(1) + e1b(1)) + BTα = 0, (3.10)
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eT
1 (Aw(1) + e1b(1)) + eT

2 α = 0, (3.11)

C1e2 − α − β = 0, (3.12)

−(Bw(1) + e2b(1)) + q ≥ e2, q ≥ 0, (3.13)

αT(−(Bw(1) + e2b(1)) + q − e2) = 0, βTq = 0, (3.14)

α ≥ 0, β ≥ 0 (3.15)

Since β ≥ 0, from (3.12) we have

0 ≤ α ≤ c1 (3.16)

Next, combining (3.10) and (3.11) leads to

[ATeT
1 ] [A e1] [w(1), b(1)]T + [bTeT

2 ]α = 0, (3.17)

We Define
H = [A e1], G = [B e2] (3.18)

and the augmented vector u = [w(1), b(1)]T . With these notations, (3.17) may be
rewritten as

HT Hu + GTα = 0, i.e., u = −(HT H)−1GTα. (3.19)

HT H is always positive semi-definite, but in some circumstances it might not be
well conditioned. Similar to the regularisation term used in Ridge Regression
methods as those in [22] , we introduce a regularization term ϵI, ϵ > 0 , to take
care of problems due to possible ill-conditioning of HT H. Here, I is an identity
matrix of appropriate dimensions. Therefore, (3.19) gets modified to

u = −(HT H + I)−1GTα. (3.20)

However, in the following, we shall continue to use (3.19) with the understanding
that, if need be, (3.20) is to be used for the determination of u.

Using (3.9) and the above K.K.T conditions, we obtain the Wolfe dual [15] of
TWSVM1 as follows:

(DTWSVM1) max
α

eT
2 α +

1
2

αTG(HT H)−1GTα (3.21)

subject to 0 ≤ α ≤ c1
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Similarly, we consider TWSVM2 and obtain its dual as

(DTWSVM1) max
α

eT
1 γ +

1
2

γTP(QTQ)−1PTγ (3.22)

subject to 0 ≤ γ ≤ c2

Here, P = [A e1], Q = [B e2] and the augmented vector v = [w(2), b(2)]T , which
is given by

v = (QTQ)−1PTγ. (3.23)

In the above discussion, the matrices HT H and QTQ are matrices of size (n + 1) ∗
(n + 1), where, in general, n is much smaller in comparison to the number of pat-
terns of classes 1 and -1.

Once vectors u and v are known from (3.20) and (3.23), the separating planes

xTw(1) + b(1) = 0 and xTw(2) + b(2) = 0 (3.24)

are obtained. A new data sample xϵRn is assigned to class r (r=1,2) , depending
on which of the two planes given by (3.24) it lies closest to, i.e.,

xTw(r) + b(r) = min
l=1,2

|xTw(l) + bl)| (3.25)

where |.| is the perpendicular distance of point x from the plane xTw(l) + b(l) =
0, l = 1, 2.

From the Karush-Kuhn-Tucker conditions (3.10), (3.11), (3.12), (3.13), (3.14), (3.15),
and (3.16), we observe that patterns of class -1 for which 0 < αi < ci i = (1, 2, ..., m2)

lie on the hyperplane given by xTw(1) + b(1) = 0. Using inspiration from tradi-
tional SVM, we can describe these patterns of class -1 as support vectors of class 1
with regard to class -1 because they are crucial in identifying the necessary plane.
For the issue TWSVM2, a same finding is true.

3.3 features Selection Methods

In this section, we explore and analyze different population-based features selec-
tion methods such as Binary Gravitational Search Algorithm(BGSA) and Teaching
Learning Based Optimization (TLBO) methods .
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Population-based features selection techniques provide a different strategy for ad-
dressing these problems. These techniques make use of a population of features
subsets that go through iterative search and optimisation. They are inspired by
the concepts of population dynamics and evolutionary computation. The quality
of the features subsets is assessed using performance measures or fitness func-
tions, and they are treated as individuals within the population.
We used the Binary Gravitational Search Algorithm (BGSA) and Teaching Learning-

Figure 3.1: Flow Chart of Population Based FS Methods

based Optimisation (TLBO), two population-based optimisation techniques, in
our features selection procedure. These techniques run by iteratively improving a
population of features subsets according to evolutionary principles.

3.3.1 Binary Gravitational Search Algorithm (BGSA)

The Binary Gravitational Search Algorithm (BGSA) [8] is a metaheuristic opti-
mization algorithm that draws inspiration from Newton’s law of gravitation. It
operates on a binary representation of the search space and employs concepts
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such as gravitational force, movement, velocity, position update, mutation, and
selection to explore and find the optimal solution. The BGSA algorithm has shown
effectiveness in solving features selection problems, where the goal is to identify
the most relevant subset of features from a larger set. By leveraging the principles
of gravitation, the BGSA algorithm offers a promising approach to address fea-
tures selection challenges and optimize the search for the best features subset.

Figure 3.2: Flow Chart of BGSA Method

The particles or agents are encoded using binary strings of length m in the Binary
Gravitational Search Algorithm (BGSA) [20]. Each component of the binary string
indicates the inclusion or exclusion of the relevant features in the features subset.
A value of "1" denotes the presence of the features, whereas a value of "0" denotes
its absence. m, which is equal to the length of the binary strings, represents the
total number of features in the population. The BGSA algorithm aims to identify
an ideal features subset that maximises the objective function or fitness measure
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by manipulating the binary strings and using gravitational principles.

Any wrapper-based algorithm’s fitness function The fitness value of the particle
(the features selected by the particle) is the capacity to predict the classes, or the
classification accuracy of the features set provided to the classifier. FS is typically
a learning model or a classifier. We used TWSVM in this report to find the fitness
values. Masses are how BGSA refers to its potential solutions. As a result, each
mass has a fitness value, and BGSA aims to maximise these values. Using Eq.
(3.26), the mass of the ith particle at time t (massi(t)) is determined based on the
fitness values.

massi(t) =
f itnessi(t)− minimum(t)

maximum(t)− minimum(t)
(3.26)

The population’s maximum fitness value (max(t)) and minimum fitness value
(min(t)) are used to normalize the masses. After one unit of time (t), the masses
are recalculated. By subtracting the value of massi(t) from the sum of all masses,
as indicated in Eq. (3.27) where n is the total number of particles, one can deter-
mine the value of massi(t). In BGSA, the masses stand in for a particle’s goodness.
In order to improve (increase) the masses allotted to each candidate as t increase .

Massi(t) =
massi(t)

∑n
j=1 massj(t)

(3.27)

Other masses are forced by one mass,where the force of the jth particle on the ith

particle Fij(t) is an m-dimensional vector. For each features, there is a component
in the force. The force applied to the kth features is stored in the vector’s kth po-
sition. As a result, Fk

ij(t) represents the force that the jth particle applies to the kth

features of the ith particle and is determined using Eq. (3.28). The distance be-
tween two particles is expressed as the hamming distance (dist (xi, xj)), where xi

and xj signify the current positions of the ith and jth particles in the search space,
respectively.

Fk
ij(t) = G(t) ∗

Massi(t) ∗ Massj(t)
dist(xi, xj)

∗ (xk
j (t)− xk

i (t)) (3.28)
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Where the gravitational constant G(t), is determined using Eq. (3.29).

G(t) =
Ω ∗ t

Etotaltime (3.29)

Where t is the current time and total time is the total amount of time the algorithm
can run, Ω is assumed to have a value of 20.

Using Eq. (3.30), the net force on the kth features of the ith particle, denoted as
Fk

i (t), is determined. In this case, randomj is a random number between 0 and 1,
inclusive.

Fk
i (t) =

m

∑
j=1,j

randomj ∗ Fk
ij(t) (3.30)

According to the laws of physics, the force applied on the ith particle has an im-
pact on its kth features, which is its velocity. Eq. (3.31) is used to compute the new
velocity.

vk
i (t + 1) = randomj ∗ vk

i (t) +
Fk

i (t)
Massi(t)

(3.31)

In the context of features selection, the velocity of a features in a particle denotes
the likelihood of changing the state of that features, i.e., whether it is included in
the features subset (expressed by ’1’) or excluded (represented by ’0’). A features’s
higher velocity suggests that it has to be altered in order to make the particle per-
form better because it is different from the states of the better particles at that
moment.

Equation (3.32) is used to determine the probability of changing a features’s state
and incorporates the velocity values. Based on the velocity values assigned to
each features, its probability is determined. The state of the associated charac-
teristic is reversed, or from "1" to "0," if a randomly generated number is smaller
than the computed probability. It is important to note that the sigmoid function
is frequently utilised in this stage. The tanh function, which has advantages and
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ignores those drawbacks, is employed in place of the sigmoid function to address
the problems mentioned in the sigmoid function in [26].

Because of BGSA’s quick convergence rate, the algorithm may occasionally be-
come stuck in local optima. In addition, a particle with a high fitness value at-
tracts other particles towards it by applying a powerful pull on them. As a result,
the features sets of all particles generally converge. The ability of BGSA to explore
and find various, potentially better solutions is limited by this convergence.

The key to solving this problem is choosing an initial population that has an even
distribution over the search space and sufficiently diverse. The algorithm can ex-
amine a wider range of features combinations and increase its chances of finding
superior answers by starting with an expanded collection of candidate solutions.
The diversity of the initial population encourages research and slows convergence
to poor solutions.

probability = tanh(vk
i (t + 1)) (3.32)

The BGSA algorithm uses a clustering procedure to prevent candidate solutions
being convergent too early. The initial population is produced as a collection of p
random particles. Equation (3.33) is used to calculate the n number of clusters.The
clustering procedure starts by creating n cluster centers at random, each of which
represents a potential solution. Then, Equation (3.34) is used to determine how
similar each particle is to the cluster centers. There are two terms which make into
the similarity metric.The inverse of the Hamming distance between a particle and
a cluster center make up the first term. This phrase describes the ease with which
a particle can be included or excluded from a cluster center. The inverse of the ac-
curacy gap between a cluster center and a particle is the second term. It displays
how well the particle and cluster center perform categorization tasks similarly.To
compute the total similarity of a particle to all the cluster centers, these terms are
merged with the proper weightings. Particles can be assigned using this method
to the cluster center that shares the most similarities with them.The approach en-
courages diversity and exploration, preventing premature convergence, by clus-
tering the particles and taking into account both their features similarity and clas-
sification performance.

n = ⌊α ∗ p⌋ ; (3.33)

Si = β ∗ (1/Hd) + η ∗ (1/Da) (3.34)
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In this equation, α is a value between 0 and 1, p is the number of particles used to
create the initial population, Hd stands for the hamming distance, Da represents
the accuracy gap (between the particle and cluster center), and Si reflects how
similar a cluster centre is to an agent. The two terms β and η in the expression for
Si, where β = 1, η denote the weighting of the two terms. A classifier is utilised to
determine the classification accuracy of each particle and cluster centre in order to
determine Da. The classification accuracy differences between each particle and
each cluster centre are then used to calculate Da.

Now, a set of particles have been assigned to each cluster. Generating a features
set from each cluster is the next stage. It makes sense to infer that increased accu-
racy results from better features. Let’s say there are q particles in the cluster. The
features of the particles of that cluster are analysed with the dth cluster in mind
in order to choose the most advantageous ones. It is suggested that Eq. (3.29) be
used to calculate the goodness factor (hd

i , which measures how good the ith char-
acteristic of the dth cluster is). The goodness values of the best features must be
higher than the mean of all goodness measures in a cluster.

hd
i =

q

∑
j=1

kd
ji ∗ Accd

j (3.35)

where the position of the jth particle in the dth cluster is given by kd
ji, and the accu-

racy of the jth particle in the dth cluster is given by Accd
j .

The following steps can be used to explain the BGSA algorithm:

1. Initialization: Start by randomly initializing a population of candidate solu-
tions. Each candidate solution is represented by a binary string, where each
binary digit represents the inclusion or exclusion of a specific features.

2. Fitness Evaluation: Evaluate the fitness of each candidate solution using a
problem-specific fitness function. The fitness function measures how well a
candidate solution solves the optimization problem at hand.

3. Gravitational Force Calculation: Calculate the gravitational force acting on
each candidate solution based on its fitness. The fitness is treated as the
mass of the solution, and the distance between the solution and the optimal
solution (target) is used as the distance between two masses in Newton’s
gravitational force equation.

25



4. Movement Calculation: Determine the movement of each candidate solu-
tion based on the gravitational force acting on it. The movement is com-
puted using a modified version of Newton’s second law, where the acceler-
ation is replaced by the gravitational force and the mass is replaced by the
fitness.

5. Velocity Calculation: Calculate the velocity of each candidate solution based
on its movement. The velocity is determined using a modified form of Eu-
ler’s equation, where the acceleration is replaced by the movement.

6. Position Update: Update the position of each candidate solution based on
its velocity. The position update is computed using a modified version of
Euler’s equation, where the velocity is treated as the differential of the posi-
tion.

7. Mutation: Introduce diversity into the population by applying a mutation
operator to some of the candidate solutions. The mutation operator ran-
domly flips certain binary digits in a candidate solution, potentially altering
its features selection.

8. Selection: Select the candidate solutions with the highest fitness values use
for the next generation of solutions. These selected solutions will undergo
further iterations of the algorithm.

After completing a specified number of iterations or reaching a termination con-
dition, the algorithm produces the best-fit solution matrix, which represents the
optimal features subset. Based on this best-fit solution, relevant features are se-
lected, and classification or other problem specific tasks can be performed using
the selected features.

3.3.2 Teaching Learning Based Optimization (TLBO)

In order to solve numerical optimisation problems, Rao et al. [19] presented a
novel intelligence method called Teaching Learning-based Optimisation (TLBO).
The population is treated as a group of students (nPop) in this method, and the
best possible solutions to optimisation issues are taken into account as a teacher
from the class as a whole. Through student collaboration and knowledge shar-
ing, the TLBO algorithm tries to identify the greatest learner. To create superior
results in terms of grades or marks, the TLBO algorithm’s behaviour depends on
the highly intelligent learners. They gain knowledge via the neighbour learning
process. In Eq. (3.36), the entire population is represented as a vector.
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Xi,k =


x1,1 x1,2 ... x1,k

. . . .

. . . .

. . . .
xi,1 xi,2 ... xi,k

 (3.36)

In this formula, i stands for the number of populations, k for the problem’s di-
mension, and xi,k for the learner’s position in the kth dimension. The initialization
of the learner X in the search space is random. The following Eq. (3.37) uses
randomness to create Xi,k’s evolution.

Xi,k = Lk + r1 ∗ (Uk − Lk) (3.37)

Where i = 1, 2, 3, ..., nPop, k = 1, 2, 3, . The uniform random numbers between 0
and 1 are denoted by r1. The lower bound value is denoted by Lk and the upper
bound value by Uk. Two phases make up the TLBO procedure. The student can
learn from the teacher during the teacher phase, and during the learner phase,
they can learn through the interactions between the groups of students.

The following parts provide an explanation of the TLBO method’s basic method-
ology:

Teacher phase :

A good teacher tries to bring his students up to his level of understanding dur-
ing this stage. In actuality, however, this is not feasible, and a teacher may only,
to some extent, depending on the ability of the students, increase the average
level of knowledge in the class. In the case when k = 1, 2, ..., D , let Mi, k =
(1/nPop)(ΣXi, k) be the mean value of the particular topic. Eq (3.38) gives a de-
scription of the updating equation for the process.

Xnew
i,k = Xold

i,k + r2 ∗ (Xteacher,k − Tf ∗ Mi,k)

Tf = round[1 + rand(0, 1)]
(3.38)

Here, Xteacher,k is the adopted population’s best learner at the current algorithm
iteration, r2 is a random number between [0,1], and the value of Tf is taken to be
considered as either 1 or 2.
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Figure 3.3: Flow Chart of TLBO Method

28



Learner phase :

Learner phase is the second phase of TLBO. During this phase, learners commu-
nicate with one another and with the teacher to expand their knowledge. Each
student wants to randomly interact with other students to improve their commu-
nication skills. To put it another way, the objective is to choose the ith learner as
Xp and a different random learner as Xq(p ̸= q) through the mutual interaction
with learners. Eqs (3.39) and (3.40) can be used to describe the updating equation
for the ith learners Xp and Xq throughout the learning phase.

Pseudo Code :

for i = 1 to nPop

// pick two students, Xp and Xq.

if (f(Xp) < f(Xq)) then

newX_i = oldX_i + r * (X_p - X_q) // Equation (3.39)

else

newX_i = oldX_i + r * (X_q - X_p) // Equation (3.40)

end if

end for

Equations used in pseudo code :

newXi = oldXi + r ∗ (Xp − Xq) (3.39)

newXi = oldXi + r ∗ (Xq − Xp) (3.40)

The best answers provided by the students Xp and Xq are f(Xp) and f(Xq), re-
spectively, where r stands for a random number between [0,1]. A good learner
communicates from a learner group that is nPop, taking the size of the learner
population into consideration. These two occurrences continue to move the TLBO
algorithm in the direction of good search regions with high-quality returns.

Binary TLBO

Because position vectors with a true continuous domain are present in this method,
people travel around the search space constantly. In order for the search agents
to move around in binary search space, a better velocity updating mechanism
is needed. Due to this, we have provided a binary variant of TLBO known as
BTLBO. A transfer function is also necessary, according to [16], to change the
learner’s position in relation to its velocity. Discrete values can be converted into
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binary values using transfer functions. The processes for choosing the features
that the BTLBO algorithm supports . A transfer function must offer a significant
chance of changing the position to significantly raise the velocity.

Teacher Phase: During the teacher phase, the student’s knowledge increases in
connection with the teacher, who works to improve the average student’s ability.
Each learner’s speed is estimated during this phase using Eq. (3.41)

Vk+1
i = r ∗ (Xteacher,k − Tf ∗ Mi,k) (3.41)

Where Mi,k indicates the mean value of all learners, Tf is taken into consideration
as either 1 or 2, Xteacher,k is the best learner of the approved population at the cur-
rent iteration of the algorithm, and r specifies a random number in the range [0,1].

Learner Phase: During this stage, each learner develops their knowledge based
on their interactions with other learners. Each learner’s move will be calculated
during this phase using Eq. (3.42):

Vk+1
i = r ∗ (Xp − Xq) (3.42)

Where Xp and Xq are two learners chosen at random by mutual interaction, and r
is a random number between [0,1].

The approach uses a floating-point vector for velocity but a binary vector for po-
sition. When one of the learner positions can be modified, velocity is used to look
for possibilities for a change from zero to one or one to zero.

The sigmoidal function, which is used to normalize the velocity between [0, 1] is
the most widely used activation function in the literature that is currently avail-
able. Its drawbacks, however, include a requirement for larger movement based
on the preceding location and a lack of differentiation between important values
in Vi, d in the positive and negative directions. New transfer functions to the com-
ponent of velocity were introduced to address this issue. Eq. (3.43) shows the
V-shaped transfer function.

T(Vk
i ) = exp(|(Vk+1

i − a)/(1 + b)|)− 1/exp(|(Vk+1
i − a)/(1 + b)| (3.43)

where a and b are preset constant values that remain consistent during the whole
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search procedure. After determining the probabilities, the student revises the po-
sitions according to the instructions given in Eq. (3.44).

Xk
i =

1, if rand < T(Vk
i )

0, otherwise
(3.44)

Like this the utilization of TLBO for features selection facilitates the identification
of informative and discriminative features, thereby improving the accuracy and
robustness of machine learning models.

3.4 Parameter Tuning Methods

Machine learning focuses significantly on parameter tuning to improve model
performance. Grid Search and Simulated Annealing (SA) are two approaches for
parameter tuning that are frequently used. These techniques offer systematic ap-
proaches to determine the ideal parameter values for a particular model.

Grid search involves evaluating every possible combination of parameters to iden-
tify the best setting for a certain model. It is reliable but computationally expen-
sive for large search spaces since it carefully explores the whole parameter space.

However, SA is a metaheuristic optimisation technique that was motivated by the
metallurgy annealing procedure. In order to find the best answer, it follows the
slow cooling of a material by accepting "worse" ideas early on and decreasing ex-
ploration as it goes along. In non-convex and multi-modal search environments,
SA works well because it starts a balance between exploitation and exploration.
Even with a small number of evaluations, SA may find effective solutions by care-
fully examining the parameter space.

The choice between the two approaches depends on the complexity of the prob-
lem and the available computational power, and both play significant roles in
optimising model performance by determining the best parameter values.

3.4.1 Grid Search

In machine learning, grid search is a typical technique for hyperparameter tuning.
It involves carefully looking over a set of values for each hyperparameter and ex-
amining how well the model performs for each set of hyperparameters. Finding
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the ideal set of hyperparameters that produces the optimum performance is the
objective.

Grid search can be stated as follows:

1. Define the Hyperparameter Grid: Determine the range of values or specific
discrete values to consider for each hyperparameter. This grid is created
based on prior knowledge, domain expertise, or experimentation.

2. Generate Hyperparameter Combinations: Create all possible combinations
of hyperparameters from the defined grid. Each combination represents a
unique set of hyperparameters to evaluate.

3. Model Training and Evaluation: Train a model for each hyperparameter
combination using the training data and evaluate its performance.

4. Select the Best Performing Combination: Compare the performance of the
models trained with different hyperparameter combinations and select the
combination that achieves the best performance.

5. Evaluate on Test Data: Once the best hyperparameter combination is chosen,
evaluate the final model’s performance on a separate test set to estimate its
generalization ability.

However, some limitations and drawbacks of grid search:

1. Grid searches can be computationally expensive, especially when there are
several hyperparameters involved and a wide range of possible values for
each one. As the number of combinations grows exponentially with the
number of hyperparameters and their values, grid search may become time-
consuming or even infeasible for complex models or large datasets.

2. Limited to Discrete Values: Grid search is limited to exploring a predefined
grid of values for each hyperparameter. This means that it may miss out
on optimal values that fall between the specified grid points. If the optimal
value lies outside the predefined grid, grid search may fail to find it.

To address these limitations, alternative methods such as Simulated Annealing
(SA) algorithms can be employed. These approaches offer more efficient and flex-
ible ways to explore the hyperparameter space, considering continuous values,
exploring interactions, and adapting the search based on previous evaluations.
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3.4.2 Simulated Annealing (SA)

Simulated Annealing (SA) is a metaheuristic optimization algorithm that can also
be applied to parameter tuning in machine learning models. SA offers an alter-
native approach to grid search by providing a more flexible and efficient way to
explore the parameter space.

The SA algorithm for parameter tuning generally follows these steps:

1. Initialization: Start with an initial set of parameters for the model. This can
be done randomly or based on some predefined values.

2. Define an Objective Function: Establish an objective function that quantifies
the performance of the model using the current set of parameters. This func-
tion can be based on metrics such as accuracy, precision, recall, or any other
relevant measure for the specific problem.

3. Define Neighboring Solutions: Determine a way to generate neighboring
solutions by making small perturbations to the current set of parameters.
These perturbations can involve changing the values of one or more param-
eters by a small amount.

4. Acceptance Criterion: Establish a criterion for accepting or rejecting a neigh-
boring solution. This criterion is typically based on the performance im-
provement or degradation compared to the current solution. Accepting
worse solutions with a certain probability allows for exploration and avoids
getting trapped in local optima.

5. Temperature Schedule: Define a temperature schedule that controls the exploration-
exploitation trade-off during the search process. Initially, the temperature is
set high, allowing for more exploration and acceptance of suboptimal so-
lutions. As the search progresses, the temperature decreases, reducing the
probability of accepting worse solutions and focusing on convergence.

6. Iteration: Perform iterations of the SA algorithm, where at each iteration,
a neighboring solution is generated and its acceptance or rejection is deter-
mined based on the acceptance criterion. The algorithm continues until a
stopping condition is met, such as reaching a maximum number of itera-
tions or achieving a satisfactory performance level.
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By using SA for parameter tuning, the algorithm explores the parameter space
more efficiently compared to exhaustive grid search. It allows for a more flex-
ible search and has the potential to find better solutions in complex and high-
dimensional spaces. However, it is important to note that SA is not guaranteed
to find the global optimal solution, but it can provide good approximations in a
reasonable amount of time.
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CHAPTER 4

Results

In this section, we present the experimental results obtained from the evaluation
of Grid Search and Simulated Annealing (SA) parameter tuning methods and Bi-
nary Gravitational Search Algorithm (BGSA) and Teacher Learner Based Opti-
mization (TLBO) features selection methods for Support Vector Machines (SVM)
and Twin Support Vector Machines (TWSVM) using both linear and Radial Basis
Function (RBF) kernels. The objective of this analysis was to assess the impact of
different parameter tuning techniques and features selection on the classification
performance of SVM and TWSVM models.

To conduct our experiments, we utilized a benchmark datasets.We randomly di-
vided the datasets into training and testing sets, using a [80-20] % split, to ensure
a robust evaluation.

In the subsequent sections, we present the dataset details, outline the specific pa-
rameter settings for each method, and provide a comprehensive analysis of the
experimental results obtained.

4.1 Description of Datasets

Experiments are carried out on well-known UCI datasets to evaluate the effec-
tiveness of the approach suggested. Perform experiments on 23 datasets such as
Monk 1, Monk 2, Monk 3, Spect, Herbrman, Statlog, Ionosphere, Pima-Indian,
Echo, Germans, Australian, Bupa,Daibetes, Fertility, Sonar, Ecoil, prlx, Medelon,
Leukemia, Wine 1 vs 3, Wine 2 vs 3, Zoo and Vots.

Here’s a brief description of each dataset:

1. Monk 1, Monk 2, and Monk 3: These datasets consist of three different ver-
sions of the Monk problem, which are synthetic datasets used for testing
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machine learning algorithms. Each version has different characteristics and
levels of difficulty.

2. Spect: This dataset contains spectral data from different types of tissues. It
is often used for binary classification tasks.

3. Herbrman: The Herbrman dataset consists of data from herbicide resistance
experiments. It is used for classification tasks.

4. Statlog: The Statlog datasets include various datasets such as Statlog (Aus-
tralian Credit Approval), Statlog (German Credit), and Statlog (Heart). These
datasets cover credit approval, credit scoring, and heart disease prediction
tasks.

5. Ionosphere: The Ionosphere dataset contains radar data for detecting iono-
spheric abnormalities. It is used for binary classification tasks.

6. Pima-Indian: The Pima-Indian dataset consists of medical data related to
diabetes diagnosis in Pima Indian women. It is commonly used for binary
classification tasks.

7. Echo: The Echo dataset contains medical data related to diagnosing heart
disease. It is used for binary classification tasks.

8. Germans: The Germans dataset is used for credit risk assessment, where the
goal is to predict whether a credit applicant is a good or bad credit risk.

9. Australian: The Australian dataset is used for credit card approval predic-
tion. The objective is to predict whether a credit card application will be
approved or not

10. Bupa: The Bupa dataset includes liver disorder data. It is often used for
classification tasks related to liver disease prediction.

11. Diabetes: The Diabetes dataset contains data related to diabetes diagnosis.
It is used for binary classification tasks.

12. Fertility: The Fertility dataset includes data related to assessing fertility in
women. It is used for classification tasks.

13. Sonar: The Sonar dataset consists of sonar signals reflected from different
objects in the water. It is used for binary classification tasks.
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14. Ecoil: The Ecoil dataset contains data related to protein localization sites. It
is used for multi-class classification tasks.

15. PRLX: The PRLX dataset includes data related to predicting the likelihood
of preterm labor. It is used for binary classification tasks.

16. Medelon: The Medelon dataset contains synthetic data for binary classifica-
tion tasks.

17. Leukemia: The Leukemia dataset consists of gene expression data for pre-
dicting the subtype of leukemia. It is used for multi-class classification tasks.

18. Wine 1 vs 3 and Wine 2 vs 3: These datasets contain data related to classify-
ing different types of wines. They are used for binary classification tasks.

19. Zoo: The Zoo dataset includes animal attributes and is used for multi-class
classification tasks.

20. Vots: The Vots dataset contains data related to voting behavior. It is used for
classification tasks.
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Table (4.1) provides information about the datasets used in the study. It includes
details such as the dataset number, name, number of samples, number of features,
and number of classes.

S.No. Datasets samples features classes
1. Monk 1 556 6 2
2. Monk 2 601 6 2
3. Monk 3 554 6 2
4. Spect 267 23 2
5. Herbrman 306 3 2
6. Statlog 270 13 2
7. Ionosphere 351 34 2
8. Pima-Indian 768 8 2
9. Germans 1000 20 2
10. Australian 690 14 2
11. Bupa 345 6 2
12. Daibetes 768 8 2
13. Fertility 100 9 2
14. Sonar 208 60 2
15. Ecoil 336 7 2
16. prlx 182 12 2
17. Medelon 83 5000 2
18. Leukemia 72 7129 2
19. Wine 1 vs 3 178 13 3
20. Wine 2 vs 3 178 13 4
21. Zoo 101 17 7
22. Vots 18 14 2
23. Echo 435 16 2

Table 4.1: About Datasets
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4.2 Parameter Setting

Each experiment is conducted on supercomputer using MATLAB with Intel(R)
Xeon(R) Gold 6145, 2.0 GHz, 64 GB. In the same computing environment, fair
comparison methods such as TLBO, SA and BGSA algorithms run with the ap-
propriate parameter settings, as shown in the table.

S.No. Parameters BGSA TLBO SA
1. Population Size 50 50 20
2. Number of iteration 20 20 10
3. Performance Accuracy Accuracy Accuracy

Table 4.2: Parameters of Methods

The effectiveness of the methods used is evaluated with the help of a simple clas-
sification algorithm called TWSVM. The parameters for TWSVM with a radial
basis function of kernel are C and Gamma. Range of C and Gamma(P) are [2−7

,..., 26,27] and [2−7 ,..., 26,27] which the TWSVM model uses. Population size and
number of iteration for every methods are shows in table (4.2) .

4.3 Results of Experiment

Here, present the experimental results obtained from the evaluation of the pa-
rameter tuning methods and features selection methods. Also, we discuss the
performance of each method for SVM and TWSVM models using both linear and
RBF kernels. Include the comparison of improvement in accuracy of features se-
lection in TWSVM over the features selection in SVM using graph. Also show
the reduction in the number of features in each iteration of the features selection
process.
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Table (4.3) presents the results of the Grid Search method with a linear kernel for
the SVM and TWSVM algorithms. The table includes Accuracy, C parameter, and
Time (s) for both SVM and TWSVM.

Dataset SVM TWSVM
Accu. C TIme(s) Accu. C TIme(s)

Monk 1 65.28 0.25 0.1118 65.97 0.5 0.0069
Monk 2 49.46 0.25 0.1678 53.01 1 0.0109
Monk 3 81.48 0.25 0.1759 84.72 0.25 0.0078

Spect 78.07 0.25 0.0308 70.05 0.125 0.0095
Haberman 74.19 0.0078 0.1710 77.42 0.25 0.0276

Statlog 85.19 0.25 0.1320 88.89 2 0.0172
Ionosphere 100 0.0078 0.2780 100 0.0625 0.0388

Pima-Indian 79.87 0.0156 0.7887 77.27 0.125 0.0684
German 92.59 0.0625 0.0271 96.30 8 0.0128

Australian 79 0.0078 1.2969 79.5 0.5 0.1382
Bupa 86.23 0.0078 0.7014 89.13 0.125 0.0710

Diabetes 73.91 32 0.1986 73.91 1 0.0348
Fertility 79.87 0.0156 0.7930 77.27 0.125 0.0834
Sonar 90 0.0078 0.0125 90 0.5 0.0140
Ecoli 73.81 64 0.0863 69.05 0.125 0.0213
Plrx 80.30 128 0.1811 77.27 8 0.0439

Madelon 56.76 0.0078 0.0548 62.16 0.0078 0.0194
Leukemia 59.83 0.0625 27.2217 58.83 0.5 0.7296

Wine 1 vs 2 93.33 0.0078 0.1734 93.33 0.0078 10.2920
Wine 2 vs 3 100 0.0078 0.0146 100 0.0078 0.0130

Zoo 95.83 0.0156 0.0183 100 0.0078 0.0143
Votes 75 0.0078 0.0013 75 0.0078 0.0135
Echo 97.70 0.25 0.2805 96.55 0.0078 0.0382

Table 4.3: Results of Grid Search with Linear Kernel

As we show in above table (4.3) for every datasets TWSVM takes less time com-
pare to SVM and datasets Monk1, Monk2, Monk3, Haberman, Stalog, German,
Bupa, Medelon and Zoo have high TWSVM accuracy compare to SVM Accuracy
in this case.
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Table (4.4) presents the results of the Grid Search method with the RBF kernel for
the SVM and TWSVM algorithms. The table includes Accuracy, C parameter, ker-
nel parameter (P), and Time (s) for both SVM and TWSVM.

Dataset SVM TWSVM
Accu. C P TIme(s) Accu. C P TIme(s)

Monk 1 89.35 128 16 0.1717 84.26 0.5 0.0625 0.0221
Monk 2 81.94 0.25 0.0078 0.2635 81.94 0.0078 1 0.0238
Monk 3 85.42 128 32 0.1663 79.63 1 0.0078 0.0253

Spect 91.98 0.0078 0.0078 0.0585 92.51 4 0.0313 0.0180
Haberman 75.81 0.125 0.5 0.1975 77.42 0.25 0.0313 0.0492

Statlog 87.04 32 8 0.1857 88.89 4 0.0313 0.0302
Ionosphere 100 0.0078 0.0078 0.2674 100 0.0078 0.0078 0.0508

Pima-Indian 81.82 1 0.5 1.2630 82.47 0.125 1 0.1562
German 96.30 0.25 2 0.0368 96.30 16 0.25 0.0211

Australian 79.50 64 8 2.1486 78.50 0.125 0.0156 0.2256
Bupa 89.86 0.5 16 1.0964 87.68 0.0078 0.0078 0.1070

Diabetes 81.16 2 2 0.2764 81.16 1 0.125 0.0482
Fertility 81.82 1 0.5 1.3430 82.47 0.125 1 0.1569
Sonar 90 0.0078 0.0078 0.0205 90 0.0078 0.0078 0.0221
Ecoli 59.52 64 8 0.1082 59.52 4 0.0156 0.0291
Plrx 81.82 2 0.125 0.2311 93.94 0.0078 32 0.0430

Madelon 70.27 64 1 0.0777 59.46 0.0078 0.0313 0.0283
Leukemia 61.17 64 8 36.0673 60.33 1 0.0156 1.3174

Wine 1 vs 2 86.67 32 64 0.2699 26.67 0.0078 0.0078 0.0238
Wine 2 vs 3 100 0.5 0.5 0.0235 100 0.0078 0.0078 0.0234

Zoo 100 16 2 0.0292 95.83 0.0078 0.0078 0.0252
Votes 75 0.0078 0.0078 0.0008 100 0.0078 0.25 0.0136
Echo 98.85 128 8 0.3952 98.85 16 0.0078 0.0610

Table 4.4: Results of Grid Search with RBF Kernel

As we show in above table (4.4) for every datasets TWSVM takes less time com-
pare to SVM and datasets Spect , Haberman, Stalog, Pima-indian, Fertility, Plrx
and Votes have high TWSVM accuracy compare to SVM Accuracy in this case.
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Table (4.5) presents the results of the Simulated Annealing (SA) method with a
linear kernel for the SVM and TWSVM algorithms. The table includes Accuracy,
C parameter, and Time (s) for both SVM and TWSVM.

Dataset SVM TWSVM
Accu. C TIme(s) Accu. C TIme(s)

Monk 1 66.20 243.44 0.1941 64.58 0.01 0.0095
Monk 2 67.13 415.53 0.6245 40.74 0.48 0.0145
Monk 3 80.56 136.44 0.0895 83.80 0.01 0.0113

Spect 78.07 0.68 0.0453 70.59 0.12 0.0095
Haberman 74.19 404.16 0.1490 74.19 418.02 0.0379

Statlog 87.04 0.17 0.1101 88.89 2.45 0.0168
Ionosphere 100 369.54 0.2161 100 14.47 0.0340

Pima-Indian 77.92 445.12 0.7827 77.27 0.51 0.0783
German 92.59 206.77 0.0263 96.30 0.61 0.0118

Australian 78.00 0.15 1.3499 69.50 177.88 0.1763
Bupa 86.23 121.29 0.7955 87.68 0.28 0.0693

Diabetes 73.91 27.50 0.1825 66.67 45.56 0.0249
Fertility 77.92 0.10 0.7427 77.92 0.34 0.0756
Sonar 90.00 211.86 0.0126 90.00 4.88 0.0114
Ecoli 69.05 40.66 0.1225 69.05 309.54 0.0174
Plrx 80.30 149.38 0.1677 80.30 12.89 0.0205

Madelon 56.76 300.73 0.0528 62.16 0.01 0.0199
Leukemia 58.50 1.51 27.0121 54.67 498.17 0.8211

Wine 1 vs 2 93.33 358.52 0.1541 93.33 10.96 9.9088
Wine 2 vs 3 100 475.87 0.0173 100 475.87 0.0094

Zoo 95.83 63.64 0.0227 100 0.01 0.0104
Votes 75.00 71.89 0.0015 75.00 71.89 0.0090
Echo 97.70 206.03 0.2831 96.55 0.01 0.0289

Table 4.5: Results of SA with Linear Kernel

As we show in above table (4.5) for every datasets TWSVM takes less time com-
pare to SVM and datasets Monk3, Statlog, German, Bupa, Madelon and Zoo have
high TWSVM accuracy compare to SVM Accuracy in this case.
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Table (4.6) presents the results of the Simulated Annealing (SA) method with the
RBF kernel for the SVM and TWSVM algorithms. The table includes Accuracy, C
parameter, kernel parameter (P), and Time (s) for both SVM and TWSVM.

Dataset SVM TWSVM
Accu. C P TIme(s) Accu. C P TIme(s)

Monk 1 93.06 430.86 23.00 0.178 83.33 156.30 0.114 0.0156
Monk 2 81.94 512 0.01 0.261 81.94 242.70 36.02 0.0212
Monk 3 85.42 512 48.08 0.186 79.86 512 0.01 0.0208

Spect 91.98 305.61 479.10 0.052 91.98 280.65 0.01 0.0146
Haberman 75.81 512 3.36 0.234 74.19 0.01 0.01 0.0369

Statlog 87.04 285.65 37.65 0.187 88.89 314.06 0.023 0.0332
Ionosphere 100 387.88 68.01 0.429 100 236.59 78.19 0.0561

Pima-Indian 79.87 259.12 89.89 1.317 79.22 0.01 4.189 0.1422
German 92.59 342.15 25.99 0.052 88.89 94.31 4.476 0.0307

Australian 79.00 379.74 31.71 2.344 69.50 169.13 20.20 0.4068
Bupa 89.86 301.92 460.61 1.119 86.96 0.01 0.01 0.0968

Diabetes 78.26 368.82 5.79 0.299 71.01 512 51.29 0.0409
Fertility 79.87 402.39 108.03 1.333 79.87 0.01 0.01 0.1162
Sonar 90.00 94.83 78.98 0.024 90.00 436.95 391.06 0.0139
Ecoli 66.67 460.99 10.02 0.116 45.24 362.97 0.01 0.0254
Plrx 74.24 242.50 2.36 0.275 90.91 421.92 85.02 0.0339

Madelon 56.76 239.65 167.83 0.111 56.76 455.15 42.13 0.0306
Leukemia 61.17 329.48 511.85 35.55 59.67 359.47 0.0102 1.3531

Wine 1 vs 2 93.33 246.73 176.98 0.256 26.67 42.34 430.79 0.0209
Wine 2 vs 3 100 353.74 475.87 0.025 100 512 0.01 0.0149

Zoo 95.83 10.19 63.64 0.032 95.83 0.01 0.01 0.0164
Votes 75.00 101.44 71.89 0.002 100 101.44 71.89 0.0092
Echo 97.70 375.76 20.41 0.491 96.55 88.23 0.01 0.0569

Table 4.6: Results of SA with RBF Kernel

As we show in above table (4.6) for every datasets TWSVM takes less time com-
pare to SVM and datasets Statlog and Vots have high TWSVM accuracy compare
to SVM Accuracy in this case.
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Table (4.7) presents selected features of certain datasets. The table includes the
dataset names (e.g., Monks1, Monks2, Heberman, Fertility), the number of fea-
tures in each dataset, and the binary representation of the selected features. The
features are represented as 0 or 1, where 1 indicates that the feature is selected for
classification, and 0 indicates that the feature is not selected.

Dataset No. of Features Features
1 2 3 4 5 6 7 8 9

Monks1 6 1 0 1 1 0 0 - - -
Monks2 6 1 0 0 1 0 0 - - -
Monks3 6 1 0 0 1 0 1 - - -

Heberman 3 1 0 1 - - - - - -
Fertility 9 0 0 1 0 1 1 1 0 1

Table 4.7: Selected Features of some datasets

The graph (fig 4.1) presents the relationship between the number of iterations and
the number of selected features. The number of selected features gradually de-
crease over the iterations. Here we show example of two dataset Madelon and
Leukemia.

Figure 4.1: Iteration vs No. of Features
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Table (4.8) presents the results of the SA-BGSA methods with Linear kernel for the
SVM and TWSVM algorithms. The table includes the dataset names (e.g., Monk 1,
Spect, Leukemia), the number of features in each dataset, and the corresponding
accuracy , time and selected features results for both SVM and TWSVM.

Dataset SVM TWSVM
features Accu. TIme(s) No. of Se-

lected fea-
tures

Accu. TIme(s) No. of Se-
lected fea-
tures

Monk 1 6 72.22 20.35 3 70.83 4.6 4
Monk 2 6 67.13 57.29 2 67.13 4.73 1
Monk 3 6 85.65 16.56 3 88.89 4.75 3

Spect 23 80.75 17.5 11 75.94 3.92 11
Haberman 3 74.19 23.56 2 74.19 21.45 2

Statlog 13 88.89 45.34 8 88.89 46.79 9
Ionosphere 34 100 98.34 26 100 89.75 27

Pima-Indian 8 80.52 138.22 3 83.12 17.67 4
German 20 96.30 36.33 15 96.30 36.33 15

Australian 14 79.00 13.77 8 76.50 16.03 9
Bupa 6 86.23 45.62 4 89.86 34.56 3

Diabetes 8 71.01 56.23 5 75.36 45.67 5
Fertility 9 81.17 2.48 2 83.12 4.58 4
Sonar 60 90.00 13.14 29 90.00 5.03 38
Ecoli 7 76.19 23.58 2 80.95 5.41 3
Plrx 12 96.97 7.39 4 100 4.02 6

Madelon 5000 56.76 1375.57 258 56.76 33.48 239
Leukemia 7129 61.50 18.78 3561 60.83 861.73 3511

Wine 1 vs 2 13 100 5.39 7 93.33 15.34 8
Wine 2 vs 3 13 100 920.16 10 100 131.32 8

Zoo 17 100 0.65 7 100 3.77 4
Votes 14 100 64.58 9 100 10.94 10
Echo 16 97.70 4.32 5 96.55 5.41 3

Table 4.8: Results of SA-BGSA with Linear Kernel

As we show in above table (4.8) for every datasets except Leukemia TWSVM takes
less time compare to SVM and datasets Monk3, Pima-indian, Bupa, Diabetes, Fer-
tility, Ecoli and Plrx have high TWSVM accuracy compare to SVM Accuracy in
this case.
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Table (4.9) presents the results of the SA-BGSA methods with RBF kernel for the
SVM and TWSVM algorithms. The table includes the dataset names (e.g., Monk 1,
Spect, Leukemia), the number of features in each dataset, and the corresponding
accuracy , time and selected features results for both SVM and TWSVM.

Dataset SVM TWSVM
features Accu. TIme(s) No. of Se-

lected fea-
tures

Accu. TIme(s) No. of Se-
lected fea-
tures

Monk 1 6 95.14 38.39 3 85.42 9.86 4
Monk 2 6 81.94 56.71 3 81.94 11.61 3
Monk 3 6 88.89 39.91 4 90.28 9.45 4

Spect 23 73.52 17.5 11 91.98 8.92 12
Haberman 3 75.81 43.05 2 87.56 21.45 2

Statlog 13 78.56 45.34 8 88.89 12.11 8
Ionosphere 34 100 98.34 26 100 89.75 27

Pima-Indian 8 83.12 325.85 7 83.12 17.67 4
German 20 82 495.98 13 82 111.34 15

Australian 14 90.58 207.89 10 91.3 41.94 6
Bupa 6 81.16 43.7 5 76.81 16.55 5

Diabetes 8 72.563 56.23 5 78.56 45.67 5
Fertility 9 90 4.4 5 95 6.36 4
Sonar 60 80.95 21.75 37 69.05 9.11 42
Ecoli 7 96.97 44.32 4 100 13.49 1
Plrx 12 70.27 17.39 4 64.86 7.64 7

Madelon 5000 63.67 2172.94 229 62.67 83.01 245
Leukemia 7129 100 29.07 3573 100 237.35 3510

Wine 1 vs 2 13 100 5.39 7 100 4.67 8
Wine 2 vs 3 13 100 920.16 10 100 235.45 8

Zoo 17 75 0.66 5 100 3.77 4
Votes 14 98.85 88.61 9 100 3.98 6
Echo 16 96.3 8.1 4 100 22.8 10

Table 4.9: Results of SA-BGSA with RBF Kernel

As we show in above table (4.9) for every datasets except Fertility, Zoo, Echo
TWSVM takes less time compare to SVM and datasets Monk3, Sepct, Harber-
man, Statlog, Australian, Diabetes, Fertility, Ecoli, Zoo, Votes and Echo have high
TWSVM accuracy compare to SVM Accuracy in this case.
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Table (4.10) presents the results of the SA-TLBO methods with Linear kernel for
the SVM and TWSVM algorithms. The table includes the dataset names (e.g.,
Monk 1, Spect, Leukemia), the number of features in each dataset, and the corre-
sponding accuracy , time and selected features results for both SVM and TWSVM.

Dataset SVM TWSVM
features Accu. TIme(s) No. of Se-

lected fea-
tures

Accu. TIme(s) No. of Se-
lected fea-
tures

Monks1 6 72.22 22.69 3 70.92 5.82 4
Monks2 6 67.49 60.71 3 67.94 5.7 3
Monks3 6 84.6 19.98 4 90.28 4.52 4

Spect 23 75.24 43.34 14 76.99 9.28 12
Haberman 3 74.81 55.98 2 74.98 24.15 2

Statlog 13 83.68 50.653 6 88.27 11.51 8
Ionosphere 34 100 101.49 25 100 90.52 24

Pima-Indian 8 84.69 402.79 7 84.69 19.74 4
German 20 96.84 35.93 14 96.97 132.48 16

Australian 14 79 15.876 10 79 49.14 6
Bupa 6 85.03 47.7 5 90.84 15.85 5

Diabetes 8 72.53 63.59 5 76.587 47.98 5
Fertility 9 85.786 4.6 5 82.9786 9.6 4
Sonar 60 82.6 19.49 42 90 11.98 42
Ecoli 7 75.97 25.88 4 81.9807 14.95 1
Plrx 12 95.47 9.71 4 100 6.47 7

Madelon 5000 62.37 1572.598 364 63.982 89.91 267
Leukemia 7129 64.74 23.57 3298 65.87 250.57 3479

Wine 1 vs 2 13 100 7.93 7 94.86 5.75 8
Wine 2 vs 3 13 100 987.667 10 100 289.55 8

Zoo 17 100 1.809 5 100 3.89 4
Votes 14 99.875 87.785 9 100 8.78 6
Echo 16 96.6 8.34 4 97.6 7.96 10

Table 4.10: Results of SA-TLBO with Linear Kernel

As we show in above table (4.10) for every datasets except German, Australian,
Fertility, Leukemia, Zoo TWSVM takes less time compare to SVM and datasets
Monk3, Sepct, Harberman, Statlog, German, Diabetes, Fertility, Sonar, Ecoli, Pirx,
Madelon, Leukemia, Votes and Echo have high TWSVM accuracy compare to
SVM Accuracy in this case.
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Table (4.11) presents the results of the SA-TLBO methods with RBF kernel for the
SVM and TWSVM algorithms. The table includes the dataset names (e.g., Monk 1,
Spect, Leukemia), the number of features in each dataset, and the corresponding
accuracy , time and selected features results for both SVM and TWSVM.

Dataset SVM TWSVM
features Accu. TIme(s) No. of Se-

lected fea-
tures

Accu. TIme(s) No. of Se-
lected fea-
tures

Monks1 6 92.64 60.38 3 94.52 27.69 4
Monks2 6 82.74 70.71 3 86.42 16.87 3
Monks3 6 87.89 91.39 4 90.28 10.52 4

Spect 23 76.82 34.8 13 91.49 9.28 12
Haberman 3 74.81 55.05 2 87.98 24.15 2

Statlog 13 81.56 78.25 7 88.27 11.51 8
Ionosphere 34 100 108.84 24 100 90.52 24

Pima-Indian 8 84.12 398.57 7 81.76 19.74 4
German 20 80.48 535.93 14 83.897 132.48 16

Australian 14 89.46 289.07 10 90.79 49.14 6
Bupa 6 80.35 47.7 5 79.84 15.85 5

Diabetes 8 72.563 65.39 5 77.67 47.98 5
Fertility 9 90 6.4 5 95 9.6 4
Sonar 60 80.26 29.59 39 75.95 11.98 42
Ecoli 7 94.97 49.28 4 99.87 14.95 1
Plrx 12 71.47 19.37 4 69.69 6.47 7

Madelon 5000 70.23 2100.72 298 69.72 89.91 267
Leukemia 7129 100 32.75 3256 100 250.57 3479

Wine 1 vs 2 13 100 9.53 7 100 5.75 8
Wine 2 vs 3 13 100 960.36 10 100 289.55 8

Zoo 17 75 5.86 5 89.76 3.89 4
Votes 14 96.85 92.15 9 100 8.78 6
Echo 16 96.96 10.34 4 100 7.96 10

Table 4.11: Results of SA-TLBO with RBF Kernel

As we show in above table (4.11) for every datasets except Fertility and Leukemia
TWSVM takes less time compare to SVM and datasets Monk 1, Monk 2, Monk
3, Spect, Herbrman, Statlog, Echo, Germans, Australian, Daibetes, Fertility, Ecoil,
Zoo and Vots have high TWSVM accuracy compare to SVM Accuracy in this case.
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This graph (fig 4.2) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-BGSA algorithms for SVM with a linear ker-
nel. The x-axis represents the different datasets or experiments, while the y-axis
represents the accuracy values.

Figure 4.2: Comparison of Grid Search ,SA and SA-BGSA of SVM with Linear
Kernel
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This graph (fig 4.3) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-BGSA algorithms for TWSVM with a linear
kernel. The x-axis represents the different datasets or experiments, while the y-
axis represents the accuracy values.

Figure 4.3: Comparison of Grid Search ,SA and SA-BGSA of TWSVM with Linear
Kernel
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This graph (fig 4.4) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-BGSA algorithms for SVM with a RBF ker-
nel. The x-axis represents the different datasets or experiments, while the y-axis
represents the accuracy values.

Figure 4.4: Comparison of Grid Search ,SA and SA-BGSA of SVM with RBF Kernel
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This graph (fig 4.5) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-BGSA algorithms for TWSVM with a RBF ker-
nel. The x-axis represents the different datasets or experiments, while the y-axis
represents the accuracy values.

Figure 4.5: Comparison of Grid Search ,SA and SA-BGSA of TWSVM with RBF
Kernel
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This graph (fig 4.6) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-TLBO algorithms for SVM with a Linear ker-
nel. The x-axis represents the different datasets or experiments, while the y-axis
represents the accuracy values.

Figure 4.6: Comparison of Grid Search ,SA and SA-TLBO of SVM with Linear
Kernel
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This graph (fig 4.7) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-TLBO algorithms for TWSVM with a linear
kernel. The x-axis represents the different datasets or experiments, while the y-
axis represents the accuracy values.

Figure 4.7: Comparison of Grid Search ,SA and SA-TLBO of TWSVM with Linear
Kernel
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This graph (fig 4.8) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-TLBO algorithms for SVM with a RBF ker-
nel. The x-axis represents the different datasets or experiments, while the y-axis
represents the accuracy values.

Figure 4.8: Comparison of Grid Search ,SA and SA-TLBO of SVM with RBF Kernel
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This graph (fig 4.9) represents the accuracy comparison between the Grid Search,
Simulated Annealing (SA), and SA-TLBO algorithms for TWSVM with a RBF ker-
nel. The x-axis represents the different datasets or experiments, while the y-axis
represents the accuracy values.

Figure 4.9: Comparison of Grid Search ,SA and SA-TLBO of TWSVM with RBF
Kernel

56



The comprehensive analysis of figure [4.2 - 4.9] clearly demonstrates that the Sim-
ulated Annealing (SA) method outperforms Grid Search in all scenarios for both
SVM and TWSVM models with Linear and RBF kernels. Across various datasets,
we observed higher accuracy values for SVM and TWSVM models when SA was
employed for parameter tuning. These results indicate the superior effectiveness
of SA in identifying optimal hyperparameters for enhanced model performance.

Additionally, each figure shows the results of feature selection for SVM and TWSVM
models with linear and RBF kernels using the SA-based hybrid approaches, SA-
BGSA and SA-TLBO. However, feature selection using SA-BGSA and SA-TLBO
improved accuracy in comparison with gride search and SA across all datasets.

The combination of SA for parameter adjustment and feature selection techniques
(SA-BGSA and SA-TLBO) produced consistent performance increases in every
case for SVM and TWSVM models with both Linear and RBF kernels. These re-
sults show the robustness and scalability of hybrid approaches.
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This graph (fig 4.10)presents a comparison of accuracy results of SVM and TWSVM
using the BGSA feature selection method with a linear kernel.

Figure 4.10: Comparison of BGSA with Linear Kernel
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This graph (fig 4.11)presents a comparison of accuracy results of SVM and TWSVM
using the BGSA feature selection method with a RBF kernel.

Figure 4.11: Comparison of BGSA with RBF Kernel
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This graph (fig 4.12)presents a comparison of accuracy results of SVM and TWSVM
using the TLBO feature selection method with a linear kernel.

Figure 4.12: Comparison of TLBO with Linear Kernel

60



This graph (fig 4.13)presents a comparison of accuracy results of SVM and TWSVM
using the TLBO feature selection method with a RBF kernel.

Figure 4.13: Comparison of BGSA with RBF Kernel

The comprehensive analysis of the figures [4.10 - 4.13] show that the compari-
son of feature selection accuracy of SVM with TWSVM for both feature selections
methods SA-BGSA and SA-TLBO using linear and RBF kernel. In most of the
datasets TWSVM performs well in both the methods as shows in above graphs.
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CHAPTER 5

Conclusions

In conclusion, our study highlighted the importance of feature selection and pa-
rameter tuning in the development of machine learning models. The performance
and accuracy of the models have been improved by parameter tuning through
optimization of hyperparameters and the most important subset of features was
simultaneously identified using feature selection, which improved the model’s
interpret-ability and allowed for more accurate predictions.

This study’s primary goal was to determine how well feature selection methods
for SVM and TWSVM models worked. To evaluate the effectiveness of these mod-
els using various feature selection methods, we have been done numerous exper-
iments and run on a variety of datasets. The results showed that feature selection
significantly improved TWSVM’s classification accuracy and efficiency as com-
pared to SVM.

For parameter tuning, we used Grid Search and Simulated Annealing (SA), and
we discovered that SA performed better than Grid Search, which led to greater
model accuracy and generalization. For the feature selection methods we used
BGSA and TLBO for both SVM and TWSVM with linear and RBF kernels. Finally
we used hybrid method which is parameter tune and feature selection. Combin-
ing feature selection and SA-based parameter tuning methods was successful in
improving our model’s performance

The performance of TWSVM and SVM models is significantly impacted by fea-
ture selection techniques, as shown by our study’s information. There have been
noticeable improvements in the precision and efficiency of TWSVM across the
majority of datasets after applying feature selection using both TLBO and BGSA.
These selected features not only made the predictions better but also made the
model easier to understand.
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Furthermore, the advantage of feature selection became more evident when com-
paring the computation times of TWSVM and SVM. For big datasets, TWSVM
constantly outperformed SVM in terms of training time and making it a more
time-effective solution. TWSVM is a desirable solution for real-world applica-
tions because, when combined with feature selection, it produced better results
with less computational cost.

In conclusion, our research shows that feature selection techniques like TLBO and
BGSA significantly improve the performance of TWSVM models. These meth-
ods takes less time for model generation process while simultaneously improv-
ing model accuracy. We can build robust machine learning models that perform
well in various real-world scenarios and fields by employing feature selection on
TWSVM.
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