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Abstract

This thesis proposes different variants of LSTM models for point and probabilistic
forecasting of significant wave height (SWH), a crucial component of wave energy.
SWH forecasting is challenging due to ocean waves’ complex and chaotic nature.
The thesis applies different decomposition methods, such as wavelet decomposi-
tion (WD), empirical mode decomposition (EMD), and variational mode decom-
position (VMD), to enhance the performance of LSTM models. The thesis also
uses a convolutional neural network (CNN) and a genetic algorithm to improve
the feature extraction and hyperparameter tuning of LSTM models. Moreover,
the thesis develops a probabilistic forecasting model for SWH using the pinball
loss function, which captures the uncertainty and provides confidence intervals
for the forecasts. The thesis evaluates the proposed models on seven real-world
SWH datasets collected from four different ocean buoys. The results show that the
CNN-LSTM model outperforms other LSTM variants in deterministic forecasting,
while the probabilistic forecasting model provides reliable and sharp confidence
intervals for SWH.

Index Terms: Probabilistic forecasting, Time-series forecasting, Long short-term Mem-
ory, Significant wave height forecasting.
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CHAPTER 1

Introduction

1.1 Motivation

As global resources are depleted, reducing reliance on fossil fuels and exploring
alternative energy sources has become increasingly important. Wave energy is
receiving more attention because of its sustainability, environmental friendliness,
high energy density, and wide distribution. Compared to wind energy hourly,
wave energy is the most concentrated renewable energy source[16]. The water
density, wavelength, and actual wave height are the main factors affecting the en-
ergy output from an ocean-based wave source. The significant wave height is the
main variable parameter for ocean wave energy that plays a crucial role in wave
energy generation because the density of water is constant, and the wavelength is
generally predictable[5]. In other words, the wave energy may be scheduled, and
wave power consumption will be maximized using accurate SWH forecasting[42].
This has a big financial impact on the system’s functions and can significantly
save costs. A few hours ahead, forecasting this vital wave energy parameter is
essential for various ocean engineering applications, such as marine structures,
maritime traffic, and the dredging industry. Significant Wave Height is also im-
portant for marine operations such as shipping, construction, reducing marine
time accidents, etc. [3][22].

Significant Wave Height(SWH) is a crucial component of wave energy. It is ob-
tained by taking the average of one-third highest ocean waves observed in a given
time interval. On average, 15% of waves will equal or exceed a significant wave
height. The highest ten percent of waves may be 25–30% higher than the signifi-
cant wave height. Additionally, we can rarely expect a wave that is nearly twice
as tall as the significant wave height. That is why we have considered significant
wave height(SWH) instead of considering any other wave height measurement.
SWH’s hourly accurate forecasting can significantly improve decisions made in
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marine activities and offshore activities. However, because of the complex marine
environment and chaotic nature, it is challenging to forecast SWH accurately. In
this thesis, we aim to make SWH forecasting more reliable using point forecasting
and probabilistic forecasting.

There are different ways to forecast significant wave height. Initially, researchers
used numerical models that rely on the action balance equation. These models
are hard to implement and require much processing time[2]. Parametric machine
learning models were employed for short-term wave height forecasting. These
models summarize data with a set of parameters of fixed size. Auto-Regressive
(AR), Auto-Regressive Moving Average(ARMA), and Auto-Regressive Integrated
Moving Average(ARIMA) are the various parametric models that were used for
short-term wave height forecasting. Other than these, Support Vector Machine
(SVR)[14] based models have also been effective for short-term prediction of SWH.

The non-parametric models are flexible and expressive. These models efficiently
capture the nonlinear pattern of the data. They do not require any assumption
about the distribution of the data. Non-parametric methods are more efficient
than parametric methods for short-term prediction. Artificial Neural Networks
(ANN), Recurrent Neural Networks (RNN), and Gated Recurrent Unit(GRU) are
the various non-parametric models used for the forecasting task. RNN and GRU
can perform well for short-term prediction, but they suffer from gradient vanish-
ing and exploding problems. To overcome these challenges, researchers devel-
oped another variant of RNN called Long Short-Term Memory (LSTM) model.

Apart from point forecasting, a more reliable approach exists for highly random
data like SWH. Probabilistic forecasting can provide a range of possibilities and
quantify the length of uncertainty in a prediction. This approach is better in terms
of decision-making. It can incorporate forecasting risk, avoid overconfidence, and
reduce forecast error.

1.2 Contribution

In this study, we provide wave hybrid models for predicting hourly and six-
hourly significant wave height(SWH). For the feature extraction and to gain more
information about the receiving SWH signal, we have used Convolutional Neural
Network(CNN) and different decomposition techniques along with Long Short-
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Term Memory(LSTM) architecture. We have used Wavelet Decomposition(WD),
Empirical Mode Decomposition(EMD), and Variational Mode Decomposition(VMD)
techniques to decompose our SWH signal. To tune the hyperparameter of LSTM,
we have used Genetic Algorithm(GA). We have collected data from four different
buoys from the national data buoy center. Then we trained different wave hy-
brid models for one hour and six hours ahead point forecasting. Using commonly
used evaluation criteria, we have analyzed the performance of all the wave hy-
brid models using box plots. Then we concluded that even the best forecasting
model does not incorporate uncertainty in SWH.

We have used the proposed probabilistic forecasting model to handle uncertainty.
Instead of relying on just a single point, probabilistic forecasting gives us a range
in which our next prediction lie, which is more helpful information for decision-
making. We have used a quantile regression-based approach to achieve proba-
bilistic forecasting. We used LSTM with a pinball loss function in the probabilistic
forecasting model. We have set different evaluation criteria, namely calibration,
sharpness, and error, to evaluate our probabilistic forecasting model.

1.3 Thesis Organization

In Chapter 2, we provide a literature review of some of the existing methods de-
veloped and applied for point forecasting of SWH.

Chapter 3 discussed a detailed description of the different wave hybrid models.
It also describes the different decomposition techniques, genetic algorithms, and
CNN architecture used in the wave hybrid models. We also describe the dataset
that we use to train and test the wave hybrid models. After that, we have pro-
vided the result obtained by these different wave hybrid models. We conclude
this chapter with a brief analysis and discussion of the results.

Chapter 4 gives a detailed description of the probabilistic forecasting model. It
describes the architecture used for probabilistic forecasting and briefly describes
the pinball loss function. After that, it also includes the numerical results obtained
by this model on a different dataset. Further, it provides a brief discussion of the
obtained result.

In Chapter 5, we summarize this thesis’s main contributions and findings.
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Chapter 6 We highlight the strengths and limitations of our proposed methods
and models for SWH forecasting. We also suggest some directions and recom-
mendations for future research in this field.
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CHAPTER 2

Literature Survey

Ocean wave energy is one of the potential source of clean energy which uses the
power of waves to generate the energy. One of the challenges associated with the
wave energy is to forecast the Significant Wave Height (SWH) efficiently. Most
of the models attempt to obtain the point forecast i,e. they forecast a single value
for SWH using the historical data. But, very often there are high uncertainties
associated with their predictions. In these cases, it is always important to obtain
probabilistic forecast which estimates the interval of SWH with a certain confi-
dence.

2.1 Point Forecasting

Point forecasting is a method of predicting a single value for a future outcome. It
is a simple and convenient approach that can be applied to forecast SWH. Point
forecasting is a method of predicting a single value for a future outcome. To eval-
uate the performance of point forecasting, we can use metrics such as the root
mean squared error (RMSE) and the accuracy, which measure how close the pre-
dicted values are to the actual values. The lower the RMSE and the higher the
accuracy, the better the point forecasting model is. Below, we present some point
forecasting models researchers have employed to predict significant wave height.

• Statistical models:
Statistical models are straightforward and faster algorithms that rely on em-
pirical relationships between SWH and other variables. The researcher used
AR, ARMA, and ARIMA-based machine learning models to improve the
short-term prediction of SWH. In [17], researchers have proposed an AR
model assuming that current ocean wave height is linearly dependent on
the past ocean wave height. Soares, Ferreira, et al. have used the ARMA
model to predict SWH at different locations of the Portuguese coast[1]. In
[19], they proposed a short-term ocean wave forecasting method using an
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auto-regressive moving average (ARMA) model. In [36], they compared AR
and ARMA models for short-term wave forecasting using real wave data
from different locations. However, these model also has drawbacks and
challenges for SWH forecasting. The time series has to be uniform for the
ARMA model to produce accurate predictions. The ARIMA model has ad-
vantages over the ARMA model for non-stationary time series. However,
none of these statistical time-series models has the ability to adequately rep-
resent the complex non-linear relationship. Additionally, they presume that
the noise in the data comes from the normal distribution, which may not be
true, especially for SWH time-series data. This model requires careful se-
lection and tuning of the parameters, which can affect the performance and
stability of the model.

• Artificial Neural Network based models:
Modern non-parametric machine learning models have yielded significantly
better results, particularly for short-term SWH forecasting tasks, as they
do not make any assumptions about the noise distribution. Researchers
have used different neural network architectures to obtain reliable results
on SWH. In [21], they used the ANN model for monthly mean SWH pre-
diction. ANN has limited forecasting ability; due to this, it is not a promis-
ing approach for SWH forecasting.[18]. In [11], authors have used the Ex-
treme Learning Machine (ELM) along with grouping genetic algorithm for
searching the effective features set and obtaining the effective forecast of
short-term SWH. The hidden layer weights in the ELM feed-forward neu-
ral network are chosen at random. It does not necessitate the costly back-
propagation method, unlike the ANN model, for tuning all weights.

• Deep Learning based Models:
Other non-parametric models like RNN and LSTM can capture the non-
linear and complex relationships between the input and output variables
and also handle the long-term and complex relationships between input and
output. A sequential learning model called the Recurrent Neural Network
(RNN) is able to recognize the temporal pattern in the data.In [6], and [33] re-
searchers have used RNN for SWH. But, the RNN architecture suffers from
vanishing gradient problems and fails to learn the long-term dependencies
in data. The Gated Recurrent Unit GRU [8], which eliminates the vanishing
gradient problem and uses the gate mechanism to control the information
flow, enhances the RNN. In [7], authors have used GRU to efficiently fore-
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cast SWH. The Long Short Term Memory Network(LSTM) is a more com-
plex neural architecture than GRU and involves more gates for controlling
the flow of information. Researchers have used LSTM architecture for ocean
wave height forecasting in [35], [43], [18].

• SVR based models:
Support Vector Regression (SVR) models are popular choice of researchers in
hourly forecasting tasks due to its simplicity. Support Vector Machine (SVR)
models are derived from the principles of statistical learning theory. SVR-
based models are likely to arrive at the global optimal solution, in contrast
with various neural network architecture-based machine learning models.
In [32], they have shown that the SVR method performs better than the ar-
tificial neural network. In [4], researchers have successfully used the SVR
model to predict SWH near the west coast of India. Cornejo-Bueno, Nieto
Borge, et al. have used an X-radar-based image and SVR model to forecast
SWH in [10]. Duan, Han, et al. have used the SVR model and the Empirical
Mode Decomposition method in [15]. However, SVR-based methods are not
suitable for nonlinear and non-stationary data. This model fails when data
is too noisy and has many outliers like SWH. In [27] and [15], they have
shown that SVR based model fails to forecast the SWH efficiently. There are
two main challenges associated with SVR forecasting. The first one these
methods are sensitive to the choice of kernel function and hyperparameters.
The second challenge requires an informative set of features for obtaining
good forecasts with SVR models. SVR models may obtain poor forecasts
with raw SWH time-series signals.

• Hybrid Models:
In recent work, researchers have started to use wave hybrid models for
SWH. In the wave hybrid models, we combine different methods and tech-
niques to improve the overall efficiency of SWH forecasting. Wei Hao, Xi-
aofang Sun, et al. have proposed a hybrid model using LSTM with the
EMD decomposition method for wave prediction in offshore China [23]. In
this [38], researchers have used EMD-PSO-LSSVR hybrid model for fore-
cast SWH for the lead times 1,3 and 6 hours. In [37], they have used ANN
with wavelet decomposition for 48 hours ahead SWH forecasting. Even with
the application of advanced non-linear machine learning methods, predict-
ing SWH accurately remains challenging due to ocean waves’ random and
chaotic nature.
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However, point forecasting also has some limitations, such as ignoring the uncer-
tainty and variability of future outcomes. All previously discussed models fail
to consider the future variable’s randomness, which can result in poor judgment,
risk underestimating, and overconfidence.

2.2 Probabilistic Forecasting

The probabilistic forecasting model provides a range of possible outcomes, which
helps for better decision-making and risk management rather than relying on
a single point. Instead of providing single-point estimation, probabilistic fore-
casting gives us a two-point in which our next prediction lies. Evaluation of the
probabilistic forecasting model is difficult because the prediction interval cannot
be directly compared with actual results. In [24], researchers have used a ker-
nel density estimation-based approach to find the probability density function of
SWH and wind speed. Kernel density estimation is a non-parametric approach
to estimating the probability density function of a random variable[40]. It in-
volves assigning each data point a weight using a kernel function, which is a
symmetric, smooth function, and then adding the weights to produce a smooth
curve. The kernel function’s bandwidth parameter influences the predicted den-
sity’s smoothness, determining how wide or narrow the kernel function is. Taylor
and Jeon have used the ARMA-GRACH probabilistic forecasting model for wave
height prediction [39]. This model focuses on modeling the conditional mean and
variance of the series. This model is only efficient when the distribution of the
data is known. Another non-parametric approach is based on quantile regres-
sion, which does not require any assumption about the input data. Unlike the
kernel density function, It does not require smoothing parameters. In [41],[29],
and [34], researchers have efficiently used a quantile regression-based approach
for wind, solar, and weather prediction.
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CHAPTER 3

Proposed Wave Hybrid Point Forecasting Mod-
els for SWH

This chapter discussed the various architectures that can be utilized for SWH
point forecasting. It also provided an overview of the various decomposition
methods used in these experiments. Following that, it established the evaluation
criteria that were used to measure the effectiveness of the proposed wave hybrid
models. Then, it presented the numerical outcomes for each of the seven datasets
used in the proposed method. At last, the results and the outcomes have been
examined and discussed.

3.0.1 Simple LSTM architecture

The first architecture we used for SWH one-hour and six-hour ahead point fore-
casting is Long Short-Term Memory (LSTM)[25]. LSTM is a form of recurrent
neural network (RNN) that can manage long-range relationships in sequential in-
put. Natural language, audio, and video are examples of sequential data with a
temporal structure that calls for models that can capture the temporal dynamics
and interdependence between the parts. LSTM includes feedback loops that let
it learn from both recent and previous inputs, in contrast to feedforward neural
networks that treat each input independently. In this manner, LSTM avoids the
issue of vanishing or exploding gradients that occurs in simple RNNs and may
preserve information over a longer duration of time.

A typical LSTM unit is made up of four parts: a memory cell, an input gate, an
output gate, and a forget gate. The primary component that stores the internal
state of the unit is the memory cell. The amount of current input to add to the
memory cell is determined by the input gate. How much of the memory cell
will be output to the following layer is decided by the output gate. How much
of the preceding memory cell should be kept or erased is decided by the forget
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gate. These elements work together to control information flow inside the object
and sustain a durable state over time. Figure 3.1 depicts the structure of a single
LSTM unit.

Figure 3.1: LSTM single block architecture

At a particular time instance t, LSTM block has Current Input (Xt), Previous Cell
Output (Ht−1), Previous Memory Cell (Ct−1), Current Cell Output Ht, which is
obtained by solving (3.2), Current Memory Cell (Ct), which is obtained by solving
(3.1).

Ct = Ft ∗ Ct−1 ∗ C̃t (3.1)

Ht = Ot ∗ tanh(Ct) (3.2)

The intermediate gates of LSTM are Input gate (It), which is calculated as shown
in (3.3), Forget gate (Ft), which is calculated as shown in (3.4), Output gate (Ot),
which is calculated as shown in (3.5), candidate gate (C̃t), which is calculated as
shown in (3.6)

It = σ(Wxi ∗ Xt + Whi ∗ ht−1 + bi) (3.3)

Ft = σ(Wx f ∗ Xt + Wh f ∗ ht−1 + b f ) (3.4)

Ot = σ(Wxo ∗ Xt + Who ∗ ht−1 + bo) (3.5)

C̃t = It ∗ (tanh(Wxc ∗ Xt + Whc ∗ ht−1 + bc)) (3.6)

10



Figure 3.2: Simple LSTM model architecture

For given time-series SWH data (X1, X2, ...., Xt), First we have to construct the

training set (X, Y) using X =


X1, X2, ...., , Xp

X2, , X3, ... , Xp+1

... ... ...
Xt−p, Xt−p+1, ...., Xt−1

 and Y =


Xp+1

Xp+2

...
Xt

. Us-

ing the training set (X, Y), and the simple LSTM model is trained as shown in
Figure 3.2. We have used MSE to calculate the error in this LSTM model. For
the prediction of the SWH xt+1. The LSTM model is estimated for the test point
[Xt−p+1, Xt−p+2, ...., Xt].

3.0.2 LSTM with different decomposition methods

In this architecture, we used various decomposition methods, namely Wavelet
Decomposition (WD), Empirical Mode Decomposition (EMD), and Variational
Mode Decomposition (VMD), along with LSTM. Signal decomposition is a method
of breaking down an abstract signal into smaller and more relevant components,
which can reveal the data’s hidden structure and features. Multiple applications
for signal decomposition exist, including noise reduction, feature extraction, etc.
Now let’s briefly understand all of these decomposition techniques.
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1. Wavelet Decomposition[20]
Wavelets are used in the wavelet decomposition method of signal process-
ing to represent a signal at different sizes and orientations. Wavelet de-
composition can be used to extract information from a variety of data, in-
cluding audio signals, pictures, and climatic data. We can perform wavelet
decomposition using a variety of wavelet functions, such as Daubechies,
Haar, Morlet, etc. In our experiments, we’ve used Daubechies wavelet de-
composition. Wavelet decomposition has several advantages, unlike other
signal processing strategies like the Fourier transform. Fourier transform
records the frequency information of a signal, whereas wavelet decompo-
sition records both the frequency and temporal information. While Fourier
transforms presuppose a global periodicity, Wavelet decomposition can adapt
to the local characteristics of a signal.

2. Empirical Mode Decomposition[26]
EMD is a signal processing technique that decomposes a signal into a series
of intrinsic mode functions (IMF) with well-defined instantaneous frequen-
cies. IMFs are oscillatory functions with a symmetric envelope, the same
number of extrema, and zero crossings. EMD does not require prior knowl-
edge of the signal properties or basis functions and can be applied to non-
linear and nonstationary signals. EMD yields a set of IMFs and a trend that
can be used to recreate the original signal via summing. While WD might
miss the multiscale aspect of the signal, EMD can extract global structure
and handle fractal-like data. In contrast to WD, which may induce aliasing
or loss of information, EMD can offer a comprehensive and non-redundant
representation of a signal.

3. Variational Mode Decomposition[13]
VMD does not require prior knowledge of the signal properties or basis
functions and can be applied to nonlinear and nonstationary signals. VMD
produces a series of IMFs and their center frequencies, which can be used
to recreate the original signal using summing. The IMFs depict oscillations
in the signal at various scales, from high frequency to low frequency. The
significant frequency elements of each IMF are captured by the center fre-
quencies. Compared to methods for signal processing like the Fourier trans-
form, wavelet transform, and empirical mode decomposition, VMD has a
few advantages. While Fourier transforms presumes a stable frequency
spectrum, VMD may handle signals with time-varying frequency and am-
plitude. Wavelet transform requires a fixed set of basis functions, whereas
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VMD can additionally adapt to the local characteristics of a signal. While
empirical mode decomposition could result in the addition of modal aliasing
or noise sensitivity, VMD can also offer a comprehensive and non-redundant
representation of a signal.

Figure 3.3: LSTM with different decomposition methods

For given time-series SWH data (X1, X2, ...., Xt), First, we have to decompose the
signal using different decomposition techniques. In the WD approach, we have
to apply wavelet transform to the time-series signal to obtain five high-frequency
components (D1, D2, D3, D4, and D5) that represent the details of the signal at
different scales, and one approximate low-frequency signal (A5) that represents
the approximation of the signal at the coarsest scale. In VMD and EMD, we have
to decompose the signal into five intrinsic mode functions (IMFs) and one resid-
ual signal that contains the remaining low-frequency trend of the data. After that,
we must construct the training set (X, Y) for all six decomposed signals, as men-
tioned in the above section. For all these six training sets (X, Y), we have to train
the LSTM model shown in Figure 3.2. We have to combine the outcomes of each
signal after training the LSTM model before making a final prediction. The over-
all architecture is shown in Figure 3.3.
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3.0.3 LSTM with genetic algorithm

Deep learning models require parameter adjustment because they can enhance
their efficiency and accuracy. An extensive set of hyperparameters controls deep
learning models’ behavior and learning process. Finding the ideal values for these
hyperparameters through parameter tuning will minimize the loss function and
increase the model’s prediction capacity for the given problem. Parameter tuning
is vital because various problems may require different hyperparameter settings
to achieve the best outcomes. For instance, a higher learning rate might accelerate
a model’s convergence on one problem but lead to divergence on another.

Figure 3.4: Simple LSTM with genetic algorithm based parameter tuning

For SWH point forecasting, we used the LSTM deep learning model. The length
of the input signal (window size), the batch size, and the number of hidden units
in a single layer are the three primary hyperparameters that determine the per-
formance of the LSTM model. The hidden unit count determines the capacity and
complexity of the model, the batch size by the number of samples processed at
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once, and the window size by the amount of historical data utilized for forecast-
ing. We employed a genetic algorithm[12], an evolutionary optimization method
replicating natural selection, to obtain the ideal values for these hyperparameters.
The optimal set of hyperparameters that decreases forecasting error is determined
via the genetic algorithm. For SWH point forecasting, we have chosen a window
size of 100. The batch size and the number of hidden units are determined from
the genetic algorithm

Selection, crossover, and mutation are the three main operators used in a genetic
algorithm. Selection chooses the best solutions from the present population to
create offspring for the following generation. Crossover combines two-parent ap-
proaches to produce fresh offspring with traits from both parents. To add di-
versity and exploration, mutation randomly modifies some aspects of a solution.
These operators are continued until a stopping requirement is satisfied, such as
reaching the desired fitness level or the maximum number of generations. We
have used Root Mean Squared Error(RMSE) as a fitness score. The solution with
the lowest RMSE has a higher chance of creating offspring in the next round of
the algorithm.

After finding the best parameter from the genetic algorithm, we have to pass these
parameters to LSTM for better forecasting of SWH. A working flow of LSTM with
genetic algorithm is shown in Figure 3.4. We have used the roulette wheel selec-
tion algorithm[30] in our experiment. The crossover probability is 0.4, and the
mutation probability is 0.1 in our experiments.

3.0.4 CNN-LSTM Architecture

Convolutional neural networks (CNNs) may learn hierarchical and abstract fea-
tures from time series data by stacking many convolutional and pooling layers. In
contrast to the top layers, which learn high-level features like anomalies and oc-
currences, the lower layers learn low-level properties like patterns and cycles. In
[31], researchers have shown the effectiveness of Convolutional Neural Networks
with LSTM on the gold price prediction.

The main objective behind using LSTM with CNN is that CNN is efficient in terms
of feature extraction, and LSTM is efficient in capturing long dependencies be-
tween the data signal[31]. For the SWH point forecasting, we have used the archi-
tecture shown in Figure 3.5. It has two convolution layers with 32 and 64 neurons

15



Figure 3.5: LSTM with Convolutional Neural Network

and one max pooling layer. The final output of the CNN layer, which is extracted
feature from the raw input signal, is now fed to the LSTM for the forecasting of
SWH.

3.1 Dataset Description

We have to collect time-series hourly ocean wave height data from different buoys
available, namely 41053, 42001, 42002, and 42035, at National Data Buoy Cen-
ter(NDBC)(https://www.ndbc.noaa.gov/). Each dataset includes a Timestamp(Date,
Month, Year, Hour, and Minutes), Wind direction, Wind speed, Wind Gust, Atmo-
spheric Pressure, Air Temperature, Water Temperature, Dew point, Wave Height,
etc.

Figure 3.6: Geographics location of different buoy
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We have considered only the wave height attribute for prediction. We have listed
brief details of chosen ocean buoys dataset in Table 3.1. Datasets A, B, C, and D
are used for one-hour ahead time prediction, and E, F, and G are used for six-hour
ahead forecasting. The datasets’ geographic locations are shown in Figure 3.6.
The datasets were checked for missing values and outliers before being used in
the study.

Station ID(Dataset) Coordinates Time No. of Samples
41053(A) 66°5’58" W, 18°28’27" N Feb’21 - Mar’21 670
42001(B) 89°39’25" W, 25°56’31" N Jan’15 - Apr’15 2869
42002(C) 93°38’46" W, 26°3’18" N Jan’15 - Apr’15 2872
42035(D) 94°24’45" W, 29°13’54" N Jan’15 - Apr’15 2852
42001(E) 89°39’25" W, 25°56’31" N Jan’15 - Apr’15 476
42002(F) 93°38’46" W, 26°3’18" N Jan’15 - Apr’15 478
42035(G) 94°24’45" W, 29°13’54" N Jan’15 - Apr’15 479

Table 3.1: Dataset description

3.2 Evaluation Criteria

We have used Root Mean Squared Error (RMSE) and Accuracy as our evaluation
parameters to assess the efficiency of our various wave hybrid models. With the
notations, yi as actual SWH for ith test sample, ŷi as predicted SWH for ith test
sample, ȳi as mean of actual SWH and n as total number of testing samples, we
briefly describe our evaluation criteria as follows.

(a) Root Mean Square of Errors (RMSE):

It is obtained by

√
1
n

n
∑

i=1
(yi − ŷi)2.

(b) Mean Absolute Percentage of Errors (MAPE):

It is obtained by 1
n ∑n

i=1

∣∣∣∣ yi−ŷi
yi

∣∣∣∣× 100.

(c) Accuracy (Acc):
It is the measure for the accuracy of obtained predictions. It is obtained by
Acc = 100 - MAPE.

(d) Mean of Absolute Deviations (MAD):

It is obtained by 1
n

n
∑

i=1
|yi − ŷi|.
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(e) Normalized Mean Squares of Errors (NMSE):
It is ratio of Sum of Squares of Errors (SSE) and Sum of Squares of Testing

samples (SST) and is obtained by

n
∑

i=1
(ŷi−yi)

2

n
∑

i=1
(yi−ȳ)2

.

3.3 Result Analysis and Discussion

In this section, we present our numerical results. We have listed the performance
of LSTM models with no decomposition, WD, EMD, and VMD decomposition
methods and also with CNN-LSTM and LSTM with genetic algorithm techniques
on our selected SWH datasets with a lead time of 1 hour and 6 hours using Accu-
racy, RMSE at Table 3.2 and Table 3.4. We have plotted the prediction obtained by
the CNN-LSTM model for datasets A, C in Figure 3.7,and E, and G in Figure 3.8.

Dataset Model Accuracy RMSE NMSE MAD MAPE
LSTM 92.15 0.1562 0.3613 0.1425 7.84
WD-LSTM 77.37 0.4398 2.0965 0.3714 22.62
EMD-LSTM 91.91 0.1826 0.2645 0.137 8.08

A VMD-LSTM 85.69 0.2711 0.7968 0.2492 14.30
CNN-LSTM 94.08 0.1077 0.1257 0.0886 5.18
Genetic-LSTM 61.12 0.7204 2.1945 0.3911 37.65
LSTM 90.65 0.164 0.1404 0.1151 9.34
WD-LSTM 93.31 0.1087 0.0501 0.0764 6.68
EMD-LSTM 81.88 0.2797 0.4087 0.2125 15.11

B VMD-LSTM 94.11 0.098 0.0617 0.074 5.88
CNN-LSTM 93.2 0.1199 0.0751 0.0849 6.79
Genetic-LSTM 71.16 0.4685 0.3842 0.2322 19.8
LSTM 90.37 0.1503 0.092 0.1092 9.62
WD-LSTM 93.34 0.1092 0.0485 0.0773 6.65
EMD-LSTM 81.91 0.2553 0.2655 0.201 18.05

C VMD-LSTM 94.9 0.0858 0.03 0.0595 5.09
CNN-LSTM 93.57 0.1155 0.0543 0.0781 6.42
Genetic-LSTM 73.86 0.4964 0.3026 0.2325 16.51
LSTM 86.3 0.1433 0.218 0.1021 13.69
WD-LSTM 89.55 0.0971 0.1001 0.0737 10.44
EMD-LSTM 71.45 0.2116 0.4754 0.1912 28.54

D VMD-LSTM 93.71 0.0719 0.0549 0.04933 6.28
CNN-LSTM 91.88 0.0928 0.0914 0.0619 8.11
Genetic-LSTM 56.49 0.1901 0.2055 0.1053 15.61

Table 3.2: Numerical Results of lead time 1 hrs

18



Models Mean accuracy
LSTM 81.33 ± 12.09
WD-LSTM 75.17 ± 18.22
EMD-LSTM 79.96 ± 6.48
VMD-LSTM 86.03 ± 8.28
CNN-LSTM 87.4 ± 8.06
Genetic-LSTM 66.2 ± 8.52

Table 3.3: Average accuracy on all seven data sets.

Dataset Model Accuracy RMSE NMSE MAD MAPE
LSTM 77.4 0.3973 0.9175 0.3085 22.59
WD-LSTM 67.66 0.4473 1.1629 0.3875 32.33
EMD-LSTM 80.27 0.3019 0.5297 0.2418 19.72

E VMD-LSTM 76.66 0.4333 1.0912 0.3319 23.33
CNN-LSTM 81.91 0.2966 0.5113 0.2297 18.08
Genetic-LSTM 72.74 0.5584 1.2145 0.4075 27.26
LSTM 73.13 0.5014 0.8201 0.3296 26.86
WD-LSTM 48.22 0.6131 1.2263 0.5414 51.77
EMD-LSTM 76.84 0.3207 0.3355 0.2431 23.15

F VMD-LSTM 80.73 0.3216 0.3374 0.227 19.26
CNN-LSTM 84.44 0.262 0.224 0.1883 15.55
Genetic-LSTM 73.52 0.5917 1.2039 0.3512 26.48
LSTM 59.33 0.3258 1.0436 0.2489 40.66
WD-LSTM 56.77 0.3164 0.9846 0.2628 43.22
EMD-LSTM 75.5 0.3055 0.9175 0.219 24.49

G VMD-LSTM 76.41 0.1984 0.387 0.1508 23.58
CNN-LSTM 72.73 0.2587 0.6583 0.1874 27.26
Genetic-LSTM 54.52 0.2685 0.9233 0.2169 45.48

Table 3.4: Numerical Results of lead time 6 hrs

Now, we shall briefly analyze the numerical results presented in Table 3.2 and Ta-
ble 3.4. For better visualization of obtained numerical results, we have compared
the accuracy obtained by different LSTM models using a box plot in Figure 3.9 for
all considered seven datasets.

In the box plot of Figure 3.9, we can compare the median of accuracy obtained
by different wave hybrid models. The CNN-LSTM model obtains the highest
91.88 median accuracies, followed by the LSTM with no decomposition model
with 86.3 median accuracies. The CNN-LSTM model also excels with other wave
hybrid models if we consider the 25th percentile of accuracy values.
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(a) Dataset A

(b) Dataset C

Figure 3.7: Performance of CNN-LSTM model on 1 hour ahead lead time
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(a) Dataset E

(b) Dataset G

Figure 3.8: Performance of CNN-LSTM model on 6 hour ahead lead time

Figure 3.9: Accuracy Box-plot of different hybrid model
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Figure 3.10: RMSE Box-plot of different hybrid model

From Figure 3.9, we can also compare the accuracy obtained by different de-
composition methods, namely WD, EMD, and VMD. The VMD-LSTM obtains
the highest 85.69 median accuracy, followed by EMD-LSTM with 76.17 and WD-
LSTM with 62.15 median accuracy. VMD-LSTM performs better than all the other
decomposition techniques if we consider 25th and 75th percentile of accuracy val-
ues. If we consider the median RMSE value, also VMD-LSTM has a minimum of
0.1318 median RMSE, followed by WD-LSTM with 0.1089 median RMSE. VMD-
LSTM also outperforms the other decomposition methods if we consider 25th and
75th percentile of RMSE.

In box plot of Figure 3.10, we can compare the median of RMSE obtained by dif-
ferent wave hybrid models. The CNN-LSTM model obtains the lowest 0.1318 me-
dians RMSE which is followed by the LSTM with no decomposition model with
0.164 median RMSE. The CNN-LSTM model also excels with other wave hybrid
models if we consider the 75th percentile of RMSE values.
We have shown the average accuracy values obtained by different wave hybrid
models in Table 3.3. We can observe that CNN-LSTM-based wave hybrid models
obtain 87.40 mean accuracy. From this numerical analysis, we can conclude that
the CNN-LSTM model performs better than any other LSTM variants.

22



3.4 Conclusion

In this chapter, we have presented various wave hybrid models for SWH point
forecasting. We first applied a simple LSTM model, followed by different decom-
position methods, namely WD, EMD, and VMD, in conjunction with LSTM, to
extract more information from the raw input signal. We have then employed an
evolutionary algorithm, namely a genetic algorithm, to optimize the parameters
of LSTM. Furthermore, we have combined CNN and LSTM models to enhance
the forecasting performance. We have demonstrated the numerical results of all
these wave hybrid models and shown that the CNN-LSTM model outperformed
the others.

However, point forecasting has some limitations regarding uncertainty. It only
predicts a single value and does not account for the variability and unpredictabil-
ity of the future SWH. The SWH is highly random and chaotic. Even the best point
forecasting wave hybrid model may fail to provide reliable forecasts for future
scenarios. Therefore, we need a SWH forecasting model that can also incorpo-
rate uncertainty in the input data. The next chapter will introduce the uncertainty
model for Significant Wave Hybrid.
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CHAPTER 4

Probabilistic Forecasting for Significant Wave
Height

Point forecasting models for SWH data produce point estimates that do not ac-
count for the uncertainty and randomness inherent in the data. To capture the
uncertainty, we developed a probabilistic forecasting model for SWH that assigns
a probability to each possible outcome. Probabilistic forecasting is a way of pre-
dicting future values of a variable by presenting a probability distribution that
emphasizes the outcome’s uncertainty and variability.

We proposed a probabilistic forecasting model for SWH in this chapter. The archi-
tecture for probabilistic forecasting has first been introduced. After presenting the
numerical findings, we briefly examined how the probabilistic forecasting model
performed.

4.1 Proposed Methodology for Probabilistic Forecast-

ing

Significant wave height data are highly chaotic and random. Point forecasting
does not help us in better decision-making. Instead of point forecasting, we can
use a probabilistic forecasting model, which can give a result with a certain con-
fidence. To model the uncertainty in SWH, we have employed the architecture
shown in Figure 4.1.To understand architecture better, let’s first understand the
pinball loss function[28].

• Pinball loss function:
The pinball loss function, also known as the quantile loss, is a metric used for
evaluating the accuracy of a quantile forecast. A quantile forecast predicts
the future distribution of a variable at a particular percentile, such as the
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Figure 4.1: Proposed architecture for probabilistic forecasting

95th percentile or the 10th percentile of a given data. By penalizing overes-
timation and underestimating differently depending on the quantile level,
the pinball loss function determines how well the quantile forecast corre-
lates with the true distribution of the outcome. When the quantile forecast
is more accurate, the pinball loss function has a smaller value; when it is less
precise, it has a greater value.

PLq(τ, y, ŷ) =

(y − ŷ) ∗ τ y ≥ ŷ

(ŷ − y) ∗ (1 − τ) ŷ > y
(4.1)

As we can see in equation 4.1, It has three arguments; first, y which is the
actual value, ŷ which is the observed or predicted value, and τ denotes the
quantile forecast’s target quantile level. For example, τ = 0.85 indicates that
the quantile forecast attempts to forecast the 85th percentile of the variable’s
future distribution. τ controls the form and slope of the quantile loss func-
tion, which penalizes overestimation and underestimating mistakes differ-
ently depending on τ.

Our proposed architecture consists of a simple LSTM model and a pinball loss
function. To obtain a t percent confidence interval, we train the model twice with
τ1 and τ2 such that difference between τ1 and τ2 is t.
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4.2 Evaluation Criteria

We have three criteria to measure the performance of the probabilistic forecasting
model. First is calibration, Second is sharpness, and Third is Error. By using
notation, C denotes the calibration, Ut is the predicted upper quantile value, Lt is
the predicted lower quantile value, τ1 and τ2 represent upper quantile and lower
quantile respectively, and t is the difference between upper quantile τ1 and lower
quantile τ2, we have described evaluation criteria as follows.

(a) Calibration[9]:
Calibration is required for reliable and accurate forecasting because it guar-
antees that predictions are compatible with observed data and represent the
uncertainty of future outcomes. It can also tell us about the uncertainty
and confidence of future outcomes. The confidence and trust of users and
decision-makers who rely on forecasts can also be increased through cali-
bration.

C =
1
n

n

∑
i=1

ui (4.2)

ui = 1 if the predicted value is between the upper and lower quantile and
ui = 0 otherwise.

(b) Sharpness[44]:
Sharpness is a desired attribute of probabilistic forecasts since it provides the
level of uncertainty and precision of the predictions. Sharpness is a forecast-
ing property that is independent of actual results. A reliable probabilistic
forecast needs to be accurate and precise. However, increasing sharpness
may result in a drop in calibration, and vice versa, thus, there is frequently
a trade-off between the two.

Sharpness =
1
n

n

∑
i=1

U − L (4.3)

(c) Error:
It is an absolute difference between observed calibration (C) and actual cal-
ibration t.

Error = |C − t| (4.4)
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4.3 Results

In this section, we have provided the numerical results obtained using the pro-
posed SWH probabilistic forecasting model. Table 4.1 shows the calibration, sharp-
ness, and error for the different datasets with different lower and upper quantile
values. We have also plotted the prediction obtained by different datasets with
different t values in Figure 4.2, 4.3, 4.4, and 4.5.

Dataset Lower quantile Upper quantile Calibration Sharpness Error
A 0.40 0.80 0.3333 0.1749 0.0666
B 0.05 0.9 0.8392 0.4868 0.0108
B 0.10 0.50 0.3995 0.1281 0.0005
C 0.10 0.90 0.8514 0.5092 0.0514
C 0.40 0.60 0.1627 0.0817 0.0372
D 0.2 0.8 0.61 0.2675 0.0104

Table 4.1: Numerical result of probabilistic forecasting

Figure 4.2: Result of probabilistic forecasting on dataset B with t=0.40

4.4 Analysis and Discussion

In this section, we present a brief analysis of the results obtained by the probabilis-
tic forecasting model. The evaluation criteria of probabilistic forecasting are cali-
bration and sharpness, as defined in Section 4.2. Calibration refers to the statistical
consistency between the forecasted probabilities and the observed frequencies. A
well-calibrated model should produce confidence intervals that contain the actual
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Figure 4.3: Result of probabilistic forecasting on dataset D with t=0.60

Figure 4.4: Result of probabilistic forecasting on dataset B with t=0.85
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Figure 4.5: Result of probabilistic forecasting on dataset C with t=0.80

values with the expected frequency. Sharpness refers to the concentration of the
forecasted probabilities around a central value. A sharp model should produce
narrow confidence intervals on average. Therefore, probabilistic forecasting aims
to achieve both good calibration and sharpness.

From Table 4.1, we can see that for dataset A, to achieve a 40 percent confidence
interval, we have trained our model two times with τ1 = 0.80 and τ2 = 0.40, and
we got the 0.33 calibration with the 0.1749 sharpness and 0.066 error. For dataset
B, to achieve 85 and 40 percent confidence, we have used τ1 values are 0.90 and
0.50, τ2 values are 0.05 and 0.10 and got the calibration 0.83 and 0.39, sharpness
0.4868 and 0.1281 with error 0.0108 and 0.0005, respectively. Likewise, Table 4.1
shows the results of datasets C and D.

So, using the probabilistic forecast model for SWH, we can efficiently predict the
future outcome with a certain confidence level. We can obtain a range of potential
values for the future outcome and the likelihood of each value by applying the
probabilistic forecast model for SWH. This gives us more knowledge and flexi-
bility than a single-point prediction, which may be incorrect or misleading. As a
result, the probabilistic prediction model for SWH is a more beneficial and accu-
rate method of forecasting future events.
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CHAPTER 5

Conclusions and Future Work

SWH is a key parameter for marine activities. It also has an impact on the sta-
bility and performance of offshore structures. Moreover, for renewable energy,
ocean waves play an important role. Forecasting SWH efficiently helps to pro-
duce more energy using ocean waves.

In our study, We have developed different wave hybrid point forecasting models
for SWH. At first, we used a simple LSTM model. LSTM is a deep learning model
which can capture the long-term dependencies of the given input data signal.
Then we used different decomposition methods, namely WD, EMD, and VMD,
to get more information from the raw data. These decomposition methods can
capture trends and cycle present in the input signal. It can also remove the noise
present in data. Deep learning models have many hyperparameters which need
to be tuned. The same set of parameters performs differently for the two different
problems. We have used an evolutionary genetic algorithm to tune the batch size
and the number of hidden units of the LSTM. The received SWH signal is abstract;
we have used Convolutional Neural Network to get more information. CNN are
the deep learning models which can learn features from the input data. We use
CNN for feature extraction and LSTM to capture long-term dependencies. We
have trained all these different wave hybrid models on seven real-world ocean
wave height datasets. The dataset was collected from different geographic loca-
tions. After briefly analyzing the numerical results, we find that the CNN-LSTM
model obtains the best performance with a median accuracy of 91.88 and a mean
accuracy of 87.40.

Further, we have proposed uncertainty modeling for SWH. Point forecasting for
SWH is unsuitable when we have highly random and chaotic data like SWH.
Point forecasting may produce inaccurate results. On the other hand, probabilis-
tic forecasting forecast value with a certain confidence. Rather than giving a sin-
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gle point, the probabilistic forecast model provides a range of future outcomes.
We have proposed architecture in Chapter 4 for a probabilistic forecasting model.
We have used quantile regression based approach for probabilistic forecasting of
SWH. We have used the pinball loss function with LSTM deep learning model.
The pinball loss function has the parameter τ, which can give targeted quantile
estimation. To get t percent confidence, we have to train the LSTM model twice
with different τ values.

This study proposes a probabilistic forecasting model for SWH using the pinball
loss function. We have shown that our model can capture the uncertainty in SWH
and provide reliable confidence intervals. However, some limitations and chal-
lenges need to be addressed in future work. First, Our model requires training
two different models separately to obtain t percent confidence. This may increase
the computational cost and complexity of the model. Moreover, if trained on dif-
ferent data or with different hyperparameters, it may introduce inconsistency be-
tween the models.

Second, the pinball loss function tries to optimize sharpness and calibration; the
balance between these two quantities is made implicitly, which may result in poor
performance. Therefore, we need a loss function that can efficiently optimize
sharpness subject to calibration.

We hope our work can inspire further research on probabilistic forecasting of
SWH and other renewable energy sources and contribute to developing more ef-
ficient and robust wave energy systems.
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