
Comparative Performance Analysis of
Column Family Databases:

Cassandra and HBase
by

VINAY SHETH
202111032

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

I hereby declare that

Declaration

i) the thesis comprises of my original work towards the degree of Master of
Technology in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

i) due acknowledgment has been made in the text to all the reference material
used.

Certificate

VnoyShith
Vinay Sheth

This is to certify that the thesis work entitled "Comparative Performance Anal
ysis of Column Family Databases: Cassandra and HBase" has been carried out
by VINAY SHETH for the degree of Master of Technology in Information and
Communication Technology at Dhirubhai Ambani Institute of Information and Com
munication Technology under my/our supervision.

Prof. PM Jat

Thesis Supervisor

Acknowledgments

I am grateful to my supervisor, Prof. PM Jat for his valuable guidance and en-
couragement throughout the M. Tech. thesis process. His extensive knowledge
and expertise have been instrumental in shaping my research and improving the
quality of my thesis.

I would also like to express my sincere gratitude to Prof. Minal Bhise, Prof. Kalyan
Sasidhar, Prof. Supantha Pandit and Prof. Gopinath Panda for their valuable sug-
gestions and comments during both the stage presentations.

I am thankful to the IT Help Desk staff of Dhirubhai Ambani Institute of Informa-
tion and Communication Technology, for providing technical support and prompt
assistance whenever required.

I would like to extend my heartfelt gratitude to my family and friends, who have
provided me with unwavering encouragement and support throughout my the-
sis journey. Their constant love and encouragement have kept me motivated and
inspired.

Lastly, I would like to thank Dhirubhai Ambani Institute of Information and Com-
munication Technology, whose support has made it possible for me to pursue my
M.Tech. program and carry out this thesis.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Background Information . 1
1.2 Objective . 2
1.3 Thesis Problem Statement . 3
1.4 Motivation . 3
1.5 Contribution . 4
1.6 Thesis Outline . 4

2 Column Family Databases 5
2.1 Introduction . 5
2.2 Cassandra . 7

2.2.1 Data Model . 7
2.2.2 Consistency Model . 8
2.2.3 Architecture Implementation 9
2.2.4 Cassandra Access Path for Write Operation 11
2.2.5 Cassandra Access Path for Read Operation 12

2.3 HBase . 14
2.3.1 Data Model . 14
2.3.2 Consistency Model . 16
2.3.3 Architecture Implementation 17
2.3.4 HBase Access Path for Write Operation 18
2.3.5 HBase Access Path for Read Operation 20

2.4 Comparative Summary . 22

iii

3 Literature Survey 23
3.1 Yahoo! Cloud Serving Benchmark (YCSB) 23

3.1.1 YCSB Workloads . 24
3.1.2 System Core Properties . 25

3.2 Performance Evaluation of Cassandra 26
3.2.1 Benchmarking Replication and Consistency strategies in cloud

serving databases: HBase and Cassandra. 26
3.2.2 Interplaying Cassandra NoSQL consistency and performance:

A benchmarking approach 26
3.2.3 Automatic configuration of the Cassandra database using

Irace . 27
3.3 Comparative Performance Analysis of Cassandra and HBase 27

3.3.1 Benchmarking Cloud Serving Systems with YCSB 27
3.3.2 A comparison between several NoSQL databases with com-

ments and notes . 28
3.3.3 Quantitative Analysis of scalable NoSQL databases 28
3.3.4 Experimental Evaluation of NoSQL Databases 29
3.3.5 NoSQL evaluation: A use case oriented survey 29

4 Performance Evaluation of Cassandra using YCSB 30
4.1 Experimental Setup . 30
4.2 Results and Discussion . 30

4.2.1 Novel Findings . 37
4.3 Summary of Experimental Results 40

5 Comparative Performance Analysis of Cassandra and HBase 41
5.1 Experimental Setup . 41
5.2 Analysis for Update-Heavy workload (YCSB Workload A) 42
5.3 Results for Update-Heavy Workload 45
5.4 Analysis for Read-Heavy workload (YCSB Workload B) 46
5.5 Results for Read-Heavy Workload 49
5.6 Result Discussion . 50

5.6.1 Read Latency: Cassandra<HBase 50
5.6.2 Update Latency: Cassandra>HBase 50
5.6.3 Throughput: Cassandra>HBase 51

6 Conclusion and Future Work 52

References 54

iv

Abstract

Up until now, relational databases have been unquestionably the most prevalent
type of databases used to handle data. The advent of cloud computing and big
data has underlined the need for databases that are capable of managing and ana-
lyzing big data. By allowing storage and retrieval of structured as well as unstruc-
tured data, NoSQL databases circumvent the limitations of relational databases.
Because of their support for schema flexibility, rapid data access and potential to
scale up quickly, they have emerged as the favored choice for big data processing.

These systems have several properties/parameters which can be tuned to achieve
specific performance goals based on business needs. Having well-defined perfor-
mance objectives assist us in articulating the acceptable trade-offs for our applica-
tion. This motivates us to evaluate the performance of one such frequently used
NoSQL system: Cassandra. Apache Cassandra is an open-source, decentralized,
distributed, fault-tolerant, highly available, elastically scalable, tunably consis-
tent, row-oriented database. In order to accomplish the performance evaluation,
we use the Yahoo! Cloud Serving Benchmark (YCSB) for benchmarking efforts.
Our findings highlight that increasing thread count initially improves throughput
and CPU utilization but later decreases it. Higher record count, consistency level,
and dataset size lead to decreased throughput and increased latency. Stronger
consistency level also increases the CPU utilization. Increasing operation count
improves throughput but increases latency as well. These findings provide guid-
ance for optimizing Cassandra’s performance by adjusting these parameters.

We also assess Apache HBase, another well-known NoSQL database, using YCSB.
The relative performance of these databases under analytical as well as update-
heavy workloads is the primary focus of our investigation. Our test results demon-
strate that for both workloads, Cassandra outperforms HBase in read operations,
whereas HBase excels in write operations. This research quantifies the perfor-
mance traits of Cassandra and HBase, assisting developers and architects in choos-
ing the best database system for their big data applications.

v

List of Principal Symbols and Acronyms

ACID Atomicity, Consistency, Isolation, and Durability

AP Availability and Partition Tolerance

BASE Basically Available, Soft State, Eventually Consistent

CAP Consistency, Availability and Partition Tolerance

CP Consistency and Partition Tolerance

CPU Central Processing Unit

CQL Cassandra Query Language

DBMS Database Management System

HDFS Hadoop Distributed File System

IOT Internet of Things

NO SQL Not Only SQL

RAM Random Access Memory

RF Replication Factor

SQL Structured Query Language

SSTABLE Sorted Strings Table

WAL Write Ahead Log

YCSB Yahoo! Cloud Serving Benchmark

vi

List of Tables

2.1 Cassandra vs HBase . 22

3.1 Workload Characterization for YCSB 24

4.1 YCSB Core Properties and effect on Performance Metrics 40

vii

List of Figures

2.1 Database Schema containing Column Families 5
2.2 Column Family Row Structure . 6
2.3 Cassandra Data Model . 7
2.4 Consistent Hashing using a Token Ring 10
2.5 Cassandra Write Path . 11
2.6 Cassandra Read Path . 13
2.7 HBase Data Model . 15
2.8 Rows grouped into Regions and managed by different Region Servers 18
2.9 HBase Write Path . 19
2.10 HBase Read Path . 20

4.1 {Threads, Consistency} vs Latency 31
4.2 Record Count vs Throughput . 32
4.3 Record Count vs Latency . 33
4.4 Consistency vs Throughput . 34
4.5 Operation Count vs Throughput . 34
4.6 Operation Count vs Latency . 35
4.7 Dataset Size vs Throughput . 36
4.8 Threads vs Throughput . 37
4.9 Threads vs CPU Utilization . 38
4.10 Consistency vs CPU Utilization . 39
4.11 Dataset Size vs Latency . 40

5.1 Read Latency vs Achieved Throughput for Workload A 42
5.2 Update Latency vs Achieved Throughput for Workload A 43
5.3 Achieved Throughput vs Target Throughput for Workload A 44
5.4 Read Latency vs Achieved Throughput for Workload B 46
5.5 Update Latency vs Achieved Throughput for Workload B 47
5.6 Achieved Throughput vs Target Throughput for Workload B 48

viii

CHAPTER 1

Introduction

1.1 Background Information

NoSQL (Not Only SQL) databases have emerged as the data platform and a criti-
cal industrial solution for coping with data explosion. They are currently widely
employed in various market segments, including business-critical systems, social
networks, large-scale Internet applications, Internet of Things (IoT), and other
industrial applications. The notion of NoSQL databases has been developed to
successfully store and offer rapid access to Big Data sets whose volume, veloc-
ity, variety, veracity, and variability are challenging to cope with using standard
Relational Database Management Systems [11]. Most NoSQL stores forego ACID
(atomicity, consistency, isolation, and durability) properties in favour of BASE (ba-
sically available, soft state, eventually consistent) features as a cost of distributed
data management, schema flexibility, and horizontal scalability [21].

Trade-offs between consistency, availability, and latency are inherent in NoSQL
databases [16] [19]. Although the CAP theorem discovered these relationships
qualitatively, it is still important to quantify how various system parameters/
properties (workload, consistency, threads, operation count, record count, request
distribution, number of nodes, replication factor) impact system latency and through-
put. Understanding this trade-off is critical for using NoSQL solutions effectively.

Although there are several NoSQL databases available in the market, majority of
the industry trends indicate that Apache Cassandra is one of the most popular
systems in use. Apache Cassandra delivers high availability with no single point
of failure and a collection of unique characteristics (e.g., tunable consistency, high
availability, data distribution using consistent hashing, flexibility to work across
geographically distributed data centres, elastic scalability, etc.) that make it one
of the most versatile and popular NoSQL systems.

1

Apache HBase is another popular column family database used in the industry.
Having done the performance evaluation of Cassandra motivates us to explore
the capabilities of HBase and consider it as a potential alternative for our data
storage needs. Both Cassandra and HBase are prominently used because of their
ability to handle enormous amount of data. Both offer high-performance capabil-
ities while being highly scalable and fault-tolerant. In spite of these similarities,
there are notable differences between Cassandra and HBase architectures which
affect the read/write performance of these systems.

1.2 Objective

The objective of this thesis is (i) To conduct a thorough performance evaluation of
Cassandra using the Yahoo! Cloud Serving Benchmark (YCSB) as the benchmark-
ing tool, and (ii) To conduct a comprehensive comparative performance analy-
sis of Cassandra and HBase, two popular column family databases, with the aim
of assessing their performance characteristics for read-intensive/update-intensive
workloads.

The study seeks to provide valuable insights and empirical evidence to aid decision-
making in selecting the most appropriate database for specific use cases. The spe-
cific objectives of this thesis include:

1. To conduct a series of performance experiments using YCSB core workloads
to measure the performance metrics of Cassandra.

2. To analyze and interpret the benchmarking results to identify the effect of
system parameters on the performance of Cassandra.

3. To evaluate the trade-offs and performance implications of using Cassandra
and HBase in different application contexts.

4. To contribute to the existing body of knowledge in the field of distributed
databases by advancing the understanding of the performance characteris-
tics and comparative analysis of Cassandra and HBase.

By achieving these objectives, this thesis aims to enhance the understanding of the
performance capabilities of Cassandra and HBase and provide valuable guidance
to researchers, practitioners, and organizations in making informed decisions re-
garding the selection of database systems.

2

1.3 Thesis Problem Statement

The goal of this thesis is to assess Cassandra’s performance under various config-
urations when benchmarked with YCSB. We also aim to evaluate the relative per-
formance of Cassandra and HBase for read-intensive and write-intensive work-
loads.

The following are the Research Questions:

1. What are the possible evaluation metric measurements (throughput, latency,
CPU utilization) for various system configurations when running the Cas-
sandra cluster, stressed by different workloads?

2. How can we find an ideal system configuration to achieve specific perfor-
mance goals?

3. Which among Cassandra and HBase is best suited for execution of analytical
and update-intensive workloads? Can we quantify the relative read/write
performance of these databases?

1.4 Motivation

It is always desirable to experimentally understand and analyze the performance
of a system.

Performance tuning of NoSQL database systems is an evolving topic with the ad-
vent of “Big Data”. Answering research questions 1 and 2 will allow us to compre-
hend Cassandra’s architecture and behaviour, and determine the average number
of operations per second that a user may execute under different types of work-
loads for various configurations. The experimental results will help in proposing
the most optimal configuration for running a particular type of workload.

Literature indicates that Cassandra exhibits relatively better read performance
while HBase has a relatively better write performance in terms of throughput and
latency [10] [12] [22] [23]. Answering research question 3 will help us in validat-
ing the same and deciding the selection of a particular column family database
for a given use case.

3

1.5 Contribution

The research presented in this thesis makes the following key contributions to the
field of distributed databases, specifically in the context of (i) Performance evalu-
ation of Cassandra, and (ii) Performance comparison of column family databases-
Cassandra and HBase:

1. Through rigorous experimentation and benchmarking, we have evaluated
the performance of Cassandra across different workload configurations, record
counts, operation counts, thread counts, consistency levels, and dataset sizes.
By measuring key evaluation metrics such as throughput, read/update la-
tency, and CPU utilization, we provide a detailed analysis of Cassandra’s
performance characteristics upon varying these parameters. We have con-
firmed that our findings are consistent with the results obtained in previous
studies.

2. We analyze and interpret the benchmarking results to identify the effect of
thread count on throughput; thread count, consistency level on CPU utiliza-
tion and dataset size on latency.

3. We quantify the relative read/write performance of Cassandra and HBase
for read-intensive and write-intensive workloads in terms of read latency,
update latency and achieved throughput.

4. We analyze the effect of thread count and target throughput on latency and
throughput while executing these workloads. By specifying different val-
ues of target throughput for a given value of thread count, we identify the
threshold achieved throughput, which is helpful in indicating the scenario
of a system overload.

1.6 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 describes Column Family
databases and analyzes the data model, architectural implementation and query
execution of Cassandra and HBase. Chapter 3 presents the literature review.
Chapter 4 discusses the experiments conducted to evaluate the performance of
Cassandra using YCSB. Chapter 5 presents the comparative performance analy-
sis of Cassandra and HBase for read-intensive and update-intensive workloads,
and the rationalization of the results. Chapter 6 concludes the thesis and suggests
possible directions for future research.

4

CHAPTER 2

Column Family Databases

2.1 Introduction

Column Family databases enable storing data using a column-oriented model.
They are also referred to as column store databases, column oriented databases,
wide column stores and columnar databases. When compared to traditional rela-
tional databases which store data in rows and tables, the data in column families
is arranged in a columnar manner, where related data is grouped and stored to-
gether according to the columns to which it belongs [21]. Each column family
consists of a group of rows or records, where each row may have a distinct set
of columns. As a result, it is possible to create flexible schema designs in which
various rows of the same column family may include a variety of columns and
the corresponding data.

Figure 2.1: Database Schema containing Column Families

5

Fig. 2.1 shows a database schema containing 5 column families. It also provides
a closer look to the column family named ’User Profile’. The figure illustrates the
following:

• A column family can consist of multiple rows/records.

• The number of columns in different rows can be different. Additionally, the
columns need not be the same in all the rows i.e., they can have different
column names, column data types, etc.

• Each column is enclosed within its associated row. In contrast to a relational
database, it does not span every row. Every column contains a name-value
pair and a timestamp. The example used in the figure uses POSIX time for
the timestamp.

Figure 2.2: Column Family Row Structure

The description of each component of a column family row as illustrated in Fig.
2.2 is as follows:

1. Row Key: Every row has a distinct key, which serves as the row’s unique
identifier.

2. Column: Each column has a name, a value and a timestamp.

3. Name: It is the name of the column.

4. Value: It is the value of the column for the given row.

5. Timestamp: It specifies the date and time when the data was inserted. This
field is used to determine the most recent version of the data.

6

2.2 Cassandra

Cassandra is an open-source NoSQL database management system created by
Facebook. It was built to manage massive amounts of data spread over several
commodity servers [17]. Cassandra has various advantages over other NoSQL
databases, including elastic scalability, quick linear-scale performance, flexibility
in data storage, simplicity of data dissemination, transactional support, fault tol-
erance and high availability.

2.2.1 Data Model

As opposed to conventional relational databases, Cassandra uses a column-family
data model. In this model, data is arranged in tables, but the structure of these
tables is flexible, enabling dynamic column addition or deletion without altering
the existing structure [19].

Figure 2.3: Cassandra Data Model

The following are the key components of the Cassandra data model as illustrated
in Fig. 2.3:

1. Cluster: Cassandra database is distributed over a number of interconnected
computers operating together. The outermost container is referred to as the
cluster. Cassandra arranges the cluster nodes in a ring format and assigns
data to them.

7

2. Keyspace: A keyspace serves as the top-level data container. It represents a
namespace that stores related column families together.

3. Column Family: A column family is the container of a set of rows. Each
row contains ordered columns. The column families help us to specify the
structure of the data.

4. Column: Cassandra columns have three components: a name, a value, and
a timestamp. In contrast to relational databases which have a fixed number
of columns for each row, Cassandra allows adding or removing columns
dynamically without impacting the schema, and hence, each row can have
a different set of columns.

5. Partition Key: The partition key is a subset of the primary key and is used
to identify the partition on which the data must be stored. Cassandra has a
distributed architecture and the data is distributed among cluster nodes on
the basis of the partition key.

6. Clustering Key: The clustering key is a subset of the primary key that spec-
ifies the sorting order within a partition. It helps determine how the data is
stored physically in a partition.

2.2.2 Consistency Model

Cassandra is categorized as an AP (Availability and Partition Tolerance) system
according to the CAP theorem, which means it prioritizes availability and parti-
tion tolerance over strong consistency. Cassandra’s consistency model allows for
tunable consistency levels, giving users flexibility in trading off between data con-
sistency and system availability. Here are some key characteristics of Cassandra’s
consistency model:

1. Tunable Consistency:
Cassandra provides tunable consistency levels that allow users to control
the level of consistency they require for read and write operations. Users
can choose from consistency levels such as "ONE", "QUORUM", or "ALL"
among others. The consistency level determines the number of replicas
that must respond for a read or write operation to be considered success-
ful. Higher consistency levels provide stronger consistency guarantees but
may sacrifice system availability.

8

2. Read and Write Consistency:
In Cassandra, read and write operations can have different consistency lev-
els. For example, a user can configure a write operation to require a con-
sistency level of "QUORUM", meaning that a majority of replicas must ac-
knowledge the write before it is considered successful. On the other hand,
a read operation can have a lower consistency level, such as "ONE", where
only a single replica needs to respond to fulfil the read request.

It is important to note that while Cassandra provides availability and allows con-
tinued operation during network partitions or failures, it may exhibit inconsistent
behavior.

Cassandra’s AP characteristics make it well-suited for use cases where high avail-
ability and scalability are crucial, such as content delivery networks, real-time an-
alytics, and social media platforms. The ability to adjust consistency levels allows
users to strike a balance between data consistency and system responsiveness,
tailoring the database behavior to their specific requirements.

2.2.3 Architecture Implementation

The distinctive design of Cassandra is influenced by the Dynamo and BigTable
data models, combining their advantages to offer high availability, linear scalabil-
ity, and data distribution across numerous nodes [2]. This section discusses the
practical aspects of Cassandra’s architecture implementation, taking into account
design considerations and components which promote its successful deployment.

Partitioning is a fundamental aspect of Cassandra’s architecture, which enables
efficient data distribution and horizontal scalability. A partitioner is used to par-
tition the data in Cassandra, by generating a token for each partition based on the
partition key. The partitioner uses a special hashing algorithm called consistent
hashing that guarantees that data is distributed equally throughout the cluster,
and provides efficient means to locate data based on its key. The same is illus-
trated in Fig. 2.4.

The peer-to-peer, decentralised architecture of Cassandra allows nodes to connect
with one another in order to exchange metadata and coordinate operations. Each
individual cluster node is in charge of storing and managing one or more par-
titions. As new nodes are added to the cluster, Cassandra can scale linearly by

9

Figure 2.4: Consistent Hashing using a Token Ring

automatically redistributing data among the nodes and ensuring that the work-
load is divided equally. Scaling enables greater storage capacity and increased
read and write throughput. Cassandra supports smooth addition and removal of
nodes, allowing clusters to scale up or down with zero downtime.

Replication is a crucial component of the Cassandra architecture which guaran-
tees data availability, load balancing, durability and fault tolerance. Cassandra
users can configure the replication factor, which specifies how many replicas of
the data are stored across the cluster nodes. Replication provides redundancy
and ensures data durability in the event of node failures. Cassandra supports dif-
ferent replication strategies like Simple Strategy and Network Topology strategy.

Cassandra employs several mechanisms to provide fault tolerance. Cassandra
utilises a gossip protocol to detect and disseminate information about the state of
the cluster nodes in event of node failures. The system automatically promotes
one of the replicas to handle read and write operations when a node goes down,
maintaining continuous availability. Cassandra’s architecture allows seamless re-
covery and ensures that data is accessible even in the face of failures.

By comprehending and effectively using these architectural components, devel-
opers can build robust and scalable applications using Cassandra.

10

2.2.4 Cassandra Access Path for Write Operation

The write path in Apache Cassandra refers to the procedure by which data is
written to and stored in the database. In order to guarantee durability, availabil-
ity, and high performance for write operations, it involves a number of steps and
components that interact with one another [6].

Figure 2.5: Cassandra Write Path

The steps listed below make up the typical write path in Cassandra as shown in
Fig. 2.5:

1. Client Request: A client sends a write request to a Cassandra node to initiate
a write operation. The client specifies the keyspace, the table, and data to be
written.

2. Partitioning: Based on the partition key, Cassandra utilises a distributed
hash function to identify the node that is responsible for storing the data.
The partition key, which is generally a component of the primary key, aids
in determining how data is distributed across the cluster nodes.

3. Replication: Cassandra offers high availability and is designed to be dis-
tributed. Using the replication strategy and the replication factor speci-
fied for the keyspace, Cassandra duplicates the data across multiple cluster
nodes after identifying the coordinator node. Each replica node holds a copy
of the data to offer fault tolerance and data durability.

11

4. Commit Log: After data replication, the involved nodes store the data to
their commit log on disk. The append-only commit log ensures durability
in the event of node failures.

5. Memtable: Cassandra uses an in-memory structure called the memtable to
temporarily store data. The involved nodes update the memtable with the
new data, and subsequent writes with the same partition key are added to
the memtable as well. This lowers disk I/O and enables efficient writes.

6. SSTables: The memtable is periodically flushed to disk as an SSTable (Sorted
String Table). The SSTable is an immutable file that contains sorted data for
a certain range of partition keys. To optimize disk space and read perfor-
mance, SSTables are compacted periodically.

7. Acknowledgement: An acknowledgment is given back to the client when
the data has been successfully written to the commit log and memtable of
the appropriate number of nodes as specified by the consistency level. The
data can be now regarded as durable.

By adhering to this write path, Cassandra guarantees durability, fault tolerance
and efficiency for write operations. It makes use of distributed data storage, repli-
cation, and memory-based structures to offer high-performance writing capabili-
ties, even in large-scale distributed systems.

2.2.5 Cassandra Access Path for Read Operation

The read path in Apache Cassandra refers to how data is retrieved from the database.
Cassandra performs a series of steps to effectively locate and retrieve the data
whenever a client submits a read request [6].

Here is a summary of the typical read path in Cassandra as shown in Fig. 2.6:

1. Client Request: A read operation starts when a client submits a read request
to a Cassandra coordinator node. The request specifies the keyspace, the
table and the criteria for the data to be retrieved.

2. Partitioning: The coordinator node uses the partitioner to identify the replica
nodes and ensures that there are enough replicas to satisfy the specified con-
sistency setting.

12

Figure 2.6: Cassandra Read Path

3. Node Coordination: If the desired data is found on the coordinator node,
data retrieval happens instantly. If not, the coordinating node makes con-
tact with the relevant replica nodes to obtain the data. The data from the
fastest replica can be returned if the replicas are consistent and the desired
consistency level has been achieved. Otherwise, the coordinator node must
carry out a read-repair.

4. Bloom Filters, Caches and Indexes: Cassandra makes use of bloom filters,
caches and indexes to optimize the search process. If the data resides in
the cache, it can be returned immediately. Bloom filters are probabilistic
data structures that can determine whether the SSTable could contain the
required data. Data within the SSTables may be efficiently located with the
aid of indexes, such as the partition index and secondary indexes.

5. SSTable Lookup: Based on the partition key and any further criteria spec-
ified in the read request, the coordinating node conducts a lookup in the
SSTables. To locate the necessary data, it scans all the relevant SSTables. The
primary key is used in SSTables to order the data, which facilitates quick
lookups.

6. Data Retrieval and Merging: After determining the relevant SSTables, the

13

coordinator node obtains the data and, if required, merges it by selecting
the value with the latest timestamp for each requested column. Cassandra
uses a procedure known as read repair to maintain consistency when data
from several replica nodes has to be combined.

7. Response to the Client: As a last step, the coordinator node replies to the
client’s read request by sending the data it has just retrieved.

By adhering to this read path, Cassandra optimizes data retrieval by leveraging its
distributed architecture, data partitioning, replication, bloom filters, caches and
indexes. This approach enables Cassandra to handle read operations efficiently,
even in large-scale distributed systems.

2.3 HBase

HBase is an Apache Hadoop-based open-source NoSQL database management
system. It is intended to store and handle massive volumes of structured and
semi-structured data in a distributed fashion. HBase is built on the Google BigTable
paradigm, which enables automated data replication and sharding across sev-
eral nodes of a cluster [13]. The key characteristics of HBase include high write
throughput, low latency and a fault-tolerant design. Since HBase is a column-
oriented database, it stores and accesses data by columns rather than by rows.
This facilitates storage and retrieval of massive volumes of data.

2.3.1 Data Model

Data storage in HBase is column oriented, and takes the form of a multi-hierarchical
Key-Value map [3]. The HBase data model is extremely adaptable, and one of its
best features is the ability to add or remove column data as per requirement with-
out affecting the performance. It is possible to process semi-structured data using
HBase. There are no specific data types since the data is stored in bytes.

The following are the key components of the HBase data model as illustrated in
Fig. 2.7:

1. Table: In HBase, a table is mostly logical rather than physical. A collection
of rows forms an HBase table. The table’s data is distributed across multiple
regions using the range of rowkey.

14

Figure 2.7: HBase Data Model

2. Row: In HBase, a row is only a logical representation. Physically, the data
is stored in columns rather than rows. Rows are combinations of column
families. A rowkey serves as a primary key index that is used to uniquely
identify each row.

3. Column Family: Columns in HBase are organised into column families,
which are collections of related columns. Column families are created dur-
ing schema definition and are defined at the table level. Each row within a
column family may have a different set of columns, but all rows in a table
share the same set of column families.

4. Column: In HBase, columns are defined within column families. Each col-
umn consists of a name, value, and timestamp. A column can be accessed
by using a qualifier as column_family-name:column-name.

5. Cell: In HBase, data is written into cells. In an HBase table, the combination
of rowkey, row, column, and version can be used to define a cell. The data
will be saved as cell value and will be of the byte[] data type.

6. Version: In HBase, a rowkey (row, column, version) contains a cell. To allow
holding more than one cell for the same row and column, we need to specify
a version value. To ensure that the most recent cell values are retrieved first,
HBase stores the versions in descending order.

15

2.3.2 Consistency Model

HBase is categorized as a CP (Consistency and Partition Tolerance) system accord-
ing to the CAP theorem, which states that in the event of a network partition, a
distributed system must choose between consistency and availability. HBase pri-
oritizes consistency over availability, making it a CP system.

As a CP system, HBase focuses on ensuring strong consistency and data integrity
across replicas, even in the presence of network failures or partitions. Here are
some key characteristics of HBase as a CP system:

1. Row-Level Strong Consistency:
HBase provides strong consistency guarantees for single-row operations.
When a client performs a read or write operation on a single row, HBase
ensures that subsequent read operations from the same row will reflect the
effects of the previous write. This guarantees that clients always observe a
consistent view of the data within a row.

2. Consistent Replication:
HBase employs replication to achieve fault tolerance and data durability.
It maintains multiple replicas of data across different nodes in the cluster.
While replication is typically asynchronous, HBase ensures that all replicas
eventually catch up and maintain consistency. It employs mechanisms like
write-ahead logs (WALs) and distributed commit logs to synchronize repli-
cas and maintain data consistency.

HBase is designed to handle network partitions and failures without experienc-
ing significant unavailability. It automatically recovers and ensures strong consis-
tency across replicas once the network issues are resolved. This robustness makes
HBase suitable for applications where continuous availability and data integrity
are crucial.

HBase’s CP characteristics make it suitable for use cases where data consistency
and integrity are of utmost importance, such as financial systems and e-commerce
platforms. However, it’s worth noting that achieving strong consistency may in-
troduce some latency overhead compared to systems with weaker consistency
models.

16

2.3.3 Architecture Implementation

HBase’s architecture has its foundation laid in its close integration with HDFS,
a distributed file system intended for storing massive amounts of data across a
cluster of commodity hardware. HDFS serves as the foundational storage layer
for HBase, guaranteeing fault tolerance, high availability, effective data distribu-
tion and strong consistency. This section examines the practical aspects of imple-
menting the HBase architecture, with a focus on the design considerations and
components necessary for successful deployment.

HBase uses a partitioning scheme called sharding to distribute data horizontally
across the cluster [13]. In HBase, data is organised into tables that are divided
into regions. Each region is stored on a particular region server and consists of a
range of row keys. Row keys are used for partitioning of data, and HBase uses a
hashing algorithm to map row keys to relevant regions and region servers. The
same is illustrated in Fig. 2.8.

Partitioning allows HBase to scale well by distributing the workload and data
across several region servers. It enables read and write operations to be pro-
cessed in parallel, enabling efficient data retrieval and updates. Additional region
servers may be added to the cluster to accommodate the growth as the dataset
or the workload increases, maintaining linear scalability. Whenever a new region
server is added, regions are automatically split and distributed throughout the
expanded cluster to ensure effective resource utilization and data balance.

Replication is another critical feature of HBase’s architecture, which offers data re-
dundancy, load balancing, and enhanced performance. HBase offers asynchronous,
cross-datacenter replication, enabling users to replicate data to remote clusters
for disaster recovery or geographically dispersed deployments. The replication
mechanism in HBase makes sure that modifications made to the primary regions
are propagated to the replica regions. Replication makes it possible to serve read
operations from the local replica, lowering network latency and enhancing read
performance. Users can specify which tables and column families are replicated,
and to which remote clusters, by configuring the replication scope.

Replication of data across multiple region servers provides fault tolerance and
high availability. The number of replicas stored in the cluster is determined by
the replication factor configured for each region. Replication ensures data acces-

17

Figure 2.8: Rows grouped into Regions and managed by different Region Servers

sibility and durability in case of region server failures. HBase automatically pro-
motes one of the replica regions to replace the failed region server in the event of
a failure. This failover mechanism ensures high availability and seamless recov-
ery. Furthermore, HBase also uses a distributed coordination service like Apache
ZooKeeper to manage metadata and enable coordination among the distributed
components.

A comprehensive understanding of these architectural elements empowers devel-
opers to harness the full potential of HBase.

2.3.4 HBase Access Path for Write Operation

The write path in Apache HBase refers to the procedure by which data is written
to and stored in the database. When a client sends a write request to HBase, it
goes through a series of steps to ensure data durability and availability [5].

The steps listed below make up the typical write path in HBase as shown in Fig.
2.9:

1. Client Request: A write operation starts when a client sends a write request
to HBase.

18

Figure 2.9: HBase Write Path

2. Zookeeper: In order to find the location of the region server(s) in charge of
the data being written, the client contacts ZooKeeper.

3. Region Server: The client communicates directly with the region server(s)
responsible to handle the data.

4. Write-Ahead Log (WAL): The region server initially writes the data to the
append-only Write-Ahead Log (WAL), which is stored on the disk. The WAL
assures durability by recording all changes before they are applied to the
data files.

5. MemStore: After writing to WAL, the region server writes the data to an in-
memory data structure called the MemStore, which allows for quick access
to newly written data.

6. HFile Flush: The region server periodically flushes the MemStore to disk
as a new HFile when it fills up in memory. This ensures durability and
also makes room for the subsequent writes by freeing up memory in the
MemStore.

7. Compaction: HFiles accumulate on disk over time, and HBase periodically
performs compaction to improve performance. Compaction merges many
HFiles, discards expired or deleted data, and improves storage.

8. Replication and WAL Replay: To ensure fault tolerance, the changes written
to the WAL are replicated to other region servers. In the event of failures,
the data can be recovered by replaying the WAL.

19

9. Acknowledgement to the Client: Once the data has been written to the WAL
and MemStore, and the necessary replication and flushing operations have
been finished, the region server sends an acknowledgment back to the client,
indicating that the write operation was successful.

By adhering to this write path, HBase ensures durability, fault tolerance, and effi-
cient data storage. The use of WAL, MemStore, flushing, compaction, and repli-
cation mechanisms helps HBase provide reliable and high-performance write op-
erations in distributed environments.

2.3.5 HBase Access Path for Read Operation

The read path in Apache HBase refers to how data is retrieved from the database.
HBase performs a series of steps to effectively locate and retrieve the data when-
ever a client submits a read request [5].

The high level read architecture of HBase is shown in Fig. 2.10. Here is a summary
of the typical read path in HBase:

Figure 2.10: HBase Read Path

20

1. Client Request: A read operation gets initiated when a client submits a read
request to an HBase region server. The request specifies the table name, the
row key, and possibly any particular columns or filters for the data to be
retrieved.

2. Region Assignment: HBase employs a distributed architecture and assigns
the data to different regions. Based on the row key, the region server in
charge of the requested data’s region is identified.

3. Block Cache: The region server initially looks for frequently accessed data
blocks in the block cache, a memory-based cache. If the required data is
present in the cache, it can be sent to the client right away.

4. MemStore: If data is not available in the block cache, the region server
searches the in-memory data structure called MemStore that contains the
recently written data. The MemStore is set up as a sorted map of key-value
pairs.

5. HFile Lookup: If the data is not found in the MemStore, the region server
searches the HFiles. HFiles are persistent storage files where the data is
stored on disk. They are organized as data blocks sorted by row key ranges.

6. Bloom Filters and Indexes: HBase makes use of Bloom filters and indexes
to optimize the search process. Bloom Filter is a probabilistic data structure
that is used to determine whether an HFile contains the requested data. In-
dexes, such the row index and block index, make it easier to locate the data
within the HFiles.

7. Block Cache Population: If the requested data is found in the HFiles, the
region server populates the block cache with the relevant data blocks for
serving future read requests.

8. Data Retrieval: After locating the requested data, the region server retrieves
it and assembles it into a response.

9. Response to the Client: Finally, the region server sends the retrieved data to
the client as a response to the read request.

By adhering to this read path, HBase optimizes data retrieval by utilizing block
caching, in-memory storage (MemStore), HFile lookup, Bloom Filters, and in-
dexes. This approach enables HBase to handle read operations efficiently and
provide low-latency access to the requested data.

21

2.4 Comparative Summary

Table 2.1 provides key differences between Cassandra and HBase.

Aspect Cassandra HBase

Base of Database Amazon DynamoDB Google BigTable

Architecture Peer-to-Peer Master-Slave

Single Point of Failure No Master Node

Disaster Recovery Possible
Possible only if more than

one master node exist

CAP Theorem AP model CP model

Consistency Tunable Strong

Partitioning Consistent Hashing Range-Based

Concurrency Control using Locks No Yes

Internode Communication Gossip Protocol ZooKeeper protocol

Query Language
SQL like language

called CQL

API based approach for data

access and manipulation

Cluster Setup Easy Difficult

HDFS Compatibility No Yes

Use by Companies
eBay, GitHub,

Netflix, Facebook

Adobe, Flipkart,

Spotify, Twitter

Table 2.1: Cassandra vs HBase

22

CHAPTER 3

Literature Survey

Column Family databases have emerged as one of the most effective NoSQL
databases for managing large-scale data storage and retrieval. By offering high
scalability, fault tolerance, and distributed architecture, column family databases
are designed to overcome the drawbacks of conventional relational databases.
Apache Cassandra and Apache HBase are two well-known column family databases
that have gained considerable attention recently.

To fulfil the thesis objective, this literature survey will explore existing research
and publications related to Cassandra and HBase. We will examine studies that
have utilized YCSB to assess Cassandra’s performance and understand how var-
ious system parameters affect the performance metrics. We will also examine
studies that have compared the performances of Cassandra and HBase, to un-
cover any gaps or limitations in the existing research. By integrating and ana-
lyzing the available literature, this thesis intends to contribute to the corpus of
knowledge regarding the performance evaluation of Cassandra using YCSB and
the comparative performance analysis of Cassandra and HBase.

3.1 Yahoo! Cloud Serving Benchmark (YCSB)

One of the most often used benchmarks is the Yahoo! Cloud Serving Benchmark
(YCSB), which provides benchmarking for the basis of apples-to-apples compar-
ison across NoSQL systems [7]. It was originally developed by Yahoo! research
and has since gained popularity in industry as well as academic research.

The YCSB framework is made up of a workload generator and a set of predefined
workloads. The workload generator mimics the behaviour of a client applica-
tion by producing a mix of read and write requests in accordance to the specified
workload. The predefined workloads reflect diverse application scenarios and

23

access patterns by including varying distributions of read and write operations.
When running a benchmark, YCSB will record the latency in conducting these
operations as well as the throughput in operations per second. The primary pur-
pose of the Yahoo! Cloud Serving Benchmark is to create tiers to assess scalability,
availability, elasticity, replication and performance of cloud serving systems.

3.1.1 YCSB Workloads

Table 3.1 illustrates the YCSB preconfigured workloads [9].

Workload Operations Record Selection Applications

A-Update Heavy
Read: 50%

Update: 50%
Zipfian

Session store recording recent

actions in a user session

B- Read Mostly
Read: 95%

Update: 5%
Zipfian

Photo tagging: adding a tag is an update,

but most operations are to read tags

C- Read Only Read: 100% Zipfian
User profile cache, where profiles

are constructed elsewhere (Ex: Hadoop)

D-Read Latest
Read: 95%

Insert: 5%
Latest

User status updates: people

want to read the latest statuses

E- Short Ranges
Scan: 95%

Insert: 5%
Zipfian/ Uniform

Threaded Conversations, where each Scan

is for the post in a given thread

(assumed to be clustered by thread id)

F- Read-Modify-Write
Read: 50%

Read/Modify/Write: 50%
Zipfian

User Database, where user records are read and

modified by the user, or to record user activity

Table 3.1: Workload Characterization for YCSB

The ’Record Selection’ column indicates the distribution strategy used for deter-
mining which records from the dataset will be accessed or operated upon during
the execution of the workload. The record selection strategies available in YCSB
include:

• Uniform Distribution: This strategy selects records uniformly at random
from the dataset. Each record has an equal probability of being accessed,
resulting in a flat access pattern.

• Zipfian Distribution: This strategy is used to mimic real-world scenarios
where a small number of records are accessed frequently, while the majority
of records are accessed less frequently. It follows a power-law distribution,

24

where a few records have high probabilities of being accessed, while the rest
have decreasing probabilities.

• Latest Distribution: This strategy focuses on accessing the most recently
added or updated records in the dataset. It is often used to simulate sce-
narios where the most recent data is of higher interest or relevance.

The ’Applications’ column indicates the specific use case based on the type of the
application pattern the workload simulates.

3.1.2 System Core Properties

The following is the list of properties that may be tuned to improve system per-
formance [8]:

1. Workload: It specifies the YCSB Workload class to be used.

2. Record Count: It specifies the number of records in the dataset when run-
ning the workload.

3. Operation Count: It specifies the number of operations to be performed in
the workload.

4. Thread Count: It specifies the number of YCSB client threads involved in
running the workload.

5. Consistency Level: It specifies the minimum number of cluster nodes that
must acknowledge a read/write operation before it is considered as suc-
ceeded.

6. Field Count: It specifies the number of fields in the database record.

7. Field Size: It specifies the size of each field in the database record.

8. Replication Factor: It specifies the number of replicas of the data across the
cluster.

9. Request Distribution: It specifies the distribution strategy that should be
used to select the records for performing the CRUD operations.

10. Cluster Size: It specifies the number of nodes in the database cluster whose
performance is to be assessed.

25

3.2 Performance Evaluation of Cassandra

3.2.1 Benchmarking Replication and Consistency strategies in cloud

serving databases: HBase and Cassandra.

Wang et al. were motivated by the trade-off between consistency and latency to in-
vestigate how the latency varies when the replication factor and consistency level
are modified [24]. In order to accomplish this task, the authors used YCSB for
conducting benchmarking efforts for two most frequently used systems: HBase
and Cassandra. The experiments used 16 server-class machines of the same rack
as the testbed. The machines had the following specifications: two Xeon L5640 64
bit processors (each processor owned 6 cores and each core owned 2 threads), 32
GB of RAM, one hard drive and gigabit ethernet connection. The following con-
clusions were obtained in regard to Cassandra: (i) More number of replicas can
deteriorate read performance when using a lower consistency level. (ii) Higher
consistency levels can dramatically increase the write latency. (iii) Higher consis-
tency levels are not suitable for write heavy and read latest workloads.

3.2.2 Interplaying Cassandra NoSQL consistency and performance:

A benchmarking approach

The primary goal of Gorbenko et al. was to investigate the relationship between
Cassandra performance (response time) and consistency settings [14]. The paper
describes the read and write performance benchmarking findings for a replicated
Cassandra cluster installed in the Amazon EC2 Cloud. The authors set up a 3-
replicated Cassandra 2.1 cluster in the Amazon EC2 cloud as a testbed. The cluster
was deployed with the following specifications: AWS US-West-2 (Oregon) region,
c3.xlarge instances (vCPUs– 4, RAM– 7.5 GB, SSD– 2x40 GB, OS– Ubuntu Server
16.04 LTS). For experimentation, the authors used the YCSB read-only Workload
C and the Workload A, which had been configured to do write-only operations.
One of the key results obtained by the authors is that by optimally coordinating
consistency settings for both read and write requests, we may reduce Cassandra
delays while maintaining strong data consistency. Their experiments demonstrate
that: (i) The performance metrics throughput and read/update latency increase
with an increase in number of threads. (ii) Strong consistency costs up to 25%
of performance. (iii) The ideal option for strong consistency is dependent on the
read/write operation ratio.

26

3.2.3 Automatic configuration of the Cassandra database using

Irace

By utilizing the YCSB benchmark under various configurations, authors Silva-
Munoz et al. employed the Irace configurator to automatically determine the
optimal parameter setup for the Cassandra NoSQL database [20]. The authors
performed the experiments with the help of Google Cloud infrastructure using
n1-standard-8 machines, with eight virtual CPUs, 30 GB of memory and a 20GB
persistent disk. The version of Cassandra benchmarked was 3.6. The authors
made the following observations: (i) The throughput increases with an increase in
thread count. (ii) Upon increasing the record count, the throughput decreases and
the read/update latency increases. (iii) Upon increasing the operation count, the
throughput as well as the read/update latency increases. With a budget of 2000
experiments, the Irace configurator serves as a straightforward general-purpose
tool that can achieve throughput speedups of up to 30% compared to the default
configuration.

3.3 Comparative Performance Analysis of Cassandra

and HBase

3.3.1 Benchmarking Cloud Serving Systems with YCSB

Cooper et al. have presented the Yahoo! Cloud Serving Benchmark. This bench-
mark is designed to offer resources for direct comparisons of various cloud serv-
ing data stores [10]. With the use of this tool, they were able to compare the per-
formance of four cloud-serving systems: Cassandra, HBase, PNUTS, and sharded
MySQL. The following were the specifications used for the experimentation: six
server-class machines with dual 64-bit quad core 2.5 GHz Intel Xeon CPUs, 8 GB
of RAM, 6 disk RAID-10 array and gigabit ethernet. The authors found that each
system’s architectural choices had a clear impact on the read and write perfor-
mance tradeoffs. The following were the observations in regard to the compar-
ison of Cassandra and HBase: (i) For update-heavy workloads: Read Latency

(Cassandra) ≈ 0.4 Read Latency (HBase) and Update Latency (Cassandra) ≈ 7 Update
Latency (HBase). (ii) For read-heavy workloads: Read Latency (Cassandra) ≈ 0.5 Read
Latency (HBase) and Update Latency (Cassandra) ≈ 5 Update Latency (HBase).

27

3.3.2 A comparison between several NoSQL databases with com-

ments and notes

Authors Tudorica et.al. have tried to make a comparison between Cassandra,
HBase and MySQL using qualitative and quantitative measures [23]. The qualita-
tive comparison is performed by considering features such as persistence, replica-
tion, availability, transactions, etc. For quantitative evaluation, the authors have
considered system parameters- dataset size and workload. The experiments were
conducted by running YCSB benchmark on 120 million records of small size (1kB)
on a 6-node cluster with 0.12 TB equivalent of installations of the three systems.
The following were the observations in regard to the comparison of Cassandra
and HBase: (i) For update-heavy workloads: Read Latency (Cassandra) ≈ 0.7 Read
Latency (HBase) and Update Latency (Cassandra) ≈ 7 Update Latency (HBase). (ii) For
read-heavy workloads: Read Latency (Cassandra) ≈ 0.64 Read Latency (HBase) and
Update Latency (Cassandra) ≈ 7 Update Latency (HBase). This is indicative of the fact
that they cannot be used interchangeably for any given situation, but one must
rather decide between these systems for ensuring optimal performance.

3.3.3 Quantitative Analysis of scalable NoSQL databases

Authors Swaminathan et.al. have discussed that NoSQL databases are quickly
replacing the relational databases as the go-to databases for big data applica-
tions [22]. They have evaluated three most commonly used NoSQL databases:
Cassandra, HBase and MongoDB using the YCSB benchmark. The experiments
were conducted using the following specifications: 14 servers connected through
1 Gigabit Ethernet Switch where each server consists of Xeon CPU, 4 GB RAM,
1.4 TB hard disk and CentOS operating system. The node acting as master had
a 2.7 TB hard disk. The configurations of the databases were as mentioned: Cas-
sandra (2.0.16), sharding: Murmur3Partitioner, key cache: 100 MB, row cache:
None; HBase (1.1.0), sharding: auto, Hadoop (2.2.0). A total of 6 (Cluster sizes) *
5 (Workloads) * 4 (Dataset sizes) * 4 (Operation counts) = 480 experiments were
conducted for each database. The authors concluded that for update-heavy work-
loads, Throughput (Cassandra) ≈ 1.4 Throughput (HBase) and for read-heavy work-
loads, Throughput (Cassandra) ≈ 1.6 Throughput (HBase).

28

3.3.4 Experimental Evaluation of NoSQL Databases

Authors Abramova et.al. aimed to compare different NoSQL databases and eval-
uate their performance in accordance to the data storage and retrieval use cases
[12]. The authors tested 10 NoSQL databases using YCSB. The experimental setup
had the following specifications: virtual machine Ubuntu Server (32 bit) with 2GB
RAM available, hosted on a computer with Windows 7 and a total of 4GB RAM.
The version of Cassandra used was 1.2.1, and that of HBase was 0.94.10. 600,000
records, each with 10 fields of 100 bytes were inserted during the load phase. The
execution of workloads was done using 1000 operations. The following were the
results regarding the comparison of Cassandra and HBase: (i) For workload A,
Cassandra exhibited a performance 2.7 times faster than HBase. (ii) For workload
B, Cassandra exhibited a performance 1.42 times faster than HBase. Hence, Cas-
sandra provided better throughput for both update-heavy and read-heavy work-
loads.

3.3.5 NoSQL evaluation: A use case oriented survey

Authors Hecht et.al. have tried to compare several NoSQL databases by their data
models, query possibilities, concurrency controls, partitioning and replication op-
portunities [15]. The following were the observations in regard to the comparison
of Cassandra and HBase: (i) Cassandra is more effective in handling complex
data structures since it can have an additional dimension of super columns that
can contain multiple columns and be stored within column families. (ii) Both
Cassandra and HBase offer query functionalities in the form of JAVA API, query
language, and Map Reduce support. HBase additionally offers REST API query-
ing. (iii) HBase is the only column family database that supports a limited variant
of locks and transactions, since the concurrency control techniques can be applied
only on single rows. (iv) Cassandra datasets are partitioned horizontally using
consistent hashing, whereas HBase uses range based partitioning. (v) Cassandra
offers optimistic replication since it is able to configure the level of consistency
that can be provided. On the other hand, HBase offers pessimistic replication,
wherefore it provides strong consistency.

29

CHAPTER 4

Performance Evaluation of Cassandra using YCSB

The experiments were carried out on a 3-node Cassandra 3.11.13 cluster. The
replication strategy used was ’Simple Strategy’ and the replication factor of the
cluster was set to 3. The durable writes property was set to ’True’. This ensures
that data is written to the commit log. A series of YCSB load and run tests were
carried out by varying the system core properties: record count, operation count,
thread count, consistency level and dataset size. We have used the YCSB precon-
figured Workloads A and C, and Workload G (Workload A parameterized to exe-
cute write-only operations) for performing the experiments. 10 trials of the same
run test were performed and the results were aggregated to avoid any anomalies.

4.1 Experimental Setup

The specifications of the experimental setup are as follows:

• YCSB Version: 0.17.0

• Operating System: Ubuntu 18.04.3 - 64 bit

• Memory: 12 GB

• Hardware Model: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz

We make the assumption that benchmarking is carried out on specifically des-
ignated resources and that the nodes are not performing any compute-intensive
operations simultaneously at the time of our testing.

4.2 Results and Discussion

From the experiments performed, the following result graphs were obtained.

30

Figure 4.1: {Threads, Consistency} vs Latency

1. Observation:
From Fig. 4.1 we can notice that for a given cluster configuration, if the num-
ber of threads is increased without varying any other parameters, then the
read/update latency increases linearly with the number of threads.

Reason:
This is because as the number of threads increases, the system has to man-
age and schedule more requests concurrently, which can lead to higher con-
tention for shared resources. This contention can cause increased waiting
time for requests and result in higher read/update latency. Additionally, as
the number of threads increases, the likelihood of thread synchronization
overhead also increases, which can further impact latency.

The observation is inline with [14].

2. Observation:
From Fig. 4.1 we can notice that for a given cluster configuration, if the con-
sistency level is strengthened without varying any other parameters, then
the read/update latency increases.

Reason:
For a read/update operation to be considered as successful, a stronger con-
sistency level requires data across more number of replicas to be read/updated.

31

Hence, the read/update latency in such a configuration is more as compared
to a weaker consistency level.

The observation is inline with [14].

Figure 4.2: Record Count vs Throughput

3. Observation:
From Fig. 4.2 we can notice that for a given cluster configuration, if the
record count is increased without varying any other parameters, then the
throughput decreases.

Reason:
Increasing the record count means that the total number of records that need
to be searched for each read/update operation also increases. This leads to
an increase in the time it takes to complete each read/update operation,
which can ultimately result in decreased throughput.

The observation is inline with [20].

4. Observation:
From Fig. 4.3 we can notice that for a given cluster configuration, if the
record count is increased without varying any other parameters, then the

32

Figure 4.3: Record Count vs Latency

read/update latency increases.

Reason:
As the record count increases, the system needs to perform more disk reads
to search for the required records, which can lead to increased disk I/O and,
thus, longer read/update latencies.

The observation is inline with [20].

5. Observation:
From Fig. 4.4 we can notice that for a given cluster configuration, if the con-
sistency level is strengthened without varying any other parameters, then
the throughput decreases.

Reason:
This is because for a weaker consistency level, a greater number of read/write
operations can be performed per unit of time as compared to a stronger con-
sistency level.

The observation is inline with [14] and [24].

33

Figure 4.4: Consistency vs Throughput

Figure 4.5: Operation Count vs Throughput

34

6. Observation:
From Fig. 4.5 we can notice that for a given cluster configuration, if the oper-
ation count is increased without varying any other parameters, the through-
put increases.

Reason:
When the operation count is increased, it can potentially lead to higher
throughput, especially if the system has spare resources like CPU, network
bandwidth and memory. Cassandra can effectively manage a large number
of concurrent requests, and underutilized resources can be used to effec-
tively process additional operations. So, increasing the number of opera-
tions may outcome in increased throughput.

The observation is inline with [20].

Figure 4.6: Operation Count vs Latency

7. Observation:
From Fig. 4.6 we can notice that for a given cluster configuration, if the op-
eration count is increased without varying any other parameters, then the
read/update latency increases.

Reason:
The system may encounter increased latencies for individual requests as the

35

operation count increases. This is because the system has to handle more
concurrent operations, which might result in resource contention and queu-
ing delays. When the system is already working at or near its capacity
limit, the increased workload may result in degraded response times and
increased latency for both read and write operations.

The observation is inline with [20].

Figure 4.7: Dataset Size vs Throughput

8. Observation:
From Fig. 4.7 we can notice that for a given cluster configuration, if the
dataset size is increased without varying any other parameters, the through-
put decreases.

Reason:
More data must be saved on the disk as the dataset gets larger. Due to more
disk I/O activities caused by this increase in storage needs, the system’s
throughput may be impacted. Higher read and write latencies in the disk
subsystem might result in slower data retrieval and storage, lowering the
overall throughput. Also, more data must be transferred across the network
during read and write operations as the dataset size grows. The system’s
performance may be impacted by this increasing network traffic, particu-

36

larly if the network bandwidth becomes a bottleneck. Throughput may be
decreased as a result of network contention and increased latencies.

The observation is inline with [22].

4.2.1 Novel Findings

Figure 4.8: Threads vs Throughput

1. Observation:
From Fig. 4.8 we can notice that for a given cluster configuration, if the
number of threads is increased without varying any other parameters, the
throughput increases logarithmically up to a certain limit and then decreases.

Reason:
This is because with more threads, more concurrent read/write requests can
be sent to the Cassandra cluster, thus improving the number of read/write
operations performed per unit of time. However, increasing the number of
threads beyond a certain point can decrease throughput because it leads to

37

an increase in contention for resources such as CPU and memory, thereby
reducing the system’s efficiency in processing individual requests.

The observation of the initial increase in the throughput is inline with [14]
and [20]. However, no previous works have considered the falling trend of
the throughput with increase in thread count after reaching some threshold.

Figure 4.9: Threads vs CPU Utilization

2. Observation:
From Fig. 4.9 we can notice that for a given cluster configuration, if the num-
ber of threads is increased without varying any other parameters, then the
CPU utilization increases up to a certain limit and then decreases.

Reason:
The behaviour of CPU utilization increasing and then decreasing with an
increase in the number of threads can be explained by the behaviour of CPU
utilization during parallel processing. When a workload is executed by a
single thread, the CPU utilization is likely to be low. However, as the num-
ber of threads increases, the CPU utilization also increases as the CPU is
tasked with managing multiple threads in parallel. At some point, adding
more threads will not result in an increase in CPU utilization as the CPU
becomes saturated and the number of available processing cycles per thread
decreases. In such cases, adding more threads can actually result in a de-
crease in CPU utilization, as the CPU spends more time switching between
threads and less time executing actual processing tasks.

38

Figure 4.10: Consistency vs CPU Utilization

3. Observation:
From Fig. 4.10 we can notice that for a given cluster configuration, if the con-
sistency level is strengthened without varying any other parameters, then
the CPU utilization increases for majority of the experiments.

Reason:
It is generally expected that a weaker consistency level would have lower
CPU utilization compared to a stronger consistency level. This is because
the former requires lesser replica nodes to respond to a request than the
latter. Therefore, the coordination and communication overhead among
replica nodes is reduced, resulting in lower CPU utilization.

4. Observation:
From Fig. 4.11 we can notice that for a given cluster configuration, if the
dataset size is increased without varying any other parameters, then the
read/update latency increases.

Reason:
As the dataset size increases, the time required to retrieve records from Cas-
sandra can increase, which can result in higher latency for operations Ad-
ditionally, as the dataset size grows, more data needs to be transferred over
the network to the client, which can also increase latency.

39

Figure 4.11: Dataset Size vs Latency

4.3 Summary of Experimental Results

Table 4.1 summarizes the effect of the YCSB core properties on the performance
metrics.

Property Variation Throughput Latency CPU Util.

Thread Count

Increased

{1, 2, . . . , 10, 100, 200,. . . , 1000,

2000, . . . , 8000}

Logarithmically

increases and then

decreases

Linearly increases
Increases and then

decreases

Record Count
Increased

{1k, 5k, 10k, 50k, 100k}
Decreases Increases NA

Consistency Level
Strengthened

{ONE, QUORUM, ALL}
Decreases Increases Increases

Operation Count
Increased

{1k, 2k, . . . , 10k}
Increases Increases NA

Dataset Size
Increased

{1MB, 5MB, 10MB, 50MB, 100MB}
Decreases Increases NA

Table 4.1: YCSB Core Properties and effect on Performance Metrics

40

CHAPTER 5

Comparative Performance Analysis of Cassan-
dra and HBase

The performance benchmarking of Cassandra and HBase was done using YCSB
workload A (Update-heavy workload) and workload B (Read-heavy workload).
The experiments were performed on a 3-node cluster with record count= 106 and
operation count= 105. To identify the effect on latency and throughput, various
thread counts were used for executing the workloads. For each thread count, dif-
ferent values of target throughput were specified in order to identify the threshold
throughput achievable by that thread count.

5.1 Experimental Setup

The specifications of the experimental setup are as follows:

• YCSB Version: 0.17.0

• Cassandra Version: 3.11.13

• HBase Version: 2.4.16

• Hadoop Version: 2.7.2

• ZooKeeper Version: 3.4.10

• Operating System: Ubuntu 18.04.3 - 64 bit

• Memory: 12 GB

• Hardware Model: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz

We make the assumption that benchmarking is carried out on specifically des-
ignated resources and that the nodes are not performing any compute-intensive
operations simultaneously at the time of our testing.

41

5.2 Analysis for Update-Heavy workload (YCSB Work-

load A)

(a) Cassandra

(b) HBase

Figure 5.1: Read Latency vs Achieved Throughput for Workload A

42

(a) Cassandra

(b) HBase

Figure 5.2: Update Latency vs Achieved Throughput for Workload A

43

(a) Cassandra

(b) HBase

Figure 5.3: Achieved Throughput vs Target Throughput for Workload A

44

5.3 Results for Update-Heavy Workload

From the experiments performed for update-heavy workload, the following re-
sults can be concluded:

• For both the column families, the read latency and update latency increase
with an increase in the number of threads.

• The increase in read latency w.r.t. the achieved throughput in Cassandra is
relatively sharp.

• The increase in read latency w.r.t. the achieved throughput in HBase is grad-
ual.

• From Fig. 5.1, we can see that Cassandra has a low average read latency
compared to HBase. For a given value of thread count and achieved through-
put, the read latency of Cassandra is approximately 0.4 times the read la-
tency of HBase.

• The increase in update latency w.r.t. the achieved throughput in Cassandra
is relatively sharp.

• The increase in update latency w.r.t. the achieved throughput in HBase is
almost constant.

• From Fig. 5.2, we can see that Cassandra has a high average update la-
tency compared to HBase. For a given value of thread count and achieved
throughput, the update latency of Cassandra is approximately 1.85 times the
update latency of HBase.

• The achieved throughput increases with an increase in the number of threads.

• Each thread is associated with a threshold after which the achieved through-
put remains constant, no matter how much the target throughput is in-
creased.

• From Fig. 5.3, we can see that the throughput of Cassandra is nearly 2.8
times the throughput of HBase.

45

5.4 Analysis for Read-Heavy workload (YCSB Work-

load B)

(a) Cassandra

(b) HBase

Figure 5.4: Read Latency vs Achieved Throughput for Workload B

46

(a) Cassandra

(b) HBase

Figure 5.5: Update Latency vs Achieved Throughput for Workload B

47

(a) Cassandra

(b) HBase

Figure 5.6: Achieved Throughput vs Target Throughput for Workload B

48

5.5 Results for Read-Heavy Workload

From the experiments performed for read-heavy workload, the following results
can be concluded:

• For both the column families, the read latency and update latency increase
with an increase in the number of threads.

• The increase in read latency w.r.t. the achieved throughput in Cassandra is
relatively sharp.

• The increase in read latency w.r.t. the achieved throughput in HBase is grad-
ual.

• From Fig. 5.4, we can see that Cassandra has a low average read latency
compared to HBase. For a given value of thread count and achieved through-
put, the read latency of Cassandra is approximately 0.25 times the read la-
tency of HBase.

• The increase in update latency w.r.t. the achieved throughput in Cassandra
is relatively sharp.

• The increase in update latency w.r.t. the achieved throughput in HBase is
almost constant.

• From Fig. 5.5, we can see that Cassandra has a high average update la-
tency compared to HBase. For a given value of thread count and achieved
throughput, the update latency of Cassandra is approximately 2.5 times the
update latency of HBase.

• The achieved throughput increases with an increase in the number of threads.

• Each thread is associated with a threshold after which the achieved through-
put remains constant, no matter how much the target throughput is in-
creased.

• From Fig. 5.6, we can see that the throughput of Cassandra is nearly 1.6
times the throughput of HBase.

49

5.6 Result Discussion

5.6.1 Read Latency: Cassandra<HBase

Our results align with the findings reported in past work [10].

• When Memstore data is flushed to disk in HBase, it is written to different
files referred to as HFiles. The data in these files is represented as a sorted
list of key-value pairs that refer to the data present in the Memstore. Never-
theless, several copies of the same data may be saved across various HFiles
since HBase employs a log-structured storage system. Increased read laten-
cies may result from the necessity for HBase to look through several HFiles
to locate all relevant record fragments during read operations.

• HBase may also need to reconstruct record fragments from various disk
pages. This is due to the fact that key-value pairs are sequentially stored
to the disk in blocks known as data blocks when an HFile is written. Several
key-value pairs may be present in these data blocks, and it is possible that
several data blocks are required to hold all the elements of a single record. A
read operation that has to retrieve a record might have to access numerous
data blocks to get all the required fragments. Thereafter, it must assemble
all those fragments and reconstruct the record.

• Cassandra, in contrast, employs a different storage mechanism that is en-
hanced for high read performance. A series of SSTables, each containing a
sorted list of key-value pairs, are used by Cassandra to store data. Data is
initially written to an in-memory structure called Memtable, which is peri-
odically flushed to the disk as an SSTable. Since SSTables provide a sorted
list of key-value pairs, Cassandra can execute read queries more quickly
than HBase.

5.6.2 Update Latency: Cassandra>HBase

Our results align with the findings reported in past works [10] [23].

• HBase can be more effective for writes since it writes data to the disk in
blocks. HBase’s block-oriented storage strategy enables it to combine sev-
eral writes into a single disk write operation, minimizing the number of
disk I/O operations required during writes. Compared to Cassandra, which
stores data as a series of SSTables, this can lead to lower write latencies.

50

• The write path of HBase is optimized for low-latency updates. When data is
written to HBase, it is initially written to an in-memory structure Memstore,
and then it is flushed to the disk. The Memstore is designed to handle a lot
of updates and can be tuned as per the workload requirements. Contrar-
ily, Cassandra stores updates in an append-only commit log before writing
them to the Memtable, which might result in higher write latency.

5.6.3 Throughput: Cassandra>HBase

Our results align with the findings reported in past works [12] [22].

• We have inferred that the read latency of Cassandra is less than that of
HBase. A read-intensive workload would comprise majorly of read opera-
tions. Since the read latency of Cassandra is less, it would be able to perform
a greater number of database operations per unit time. Hence, the achieved
throughput of Cassandra is greater than that of HBase.

• For the case of update-intensive workload, the number of read/update op-
erations is equal. However, for both the database systems, the read latency is
significantly greater in magnitude than the update latency. As a result, the
throughput would be strongly impacted by the read latencies. Since Cas-
sandra offers a lower read latency than HBase, the achieved throughput of
Cassandra is greater.

51

CHAPTER 6

Conclusion and Future Work

The primary purpose of this thesis is to assess the performance of Cassandra
under various configurations of system parameters/properties and to identify
an ideal configuration that achieves desirable performance goals. Cassandra in-
stances are benchmarked against YCSB to determine system performance. Through-
put, latency and CPU utilization are computed using pre-configured YCSB work-
loads. The performance metrics are calculated for various thread counts, record
counts, consistency levels, operation counts and dataset sizes.

Our findings align with previous research in the field, corroborating the estab-
lished understanding of the relationship between various system parameters and
the evaluation metrics. The observed patterns of the effect of thread count on
latency; record count, consistency level, operation count on throughput and la-
tency; dataset size on throughput are consistent with prior studies, providing fur-
ther validation to the existing body of knowledge. The novel findings demon-
strate that increasing the thread count initially improves the throughput and CPU
utilization, but eventually leads to a decline after reaching a peak. Strengthen-
ing the consistency level increases the CPU utilization. Lastly, as the dataset size
increases, the latency also increases. These findings emphasize the importance
of considering these parameters and their implications when optimizing system
performance.

The experiment may be expanded by incorporating other system parameters/
properties (such as request distribution, cluster size, and replication factor) into
the experimental configurations. Later, an adaptation model may be used to find
the optimal system design given certain constraints.

The comparative performance analysis of Cassandra and HBase is done for update-
heavy and read-heavy workloads. For update-heavy workloads, we discovered

52

that the read latency, update latency, and throughput values for Cassandra are
0.4, 1.85, and 2.8 times the corresponding values for HBase. While for read-heavy
workloads, the read latency, update latency, and throughput values for Cassan-
dra are 0.25, 2.5, and 1.6 times the corresponding values for HBase. Hence, we
infer that HBase is better suited for high update-intensive applications. In use
cases where the number of reads is very high, Cassandra would be a better choice.
While selecting a database for an application, it is important to keep in mind the
data model, architectural implementation, query access path and performance
trait of the candidate systems.

Benchmarking database performances in relation to the number of nodes can be
done as a part of the future work. This will clarify on how the cluster size and sys-
tem characteristics relate to one another. A specific database can also be compared
to its earlier versions to evaluate if the present version performs better.

53

References

[1] Fully Distributed Mode HBase Cluster Setup. https://www.guru99.com/

hbase-installation-guide.html. Accessed on May 29, 2023.

[2] Apache Cassandra Documentation. https://cassandra.apache.org/doc/

latest/, 2008-2023. Accessed on May 29, 2023.

[3] Apache HBase Documentation. https://hbase.apache.org/, 2008-2023.
Accessed on May 29, 2023.

[4] Multi-Node Cassandra Cluster Setup. https://docs.datastax.com/

en/cassandra-oss/3.0/cassandra/initialize/initSingleDS.html, 2008-
2023. Accessed on May 29, 2023.

[5] S. Achari. Hadoop Essentials - Tackling the Challenges of Big Data with Hadoop.
Packt Publishing, 2015.

[6] J. Carpenter and E. Hewitt. Cassandra: The Definitive Guide. O’Reilly Media,
Inc., 2nd edition, 2016.

[7] B. F. Cooper, A. Silberstein, E. Tam, and R. Ramakrishnan. YCSB: Yahoo!
Cloud Serving Benchmark. https://github.com/brianfrankcooper/YCSB,
2009-2021. Accessed on May 29, 2023.

[8] B. F. Cooper, A. Silberstein, E. Tam, and R. Ramakrishnan. YCSB: Ya-
hoo! Cloud Serving Benchmark- Core Properties. https://github.com/

brianfrankcooper/YCSB/wiki/Core-Properties, 2009-2021. Accessed on
May 29, 2023.

[9] B. F. Cooper, A. Silberstein, E. Tam, and R. Ramakrishnan. YCSB:
Yahoo! Cloud Serving Benchmark- Core Workloads. https:

//github.com/brianfrankcooper/YCSB/blob/0.17.0/core/src/main/

java/site/ycsb/workloads/CoreWorkload.java, 2009-2021. Accessed on
May 29, 2023.

54

https://www.guru99.com/hbase-installation-guide.html
https://www.guru99.com/hbase-installation-guide.html
https://cassandra.apache.org/doc/latest/
https://cassandra.apache.org/doc/latest/
https://hbase.apache.org/
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/initialize/initSingleDS.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/initialize/initSingleDS.html
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties
https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties
https://github.com/brianfrankcooper/YCSB/blob/0.17.0/core/src/main/java/site/ycsb/workloads/CoreWorkload.java
https://github.com/brianfrankcooper/YCSB/blob/0.17.0/core/src/main/java/site/ycsb/workloads/CoreWorkload.java
https://github.com/brianfrankcooper/YCSB/blob/0.17.0/core/src/main/java/site/ycsb/workloads/CoreWorkload.java

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-
marking cloud serving systems with ycsb. In Proceedings of the 1st ACM Sym-
posium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA,
2010. Association for Computing Machinery.

[11] X. Cui and W. Chen. Performance comparison test of hbase and cassandra
based on ycsb. In 2021 IEEE/ACIS 19th International Conference on Computer
and Information Science (ICIS), pages 70–77, 2021.

[12] V. Duarte, J. Bernardino, and P. Furtado. Experimental evaluation of nosql
databases. International Journal of Database Management Systems, 6, 10 2014.

[13] L. George. HBase: the Definitive Guide. Aug 2011.

[14] A. Gorbenko, A. Romanovsky, and O. Tarasyuk. Interplaying cassan-
dra nosql consistency and performance: A benchmarking approach. In
S. Bernardi, V. Vittorini, F. Flammini, R. Nardone, S. Marrone, R. Adler,
D. Schneider, P. Schleiß, N. Nostro, R. Løvenstein Olsen, A. Di Salle, and
P. Masci, editors, Dependable Computing - EDCC 2020 Workshops, pages 168–
184, Cham, 2020. Springer International Publishing.

[15] R. Hecht and S. Jablonski. Nosql evaluation: A use case oriented survey. In
2011 International Conference on Cloud and Service Computing, pages 336–341,
2011.

[16] V. D. Jogi and A. Sinha. Performance evaluation of mysql, cassandra and
hbase for heavy write operation. In 2016 3rd International Conference on Recent
Advances in Information Technology (RAIT), pages 586–590, 2016.

[17] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2):35–40, apr 2010.

[18] M. Noll. Multi-Node Hadoop Cluster Setup. https://www.michael-noll.

com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/.
Accessed on May 29, 2023.

[19] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. Addison-Wesley Professional, 1st edition, 2012.

[20] M. Silva-Muñoz, A. Franzin, and H. Bersini. Automatic configuration of the
cassandra database using irace. PeerJ Computer Science, 7, 2021.

55

https://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
https://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/

[21] D. Sullivan. NoSQL for Mere Mortals. Addison-Wesley Professional, 1st edi-
tion, 2015.

[22] S. N. Swaminathan and R. Elmasri. Quantitative analysis of scalable nosql
databases. In 2016 IEEE International Congress on Big Data (BigData Congress),
pages 323–326, 2016.

[23] B. G. Tudorica and C. Bucur. A comparison between several nosql databases
with comments and notes. In 2011 RoEduNet International Conference 10th
Edition: Networking in Education and Research, pages 1–5, 2011.

[24] H. Wang, J. Li, H. Zhang, and Y. Zhou. Benchmarking replication and consis-
tency strategies in cloud serving databases: Hbase and cassandra. In J. Zhan,
R. Han, and C. Weng, editors, Big Data Benchmarks, Performance Optimiza-
tion, and Emerging Hardware, pages 71–82, Cham, 2014. Springer International
Publishing.

56

	fca1f142c6b7e3fadc2104a781545aeb237aaa5739ce65d6e1a6bf91e7e7493b.pdf
	fca1f142c6b7e3fadc2104a781545aeb237aaa5739ce65d6e1a6bf91e7e7493b.pdf
	fca1f142c6b7e3fadc2104a781545aeb237aaa5739ce65d6e1a6bf91e7e7493b.pdf
	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Background Information
	Objective
	Thesis Problem Statement
	Motivation
	Contribution
	Thesis Outline

	Column Family Databases
	Introduction
	Cassandra
	Data Model
	Consistency Model
	Architecture Implementation
	Cassandra Access Path for Write Operation
	Cassandra Access Path for Read Operation

	HBase
	Data Model
	Consistency Model
	Architecture Implementation
	HBase Access Path for Write Operation
	HBase Access Path for Read Operation

	Comparative Summary

	Literature Survey
	Yahoo! Cloud Serving Benchmark (YCSB)
	YCSB Workloads
	System Core Properties

	Performance Evaluation of Cassandra
	Benchmarking Replication and Consistency strategies in cloud serving databases: HBase and Cassandra.
	Interplaying Cassandra NoSQL consistency and performance: A benchmarking approach
	Automatic configuration of the Cassandra database using Irace

	Comparative Performance Analysis of Cassandra and HBase
	Benchmarking Cloud Serving Systems with YCSB
	A comparison between several NoSQL databases with comments and notes
	Quantitative Analysis of scalable NoSQL databases
	Experimental Evaluation of NoSQL Databases
	NoSQL evaluation: A use case oriented survey

	Performance Evaluation of Cassandra using YCSB
	Experimental Setup
	Results and Discussion
	Novel Findings

	Summary of Experimental Results

	Comparative Performance Analysis of Cassandra and HBase
	Experimental Setup
	Analysis for Update-Heavy workload (YCSB Workload A)
	Results for Update-Heavy Workload
	Analysis for Read-Heavy workload (YCSB Workload B)
	Results for Read-Heavy Workload
	Result Discussion
	Read Latency: Cassandra<HBase
	Update Latency: Cassandra>HBase
	Throughput: Cassandra>HBase

	Conclusion and Future Work
	References

