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Abstract

Rain streaks vary in size, quantity, and direction, making removing them from in-
dividual images difficult. Recent advancements in deep learning, especially those
using CNN-based techniques, have shown promising results in addressing this is-
sue. However, the requirement for additional consideration of the rain streaks lo-
cation information in the image is a significant drawback of these methods. Meth-
ods based on deep learning have proven to be quite effective in handling synthetic
and real-world rainy images. These methods use convolutional neural networks
(CNNs) to their full potential to learn the correspondence between rainy and rain-
free images. We typically use an encoder-decoder architecture where the encoder
pulls features from the rainy image and then creates the rain-free image using the
learned features. These algorithms can efficiently learn the complicated correla-
tions between rain streaks and ground truths by training on large-scale datasets
that combine images with and without rain. End-to-end methods aim to train a
single model that converts the rainy image into its rain-free counterpart without
explicitly decomposing it into the rain and the background components. Addi-
tionally, researching end-to-end approaches offers a fascinating way of improving
the de-raining algorithm’s efficiency. More effective and efficient techniques for
removing rain streaks from single images will probably be developed when this
research study continues to be investigated.

Index Terms: Rain streaks, image de-raining, contextual information, residual map,
synthetic and real-world rainy image
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CHAPTER 1

Introduction

Rain streaks pose a significant challenge to the visual quality of photos and videos
captured in rainy conditions. They introduce various visible degradations, such
as blurring, contrast loss, and distortion, which greatly affect the sharpness and
clarity of the captured images. Removing these rain streaks and restoring the
original image is a complex task due to the diverse characteristics of rain streaks,
including variations in size, direction, and density[23]. The complexity further in-
creases when the rain streaks align with the structure and orientation of objects in
the image. In such cases, accurately separating the rain streaks while preserving
the underlying structure becomes challenging. One of the primary objectives in
the de-raining process is to retain important image details while avoiding intro-
ducing artifacts. Developing a universal method that effectively addresses these
challenges and achieves high-quality rain removal remains a significant research
goal in this field.

De-raining techniques that enhance image quality have a significant impact on
various computer vision applications, including object identification and recog-
nition in intelligent vehicles. When it is raining, rain streaks can obstruct the
view, making it challenging to detect objects on the road. By effectively remov-
ing rain streaks from captured images, the performance of computer vision algo-
rithms can be improved, leading to safer driving conditions. Similarly, outdoor
monitoring systems, such as surveillance cameras, can greatly benefit from image
de-raining. Removing rain streaks from surveillance footage captured in wet con-
ditions improves visibility and enables more accurate analysis and detection of
objects or events of interest. This is particularly crucial to ensure effective security
and surveillance in outdoor environments. To enhance visual perception for both
human observers and computer vision systems, researchers are actively develop-
ing single image de-raining techniques. These techniques aim to generate precise,
high-quality rain-free images from their original rainy counterparts[9]. By miti-
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gating the adverse effects of rain streaks, these techniques improve image clarity
and enable more robust and reliable computer vision applications.

The additive model, which is the basis for existing image de-raining techniques,
assumes that the rainy image (x) is the result of superimposing a clean image (y)
and a rain component(i.e. residual map) (r). i.e,

y = x + r (1.1)

The primary goal of image de-raining is to generate a rain-free image "x" from an
observed rainy image "y." Traditionally, this is achieved by estimating the resid-
ual map "r," which represents the rain streak component present in the observed
image. The residual map captures the specific characteristics and patterns of rain
streaks in the image. By subtracting the predicted residual map from the observed
image, the de-rained image can be obtained, effectively removing the rain streaks
and restoring image clarity[23]. In recent years, deep learning-based techniques
have emerged as powerful approaches for single image de-raining. These tech-
niques leverage the capabilities of deep neural networks to directly predict the
de-rained image from the noisy observation. The methodology employed in this
study differs from many existing deep learning-based approaches, highlighting
novel strategies and advancements in the field.

Figure 1.1: An example of clean image Y, rainy image X, rain streaks Y - X. (from
left to right)

The proposed approach follows a two-step process instead of directly estimating
the de-rained image. It initially focuses on computing the rain streak component,
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denoted as the residual map "r," from the observed image "y." The method aims
to accurately capture the characteristics and variations of rain streaks by indepen-
dently estimating this rain streak component. Subsequently, the estimated resid-
ual map is utilized to derive the de-rained image by removing the rain streak com-
ponent from the observed image. This approach acknowledges the significance of
explicitly modeling and separating rain streaks from the underlying structure of
the image. By doing so, it strives to enhance the precision and quality of the de-
rained results[23].

x = y − r (1.2)

To summarize, this research introduces a novel approach that departs from con-
ventional deep learning-based methods by initially estimating the rain streak com-
ponent (residual map) and subsequently using it to estimate the de-rained image.
Unlike previous approaches that directly estimate the de-rained image from the
noisy observation, this method focuses on explicitly representing the rain streaks
and their impact on the observed image. By adopting this strategy, the research
aims to enhance the accuracy and quality of the de-raining process.

1.1 Objective

The objectives of the thesis can be summarized as follows:

1. Developing an end-to-end architecture that can handle single image de-
raining using a convolutional neural network(CNN).

2. Developing an architecture that can handle the problems provided by vari-
ous rain content scales, and then applying that architecture to estimate the
final de-rained image.

3. Creating an architecture that can manage the varying density levels visible
in rainy images, even when a dataset is provided.

4. Introducing a module to the architecture to deal with the problem of color
distortion and ensure that the de-rained images with accurate colors and
structure are preserved.
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1.2 Contribution

The contributions of the thesis can be summarized as follows:

• We introduce an end-to-end architecture that can remove the rain streaks
contained with different rain streak densities like light, medium, and heavy.

• We compare the existing state-of-the-art methods of single image de-raining
and try to understand the various methods that can remove the rain streaks
and analyze the results of it.

• We trained the model with the dataset that contains three different level den-
sities, light, medium, and heavy, containing around 12,000 images.

• Additionally, we try to improve the results of this architecture with a cycle
spinning technique that can increase the objective metrics such as PSNR and
SSIM.

Overall, the thesis advances the state-of-the-art and offers insightful infor-
mation for further study in the field by contributing an end-to-end design,
appropriate management of various density levels, and usage in practice.

1.3 Organization of Thesis

Chapter 2 provides an overview of existing techniques for image dehazing, in-
cluding classical methods and deep learning-based methods.

Chapter 3 presents the first proposed method - RCLU; the encoder-decoder ar-
chitecture of UNet and the Uncertainty Guided Multi-Scale Residual Learning
(UMRL) method. Additionally, we incorporate Residual and Confidence Net-
works (RN & CN) as part of the process & its loss function.

Chapter 4, the limitations of the proposed method 1 - RCLU are addressed, and a
new approach SID-U-CNN for removing rain streaks, called RainRemovalBlock,
is introduced. The RainRemovalBlock is implemented in conjunction with the
encoder-decoder architecture of Unet, offering a novel solution to overcome the
limitations previously identified. The loss function is also mentioned.
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Chapter 5 presents the results of the experiments along with the datasets con-
ducted in the study. This chapter compares the obtained results with existing
state-of-the-art methods.

Chapter 6 concludes the thesis, summarizing and contributions and it outlines
potential areas for future research and development.
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CHAPTER 2

Literature Survey

Recent advancements in the field of single image de-raining have shown signif-
icant progress. Siyuan et al. proposed a comprehensive analysis that considers
different types of rain, including rain streaks, raindrops, and rain with mist. They
conducted extensive comparisons, examining various techniques and datasets,
to evaluate the effectiveness of different approaches[3]. Their analysis provides
valuable insights into the advancements and limitations of current methods in
single image de-raining. Notably, a particular study [8] achieved state-of-the-art
performance by effectively distinguishing rain streaks using Gaussian mixture
models. However, there is still room for improvement in preserving small details
and textures, as some smoothing effects were observed in the de-rained images,
particularly in the background regions.

Li et al. [20] proposed an alternative strategy that specifically targeted the chal-
lenge of heavy rain and rain streak formation. Their research aimed to address
the difficulties associated with images containing a high density of rain streaks.
By developing specialized algorithms, they were able to achieve improved results
in rain removal, even in severe rain conditions. Another noteworthy contribu-
tion in this field was made by Fu et al. [5], who introduced an end-to-end deep
learning architecture for rain removal. Their approach utilized a deep detail net-
work, which effectively reduced the mapping range from the input to the output.
By leveraging deep learning techniques, their method demonstrated promising
results in eliminating rain artifacts and enhancing the visual quality of de-rained
images. These advancements in end-to-end deep learning algorithms highlight
the progress made in the field of single image de-raining, addressing various
challenges such as different rain categories and heavy rain scenarios. Ongoing
research in this area holds great potential for further improving the effectiveness
and practicality of single image de-raining techniques, leading to clearer and vi-
sually appealing rain-free images.
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There are a number of different methods that have been proposed for image de-
raining. These can be generally described below one by one:

2.1 UMRL : Uncertainty Guided Multi-Scale Residual

Learning-using a Cycle Spinning CNN

The proposed Uncertainty guided Multi-scale Residual Learning (UMRL) net-
work is designed to estimate the clean image from a corresponding rainy image.
It utilizes a multi-scale approach to capture rain content at different levels and
incorporate it into the de-raining process [21]. Additionally, a novel method is
introduced to guide the network’s weight learning based on the confidence mea-
sure of the estimates. To further enhance de-raining performance, a unique train-
ing and testing approach inspired by cycle spinning is employed [21]. The UMRL
network consists of two main components, namely the Rain Network (RN) and
Confidence Network (CN). The outputs of these networks are fed into subsequent
layers to guide the estimation of the clean image. The rain streak component, also
known as the residual map, is first estimated and subtracted from the rainy image
to obtain the de-rained image. In this process, a confidence score, represented as
c, is computed to indicate the level of uncertainty associated with estimating the
residual map. The confidence score measures the network’s confidence in the cal-
culated residual value for each pixel [21]. The architecture of the UMRL network
is illustrated in Figure 2.1, showcasing the flow of information and integrating the
RN, CN, and subsequent layers to achieve the de-raining task.

The cycle spinning technique is applied to generate shifted images by cyclically
shifting an input image of size m × n in p-row and q-column steps. These shifted
images are then processed by the UMRL network to obtain de-rained results dur-
ing testing. To obtain the final de-rained image, the inverse shift operation is
performed on the shifted images, followed by de-raining and averaging of the
results [21]. The use of cycle spinning is not limited to the UMRL network and
can be beneficial for improving the performance of any CNN-based de-raining
technique.
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Figure 2.1: An overview of the UMRL network[21].

2.2 DIDMDN : Density-aware Multi-stream Dense Net-

work

A novel approach called DID-MDN is proposed for simultaneous rain density es-
timation and de-raining. This approach utilizes a multi-stream densely connected
convolutional neural network to effectively remove rain streaks based on the es-
timated rain-density label[23]. By incorporating information about the rain den-
sity, the network is able to accurately handle rain streaks of different scales and
shapes. Using a multi-stream densely connected de-raining network allows for
better characterization of rain streaks by leveraging features from multiple scales.
The suggested approach offers a promising solution for addressing rain density
estimation and de-raining challenges.

The proposed DID-MDN architecture consists of two key components: the residual-
aware rain-density classifier and the multi-stream densely connected de-raining
network. The role of the residual-aware rain-density classifier is to estimate the
level of rain present in a given wet image. On the other hand, the multi-stream
densely connected de-raining network is designed to effectively remove rain streaks
from rainy images, considering the guidance provided by the estimated rain-
density information[23, 4]. The overall network architecture of the proposed DID-
MDN technique is illustrated in Figure 2.2. This architecture combines rain-density
estimation and de-raining processes to achieve improved rain removal results.
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Figure 2.2: An overview of the DID-MDN method[23].

2.3 DRT: De-raining Recursive Transformer

In recent times, transformer-based deep learning models have proven to be highly
effective for various vision tasks. However, these models often have a large num-
ber of parameters and can be challenging to train. This poses a problem for
low-level computer vision tasks that involve dense-prediction, such as rain streak
removal, as they typically require devices with limited memory and processing
capabilities. To address this issue, the authors propose a novel approach called
de-raining a recursive transformer (DRT) that utilizes a recursive local window-
based self-attention structure with residual connections. This approach combines
the advantages of transformers while keeping the computational resource require-
ments low, making it suitable for constrained devices. The DRT model offers a
promising solution for efficiently removing rain streaks in images while consider-
ing resource limitations[9].

The DRT (de-raining a recursive transformer) model consists of three stages: patch
embedding (stage f1), deep feature extraction (stage f2), and image reconstruction
(stage f3). The process is visually depicted in Figure 2.3. Initially, the rainy image
is passed through a convolutional layer and then divided into patches, which are
stacked depth-wise in the patch embedding step (f1). The next stage involves the
utilization of multiple recursive transformer blocks (RTBs) for performing deep
feature extraction. The parameter "N" represents the total number of RTBs em-
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Figure 2.3: The De-raining Recursive Transformer architecture. RTB stands for
recursive transformer block, and STB stands for Swin Transformer block. N refers
to the number of RTBs, and L refers to the number of recursive calls[9].

ployed in the model. To ensure that the RTBs don’t solely focus on rain streak
detection, a residual connection is incorporated at the end of the process, where
the input is added to the output of the deep feature extraction stage. This helps in
preserving important details and preventing the network from overemphasizing
rain streaks. Subsequently, the image restoration stage processes the deep fea-
tures, reversing the operations performed in the previous stage. To remove the
rain streak features extracted by the network, another residual connection is in-
troduced between the input and output of the network. The proposed DRT model
draws inspiration from various studies [2, 11, 19] and combines the advantages
of recursive transformers with the inclusion of residual connections. This archi-
tecture enables effective rain streak removal while considering the constraints of
computational resources and memory.

2.4 Sync2Real Transfer Learning using Gaussian Pro-

cesses

The researchers propose a semi-supervised learning approach utilizing the Gaus-
sian Process, which enables the network to learn the task of de-raining by lever-
aging synthetic datasets while effectively generalizing to unlabeled real-world
images. Existing literature has provided limited insights into training image-
processing networks using real-world data. The scarcity of fully-labeled real-
world image de-raining datasets poses a challenge, leading current algorithms
to rely heavily on synthetic data, resulting in subpar performance when applied
to real-world images[22].
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The proposed approach involves semi-supervised learning (SSL) using a Gaus-
sian process (GP) and iterative training with both labeled and unlabeled data. In
the labeled learning phase, the model is trained using labeled data by minimizing
the mean squared error between the predictions and the actual data. Addition-
ally, the inputs from the labeled dataset are projected onto a latent space, which is
modeled using GP. In the unlabeled training phase, pseudo ground truth (pseudo-
GT) is created for the unlabeled inputs based on the GP model from the labeled
training phase. The intermediate latent space for the unlabeled data is supervised
by this pseudo-GT. The pseudo-GT concept assumes that unlabeled images can
be described as a weighted mixture of characteristics from labeled data when pro-
jected onto the latent space, with the weights determined by a kernel function.
By minimizing the variance between the network weights and the unlabeled data
domain, the network weights automatically adjust to the characteristics of the un-
labeled data[22].
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CHAPTER 3

Residual & Confidence Learning with Unet in
Single Image De-raining (RCLU)

The skip-connected encoder-decoder network-based U-Net architecture[12] has
proven very efficient in various image processing tasks. This architecture focuses
heavily on the decoder network to provide a segmentation map appropriate for
the size of the input image. On the other hand, the encoder network is in charge
of preserving the high-level characteristics and features of the input image. The
availability of skip connections, which allow for exact localization and improve
information flow between the encoder and decoder networks, is a significant com-
ponent of the U-Net architecture[12]. The decoder network can access the high-
level data collected by the encoder network due to these skip connections, which
create direct connections between essential encoder and decoder layers.

The U-Net architecture’s skip connections allow the decoder network to take full
advantage of the in-depth knowledge acquired by the encoder network. Using
this approach, the network can better collect fine-grained structures and critical
visual features throughout the decoding process. Overall, the U-Net architec-
ture’s skip-connected encoder-decoder network[12] promotes effective informa-
tion propagation and allows the network to capture both low-level and high-level
aspects of the input image. This architecture’s capacity to efficiently localize and
retain crucial image features while producing precise segmentation outputs has
led to its wide use in various computer vision tasks, including image de-raining.

A pooling layer is put in after each convolutional layer in the encoder network of
the U-Net architecture. These pooling layers’ role is to decrease the feature maps
that the preceding convolutional layers have produced. The spatial dimensions
of the original input image are gradually reduced due to the down-sampling pro-
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cess. The feature maps are divided into non-overlapping regions by the pooling
layer, which then chooses the best-expected value for each region. Average or
maximum pooling are two standard processes used in this selection process. The
pooling layers significantly lower the quantity of information and spatial resolu-
tion in the feature representations by downsampling the feature maps.

Figure 3.1: The architecture of the RCLU.

The U-Net architecture[12] gradually compresses the feature maps over many it-
erations of the down-sampling process, producing a highly condensed and ab-
stracted version of the original image. This network-efficient calculation and
parameter sharing are made possible by the compressed feature representation,
which also captures the input image’s high-level details and overall context. The
pooling layers’ down-sampling ensures that the U-Net architecture can still cap-
ture and simulate intricate patterns and structures in the input data even as the
spatial dimensions are decreased. In the decoder network for accurate localization
and segmentation tasks, for example, this enables the network to extract increas-
ingly abstract and invariant information important for later processing stages.
Overall, the U-Net encoder network’s placement of pooling layers after each con-
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volutional layer allows for the steady decrease of spatial dimensions and the ex-
traction of high-level features, creating a representation of the input image that is
both effective and efficient.

The deconvolutional layers that collectively make up the U-Net decoder network
is essential for up-scaling the feature maps to the size of the input image. Since it
facilitates recovering the spatial information lost during the down-sampling pro-
cess carried out by the pooling layers in the encoder network, this up-sampling
approach is crucial for correct localization. The U-Net decoder ensures that de-
tailed spatial information is retrieved by utilizing deconvolutional layers, enabling
accurate localization of objects and fine-grained features.

Skip connections are used to establish a connection between the encoder and de-
coder networks. Direct communication between the encoder and the appropriate
layers in the decoder is made possible by such connections. The U-Net architec-
ture may take advantage of high-level and low-level characteristics from various
levels of abstraction by adding skip connections. This improves the network’s
ability to carry out precise localization and segmentation tasks by successfully
capturing global context and local information.

In conclusion, the U-Net architecture[12] is a powerful tool for image processing,
especially for tasks requiring semantic segmentation. The network can achieve ex-
act localization while simultaneously gathering contextual data and fine-grained
characteristics due to combining an encoder-decoder network and skip connec-
tions. This architecture is a solid option for applications requiring precise seg-
mentation and in-depth image analysis because of its capacity to leverage skip
connections and restore spatial information through deconvolutional layers.

In our alternate methodology, the rain streak component, the residual map (r), is
estimated and used in two steps. After performing this estimation as the first step,
the de-rained image (x) is calculated by subtracting the estimated residual map
from the observed image (y)[23]. We also provide the idea of a confidence score
(c)[21], which is a map that represents the degree of uncertainty in the estimation
of the residual map. The confidence score (c), which expresses how confident
the network is in the accuracy of the residual values at each pixel, is valuable
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information. It provides information about how uncertain the anticipated rain
streak component is. In our method, we do more than estimate the residual map
and confidence score independently. Instead, we thoroughly combine the two
pieces of data and use them as inputs for future network layers.

We provide a communication channel that efficiently spreads location-specific
rain information throughout the network by logically integrating the residual
map and confidence score. Using this strategy, the network is guaranteed to take
advantage of the spatial context and make wise judgments about the presence
and features of rain streaks. As a result, we can compute both the revised residual
map and the uncertainty map. Overall, our approach combines the calculation of
the residual map, evaluation of confidence scores, and application of these two
pieces of knowledge within the network’s design. This method makes good use
of location-based rain information. It takes the network’s confidence in the esti-
mating process into account to produce results that are more reliable and accurate
when it comes to de-raining.

3.1 Residual and Confidence Map Networks

A key component of our method is the Residual Network (RN)[21, 10], which uses
feature maps to estimate the residual map, which is the difference between the
observed image and the de-rained image. Convblock(64,32), Convblock(32,32),
and Convblock(32,3), a series of convolutional layers that were specifically created
to capture the underlying patterns and features of the image, make up the RN.

We use the Confidence map Network (CN)[21], which accepts the estimated resid-
ual map and the associated feature maps as input, to evaluate the confidence of
the residual values at each pixel. Convblock(67,16), Convblock(16,16), and Con-
vblock(16,3) convolutional layers make up the CN and are used to encode the
confidence measure and retrieve relevant information. The confidence map and
the residual map are combined using element-wise multiplication to create an
improved representation, which is then up-sampled and fed into the network’s
subsequent layers.

The uncertainty-guided multi-scale residual learning (UMRL)[21] last layer’s fea-
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ture maps and output residual map r are fed into the CN for the confidence map
estimation. This enables the network to consider the confidence information and
the learned high-level characteristics, ensuring a thorough comprehension of the
image structure and rain streaks. The de-rained image is then created by sub-
tracting the observed image’s y component from the estimated residual map’s r
component.

By successfully merging the residual and confidence information, we want to im-
prove the precision of rain streak estimation and provide visually pleasing de-
rained images by utilizing the RN and CN[21] inside our framework.

3.2 Loss Function

The UMRL loss has been used in this method. This loss consists of L1 or MAE
loss along with perceptual loss.

3.2.1 MAE or L1 Loss

L1 loss, often known as the mean absolute error (MAE), is a standard loss function
in image processing. It calculates the average absolute difference between each
pixel of the expected and actual images. By penalizing significant changes in pixel
values, L1 loss preserves image structure and details by concentrating on the size
of errors. To produce images that closely resemble the ground truth regarding
pixel intensity, L1 loss must be minimal.

Ll1 = ∥(c ⊙ x̂)− (c ⊙ x) ∥1 (3.1)

where c is the confidence map along with its x’s pixel of the image.

3.2.2 Perceptual Loss

The perceptual loss is feature-based loss, and in our case, extracted features from
layer relu1_2 of pre-trained network VGG-16. Let F(.) denote the features ob-
tained using the VGG16 model[18]; then the perceptual loss is defined as follows

Lperc =
1

NHW ∑
i
||F(x̂1)

i − F(x1)
i||22 (3.2)
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where N is the number of channels of F(.), H is the height and W is the width
of feature maps[18].

The total loss function is defined as

L = λ1Ll1 + λ2Lperc (3.3)

In our experimental setup, we have set values λ1, λ2 are 1, 0.5 respectively.

3.3 Limitation of RCLU

We conducted additional evaluations on the encoder-decoder networks based on
the Unet [12] architecture in order to enhance the performance of rain removal
and incorporate the UMRL (Uncertainty Guided Multi-Scale Residual Learning)
loss [21]. We also utilized the UMRL loss to investigate the refinement networks
derived from Unet and Trident.

To address the limitations observed in previous experiments, particularly the un-
satisfactory results, we modified the loss function. Initially, we introduced the L1
loss of the confidence map and the perceptual loss as the primary loss function.
However, due to the underwhelming outcomes, we decided to include the SSIM
loss (Structural Similarity Index) as an additional component in the loss function.
This enhancement aimed to improve the preservation of structural elements and
enhance the visual quality of the de-rained images.

Recognizing the need for further improvements in the loss function to tackle on-
going challenges, we introduced the L2 loss (Mean Squared Error) as a secondary
component. This addition enhanced overall performance by minimizing discrep-
ancies between the predicted de-rained images and the corresponding ground
truth images. Through these adjustments to the loss function, we aimed to em-
power the networks to capture better the desired properties of rain removal, such
as effectively eliminating rain streaks while preserving important image details.
These modifications were crucial in addressing the limitations and achieving sig-
nificant advancements in the quality of rain removal, bringing us closer to sur-
passing the current state-of-the-art techniques.

17



CHAPTER 4

Single Image De-raining with Unet using CNN
(SID-U-CNN)

4.1 Encoder-Decoder of UNet

The U-Net architecture[12, 15] has been extensively used to research single image
de-raining and has produced encouraging results. In U-Net architecture, single
image de-raining is accomplished by combining decoder and encoder networks.

The encoder network in U-Net collects the high-level characteristics and contex-
tual information from the input image. It typically includes several convolutional
layers, followed by layers that are maximize pooling. The max-pooling layers
down-sample the feature maps, reducing their spatial dimensions, while the con-
volutional layers execute feature extraction by applying filters to the input image.
This down-sampling helps in preserving the image’s overall composition and in-
formation.

On the other hand, the U-Net decoder network requires reconstructing the de-
rained image using the encoder’s extracted characteristics. Deconvolutional lay-
ers, often transposing convolutional layers, gradually up-sample the feature map’s
spatial dimensions. The spatial features lost during the down-sampling process
in the encoder are recovered with the aid of the deconvolutional layers. Further-
more, U-Net incorporates skip connections to create simple connections between
equivalent levels in the encoder and decoder. These skip connections give the de-
coder access to the encoder’s low-level and fine-grained data, enabling accurate
localization and protecting crucial details in the de-rained image.
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The model can accurately capture the global context and local features of the input
image by merging the encoder and decoder networks in the U-Net architecture.
This is essential for the de-raining operation since it enables the network to com-
prehend the patterns of the rain streaks and produce excellent de-rained images.
The research community has embraced the U-Net architecture widely and has
proven successful in single image de-raining applications.

Implementing the encoder-decoder architecture of the Unet[12, 6] along with a
rain removal model, has demonstrated significant improvements in the field of
single image de-raining. The architecture includes a decoder and an encoder that
cooperate to complete the task of removing rain. The encoder and decoder use six
layers of up- and down-sampling, respectively.

4.2 The Novel Method of Rain-Streak Removal with

Encoder-Decoder of Unet

Figure 4.1: The architecture of the SID-U-CNN.

The novel method for removing rain streaks incorporates the Rain Removal Block,
which consists of multiple convolutional layers with Rectified Linear Unit (ReLU)
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activation functions, is mentioned in figure 4.1. The Rain Removal Block plays a
crucial role in eliminating rain and includes residual blocks that capture intricate
rain-related features. These blocks are composed of a series of convolutional lay-
ers and ReLU activations. Notably, the residual blocks employ skip connections,
allowing information to directly flow from the input to the output of the block.
This approach significantly enhances the network’s capability to effectively re-
move rain streaks while accurately preserving important image features.
The innovative approach for rain-streak removal incorporates a novel method
that effectively eliminates rain streaks. This method utilizes a specialized block,
referred to as the Rain Removal Block, which comprises multiple convolutional
layers with Rectified Linear Unit (ReLU) activation functions. The Rain Removal
Block plays a crucial role in the process by capturing intricate rain-related fea-
tures through the incorporation of residual blocks. These blocks, consisting of a
sequence of convolutional layers and ReLU activations, allow for the direct flow
of information from the input to the output of the block through skip connections.
This unique methodology significantly enhances the network’s ability to remove
rain streaks while accurately preserving essential image features.

Essential parts of the single image de-raining architecture created expressly to im-
prove rain removal performance are the RainRemovalBlock and ResidualBlock.
These blocks are developed as modules within the PyTorch framework to pre-
dict and eliminate rain streaks from images accurately. We execute this by using
convolutional layers and skip connections.

As an innovative essential building block for rain removal, the RainRemovalBlock
makes extracting features connected to rain easier which is illustrated in figure
4.2. There are three primary phases to it. First, two convolutional layers process
the input tensor representing the three-channel image. The network can gather
pertinent information about rain streaks due to these layers’ execution of spatial
filtering operations with a kernel size of 3 and padding of 1. Then, non-linearity is
introduced using Rectified Linear Unit (ReLU) activation functions, enabling the
model to learn complicated patterns and improve its expressive capability.

To improve the rain removal procedure even more, the RainRemovalBlock addi-
tionally integrates ResidualBlocks. These blocks include convolutional layers that
extract and manipulate rain-related features at various levels of abstraction. The
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ResidualBlocks permit the flow of information from previous layers to the last lay-
ers by applying skip connections, maintaining critical image characteristics, and
facilitating the precise elimination of rain streaks.

Figure 4.2: The architecture of the Rain Removal Block.

The novel approach to rain streak removal uses the final convolutional layer after
the ResidualBlocks to create the output tensor representing the estimated residual
rain component. This component defines the difference between the input image
and the de-rained image. The estimated residual rain component is added to the
input tensor to produce the de-rained image. By combining the estimated residual
rain component with the original image, this addition process creates an output
tensor that symbolizes the rain-free image.

On the other hand, the ResidualBlock, a vital part of the novel approach to rain
streak removal, captures and processes rain-related features in a residual way. It
has four convolutional layers, each with a kernel size of three and one padding.
The ReLU activation functions add non-linearity after each convolutional layer,
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much like the RainRemovalBlock. The addition operation creates the remaining
connections within the block. By allowing data to move from earlier layers to
the last layers, these connections enable the network to capture both low-level
and high-level rain-related components efficiently. The residual rain component
calculated by the ResidualBlock is represented in the final output tensor.

The model can predict and remove rain streaks from images by integrating the
RainRemovalBlock and ResidualBlock into the Single Image de-raining architec-
ture. This allows the model to use convolutional operations, skip connections,
and residual learning. Using these blocks, the model can capture information
linked to rain at several levels of abstraction, enabling precise rain removal while
keeping crucial image elements.

4.3 Loss Function

In this section, we discuss the loss used to train our model.

4.3.1 MAE or L1 Loss

L1 loss, often known as the mean absolute error (MAE), is a standard loss function
in image processing. It calculates the average absolute difference between each
pixel of the expected and actual images. By penalizing significant changes in pixel
values, L1 loss preserves image structure and details by concentrating on the size
of errors. To produce images that closely resemble the ground truth regarding
pixel intensity, L1 loss must be minimal.

Ll1 = ∥x̂ − x∥1 (4.1)

4.3.2 MSE or L2 Loss

L2 loss, also known as mean squared error (MSE), calculates the average squared
difference between ground truth and predicted images. Minimizing the squared
disparities penalizes significant faults and seeks to produce more even images.

Ll2 = ∥x̂ − x∥2
2 (4.2)
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4.3.3 Perceptual Loss

The perceptual loss is feature-based loss, and in our case, extracted features from
layer relu1_2 of pre-trained network VGG-16. Let F(.) denote the features ob-
tained using the VGG16 model[18]; then the perceptual loss is defined as follows

Lperc =
1

NHW ∑
i
||F(x̂1)

i − F(x1)
i||22 (4.3)

where N is the number of channels of F(.), H is the height and W is the width
of feature maps[18].

The total loss function is defined as

L = λ1Ll1 + λ2Ll2 + λ3Lperc (4.4)

In our experimental setup, we have set values λ1, λ2, λ3 are 1, 1, 0.25 respectively.
We utilized the Adam optimizer with a learning rate of 0.00005. We trained our
model using a batch size of 1 and conducted training for a total of 90 epochs.
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CHAPTER 5

Experiments and Results

5.1 Datasets

1. DID-MDN dataset 12k : A new dataset with 12,000 images was produced
and designated "Train1". Each image in the dataset is labeled based on the
amount of rain it depicts. Light, medium, and heavy are the three rain-
density descriptors included in the dataset [23, 24]. There are roughly 4,000
images connected with each rain-density label, giving the dataset a balanced
spread of rainfall levels. A new test set called "Test1" was also produced,
consisting of 1,200 images in addition to the training dataset. Test 1 in-
cludes photos with different rain streak sizes and orientations, much like the
training dataset. These photos are crucial for assessing how well de-raining
algorithms function in various rain scenarios [23, 24]. Another testing set
called "Test 2" was arbitrarily chosen from the synthetic dataset further to
evaluate the generalization potential of the suggested technique. Test 2 as-
sesses the algorithm’s capability to handle various rain patterns and changes
and comprises 1,000 images[23, 24]. A large variety of instances with differ-
ent rain densities, sizes, and orientations are offered by the datasets Train1,
Test1, and Test 2. They help researchers create reliable strategies to manage
a range of raininess and generalize to unseen images by serving as valuable
resources for training and testing de-raining algorithms.

2. Rain800 : The training set, "Rain800," consists of 700 images. The images also
originate from the BSD500 training set and the UCID dataset[16]. The im-
ages in Rain800, however, have many more rain streaks than the test dataset.
As a result, de-raining algorithms may understand the characteristics and
variations of rain streaks in many settings and can be trained on a wide
variety of cases. In contrast, the test dataset, "Test 100," comprises 100 im-
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Figure 5.1: Samples synthetic images (Heavy, Medium, and Light) in three differ-
ent conditions[23].

ages. These images were chosen from the BSD500 training set and the UCID
dataset [17, 1]. These images have artificial rain streaks applied to them to
make it look like it is raining. This dataset assesses how well de-raining
algorithms perform on real-world images with synthetic rain streaks. The
effectiveness and generalizability of the researchers’ de-raining algorithms
may be evaluated using both the Test 100 and Rain800 datasets. The test
dataset contains real-world images with artificial rain streaks, which makes
it easier to assess how well the algorithms perform under actual conditions.
To improve the algorithm’s capacity to handle various types and densities
of rain streaks, the Rain800 training dataset offers a sizable and varied set
of training examples. These datasets are essential for creating and assess-
ing de-raining algorithms, enabling the performance evaluation of various
approaches, and advancing single image de-raining research.

3. Rain 100L & Rain 100H There are 100 testing images and 1800 training im-
ages in the dataset used in this study. They used the BSD200 dataset[13], and
background images were chosen. Light rain streaks pointed in one direction
can be seen in each image in the dataset. A second dataset, Rain100L, was
also produced; it has 1800 training and 100 test images. From BSD200[13],
background images for Rain100L were selected. It is essential to remember
that adding strong rain streaks to an image may help de-raining algorithms
work better.

5.2 Experiments & Results

We thoroughly tested the Trident method utilizing several datasets, different sub-
network configurations, and various loss functions. We first used the Rain100L
and Rain100H datasets to evaluate the effectiveness of our technique. But after
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realizing the necessity for a more extensive and varied dataset, we trained our
model using the DID-MDN 12k dataset.

The DID-MDN 12k dataset includes a substantially more extensive collection of
12,000 images than the Rain100L and Rain100H datasets, which only have 100 im-
ages. This dataset includes Light, Medium, and Heavy variations across various
rain streak densities. But to ensure the DID-MDN 12k dataset was compatible
with our method’s particular requirements and adjustments, we carried out cru-
cial data cleaning operations before using it.

By merging these distinct datasets, we attempted to thoroughly assess the effi-
cacy of the Trident approach, considering varying weather circumstances and im-
age properties. Such thorough analyses enable us to evaluate our technique’s re-
silience and generalization abilities under various circumstances, ultimately pro-
ducing more trustworthy and precise answers.

Figure 5.2: Results from RCLU. From left to right - Rainy Image, Residual Map,
Confidence Map, RCLU, Ground Truth.

The results of our RCLU, which makes use of Unet’s encoder-decoder architecture[12]
and the UMRL (Uncertainty Guided Multi-Scale Residual Learning)[21] technique
using RN (Residual Network) and CN (Confidence map Network) networks, are
shown in Figure 6.2. A complete set of images, comprising the original input im-
age, the predicted output image, as well as the other residual map and confidence
map, is shown in Figure 6.2.

The estimated rain streak component is displayed on the residual map, show-
ing the areas where rain has been observed. The confidence map, on the other
hand, indicates the degree of confidence or uncertainty connected to the calcu-
lated residual values at each pixel. These supplementary maps offer insightful
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information on how the network evaluates rain streaks and its confidence in the
predictions.

Figure 5.2 provides a comprehensive image of de-raining and the network’s ca-
pacity to extract rain streak information from the input image by displaying the
related images with the residual map and confidence map. This visual depiction
makes it possible to evaluate our suggested method’s performance and accuracy
and conduct a thorough investigation of its efficacy.

Figure 5.3 visually compares results from our suggested approaches with those
from currently used methods and the ground truth. Each image is accompanied
by numerical image quality measurements, such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) scores.

Dataset Test-1 Test-2
Rainy Image 21.15 | 0.77 19.31 | 0.77
JORDAR[3] 24.32 | 0.86 22.26 | 0.84

DDN[4] 27.33 | 0.90 25.63 | 0.88
DID-MDN[8] 27.95 | 0.91 26.08 | 0.90

UMRL[6] 29.77 | 0.92 26.67 | 0.92
RCLU 10.93 | 0.03 11.05 | 0.06

SID-U-CNN 22.15 | 0.78 19.98 | 0.77

Table 5.1: PSNR and SSIM comparison of our methods against state-of-art meth-
ods (PSNR - SSIM))

Additionally, Table 5.1 thoroughly compares our suggested methodologies and
other state-of-the-art approaches. It systematically compares multiple metrics and
performance indicators using diverse methods. Compared to the current tech-
niques, the analysis shows that our proposed methods offer greater accuracy and
performance. Despite these encouraging outcomes, we acknowledge the ongo-
ing work to improve the performance of our methodologies further. We’re still
dedicated to enhancing our strategy, investigating fresh ideas, and implement-
ing cutting-edge methods to produce more precise and trustworthy solutions. We
want to make a significant impact and advance the field of image processing re-
search by consistently pushing its limits.

To improve the results, we experimented with Unet’s encoder-decoder network,
using both channel attention[12] and pixel attention techniques[12]. By construct-
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Figure 5.3: De-rained results on synthetic datasets Test-1 and Test-2[23] consisting
of different rain levels (low, medium, and heavy) and different directions.
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ing a channel-wise attention map based on global information, channel attention
seeks to capture the dependencies between channels inside a feature map. By cre-
ating a spatial attention map utilizing local information, pixel attention, on the
other hand, seeks to capture the dependencies between various spatial places in-
side a feature map.

We saw a few improvements after using this attentional strategies[7]. However,
we looked at other strategies and changed the attention mechanism in the net-
work design to a block that removes rain. Comparing this adjustment to the
attention-based approach[14], the findings were more encouraging.

Despite these developments, our results still need to be improved to match the
most recent performance in the field. Because of this, our present attention is on
ways to improve the results of our model and extend its possibilities.

5.3 Ablation Studies

Figure 5.4: De-rained results on without and with Rain Removal Block using SID-
U-CNN

The Rain Removal Block is crucial in removing rain streaks from the images.
This is evident from the experimental results presented in Figure 5.4, which demon-
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strate the outcomes obtained without the Rain Removal Block. The inclusion of
this block, along with the specific loss function, significantly contributes to the
effective removal of rain streaks. Both the Rain Removal Block and the employed
loss function are specifically designed to address the challenge of rain streak re-
moval. These components are carefully designed and optimized to prioritize the
removal of rain streaks and improve the overall quality of the de-rained images.

The loss function employed in our de-raining technique comprises three compo-
nents: L1 loss, L2 loss, and perceptual loss. The primary objective of the technique
is to remove rain streaks, for which the L1 loss is predominantly utilized. In our
experiments, we systematically varied the values of the lambda parameters asso-
ciated with the L1, L2, and perceptual losses. Through extensive experimentation,
we identified the optimal lambda values that yielded the best results. Specifically,
we determined that setting lambda values of 1 for both L1 and L2 losses and 0.25
for the perceptual loss resulted in superior de-raining performance. These lambda
values strike an appropriate balance between emphasizing the removal of rain
streaks (L1 loss) and preserving important image details (L2 loss and perceptual
loss).

30



CHAPTER 6

Conclusion & Future Scope

The objective of our research is to develop an end-to-end deep learning approach
that addresses the challenges associated with single image de-raining using a
convolutional neural network (CNN). Our goal is to surpass the performance
achieved by current state-of-the-art deep learning techniques in this field. While
our method may not surpass the most recent results, it demonstrates excellent per-
formance on images with light to medium levels of rain streaks. Our technique
is trained on a comprehensive dataset of de-rain images, enabling it to effectively
detect and remove rain streaks while preserving the essential structures and de-
tails of the objects in the images. To further improve the de-raining outcomes, we
have explored alternative architectural methods, such as adding a dedicated rain
removal block. This specialized block has proven to be highly effective in sup-
pressing rain streaks while preserving the intrinsic features of the image. It has
been specifically designed to address the unique requirements of rain removal
tasks.

Despite these researches, we acknowledge that the field of single image de-raining
still has growth opportunities. Our constant goal is to improve our method to sur-
pass current state-of-the-art techniques in terms of performance. We aspire to con-
tribute to the field of image processing and open the door for more effective and
efficient de-raining solutions by continuously iterating and implementing current
methodologies.
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