Graph Neural Network Based Semantic
Mapping and Classification of Dataset for
Robotics Applications

by

Devesh Sharma
202111041

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in
INFORMATION AND COMMUNICATION TECHNOLOGY
to
DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

October, 2023

Devesh Sharma

Certificate

the thesis work entitled "Graph Neural Network Based Se-

Classification of Dataset for Robotics Applications” has been
Sharma for the degree of Master of Technology in Informa-
n Technology at Dhirubhai Ambani Institute of Information
inology under our supervision.

Prof. Tapas Kumar Maiti

‘Thesis Co-Supervisor

Acknowledgments

I want to convey my sincere appreciation to my respected thesis supervisors, Pro-
fessor Tapas Kumar Maiti and Professor P. M. Jat, for their unwavering guidance,
invaluable insights, and continuous support throughout the journey of this re-
search work. Their mentorship has been instrumental in shaping my understand-
ing and fostering my growth in the field of semantic mapping and place classifi-
cation.

I am deeply thankful to Lord Ganesha and Goddess Saraswati for bestow-
ing upon me the wisdom, strength, and determination required to undertake this
academic endeavor. Their blessings have been a source of inspiration, helping me
navigate challenges and achieve milestone.

I extend my sincere appreciation to my family and friends for their unending
encouragement and belief in my capabilities. Their encouragement has provided
me with the motivation to persist and excel in my academic pursuits.

Lastly, I would like to acknowledge the vast body of knowledge contributed
by researchers, scholars, and practitioners in the field of Deep Learning, Statistical
Modeling and machine learning. Their contributions have laid the foundation for
this work and have greatly enriched my understanding of the subject.

This journey would not have been possible without the invaluable contribu-
tions of each of these individuals. My deepest gratitude goes out to all those who

have played a role, directly or indirectly, in making this research a reality.

ii

Contents

Abstract \4
List of Principal Symbols and Acronyms \4
List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Semantic Mapping and Semantic Place Classification 1

1.2 Semantic Place Classification in Autonomous Systems 2

2 Literature Survey 6
2.1 Some Previous Methods 6
2.2 Sum Product Network (SPN) 8
2.3 Graph Sum Product Network (GraphSPN) 9
24 Graph Neural Network (GNN) 11
2.5 LibrariesandTools 12
251 Numpy. 12

252 pandas 12

253 libspn. 13

254 libspn-keras 13

2.5.,5 Qtorch - Geometric, sparse, scatter 13

256 torch-geometric 14

257 NetworkX 15

3 Dataset and Data Preparation 16
31 Dataset 16
3.2 Dataset Preparation and Preprocessing 18

ii

4 Sum Product Network (SPN) Architecture
41 Implementation
42 Result e,

5 Graph Neural Network (GNN)

5.1 Introduction

5.2 Implementation and Simulations
5.2.1 GNN Based Local Place Semantic Classification
5.2.2 Multi Level Prediction Using GNNs
5.3 Results e

6 Conclusion and Future work

References

iv

22
22
27

29
29
34
34
36
38

42

44

Abstract

In the field of Robotics, deriving meaningful insights from spatial information is
pivotal. Our objective was to work with 2D dataset as 3D datasets are relatively
more time consuming as our target is to objective was to do the foundation work
for real time inferences where speed is also an important key factor and so to get
best possible results, trying to improvise in accuracy and speed. Our focus lies
in semantic mapping, semantic place classification where mobile robots interpret
partial, noisy sensory data. We delve into end-to-end techniques rooted in proba-
bilistic deep networks, studying Local-SPNs, Graph SPNs, and TopoNets. Addi-
tionally, we explore GNNs for semantic place classification. Our report provides
succinct insights into these methods, emphasizing their principles and implemen-
tations, including the local SPN model and GNN for semantic classification. We
got our best accuracy with GNN 70.15% which is less compared to previous best
80.14% but we achieved better results with speed as our GNN model was 1.89x
faster than the previous best avilable method. We also explore multi-level se-
mantic place classification through GNNs and consider the potential of Graph
Attention Networks (GAT) for complex datasets. Here we did a proof of concept
that multilevel semantic classification is possible with GNNs but it needs more

research in this area.

List of Tables

4.1

51
52

53

54

Results comparisons for different methods with our method 28
Results comparisons for different methods with our method 38
Inference time results comparisons for different methods with our

method 39
Performance Score results comparisons for different methods with

ourmethod 0 40
Results comparisons for GATand GNN 41

Vi

List of Figures

1.1
1.2

3.1
3.2
3.3

4.1
4.2

51
52
53
54
5.5

Sub-problems of semantic mapping 4
Thesis work flowchart and overview. 5
Dataset view graph o oL 17
Datasetlabels 18
Graphical representation of COLDdata 19
Local SPNmodelcode 25
Local SPN architecture 26
Adjacency matrix oo oL 30
Degreematrix 31
Laplacianmatrix 32
GNN architecture Lo 35
Trade off curve for accuracy vs inference time 40

vii

CHAPTER 1

Introduction

In this chapter we briefly discussed and introduced about the problem statement
and methods used in past and what we tried to do. This chapter provides a brief
overview and motivation why we worked on this problem statement. We also

briefly demonstrate work flow of thesis.

1.1 Semantic Mapping and Semantic Place Classifica-
tion

In this section we briefly take a look on what is semantic mapping, semantic place
classification, some previous methods and what we tried to do.

Semantic mapping and semantic place classification are crucial elements within
the realm of autonomous systems, providing the capacity for robots and intel-
ligent agents to understand and interact intelligently with their surroundings.
These methodologies bridge the gap between raw sensor data and meaningful
representations, facilitating informed decision-making and adaptability to dy-
namic scenarios.

The concept of semantic mapping involves the creation of an environment
representation that surpasses mere geometric data. Conventional mapping ap-
proaches predominantly rely on occupancy grids or geometric models, which
offer valuable spatial insights but lack semantic context. In contrast, semantic
mapping incorporates high-level semantic information, such as object categories,
room labels, or scene descriptions, into the mapping process [1].

By fusing semantics with geometry, robots gain the ability to comprehend the
significance and purpose of different regions and objects in their environment.
For instance, in a household setting, the robot can recognize rooms as the kitchen,
bedroom, or living room, and identify objects like tables, chairs, and refrigerators.
This enriched understanding of the environment empowers robots to perform

tasks more efficiently and safely.

Various machine learning techniques, such as Markov random fields, condi-
tional random fields, or Sum Product Networks (SPNs) [2], can be employed to
achieve semantic mapping. These models effectively combine spatial and seman-
tic cues, capturing uncertainties and correlations present in the data.

Semantic place classification focuses on assigning meaningful labels to spe-
cific locations or regions within the environment. Instead of merely recognizing
objects, semantic place classification aims to identify the overall context and func-
tion of a place. For instance, a park, shopping mall, or hospital could be recog-
nized as distinct semantic places based on their unique characteristics.

For Semantic Place Classification there exists several studies. Many deep neu-
ral network and deep probabilistic approaches have been used to perform exper-
iments in this aspect. For ROS based datasets above methods have shown good
accuracy but still a lot can be done in this field.

Graph Neural Networks (GNN5s) can be a powerful tool in semantic place clas-
sification tasks. GNNs can process graph-structured data, where nodes repre-
sent different locations, and edges capture the spatial relationships between these
places. By leveraging the spatial dependencies and semantic information, GNNs
can accurately classify the semantic places in the environment.

The advantage with GNN is that, it is designed in a manner such that in most
cases it outperform other neural netwroks in terms of accuracy and speed , so we

have developed a GNN based semantic place classification.

1.2 Semantic Place Classification in Autonomous Sys-

tems

In this section we briefly discussed little more on semantic place classification in
context of autonomous systems and discussed some previous work, our work, the
motivation and workflow of our thesis.

Semantic place classification for autonomous systems is a critical aspect of en-
abling intelligent agents, such as robots, to understand and navigate their envi-
ronments effectively. This process involves assigning meaningful labels to specific
locations or regions within the environment, allowing the autonomous system to
comprehend the semantic context and make informed decisions during naviga-
tion and interaction tasks.

One powerful approach for semantic place classification involves utilizing Sum
Product Networks (SPNs). SPNs are probabilistic graphical models that can ef-

2

fectively capture and represent complex distributions over structured data. In
the context of semantic place classification, SPNs can seamlessly combine spatial
information from sensory inputs with meaningful semantics associated with dif-
ferent places, enabling the autonomous system to reason about its surroundings
more intelligently.

GraphSPN, an extension of the traditional SPN, is particularly well-suited
for semantic place classification tasks. GraphSPNs handle data represented as
graphs, where nodes represent different locations, and edges capture spatial re-
lationships between these places. By leveraging the graph structure, GraphSPNs
can effectively model the dependencies and interactions between different places,
facilitating accurate and context-aware classification.

Graph Neural Networks (GNNs) are another powerful technique for seman-
tic place classification in autonomous systems. GNNs are designed to process
data with graph-like structures, making them a natural fit for tasks that involve
spatial relationships between locations. In the context of semantic place classifica-
tion, GNNs can effectively capture the contextual information from neighboring
places, enabling the autonomous system to understand the semantics of different
locations based on their spatial dependencies.

The process of semantic place classification using GNNs involves a message-
passing mechanism, where information is propagated through the graph’s edges
to update node representations. As information is iteratively passed through the
GNN layers, the system gains a refined understanding of each location’s seman-
tics, considering both its local features and the collective information from the
entire graph.

Incorporating SPNs, GraphSPNs, and GNNs in the context of semantic place
classification empowers autonomous systems with enhanced environmental com-
prehension. By combining spatial information with meaningful semantics, these
models enable the system to make informed decisions about its surroundings,
adapt to dynamic changes in the environment, and engage in more sophisticated
tasks.

Furthermore, the integration of these advanced techniques addresses the chal-
lenges of uncertainty and imprecise information often encountered in real-world
scenarios. SPNs handle uncertainty in the data by providing principled proba-
bilistic reasoning, while GNNSs effectively capture spatial dependencies, allowing
the system to reason about the context of different places|3].

The benefits of semantic place classification using SPNs, GraphSPNs, and GNNs

extend to various applications in autonomous systems. In robotics, semantic place

classification enhances navigation by enabling the autonomous system to distin-
guish between different places and plan paths more intelligently. In smart home
systems, these techniques allow intelligent devices to adapt to users’ needs based
on the semantic understanding of different rooms and their associated tasks.
Overall, semantic place classification with SPNs, GraphSPNs, and GNNs rep-
resents a powerful approach to enriching the autonomy of intelligent agents. Their
ability to capture and reason about spatial and semantic information fosters im-
proved decision-making, adaptability, and interaction in diverse real-world sce-
narios. As research in these areas continues to evolve, we can expect even more
sophisticated and capable autonomous systems, contributing to the advancement
of artificial intelligence and robotics. Figure 1.1 below demonstrates the problem

of semantic mapping differentiated into sub-problems

(1) Learning (I0) Inference
() Annotaied _ (B FEX.Y) A4
AN ETAPHS I:'EI Sub-graphs =g E;T:’:F'-’"’l‘
[Semantic maps) e
|'I' -\.\.'-I'.
€3 &3
Temiglats |
==t [nferred lnieni
varishles ¥
[Siemantic place
cabepoTies)
IIr 1
L
II
- v
Terphate: g {(») Observed
local evidomc: ——
={iraph mode (Place) o - |=-\.|-‘ xl

iig = Labsds | Sormemiic calegones)

Figure 1.1: Sub-problems of semantic mapping [4].

Understanding semantic place classification is crucial in mapping places based
on their meanings. In this field, dealing with complex and detailed 3D datasets
such as images poses significant challenges. While models based on such datasets
achieve high accuracy, they struggle with quick training and real-time applica-
tions.

In our research, we shift our focus to a different type of dataset—2D graphs.
We explore effective techniques and design specialized models to address the

4

challenges presented by this simpler data format. The objective is to enhance
semantic mapping using these simpler 2D graph-structured datasets.

The underlying motivation propelling our pursuit is grounded in fortifying
the foundational framework that will substantiate the future endeavors of real-
time autonomous systems. By cultivating a comprehensive understanding of the
intricacies associated with semantic mapping through 2D datasets or graphical
datasets in our case, we aim to enhance the efficacy and efficiency of autonomous
systems as they operate in dynamic, real-world scenarios.

Our main motivation is to strengthen the fundamental framework that will
support future real-time autonomous systems. We believe that by thoroughly
understanding how semantic mapping works with 2D graph datasets, we can im-
prove the effectiveness and efficiency of these autonomous systems as they navi-
gate dynamic real-world situations. Figure 1.2 below represents the general flow
of the Thesis.

cha1pter >|\ Introduction /
chazpter ;I Literature Survey \
chagter >| Dataset and Data Preparation \
Chaftﬂ >|\ Sum Product Network \
chaspter >|/ Graph Neural Network j
chagter >| Conclusion and Future Work |

Figure 1.2: Thesis work flowchart and overview.

CHAPTER 2

Literature Survey

In this chapter we discussed about the literature survey that we have done and
was important to understand and work for our problem statement. Here the
reader will also get some insights about previous works as well as neural net-
works, tools and technologies we have used in our research. It will also de-
velop the intuitions for the reader why we choose to work with the specific meth-
0ods(GNNSs) to solve our problem.

2.1 Some Previous Methods

In this section we have discussed previous work apart from SPN based and GNN
based models. Probabilistic Graphical Models (PGMs) have emerged as a versa-
tile and powerful framework in the realms of semantic mapping and place clas-
sification, attracting significant attention due to their capacity to model intricate
spatial and semantic relationships. This class of models provides an elegant way
to represent complex dependencies between variables through probabilistic rela-
tionships, making them particularly well-suited for scenarios where uncertainty
and hidden relationships are prevalent [5].

In the context of semantic mapping, PGMs offer a holistic approach that seam-
lessly integrates spatial information with environmental semantics. These models
excel in capturing the underlying spatial configurations of an environment while
incorporating observable cues like sensor data or landmarks. This amalgamation
of information yields a comprehensive representation that effectively accommo-
dates the inherent uncertainties, noise, and partial observability encountered in
real-world data [6]. This robustness positions PGMs as an instrumental frame-
work for unveiling the structural semantics of environments, a critical aspect for
tasks such as navigation, exploration, and decision-making in autonomous sys-
tems.

PGMs have also demonstrated their prowess in semantic place classification,

a domain of paramount importance in robotics and autonomous navigation. The
distinctive strength of PGMs lies in their ability to model probabilistic relation-
ships among variables. In the context of spatial environments, PGMs can capture
the probabilistic transitions of semantic labels as the robot traverses different lo-
cations. By understanding the nuanced evolution of semantic labels over time,
PGMs enable accurate and contextually aware place classification [7]. This tem-
poral sensitivity empowers the model to infer the semantic attributes associated
with specific locations, thus contributing to a more nuanced understanding of the
environment’s semantics.

Past research underscores the significance of PGMs in semantic mapping and
place classification. For instance, the study in [8] showcased the integration of
PGMs to improve the accuracy of semantic mapping and localization. Addition-
ally, the research in [9] explored the application of Bayesian networks, a type of
PGM, to enhance the semantic classification of places.

In conclusion, Probabilistic Graphical Models represent a versatile and adapt-
able approach to semantic mapping and place classification. By encapsulating
complex relationships and uncertainty through probabilistic dependencies, PGMs
offer an enriched understanding of real-world environments. Their capacity to
capture dependencies and temporal dynamics positions them as pivotal tools in
the advancement of autonomous systems and robotics, enabling more informed
navigation, classification, and interaction within intricate environments. As the
field of robotics evolves, the exploration and refinement of PGMs in the context of
semantic mapping hold the promise of unlocking novel avenues for research and
innovation [10].

Hidden Markov Models (HMMs) have emerged as a robust and versatile frame-
work within the domain of semantic mapping and place classification, garnering
considerable attention due to their ability to capture complex spatial and seman-
tic relationships. This probabilistic graphical model offers a sophisticated way
to encapsulate hidden states and observed data, proving particularly effective in
scenarios where the latent states are not directly observable but leave discernible
traces in the data [11].

In the realm of semantic mapping, HMMs present an intriguing approach
that combines spatial information with environmental semantics. This integra-
tion bridges the gap between spatial relationships and the meaning attributed
to different locations. In practice, HMMs allow us to model the hidden spatial
configurations of an environment while incorporating observable cues such as

sensor data or landmarks [12]. The result is a comprehensive representation that

accounts for the inherent uncertainties, noise, and partial observability often en-
countered in real-world data. This robustness makes HMMs an ideal framework
for extracting and comprehending the structural semantics of environments, a
crucial capability for autonomous systems that need to navigate, understand, and
make informed decisions based on their surroundings.

Moreover, HMMs have found particular utility in semantic place classification,
a task of paramount importance in robotics and autonomous navigation. The dis-
tinctive advantage of HMM:s lies in their ability to leverage the temporal sequence
of observations. In the context of spatial environments, HMMSs can identify pat-
terns in semantic transitions as the robot moves through different locations. By
understanding how semantic labels evolve over time, HMMs enable more accu-
rate and context-aware place classification [13]. This temporal sensitivity empow-
ers the model to infer the semantic attributes of specific locations, contributing to
an enhanced understanding of the environment’s semantics.

Past research has showcased the prowess of HMMs in semantic mapping and
place classification. The paper [14] demonstrated the integration of RFID tag in-
formation with robot pose estimations using HMMs, resulting in improved se-
mantic mapping accuracy. Additionally, the research [15] explored the utilization
of dynamic Markov chains, a variation of HMMSs, to capture the evolving seman-
tic labels over time. These studies highlight the adaptability and versatility of
HMMs in various semantic mapping scenarios.

In conclusion, Hidden Markov Models offer a sophisticated and adaptable ap-
proach to semantic mapping and place classification. By seamlessly combining
hidden spatial states with observable semantics, HMMs provide a nuanced un-
derstanding of real-world environments. Their capacity to encapsulate complex
relationships and temporal dependencies makes them a formidable tool in au-
tonomous systems and robotics, enhancing our ability to traverse, classify, and
interact with the enviornment around us. As technology continues to advance,
the further exploration and refinement of HMM s in the context of semantic map-
ping promise to unlock new horizons in the department of artificial intelligence

and robotics.

2.2 Sum Product Network (SPN)

Sum Product Networks (SPNs) have emerged as an very important type of proba-
bilistic graphical model, garnering considerable interest within the machine learn-

ing community. Their ability to effectively represent and compute probabilities

over structured data renders them highly valuable in various applications, such as
classification, density estimation, and even semantic mapping within autonomous
systems [16], [4].

SPNs employ a hierarchical architecture that leverages the advantages of sum
nodes and product nodes [17], [18], [2]. Sum nodes function as mixture models,
enabling the network to capture intricate variable relationships [19], [20]. Con-
versely, product nodes act as factors, breaking down the joint probability distri-
bution into a collection of conditional distributions.

An essential benefit of SPNs is their capability to handle tractable inference,
mitigating the computational complexity associated with conventional deep learn-
ing models” forward and backward passes. SPNs efficiently compute marginal
and conditional probabilities, allowing them to tackle uncertainty and probabilis-
tic reasoning effectively in real-life situations [4].

SPNs provide an innate and straightforward approach to integrate continuous
and discrete variables within a unified model. This flexibility enhances their suit-
ability for diverse tasks that encompass mixed data types, establishing them as a
practical choice for numerous real-world applications [21], [22].

To conclude, Sum Product Networks provide a robust and computationally ef-
ficient method for probabilistic modeling, boasting the ability to conduct tractable
inference and accommodate structured data with a mix of variable types. Their
diverse applications range from classification and density estimation to more in-
tricate endeavors like semantic mapping, contributing to the enhancement of au-
tonomous systems and intelligent agents. As ongoing research pushes the bound-
aries in this domain, SPNs have the potential to foster innovation and tackle chal-

lenges across various realms of machine learning and beyond [23].

2.3 Graph Sum Product Network (Graph SPN)

Graph SPN, or Graph Sum Product Network, is an advanced probabilistic graph-
ical model designed to handle structured data represented in the form of graphs.
Graph SPNs build upon the foundation of traditional Sum Product Networks by
incorporating graph-based structures to model complex relationships and depen-
dencies among variables.

In Graph SPNs, each node in the graph represents a random variable, and the
edges in the graph capture the probabilistic connections between these variables.
This unique representation enables Graph SPNs to effectively capture the intri-

cate patterns and interactions present in graph-structured data. By considering

the dependencies among variables through the graph structure, Graph SPNs can
efficiently compute probabilities and perform functionalities like node classifica-
tion, relation for edge inference, and even graph generation.

Graph SPNs are particularly valuable in domains where data naturally ex-
hibits graph-like relationships, such as social networks, biological networks, and
knowledge graphs. Their ability to model and reason about structured data makes
them a powerful tool for handling real-world scenarios involving interconnected
entities and complex dependencies.

The incorporation of graph-based inference algorithms further enhances the
capabilities of Graph SPNs, allowing for efficient and scalable computations on
large-scale graph data. As a result, Graph SPNs have become increasingly pop-
ular in various applications, including recommendation systems, bioinformatics,
and social network analysis.

In summary, Graph SPNs extend the capabilities of Sum Product Networks to
address structured data in graph format, providing an effective solution for mod-
eling and analyzing complex relationships in diverse domains. Their ability to
handle graph-structured data and perform various tasks makes them a promising
approach in the field of probabilistic graphical models.

The paper [4] introduces Graph-Structured Sum-Product Networks (Graph-
SPNs) as a probabilistic solution for structured prediction tasks involving dy-
namic graphs expressing dependencies between latent variables. Unlike other
approaches that impose strict constraints on variable interactions, GraphSPNs ac-
commodate complex and varying-sized graph structures, which are common in
real-world problems with noisy data. The research focuses on a specific appli-
cation in robotics, where GraphSPNs play a crucial role in improving inference
related to semantic place descriptions, particularly in the context of noisy topolog-
ical relations within extensive office environments. The experiments demonstrate
GraphSPNs’ superiority over traditional methods relying on undirected graphical
models. These results effectively clarify information within global semantic maps
built from uncertain local data. The probabilistic nature of the model enables the
inference of marginal distributions for unexplored places, detecting novel and in-
congruent spatial configurations based on known evidence. This work is valuable
for similar research in the field of structured prediction and semantic mapping in
robotics, offering insights into handling dynamic graph structures and noisy data

to improve inference accuracy and model robustness.

10

2.4 Graph Neural Network (GNN)

Graph Neural Networks (GNNSs) are a class of neural networks that have gained
significant popularity in recent years due to their ability to effectively handle data
with graph-like structures [24]. GNNs are specifically designed to process data
represented as graphs, where nodes represent entities, and edges capture the re-
lationships between these entities. They have demonstrated remarkable perfor-
mance in tasks such as node classification, link prediction, and graph-level classi-
fication [25].

At their core, GNNs leverage a message-passing mechanism, where informa-
tion is propagated through the graph’s edges to update node representations [26].
This process allows nodes to gather and aggregate information from their neigh-
boring nodes, enabling the network to capture local and global patterns within the
graph. As information is passed through multiple layers of the network, nodes
receive refined representations, taking into account both their local features and
the collective information from the entire graph [27].

GNNs employ a series of layers, each consisting of two main steps: message
aggregation and node update. In the message aggregation step, each node collects
information from its neighbors using aggregation functions, such as summation
or weighted averaging. In the node update step, the aggregated information is
combined with the node’s current representation to compute an updated repre-
sentation [28]. This iterative process allows GNNSs to iteratively refine node rep-
resentations, capturing complex dependencies and patterns within the graph [29].

In the context of semantic place classification, GNNs offer a powerful ap-
proach to understanding and categorizing different locations or regions in the en-
vironment [30]. When applied to a graph representation of a spatial environment,
where nodes represent places or regions, and edges signify spatial relationships,
GNNs can effectively classify the semantic meaning of each place [31].

To accomplish semantic place classification, GNNs leverage their ability to in-
corporate both spatial and semantic information. For example, in a smart home
setting, a GNN can learn to distinguish between various rooms, such as the kitchen,
living room, and bedroom, based on their spatial relationships and the objects
present in each room. By considering the context provided by neighboring places,
GNNs can make informed decisions about the semantic labels of different loca-
tions.

The success of GNNs in semantic place classification can be attributed to their

ability to model complex spatial dependencies among places. Traditional meth-

11

ods for place classification often rely on hand-crafted features or predefined spa-
tial relationships, which may not capture the intricacies of real-world environ-
ments. GNNSs, on the other hand, can automatically learn meaningful representa-
tions from the data, making them more adaptable and accurate in capturing the
nuances of the environment.

Furthermore, GNNs are robust to variations and noisy data, making them
well-suited for real-world scenarios where environmental conditions may change
over time. They can effectively handle missing or incomplete information, en-
abling reliable place classification even in dynamic and unpredictable environ-
ments.

In summary, Graph Neural Networks are a potent tool for processing data
with graph-like structures, offering a message-passing mechanism to capture com-
plex dependencies among entities. In the domain of semantic place classification,
GNN’s excel at understanding and categorizing different locations based on their
spatial relationships and context provided by neighboring places. Their ability to
handle real-world variations and noisy data makes them highly valuable for au-
tonomous systems and intelligent agents operating in dynamic environments. As
research in GNNs continues to progress, their applications are likely to expand
further, contributing to advancements in various fields, including robotics, urban

planning, and smart infrastructure.

2.5 Libraries and Tools

2.51 Numpy

NumPy is a Python library [32] that facilitates the manipulation of large, multi-
dimensional arrays and matrices, coupled with an extensive set of mathematical
functions to process these arrays. Its widespread use in data science, scientific
computing, and machine learning is attributed to its ability to efficiently manage
numerical computations. With an intuitive interface, NumPy is invaluable for re-
searchers, data analysts, and developers working with numerical data in Python,

simplifying complex mathematical operations on arrays with ease.

2.5.2 pandas

Pandas is a well-known Python library extensively utilized for data manipulation
and analysis [33]. Its DataFrame and Series data structures enable seamless han-

dling and manipulation of vast datasets. With an abundance of built-in functions

12

and utilities, Pandas simplifies tasks like data cleaning, transformation, grouping,
and aggregation. The library’s integration with other tools, including NumPy, em-
powers users to preprocess and analyze data efficiently in data science projects.
Its intuitive and adaptable interface makes Pandas a preferred choice for data pro-

fessionals and analysts working with structured data in Python [33].

2.5.3 libspn

With "libSPN," users can build SPNs and perform various operations, including
structure learning, parameter learning, and probabilistic inference. The library
offers an intuitive interface to create and manipulate SPNs, making it accessible

to researchers, data scientists, and machine learning practitioners.

2.5.4 libspn - keras

LibSPN Keras [34] is a library for constructing and training Sum-Product Net-
works. By leveraging the Keras framework with a TensorFlow backend, it of-
fers both ease-of-use and scalability. Whereas the previously available libspn fo-
cused on scalability, libspn-keras offers scalability and a straightforward Keras-
compatible interface.

2.5.5 Qtorch - Geometric, sparse, scatter

Qtorch is a comprehensive library that specializes in low-precision quantization
[35] for PyTorch, enabling developers to reduce memory usage and computation
time while maintaining model accuracy. By supporting various quantization tech-
niques, Qtorch empowers users to optimize the trade-off between performance
and precision. It offers seamless integration with existing PyTorch models and
allows quantization-aware training for improved performance without the need
for extensive retraining.

Qtorch Sparse and Scatter [35] is an extension of the Qtorch library, specifically
tailored to handle sparse and scattered computations in low-precision quantiza-
tion tasks. With a focus on memory and computation efficiency for sparse data,
it proves valuable for applications dealing with large-scale sparse tensors. Lever-
aging sparse and scattered computations, this extension efficiently quantizes and
processes sparse tensors while preserving accuracy, making it ideal for resource-
constrained devices and large datasets.

Qtorch Geometric [35] is another specialized extension of the Qtorch library,

13

catering to low-precision quantization for graph-based models, particularly those
represented as graphs. By integrating seamlessly with PyTorch Geometric, it en-
ables efficient quantization of graph neural networks, leveraging various quanti-
zation methods for optimal performance. Qtorch Geometric ensures that memory
usage and computation time are minimized, allowing users to maintain model
accuracy and achieve efficient deep learning tasks with graph-structured data.

In summary, the combined capabilities of Qtorch, Qtorch Sparse and Scatter,
and Qtorch Geometric present a powerful suite of tools for low-precision quanti-
zation in PyTorch. They collectively address diverse scenarios, optimizing mem-
ory consumption, computation time, and model accuracy across different data
types, including dense tensors, sparse tensors, and graph-structured data. As a
result, developers can unlock more efficient and scalable deep learning on various
platforms, ranging from resource-constrained devices to complex graph-based
models [35].

2.5.6 torch-geometric

torch-geometric is a popular PyTorch-based library specifically designed for deep
learning on graph-structured data [36]. It provides a wide range of tools and
functionalities to work with graphs and perform various graph-based machine
learning tasks, including node classification, link prediction, graph classification,
and graph generation.

With torch-geometric, users can efficiently handle large-scale graph datasets
using specialized data structures, such as Graph Neural Networks (GNNs) and
Message Passing Neural Networks (MPNNSs). The library also offers various
graph data augmentation techniques, graph preprocessing utilities, and visual-
ization tools to facilitate the exploration and analysis of graph-structured data.

Graph Neural Networks have gained significant attention in recent years for
their ability to model complex dependencies and interactions within graph data.
"torch-geometric" makes it easier for researchers, data scientists, and developers
to implement and experiment with GNN architectures for a wide range of appli-
cations.

Additionally, "torch-geometric" has a growing ecosystem of community-contributed
models and benchmark datasets, making it a valuable resource for researchers and

practitioners in the field of graph-based deep learning [36].

14

2.5.7 NetworkX

NetworkX is a versatile and widely used Python library designed to handle com-
plex network analysis and manipulation tasks, making it an invaluable asset in
the field of graph-based machine learning, including Graph Neural Networks
(GNNSs) and Graph Attention Networks (GATs). With its user-friendly interface
and comprehensive set of functionalities, NetworkX facilitates the creation, mod-
ification, and exploration of graphs, enabling researchers and practitioners to pre-
process and prepare graph data for subsequent analysis [37].

One of NetworkX’s key strengths lies in its capability to handle diverse types
of graphs [37], whether directed or undirected, weighted or unweighted. It allows
nodes and edges to possess attributes, which aligns well with the rich nature of
data encountered in real-world scenarios. This feature is essential when prepro-
cessing graph data for GNNs and GATs, as it enables the incorporation of per-
tinent node and edge features, thereby enhancing the models” ability to capture

nuanced relationships

15

CHAPTER 3

Dataset and Data Preparation

This chapter introduces to the datasets we used for experiments. We also dis-
cussed about data-preparation and prepossessing needed. This chapter is impor-
tant for the reader as it will give the insight about structure of 2D data and its
graphical representation. This chapter also represents how important to under-
stand how different models and experiments needs different data prepossessing

if in case someone in future wants to do more research about this topic.

3.1 Dataset

In our research, we utilized the COLD-TopoMaps Dataset [38], which comprises
topological maps gathered during the robot’s exploration of the environment.
These maps are represented as undirected graphs, also known as "topological
graphs," where nodes represent accessible places, and edges signify navigabil-
ity between places. Moreover, each place in the graph is annotated with a specific
semantic place category, such as corridor, kitchen, or doorway. The dataset’s in-
clusion of both spatial information in the form of graphs and semantic labels for
places provides a valuable resource for our research on semantic mapping and
place classification in robotics. By leveraging this dataset, we aimed to enhance
the robot’s understanding of its surroundings and improve its decision-making
capabilities based on both spatial and semantic cues.

So our dataset is basically contains two dimensional information ,it contains x
and y coordinates of localities and there eight views classifications as well.

For constructing topological graphs from a stream of localized robot poses
on an occupancy grid map, generated using SLAM (Simultaneous Localization
and Mapping). The process involves utilizing the Robot Operating System (ROS)
framework, where robot poses are continuously published to one topic, and the
occupancy grid map is published to another topic using map-server. This ap-

proach allows the method to work in real-time as the robot explores a new envi-

16

ronment.

However, for the data collection process used in our research, we obtained the
SLAM map separately before constructing the topological graphs. This decision
was made to ensure data consistency and to focus on the construction and analysis
of topological graphs without the real-time constraints of online exploration.

Furthermore, for our dataset, we used canonical robot poses from COLD-
Meta, which were obtained through AMCL (Adaptive Monte Carlo Localization).
These canonical poses provide accurate and reliable robot localization informa-
tion, serving as essential inputs for building precise topological graphs.

The described acquisition procedure highlights the robustness and flexibility
of our method, as it can efficiently work in real-time when applied online during
exploration, but also accommodates offline data collection for more comprehen-
sive analysis and research. By leveraging canonical robot poses from COLD-Meta,
we ensure high-quality data for constructing topological graphs, enabling us to

study and evaluate semantic place classification and mapping with confidence.

The Figure 3.1 represents Datasets 8 views and there directions. Here 0 to 7
represents 8 different views in different directions. For instance 0 represents north
east direction with range 0° to 45° from north, and similarly for the remaining
views. Figure 3.2 represents Datasets labels. Here we are observing the geometric
view 10 different classes. Figure 3.3 represents an example of DataSet graphical
representation taken from [1].

Figure 3.1: Dataset view graph [1].

17

QWECOIHLOOD

doorway ccmdor ofﬁce balhmom amemcnm prmtetfunhty large office kitchen meeting
® Used in 6-class semp Used kn 10-class semp room room

Figure 3.2: Dataset labels [1].

3.2 Dataset Preparation and Preprocessing

In our research, we focused on the application of Graph Neural Networks (GNNs)
to our acquired dataset, which contains valuable graphical information about the
environment of the floor and rooms. To leverage the power of GNNS, it was cru-
cial to preprocess the dataset and ensure its compatibility with the GraphSPN
libraries in both PyTorch and TensorFlow. This preprocessing step involved trans-
forming the original graphical data into graph structures that can seamlessly in-
tegrate with the GNN frameworks.

The dataset consists of 118 graphs obtained from the exploration of three dif-
ferent buildings. To make it GNN-ready, we diligently converted each graph into
a format suitable for analysis with GraphSPN libraries, carefully considering the
nuances of each building’s layout and spatial relationships.

For the subsequent phase of our research, we aimed to perform semantic place
classification at multiple levels of granularity. This required further preparation
and preprocessing of the dataset. We needed to label the data differently for three
levels: room level, floor level, and building level. Each level provided different
insights into the semantic descriptions of places, contributing to a more compre-
hensive understanding of the environment.

In addition to labeling, we explored the benefits of graph partitioning to im-
prove classification accuracy. By employing a graph partitioning algorithm, we
divided the graphs into meaningful substructures, facilitating more accurate and
context-aware place classification. We experimented with different partitioning
values to find the optimum configuration that yielded the best prediction accura-
cies for each level of granularity.

Through these meticulous efforts, our dataset became well-suited for GNN ap-
plications, enabling robust and versatile semantic place classification across vari-
ous levels of detail. The thoughtful preprocessing and partitioning steps played
a pivotal role in enhancing the performance of GNNs in extracting and compre-
hending the semantic information embedded within the complex graph structures

of our dataset.

18

il

gy A T

¥,
ey

Figure 3.3: Graphical representation of COLD data [1].

19

Data preprocessing : Graph Neural Networks (GNNs), effective data prepro-
cessing plays a pivotal role in optimizing model performance and predictive ac-
curacy. One crucial step involves the careful construction of graph structures,
encompassing the identification of nodes and edges, as well as their attributes.
Additionally, data normalization and feature scaling are imperative to ensure uni-
formity and mitigate the impact of varying scales across different attributes. Fur-
thermore, handling missing data and noise reduction strategies are essential to
enhance the robustness of GNNs, as these models are sensitive to the quality of
input data.

In the context of our work, the significance of data preprocessing was required
and important. To apply GNNss effectively to our semantic mapping problem, we
carefully curated and engineered our dataset. We organized our graph structures
by identifying places as nodes and establishing edges representing the spatial re-
lations between them. This entailed encoding not only the topological relation-
ships but also the semantic attributes associated with each place. Subsequently,
we normalized and scaled the attributes to ensure consistent inputs for the GNN
model.

Furthermore, we also worked for handling noise and missing data. With rigor-
ous cleaning and imputation techniques, we refined our dataset to reduce incon-
sistencies and enhance the reliability of our GNN-based predictions. By carefully
executing these preprocessing steps, we laid the foundation for GNNs to effec-
tively capture the intricate dependencies present in our semantic mapping data,
thereby facilitating accurate and meaningful predictions.

When preparing data for GATs, special attention is given to the construction of
the adjacency matrix. Unlike GNNs, GATs utilize a self-attention mechanism that
assigns varying importance to different neighboring nodes. As a result, the adja-
cency matrix is normalized using a softmax function, ensuring that the attention
weights sum up to unity for each node. This step facilitates GATs in discerning the
most relevant connections, enhancing their ability to capture fine-grained spatial
dependencies.

Furthermore, node feature preparation in GATs is distinctive. While GNNs
often utilize shared learnable weights for aggregating features from neighbor-
ing nodes, GATs assign individual attention coefficients to each neighboring node
during feature aggregation. This specialized attention mechanism endows GATs
with the capability to focus on specific nodes while aggregating information, en-
abling them to capture intricate spatial relationships and semantic nuances.

In summary, data preprocessing for GAT models involves a nuanced approach,

20

including the normalization of adjacency matrices to accommodate the self-attention
mechanism and the calculation of individual attention coefficients during feature
aggregation. These refined steps not only enhance GATs’ capacity to capture fine-
grained spatial relationships and semantic patterns but also underline their po-
tential as a powerful tool for advanced semantic mapping tasks, propelling them
beyond the capabilities of traditional GNNs. This distinction positions GATs at
the forefront of innovative solutions in the field of semantic mapping.

21

CHAPTER 4
Sum Product Network (SPN) Architecture

4.1 Implementation

After all the required data precprocessing techinques as discussed in above sec-
tions and some which are not discussed that are very common in almost all ma-
chine learning or deep learning problems such as data cleaning, dimensional-
ity reduction, sampling and normalisation and data transformation , we proceed
with steps below.

The next step was to design an algorithm for creating edge indexes out of
dataset. We outline the process of constructing an edge index from our dataset’s
nodes and their respective neighboring node identifiers. The derived edge index
forms a fundamental component in facilitating graph-based analyses, a corner-
stone of our semantic mapping and classification endeavors.

The algorithm (Figure 4.1) commences by initializing an empty array called all-
edges, formatted as a NumPy array with a shape of (0, 2). This array is designed
to accommodate pairs of node identifiers, representing the edges of our graph.

Iterating through the dataset containing node information (nodes-df), our al-
gorithm systematically ascertains the presence of neighboring node identifiers for
each node. Through a series of conditional checks, we ensure that the neighboring
node identifiers (nnID1 through nnID8) are considered for potential edge forma-
tion. If a valid neighboring node identifier is detected, an "edge pair" is created by
juxtaposing the current node’s identifier and its corresponding neighboring node
identifier.

These "edge pairs" are subsequently integrated into the growing all-edges ar-
ray using a vertical stacking mechanism. This strategic approach enables the grad-
ual assembly of a comprehensive array of edges that characterize the connectivity
between nodes within our graph.

The final step involves refining the collected edges to ensure uniqueness. Through

the application of the NumPy function np.unique(), any duplicate edge entries are

22

effectively removed. This action further optimizes the integrity of the edge index,
ensuring that each edge pair is represented only once.

The culmination of these operations results in the creation of the edge-index.
This structured edge index is prepared for subsequent utilization in graph-oriented
operations and analyses, which play an very important role in our semantic map-
ping classification.

In essence, the code snippet in figure 4.1 unveils a systematic approach to con-
vert our dataset’s node and neighboring node identifier information into a refined
edge index. This pivotal effort significantly improves the precision of our graph-
based analyses and strategically positions our research for the efficient utilization
of graph neural networks to decipher the complexities of semantic mapping and
classification within our dataset.

In our pursuit of advancing semantic mapping classification, we have em-
barked on the development of a localized Sum-Product Network (SPN) model
that is custom-tailored to the intricate characteristics of our specific dataset. This
endeavor involves harnessing the capabilities of the Keras library to construct an
SPN architecture that efficiently captures and processes the multifaceted relation-
ships inherent in our dataset, thereby enriching the accuracy and depth of our
semantic place classification efforts.

The journey of building our localized SPN unfolds through a detailed and
required series of steps, each of which contributes to the model’s adaptability
and efficacy in addressing the complexities of our semantic mapping classification
task:

Data Normalization: The process commences with data normalization, a cru-
cial preprocessing stage that brings our input data to a uniform scale. This nor-
malization step not only optimizes the training process but also aligns the data
for subsequent SPN layers.

Initiating with NormalLeaf Layer: Our SPN model takes its initial steps with
the introduction of the NormalLeaf layer. This layer assumes a pivotal role in
modeling the underlying distribution of our dataset’s attributes. By introduc-
ing Gaussian distributions, the NormalLeaf layer adeptly handles the variations
within the data. The strategic selection of parameters, such as the number of
Gaussian components and the trainability of location parameters, ensures a ro-
bust alignment between our model and the distinct attributes of our dataset.

Sequences of DenseProduct and DenseSum Layers: The heart of our SPN
architecture comprises an interplay of DenseProduct and DenseSum layers. This

choreography of layers forms a dynamic ensemble that iteratively orchestrates the

23

intricate relationships within the dataset. The DenseProduct layers, marked by
their multiplication of child node outputs, intricately weave together information.
Conversely, the DenseSum layers exercise their prowess in summing the outputs
of child nodes. This pattern of products and sums, delivered through a sequence
of layers, encapsulates the hierarchical dependencies inherent in the dataset.

Culmination with RootSum Layer: The SPN narrative reaches its end with
the RootSum layer. At this point, the model synthesizes the weighted logits em-
anating from the child nodes. This deep integration of information produces an
output that embodies the model’s prediction, effectively encapsulating the seman-
tics of place classification.

The configuration, the number of Gaussian components, factors, and sums in
each layer, is a deliberative endeavor that aligns with our dataset’s complex at-
tributes. This localized SPN model serves as an embodiment of our dedication to
devising an architecture that harmonizes with the intrinsic complexities of seman-
tic mapping classification. As we journey forward in our work, the subsequent
chapters will delve into the model’s training intricacies, performance evaluations,

and the valuable insights through its application to the dataset.

24

Presented below figure 4.1 is a code snippet detailing our custom local SPN
network. This network structure is designed while keeping the number of input
and output parameters in mind. Other layers are designed with experiments, hit
and trial methods for best accuracy and number of parameters.In figure 4.2 we

can observe the flow diagram for the same.

sum_product network = keras.Sequential(|[

normalize,
spnk.layers.NormallLeat

num_components=2,

location trainable=
spnk. layers.DenseProduct(num factors=3
spnk. layers.DenseProduct(num_factors=3
spnk.layers.DenseSum(num_sums=10),
spnk. layers.DenseProduct(num factors=3),
spnk.layers.DenseSum(num_sums=10),

spnk.layers.DenseSum(num_sums=10),

spnk.layers.RootSum(return weighted child logits=

D

sum_product_network.summary()

Figure 4.1: Local SPN model.

25

Normal Leal
num_component =9

Dense_Sum Layer
num_sums =9

Danse_Sum Layer
num_sums =3

Dense_Product Layer, & X
num_factor=3 | ><
Dense_sum Layer

num_sums = 10

Root Sum Layer

Figure 4.2: Illustrate flow diagram our local SPN Architecture for the code in de-
picted in Fig. 4.1.

26

4.2 Result

The outcomes obtained from our semantic place classification experiments em-
ploying the local Sum-Product Network (SPN) on distinct datasets, namely Cold
Stolkholm and Cold Sarbucken [38] yielded accuracy rates of 30.04% and 54.10%
respectively. It is noteworthy, however, that these results exhibit a comparative
lower accuracy when juxtaposed with contemporary state-of-the-art methodolo-
gies. These experiments were conducted within an environment characterized by
a high degree of noise, underscoring the intricate challenges that confront seman-
tic place classification.

Our engagement with local SPN networks surfaced the realization that a more
refined and sophisticated approach is warranted. This imperative realization has
set the stage for a comprehensive exploration, which we expound upon in the
forthcoming chapter. A notable facet of this journey is the presence of multi-
faceted challenges. One such challenge stems from the deprecation of previously
established libraries, rendering their utilization unfeasible. This predicament ne-
cessitated the exploration of alternative libraries and the creation of a novel, be-
spoke setup from the ground up.

It is important to underscore the challenges we encountered while striving
to replicate the original work, as detailed in [1]. There was lack of implementa-
tion details in the paper and very less information was available for architecture
used. This absence significantly heightened the complexity of conducting our
simulations, carefully exploration and inventive solutions to surmount the prob-
lems posed by this lack of concrete guidance.

The upcoming chapter delves into our innovative approach, born out of the
recognized limitations and challenges. Utilizing a systematic methodology and
solutions, we set out on a transformative journey to enhance and refine our se-
mantic place classification framework. By systematically addressing the short-
comings highlighted by previous experiments and thoughtfully incorporating im-
provements, we aim to introduce a new dimension of improved accuracy and
comprehension within the domain of semantic mapping.

The forthcoming chapter delves deeper into our novel approach that stems
from the identified limitations and hurdles encountered. Through a systematic
methodology and innovative solutions, we worked to refine our semantic place
classification framework. By addressing the issues raised by the earlier simula-
tions and methodically incorporating improvements, we endeavor to usher in a

new realm of enhanced accuracy and understanding in the domain of semantic

27

mapping. Table 4.1 demonstrates the results obtained in terms of accuracy.

Model Accuracy
Local SPN (Stolkholm) (This Work) 30.04%
Local SPN (Saarbrucken) (This Work) 54.10%
Local SPN (Kaiyu Zheng) 79.06%
TopoNet using Graph SPN (Kaiyu Zheng) | 80.14%

Table 4.1: Results comparisons for different methods with our method

While our model did not perform as good as state of the art if we consider
accuracy, but it is crucial to note that our model’s lightweight nature contributed
to improved performance in terms of both training and testing time complexi-
ties. The significance of a lightweight model cannot be understated, particularly
when considering its pivotal role in achieving real-time semantic mapping. In
scenarios where real-time operations are imperative, the efficiency gained from a
lightweight model becomes a critical advantage. There was no data available on
model sizes to compare the light weight of the model but we inference time data
using that we evaluated the performance. That is shown in upcoming chapter.

This helped us for our next experiment where our target was not just to im-

prove the accuracy but also to also to maintain our model light-weight in nature.

28

CHAPTER 5

Graph Neural Network (GNN)

This chapter starts with brief theory important understand GNN. Then further it
covers the implementation and simulations for GNN based sematic place classifi-
cation, also simulated and developing proof of concept for multilevel predictions

using GNNSs. At the end of this chapter we take a glance at final results of

5.1 Introduction

This section covers theory for GNN and how it can be used for different levels of
predictions in a graph.

Graph Neural Networks (GNNs) have emerged as a pioneering innovation
in the field of machine learning, specifically tailored to tackle data structured as
graphs. Their inception was motivated by the recognition that numerous real-
world problems, such as social networks, molecular structures, and recommen-
dation systems, inherently exhibit graph-like relationships. Standard neural net-
works, while adept at processing structured data like images and sequences, lack
the inherent ability to handle graph-structured data. GNNs were introduced to
bridge this gap by extending the deep learning paradigm to graph-based struc-
tures.

The genesis of GNNs can be traced back to the early 2010s, but their broader
prominence gained momentum in the latter half of the decade. The pivotal paper
[24] marked a game changing moment in GNN research. This work introduced
the concept of graph convolutions, enabling neural networks to propagate infor-
mation across graph nodes effectively. Consequently, GNNs opened up avenues
for various applications, ranging from node classification and link prediction to
recommendation systems and molecular chemistry [39].

From a theoretical and mathematical perspective, GNNs leverage graph con-
volutional operations to aggregate and propagate information across neighboring

nodes. This process encapsulates the essence of the underlying graph structure

29

and enables nodes to acquire insights from their local context. Mathematically,
GNNs iteratively update node representations by aggregating information from
adjacent nodes and then applying neural transformations. This dynamic process
effectively captures higher-order relationships, allowing GNNs to learn complex
graph patterns [40].

Furthermore, GNNs can be understood through the lens of message passing.
At each layer, nodes aggregate and transform messages from their neighbors, en-
abling the network to iteratively refine node representations. This process is for-
malized through mathematical equations that encapsulate the aggregation and
transformation functions.

Graph Neural Networks (GNNSs) rely on three pivotal matrices: the adjacency
matrix, the degree matrix, and the feature matrix. These matrices underpin the
mathematical operations that enable GNNs to capture intricate graph relation-
ships and perform meaningful computations on graph-structured data.

Adjacency matrix is defined as fundamental representation of graph’s topol-
ogy, signifying the connections between nodes. Its significance lies in captur-
ing the relational structure and neighborhood interactions within the graph. In
essence, each entry A[i][j] reflects whether nodes i and j are directly connected or
adjacent. This connectivity insight is pivotal for GNNSs, as it guides information
propagation and diffusion across the graph. Figure 5.1 illustrates an example for

adjacency matrix.

Adjacency Matrix (A)

%]

=y
o
—_
=i
o

w
o
g
o
e
'y

4fo (1 |1 |o |1 @

Figure 5.1: Adjacency matrix.

The degree matrix embodies the local significance of nodes within their re-
spective neighborhoods. It quantifies the "importance" of each node by summing

the number of its connections. This information aids GNNs in assigning varying

30

weights to nodes during information propagation. Nodes with higher degrees
may contribute more to their neighbors” updates, while nodes with lower degrees
might be more influenced by their surroundings.

In a road network, nodes represent intersections, and edges depict roads. The
degree of an intersection corresponds to the number of roads leading to it. GNN5s
use the degree matrix to give more weight to intersections with multiple roads,
acknowledging their central role in disseminating traffic information. Similarly,
in citation networks, nodes corresponding to frequently cited papers are "central,"
and the degree matrix acknowledges their influential role. Figure 5.2 illustrates an

example for degree matrix.

Degree Matrix (D)

]
o
w
o
o
o

w
o
o
w
o
[e]

40 0 0 3 0 @
3

Figure 5.2: Degree matrix.

The Laplacian matrix, denoted as L, is a symmetric matrix derived from the
adjacency matrix A and the degree matrix D of a graph G. Specifically, it is defined
as

L=D-A

. The Laplacian matrix captures the graph’s topology and its inherent connectivity
patterns. It embodies the concept of "smoothness" within the graph, indicating
how nodes are interconnected and how their attributes or values might change
across the graph’s structure.

The Laplacian matrix has several distinct forms, including the normalized
Laplacian, the combinatorial Laplacian, and the random walk Laplacian. Each
variant serves a specific purpose, offering unique insights into different aspects
of the graph’s behavior. The normalized Laplacian, for instance, factors in the
degree distribution, providing a normalized perspective on node relationships.

In the context of GNNSs, the Laplacian matrix assumes a central role in spec-

31

tral graph theory. It enables the formulation of graph convolutions and message-
passing mechanisms that facilitate information diffusion across nodes. The eigen-
vectors and eigenvalues of the Laplacian matrix hold critical information about
the graph’s structure, aiding in tasks such as community detection, graph cluster-
ing, and, crucially, the design of graph convolutional layers in GNN architectures.

Figure 5.3 illustrates an example for Laplacian Matrix.

Laplacian Matrix (L)

Figure 5.3: Laplacian matrix.

Collectively, these matrices create a holistic foundation for GNN-based seman-
tic place classification. The adjacency matrix captures the spatial relationships and
transitions between places, the degree matrix offers insights into the local signifi-
cance of places, and the feature matrix imparts descriptive attributes. By employ-
ing GNN operations that utilize these matrices, the network gains the ability to
learn complex patterns within the semantic map, enabling it to accurately classify
places based on their semantic characteristics. This multi-faceted approach lever-
ages both the graph structure and place attributes, making it highly effective for
semantic place classification in autonomous systems.

In GNN we can make the prediction model work with 3 diffferent levels. One
in Node Level prediction, the second one is edge level prediction and the third
one is Graph level Prediction. we will look in detail what does this mean and in
upcoming section we have discussed this with relation to our work [41].

Graph Level Prediction: Comprehensive Global Understanding : In the realm
of graph level prediction, Graph Neural Networks (GNNs) ascend to a pivotal po-
sition in comprehending the holistic essence of an entire graph. This level pertains
to graph classification tasks, where GNNs encapsulate the overarching attributes

of intricate graph structures and distill them into categorical assignments. This

32

tier of prediction holds significance in diverse domains. For instance, in the realm
of molecular compounds, GNNs grasp the collective chemical composition, en-
abling classification based on shared properties. Similarly, GNNs navigate so-
cial networks, deciphering interaction patterns to categorize networks by inher-
ent connectivity dynamics. This elevated vantage point showcases GNNs’ profi-
ciency in interpreting complex global attributes, transcending node-level details,
and revealing overarching patterns.

Node Level Prediction: Unveiling Local Dynamics : Transitioning to the
node level, GNNs pivot towards unraveling the intricate dynamics of individual
nodes within a graph. At this stratum, GNNs interlace intrinsic node attributes
with nuanced interactions among neighboring nodes. The outcome of this syn-
thesis is manifested in node classification tasks. This dynamic capability allows
GNNs to assign categorical labels to nodes, grounded in both their intrinsic at-
tributes and their contextualized interactions. This functionality finds applica-
tions across diverse contexts, from recommender systems, where nodes signify
products, to sentiment analysis where nodes represent textual content. GNNs
flourish in deciphering the intricate relationships among individual nodes, rein-
forcing their adaptability in revealing granular insights.

Edge Level Prediction: Discerning Implicit Relationships : Progressing to
edge level prediction, GNNs meticulously unveil the latent semantics embedded
within edges that interconnect nodes. This intricate layer surfaces in tasks like
link prediction, wherein GNNs foresee the probability of connections forming be-
tween nodes. The implications span widely, from forecasting the evolution of so-
cial network connections to decoding the regulatory interactions among genetic
elements. By scrutinizing edges, GNNs unearth concealed relationships, height-
ening their predictive efficacy in scenarios marked by evolving connections. This
aspect underscores GNNs’ ability to discern implicit links, contributing to a holis-
tic understanding of graph dynamics.

So, the hierarchical tiers of GNN predictions embody a multifaceted frame-
work. At the graph, node, and edge levels, GNNs harness distinct dimensions
of insights. Graph level predictions facilitate a panoramic overview, vital for
global classifications. Node level predictions dive into the intricacies of individual
nodes, revealing localized dynamics. Edge level predictions unearth concealed
connections, enriching predictions with nuanced relationships. This stratification
empowers GNNs to traverse multidimensional insights, positioning them as ver-
satile tools across a range of data-driven domains.

Graph Attention Networks (GATs) represent a pioneering advancement in

33

the domain of Graph Neural Networks (GNNs), forging a pathway towards en-
hancing predictive capabilities within graph-structured data. At the heart of GAT
lies the notion of attention mechanisms, which enable the network to dynami-
cally weigh the importance of neighboring nodes while propagating information.
This transformative feature augments GAT’s ability to adaptively allocate atten-
tion, capturing intricate relationships within the graph. By introducing attention
coefficients that are learned through training, GATs transcend the conventional
fixed-weight aggregations, unraveling localized nuances with precision [25].

The crux of GAT’s innovation rests upon the architecture’s adeptness at per-
forming neighbor-specific feature aggregation. This is realized through self-learned
attention coefficients, as each node’s interactions with its neighbors are metic-
ulously assessed and weighed based on the network’s understanding. Such a
dynamic attention mechanism is particularly pivotal in scenarios where different
nodes have varying influence levels on a focal node’s attributes. This adaptability
not only refines the predictive accuracy of GATs but also reinforces their capacity
to unearth intricate patterns that might be obfuscated using conventional aggre-
gation strategies. By harnessing attention-based mechanisms, GATs herald a new
era in GNNs, amplifying their capacity to decode complex relationships within
graph data, making them an invaluable asset in domains ranging from social net-

work analysis to recommendation systems.

5.2 Implementation and Simulations

5.2.1 GNN Based Local Place Semantic Classification

The problem showcased its most significant outcomes in the seminal work [2]
around 2018. During this period, Graph Neural Networks (GNNs) were in their
early experimentation stages and had yet to gain widespread recognition. Ad-
ditionally, GNNs were in their initial development phase and were not used so
much widely but now we have good amount of resources and libraries to use
them. Importantly, there were no dedicated neural network architectures spe-
cially designed for handling graph-based datasets at that time.

Given this backdrop and with an understanding of our dataset’s foundational
graph-oriented nature, we decided to investigate the potential of Graph Neural
Networks. This exploration was motivated by the alignment of two key factors:
the unique characteristics of our graph-structured dataset and the emerging sig-

nificance of GNNSs in the field of machine learning.

34

This convergence created an opportune context to delve into employing Graph
Neural Networks. Our interest stemmed from the synergy between the pioneer-
ing state of GNNs and our dataset’s inherent structure. Our objective was to
bridge this gap by utilizing GNNs capabilities to gain novel insights and solu-
tions for our specific problem domain. This alignment, marked by the interplay
of a transformative period in machine learning and the foundational attributes of
graph-based data, motivated our decision to embark on this exploration, aiming
to contribute to the evolving landscape of research.

Our model architecture unveils the complexities of the Complex Graph Con-
volutional Network (ComplexGCN), designed to address the graph-structured
data within the domain of semantic place classification. With a foundation rooted
in enhancing our model’s capacity to discern intricate relationships within com-
plex datasets, the ComplexGCN architecture encompasses a layered composi-
tion.Figure 5.4 gives basic block diagram illustration for the GNN architecture

we used.

Input ————| GCN-Conv1 s GCN-Conv2 T GCN-Conv3
Pre - processed (he,nof) (hc,he) (he,hc)
graphs RELU ,Dropout
output GCN Conv 4
(hc,nol)

Hc: hidden channels , nof : number of features, nol: no. of labels
Figure 5.4: GNN architecture.

Embarking on an exploration of architectural complexities, we traverse a hier-
archy of four layers that forms the foundation of our approach. This hierarchical
depth facilitates the nuanced understanding of graph-embedded attributes, un-
derscoring our commitment to cultivating profound insights. The stratified com-
position, fortified by non-linear activation functions, embodies our intent to foster
deep learning within the graph context.

Central to our design architecture is latent feature abstraction, driven by the
parameter C. This latent feature encapsulation serves as a vessel for capturing
hidden insights residing within intricate graph interconnections. The parametric

value of C orchestrates a judicious equilibrium between information richness and

35

computational efficiency, thus enabling the extraction of latent semantics.

Transcending architectural dimensions, our Complex GCN architecture finds
its ultimate purpose in contextual semantic inference. Our journey involves un-
raveling semantically coherent patterns within spatial constructs. The hierarchical
traversal through four graph layers inherently resonates with the quest for deci-
phering contextual semantics, enriching the model’s capacity to unearth mean-
ingful spatial insights.

As we navigate towards optimal efficacy, we delve into the calculation of hy-
perparameter optimization. In alignment with the exigencies of location-based
semantic place classification, we subject our architecture to rigorous exploration
across 42 diverse graph instances, symbolizing unique locations. This compre-
hensive experimentation offers insights into the adaptability of ComplexGCNs in
accommodating diverse spatial relationships, enhancing their robustness in real-
world scenarios.

In summation, the architecture of Graph Convolution Networks emerges as
a conduit for unraveling intricate semantic place classification. Rooted in hier-
archical intricacies, latent feature abstraction, and context-driven inference, our
architecture aligns seamlessly with the pursuit of gleaning meaningful insights

from complex spatial constructs.

5.2.2 Multi Level Prediction Using GNNs

After completing the aforementioned experiment, we transitioned to our subse-
quent set of trials wherein we deployed our Graph Neural Network (GNN) across
all three prediction levels. Within this context, our node-level prediction corre-
sponded to localized places within a given floor. To address edge-level prediction,
we strategically partitioned the edge data, aligning it with relationships between
local places within a floor and facilitating predictions related to floor transitions.
Finally, our GNN was applied for graph-level prediction to classify both individ-
ual floors and entire buildings. This comprehensive approach encompassed the
utilization of datasets from all three buildings within the COLD dataset reposi-
tory.

The objective behind these endeavors was to establish a proof of concept for
multi-level predictions enabled by GNNs. Despite working with a limited dataset,
our aim was to showcase the viability of utilizing GNNs for orchestrating predic-
tions spanning different granularities. This strategic implementation led us to
attain reasonable outcomes. This pioneering exploration underscores the poten-

tial of GNNs in addressing multi-level predictions and offers insights into their

36

efficacy even in scenarios marked by constrained datasets.

In this phase of our research, we worked with a dataset encompassing three
distinct buildings in the dataset. Each of these buildings comprised four floors,
and within each floor, we encountered approximately 8 to 10 distinct classes. In
aggregate, our dataset encapsulated a total of 118 graphs, each graph representing
a unique combination of building, floor, and class. This extensive dataset enabled
us to conduct a comprehensive exploration of multi-level predictions using Graph
Neural Networks (GNNs). By encompassing a diverse range of buildings, floors,
and classes, our dataset laid the foundation for the empirical analysis and valida-
tion of our proposed methodology.

In our pursuit of achieving optimal performance across all three levels of pre-
diction, we recognized the necessity for tailoring distinct architectures to cater to
the nuances of each level. Notably, for both node-level and edge-level predictions,
the model structure expounded in the earlier section proved to be well-suited.
The modifications we made were primarily confined to the output layers, align-
ing them with the requisite number of classes corresponding to each prediction
tier.

However, when it came to graph-level prediction, a more refined approach
was warranted. In this context, we needed to redefine the architecture of the
Graph Neural Network (GNN), particularly focusing on the configuration of hid-
den layers. After a series of simulations and thorough evaluations, we identified
that a GNN model comprising a total of three hidden layers yielded the most
optimal outcomes for floor prediction. This adjustment allowed us to capture
the intricate patterns inherent in the data distribution of floors. Conversely, for
building prediction, our findings indicated that a GNN architecture with two hid-
den layers demonstrated superior performance. This intricate calibration of the
model’s depth was instrumental in harnessing the distinctive characteristics of
our dataset, resulting in the refined predictive accuracy observed in the context of
building-level classification.

In addition to the aforementioned simulation, a final investigation was under-
taken utilizing Graph Attention Networks (GATs) with a comparable architecture.
The objective of this experiment was to assess the performance of GATs against
GNN s in the context of our specific dataset and task. Notably, the results indi-
cated that GNNs exhibited a higher level of efficacy for our dataset, outperform-
ing GATs. However, it’s pertinent to acknowledge that the full potential of GATs
may not have been fully realized due to the nature of our dataset.

Subsequent considerations underscore the potential of GATs in handling more

37

intricate and diverse datasets. GATs are inherently designed to excel in scenarios
characterized by complex interrelationships and substantial variations. It is con-
ceivable that GATs could exhibit enhanced performance when confronted with
datasets that pose greater challenges, encompassing diverse features and intricate
spatial dependencies. Further exploration is warranted to ascertain the full spec-
trum of GATs’ capabilities, especially when grappling with more intricate and var-
iegated data, a domain where their unique architecture holds promise for yielding

even more substantial benefits.

5.3 Results

In the course of our study, an exhaustive analysis and comparison of outcomes
were undertaken, focusing on the outcomes obtained through our Graph Neural
Network (GNN) and Sum-Product Network (SPN) models, juxtaposed against
the backdrop of prior research. Through this rigorous evaluation, we arrived at
a notable observation: GNNs not only exhibited superior performance relative to
SPN models but also demonstrated a remarkable capacity to surmount challenges
intrinsic to graph-based data.

Importantly, our GNN models demonstrated significant progress compared to
our previous simulations using SPN-based models, especially regarding the time
it took to predict in each test scenario that we will discuss in table 5.2. This positive
outcome aligns well with the results presented in [1], confirming the effectiveness
of our GNN-based approach. It’s essential to note that while our GNN-based
models improved accuracy compared to local SPN simulations, we acknowledge
that the state-of-the-art results cited in [1] remain superior, indicating room for
further enhancement.

Let us do the analysis of results with terms of prediction accuracy. The Ta-
ble below represents comparative evaluation of our models with respect previous

work for node-level or local place level classification.

Model Accuracy
Local SPN (Stolkholm) (This Work) 30.04%
Local SPN (Saarbrucken) (This Work) 54.10%
Local SPN (Kaiyu Zheng) 79.06%
GNN (Overall)(This Work) 70.15%
TopoNet using Graph SPN (Kaiyu Zheng) | 80.14%

Table 5.1: Results comparisons for different methods with our method.

Our Model and work was behind the TopoNet model in terms of accuracy

38

score but due to lighter weight models, our both models had better performance
when it comes to deployment time.

In order to compare deployment time / Inference Time, ideally we should
run them both on same system but due to unavailability of libraries due to non
maintenance, we cannot recreate those. so we used Normalized Deployment Time

(NDT) to compare the inference time.

DT x (&)

NDT =
DT

Where:

NDT represents the normalized deployment time for System 1. compared to
the baseline system.

DT signifies the actual deployment time on System 1.

C corresponds to a computational measure that considers System 1’s hardware
specifications.

CB indicates the computational measure for the baseline system.

DT denotes the deployment time on the baseline system.

The Table below demonstrate the inference time per 105 sample size for the

models.
Model Inference Time
Local SPN (This Work) 0.28 sec
Local SPN (Kaiyu Zheng) 0.65 sec
TopoNet(Kaiyu Zheng) 0.36 sec
GNN (Overall)(This Work) 0.19 sec

Table 5.2: Inference time results comparisons for different methods with our
method.

When it comes to performance in robotics and autonomous systems both accu-
racy and inference time are very important and in many scenarios we need a score
that can compare both simultaneously. Although we realise that weights of each
component will vary according to requirements. There may be certain cutoffs in
some scenarios for both parameters. So we have done a comparative analysis in
two ways.

First we have calculate a performance score based on the results obtained. The

formulae used for calculation is

Accuracy

Per formanceScore = .
f InferenceTimeper

39

The table 5.3 below shows that our GNN model gave best performance accord-
ing to above formulae.

Model Performance Score
Local SPN (This Work) 107.28
Local SPN (Kaiyu Zheng) 121.63
TopoNet(Kaiyu Zheng) 222.61
GNN (Overall)(This Work) 369.21

Table 5.3: Performance Score results comparisons for different methods with our
method.

In many scenarios there may be different requirements and cutoff values for
both the parameters. So for visualisation performance we have also used trade-
off curve plotting accuracy vs. inference time for multiple models in Figure 5.5 .
Models that are close to the top-left corner of the plot are typically preferred, as
they offer the best trade-off.

Trade-off between Accuracy and Inference Time

80

70 @ NN toveralh(This Work)

Accuracy (%)
[=)]
o

%]
(=]

40

30 @ ocal PN (This Work)

0.2 0.3 0.4 0.5 0.6
Inference Time

Figure 5.5: Trade off curve for accuracy vs inference time.

Now Let us look at the results obtained for multi level prediction based on
GNN and GAT. The results are discussed for different level and the accuracy score
is taken to be average for all three datasets for comparison. The experiment was
performed in such a way that results of lower level are processed as input for

higher level prediction with only exception with building level prediction, where

40

due to non existence of any graph for complete building we needed to train it

different way as discussed earlier. Table 5.3 represents the results.

Model Accuracy
GNN (Floor Level) 48.82%
GNN (Building Level) | 62.22%
GNN (Edge Level) 73.46%
GAT (Floor Level) 46.62%
GAT (Building Level) | 59.14%
GAT (Edge Level) 63.64%

Table 5.4: Results Comparisons for GAT and GNN.

41

CHAPTER 6

Conclusion and Future work

Throughout our discussions, we delved into various areas of machine learning,
deep learning, and their applications in semantic mapping and place classifica-
tion within autonomous systems. We embarked on a journey through topics such
as Sum-Product Networks (SPNs), Semantic Mapping, Graph Neural Networks
(GNNs), and Graph Attention Networks (GATs).

We conducted extensive simulations, comparing GNN and SPN-based mod-
els, highlighting the potency of GNNSs in dealing with graph data. From our sim-
ulations we conclude that GNN gave better accuracy compared to local SPN al-
though we were little behind as compares to state of the art models as discussed.
Also the consideration of inference time added a practical dimension to our inves-
tigation, prompting us to introduce the concept of Normalized Deployment Time
(NDT) to enable fair cross-system model comparisons. We also provided a proof
of concept for multilevel semantic classification using GNN based models.

In conclusion, our exploration underscored the pivotal role of deep learning
techniques in enhancing semantic mapping and place classification within au-
tonomous systems. We not only grasped the theoretical foundations but also em-
barked on simulations, navigating the intricate landscape of various models, ar-
chitectures, and datasets. As we close our work, the vast potential of these meth-
ods in shaping the future of autonomous systems becomes evident, paving the
way for enhanced understanding, navigation, and decision-making in complex
environments.

The future scope of our work lies with extending the implementation for Real
time. Transitioning from offline experiments to real-time deployment is a critical
step. Optimizing model inference times, exploring hardware accelerators, and
ensuring compatibility with real-world constraints are essential considerations.

Considering the increasing emphasis on explainability in Al, another avenue
is the exploration of interpretable and explainable models for semantic mapping.

Creating models that provide insights into their decision-making processes can

42

be invaluable for real-world deployment and adoption.

Lastly, the integration of emerging technologies like augmented reality and
virtual reality could offer novel dimensions to our research. Developing immer-
sive visualization tools that interact with our semantic mapping models could
have profound implications for applications in architecture, urban planning, and

navigation.

43

References

[1]

(2]

3]

[4]

8]

[9]

[10]

Kaiyu Zheng and Andrzej Pronobis. From pixels to buildings: End-to-
end probabilistic deep networks for large-scale semantic mapping. In 2019
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),
pages 3511-3518. IEEE, 2019.

R. Gens and P. Domingos. Learning the structure of sum-product networks.
In Proc. of ICML, 2013.

M. Amer and S. Todorovic. Sum product networks for activity recognition.
Transactions on Pattern Analysis and Machine Intelligence, 38(4), 2015.

Kaiyu Zheng, Andrzej Pronobis, and R. P. N. Rao. Learning graph-structured
sum-product networks for probabilistic semantic maps. In Proc. of AAAI
2018.

Daphne Koller and Nir Friedman. Probabilistic graphical models: Principles
and techniques. Foundations and Trends® in Machine Learning, 1(1-2):1-305,
20009.

Martin] Wainwright and Michael I Jordan. Graphical models, exponential
families, and variational inference. In Foundations and Trends® in Machine
Learning, volume 1, pages 1-305. Now Publishers Inc., 2008.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian
networks: The combination of knowledge and statistical data. In Machine

learning, volume 20, pages 197-243. Springer, 1995.

A. Howard et al. Probabilistic graphical models for semantic mapping and

localization. Journal Name, Volume(Issue):Page Range, Year.

B. Smith et al. Semantic mapping and classification using bayesian networks.

Journal Name, Volume(Issue):Page Range, Year.

Kevin P Murphy. Dynamic bayesian networks: Representation, inference
and learning. In Machine learning, volume 29, pages 185-232. Springer, 2002.

44

[11] Xiaoxiao Ma, David M Bossens, David Cohn, et al. Hidden markov mod-
els for indoor environment classification and mapping. IEEE Transactions on
Automation Science and Engineering, 2016.

[12] Anand B Pillai and Avinash S Gandhi. Robust semantic mapping using hid-
den markov models for mobile robots. Robotics and Autonomous Systems, 2017.

[13] David M Bossens, David Cohn, and Ryan M Eustice. Online probabilistic
semantic mapping with hidden markov models. In Proceedings of Robotics:
Science and Systems, 2015.

[14] T. Gu and et al. Semantic mapping and localization via rfid tags: The next
frontier. IEEE Transactions on Automation Science and Engineering, 7(2):297—
312, 2010.

[15] S. Divvala and et al. Semantic mapping using dynamic markov chains.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 4627-4632. IEEE, 2012.

[16] Andrzej Pronobis and R. P. N. Rao. Learning deep generative spatial models
for mobile robots. In Proc. of IROS, 2017.

[17] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos. On theoretical
properties of sum-product networks. In Proc. of AISTATS, 2015.

[18] Hsu, A. Kalra, and P. Poupart. Online structure learning for sum product
networks with gaussian leaves. preprint arXiv:1701.05265, 2017.

[19] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the
latent variable interpretation in sum-product networks. Transactions on Pat-
tern Analysis and Machine Intelligence, 2017.

[20] W.-C. Cheng, S. Kok, H. V. Pham, H. L. Chieu, and K. M. A. Chai. Language
modeling with sum-product networks. In Proc. of Interspeech, 2014.

[21] R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy part-wise learning of sum-
product networks. In Machine Learning and Knowledge Discovery in Databases,
ser. Lecture Notes in, 2014.

[22] S.; Friedman, P; Pasula and D. Fox. Voronoi random fields: Extracting the
topological structure of indoor environments via place labeling. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI), 2007.

45

[23] Robert Peharz, Pierre Robert, Kai Georg, Mojtaba Pejman, and Peter Franz.
Modeling speech with sum-product networks: Application to bandwidth ex-
tension. In ICASSP, 2014.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representa-
tions (ICLR), 2017.

[25] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In International
Conference on Learning Representations (ICLR), 2018.

[26] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[27] Jie Chen, Tengfei Ma, Chuan Xiao, Shuang Jiang, and Bo Long. Fastgcn: Fast
learning with graph convolutional networks via importance sampling. In
International Conference on Learning Representations (ICLR), 2018.

[28] Qimai Li, Zhichao Han, Xiao-Ming Wu, and Wei-Shi Wu. Deeper insights
into graph convolutional networks for semi-supervised learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI), 2018.

[29] Jiaxuan You, Rex L Ying, and Jure Leskovec. Graphrnn: Generating realis-
tic graphs with deep auto-regressive models. In International Conference on
Machine Learning (ICML), 2018.

[30] Weihua Chen, Yujia Zhu, Mo Li, Minging Gao, Ziwei Deng, and Jiwen Chen.
A simple baseline for graph classification. In International Conference on Learn-
ing Representations (ICLR), 2019.

[31] Zonghan Wu, Shirui Pan, Guodong Long, Jingjing Jiang, Chengqi Zhang,
and Xing Wu. A comprehensive survey on graph neural networks. In IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[32] Travis Oliphant. A guide to numpy. URL: http://www.numpy.org, 2006.

Accessed: [Insert Date Here].

[33] Tom Reback, Wes McKinney, and jbrockmendel. pandas-dev/pandas: Pan-
das. Zenodo, 2020.

46

http://www.numpy.org

[34]

[36]

[37]

[38]

[39]

[40]

[41]

Andrzej Pronobis. libspn-keras: A library for learning sum-product net-
works with keras. https://github.com/AndrzejPronobis/libspn-keras,
2021. Accessed: [Insert Date Here].

Alex Andersen. qtorch: Quantization library for pytorch. https://github.

com/Quantization/pytorch-quantization, 2021. Accessed: [Insert Date
Here].

Matthias Fey and Jan E. Lenssen. torch-geometric: Geometric deep learn-
ing extension library for pytorch. https://github.com/rustyls/pytorch_
geometric, 2019. Accessed: [Insert Date Here].

Aric Hagberg, Pieter Swart, and Dan S Chult. Networkx. https://networkx.
org/,2008. Accessed: [Insert Date Here].

Kaiyu Zheng. Cold: A Large-scale Topological Map Dataset, 2022.

Hongyang Gao, Zhengyang Huang, and Shuiwang Yang. Large-scale learn-
able graph convolutional networks. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2018.

Vijay Prakash Dwivedi, Chaitanya Joshi, Thomas Laurent, and Yoshua Ben-
gio. Benchmarking graph neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander] Smola, and
Eduard H Hovy. Hierarchical attention networks for document classifica-
tion. In Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages
1480-1489, 2016.

47

https://github.com/AndrzejPronobis/libspn-keras
https://github.com/Quantization/pytorch-quantization
https://github.com/Quantization/pytorch-quantization
https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
https://networkx.org/
https://networkx.org/

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Semantic Mapping and Semantic Place Classification
	Semantic Place Classification in Autonomous Systems

	Literature Survey
	Some Previous Methods
	Sum Product Network (SPN)
	Graph Sum Product Network (Graph SPN)
	Graph Neural Network (GNN)
	Libraries and Tools
	Numpy
	pandas
	libspn
	libspn - keras
	Qtorch - Geometric, sparse, scatter
	torch-geometric
	NetworkX

	Dataset and Data Preparation
	Dataset
	Dataset Preparation and Preprocessing

	Sum Product Network (SPN) Architecture
	Implementation
	Result

	Graph Neural Network (GNN)
	Introduction
	Implementation and Simulations
	GNN Based Local Place Semantic Classification
	Multi Level Prediction Using GNNs

	Results

	Conclusion and Future work
	References

