
Model Based Testing and Model Checking:
An Efficient Combination

by

MISHRA ROHIT AJAYKUMAR
202111070

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

June, 2023

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Master of
Technology in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

ii) due acknowledgment has been made in the text to all the reference material
used.

MISHRA ROHIT AJAYKUMAR

Certificate

This is to certify that the thesis work entitled Model Based Testing and Model
Checking: An Efficient Combination has been carried out by Rohit Mishra for
the degree of Master of Technology in Information and Communication Technol-
ogy at Dhirubhai Ambani Institute of Information and Communication Technology un-
der my/our supervision.

Dr. Saurabh Tiwari
Thesis Supervisor

i

Acknowledgments

I want to express my deepest gratitude to my supervisor Dr. Saurabh Tiwari,
whose guidance and support have been invaluable throughout my research jour-
ney. He provided me with insightful feedback, encouraged me to think critically
and pushed me to challenge myself every step of the way.

I would also like to thank the faculty members for providing me with a solid
academic foundation and for their constant encouragement and motivation.

I want to thank my family for their unwavering love and support and for always
believing in me, even during my most challenging moments.

Finally, I would like to thank my friends and colleagues who have provided me
with a support network and whose intellectual contributions have greatly en-
riched my research.

I am grateful for the support of all those who have played a role in my academic
and personal development and without whom this achievement would not have
been possible.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 MBT and Model Analysis . 1

1.1.1 Model-Based Testing . 1
1.1.2 Model Analysis . 2
1.1.3 Combining MBT and Model Analysis 3

1.2 Objective and Problem Description 4
1.3 Thesis Contribution . 5
1.4 Organisation of the Thesis . 5

2 Preliminaries 7
2.1 GraphWalker . 7
2.2 UPPAAL Model Checker . 10
2.3 GW2UPPAAL . 13

3 Related Work 15

4 Analysis Model to MBT: Proposed Methodology 19
4.1 UPPAAL to GraphWalker . 19

4.1.1 Import and Parse the UPPAAL model file 19
4.1.2 Conversion of the model to an intermediate format (Data

Structure) . 19
4.1.3 Generate the GraphWalker model 20
4.1.4 Export the model to a GraphWalker-supported JSON file . . 20

iii

4.1.5 Call the Graphviz Python file to generate the PNG image . . 20
4.2 Proposed Solution . 20

4.2.1 Algorithm for translation from Analysis to MBT Model . . . 20
4.2.2 Algorithm for state extraction 21
4.2.3 Algorithm for transition extraction 22
4.2.4 Algorithm for global variables 22

4.3 Detailed model transformation analysis based on hybrid tooling . . 23
4.3.1 MBT to Model Analysis using GW2UPPAAL [40] 23
4.3.2 Model Analysis to MBT using UPPAAL2GW 24
4.3.3 Graphviz representation of the models 28

5 Tool Support 31
5.1 Introduction . 31
5.2 Detailed Architecture of the system 32
5.3 Technology Stack . 32
5.4 Installation Procedure and Demonstration 34

6 Experimental Analysis and Results 36
6.1 Experimental Analysis . 36
6.2 Features and Limitations . 38

7 Conclusion and Future Work 39

References 40

iv

Abstract

This thesis aims to combine MBT with model analysis to provide an overall frame-
work for feedback-based model analysis. We have used an MBT tool, Graph-
Walker, and a model checker, UPPAAL, for transformation, feedback, and analy-
sis. GW2UPPAAL1 is an existing tool that transforms the GraphWalker model into
UPPAAL timed automata and supports a combined analysis and testing process.
The tool enables the automatic verification of reachability and deadlocks freedom
properties to exploit the results obtained from this analysis step to improve the
test model before generating and executing test cases on the system under test.
However, based on model analysis results, the test engineer must manually cre-
ate the new GraphWalker model, which may be time-consuming and error-prone.

We have developed a hybrid approach (a.k.a. UPPAAL2GW) to transform the
UPPAAL-derived model to GraphWalker to provide automated feedback of the
model checker to the MBT model, which helps the test engineer to use the modi-
fied GraphWalker model for test case generation. We have evaluated the overall
approach of the toolchain by seeding mutations into the models created by indus-
trial practitioners and verifying whether the tool provides automated feedback
to the test engineer. We have also used Graphviz to reflect changes in the MBT
models before and after the modifications. Furthermore, we have integrated both
tools for automated analysis and feedback. The integration of GW2UPPAAL and
UPPAAL2GW tools bridges the gap between MBT and model checking and en-
sures the overall analysis and feedback for MBT test case generation.

Demonstration Video: https://youtu.be/5OiNkSvZdFs
Source code & Artifacts: https://github.com/codewithmishra/UPPAAL2GW

1https://github.com/iyerkumar/GW2UPPAAL

v

https://youtu.be/5OiNkSvZdFs
https://github.com/codewithmishra/UPPAAL2GW

List of Principal Symbols and Acronyms

MBT Model Based Testing

PNG Portable Network Graphics

SUT System Under Test

vi

List of Tables

6.1 UPPAAL2GW Evaluation Analysis 36

vii

List of Figures

1.1 An approach to Model-Based Testing 2
1.2 An approach to model analysis using a model checker 2
1.3 Generic Method for combined MBT and model analysis 3

2.1 Spotify Login Model created in GraphWalker Studio 7
2.2 Guard, Action and Model Generator in GraphWalker Studio 8
2.3 Pet Clinic Multiple Model System Example 9
2.4 Pedestrian Traffic Light System Modelled in UPPAAL 11
2.5 Object and Variable Declaration in UPPAAL 11
2.6 Model Simulator in UPPAAL . 12
2.7 Property Verifier in UPPAAL . 12
2.8 GW2UPPAAL Translation . 14
2.9 Reachability and Deadlock Freedom Checking In Verifyta 14

4.1 Messenger model modelled in GraphWalker 24
4.2 Messenger model transformed using GW2UPPAAL 24
4.3 Modified Messenger model in UPPAAL 25
4.4 Messenger Model Translated using UPPAAL2GW 26
4.5 Pet Clinic model transformed using GW2UPPAAL 26
4.6 PetClinic Multi-Model System Translated using UPPAAL2GW . . . 27
4.7 Graphviz representation of the model 29

5.1 Execution of UPPAAL2GW . 31
5.2 Detailed Hybrid Tool Architecture 33
5.3 UPPAAL2GW Execution Output . 34
5.4 Graphviz Image Creation Output . 35

viii

CHAPTER 1

Introduction

1.1 MBT and Model Analysis

In this section, we will discuss MBT and model analysis. MBT is a technique
that uses models to generate test cases and check test results. The model analysis
technique uses models to verify and validate system properties and behaviour.
We will also explore how MBT and model analysis can be combined to improve
software quality and reliability.

1.1.1 Model-Based Testing

Model-based testing is a software testing technique that uses models of the SUT
to generate test cases, execute them, and check the results. A model is an abstract
representation of the SUT that captures its essential features and behaviours. Mod-
els can be expressed in various forms, such as state machines, flow charts, or for-
mal languages. MBT involves generating test cases by executing a model created
by studying the requirements of a SUT. The MBT tool traverses different paths of
the model using some coverage criteria to generate test cases [40][12][1][29][10].
Figure 1.1 represents a simple approach to Model-Based Testing. It starts with
creating a model for a SUT based on the requirements. The model can be in var-
ious forms, such as UML, SysML, state machines or some formal language spec-
ification. After that, test cases are generated from the model. Test cases can be
derived differently, including test requirements, purpose or use cases. These are
the abstract test cases. These abstract test cases will then be executed based on
the specific statements or methods in the software. Generated test cases are then
executed against the SUT, and the results are compared with the expected results
derived from the system’s behaviour. The results are then analysed to report de-
fects or to improve the model or the SUT accordingly.

1

Figure 1.1: An approach to Model-Based Testing

1.1.2 Model Analysis

Model Analysis or model checking is a technique for verifying whether a system’s
model, which is a finite-state representation of its behaviour, conforms to a given
specification or correctness. A model can be expressed in some exact mathemati-
cal language, such as propositional logic, temporal logic, or finite state machines.
A specification is a set of properties the system should comply with, such as safety
properties (avoiding bad states) or liveness properties (eventually reaching good
states). Figure 1.2 represents the process of model analysis using a model checker.

Figure 1.2: An approach to model analysis using a model checker

2

It starts with building a model of the system under analysis. The model can be
obtained from the system’s design, implementation, or requirements. The model
can be abstracted or simplified to reduce complexity and state space. Together
with the model, the specifications of the desired properties of the system are also
formed. The specification can be given in a logical formula that can be evaluated
on the model’s states and transitions. After that, the model and the specifications
are given as the inputs to the model checker to check the model against the speci-
fications. This involves verifying whether the model conforms to the specification
for all possible behaviours and inputs. After the analysis, the verification results
are examined. If the model conforms to the specification, the system is correct
for the given abstraction and properties. If the model does not conform to the
specification, the verification procedure can provide a counterexample showing a
system behaviour that violates the specification. The counterexample can be used
to debug or improve the system or the model.

1.1.3 Combining MBT and Model Analysis

MBT and model checking are two techniques for verifying the correctness of soft-
ware systems. Both methods can help to detect and prevent errors, bugs, and
faults in complex and critical systems. However, MBT and model checking also
has some limitations and challenges. MBT may not cover all possible behaviours
and inputs of the system and may depend on the quality and completeness of
the test model. Model checking may face the state explosion problem, the map-
ping problem, the expressiveness problem, and the scalability problem. There-
fore, combining MBT and model checking can be beneficial for improving the
verification process and results. Figure 1.3 represents a generic structure for com-

Figure 1.3: Generic Method for combined MBT and model analysis

3

bined MBT and model analysis. Firstly, requirements must be identified to guide
the test generation and analysis. Here a finite-state model can be considered a re-
quirement artefact. After a clear understanding of requirements and specification
documents, a model can be obtained which can be used for MBT objectives. For
instance, a state model has nodes representing the system’s status and edges in-
dicating the actions or choices made when a specific event happens. To verify the
model’s correctness, model analysis must be performed on the model. For that, an
analysis model is required for model checking. A formal analysis state model can
be created using global variables, guards, and actions. Given an analysis model
of a system, a model checker can analyse the model against some given formal
requirements. Based on the results after analysis, a test engineer can change the
behavioural model and continue MBT for test generation. A test suite containing
a set of test cases is generated by executing the model under a model-based test
generation tool.

1.2 Objective and Problem Description

Model-Based Testing (MBT) involves generating test cases by executing a model
created by studying the requirements of a System Under Test (SUT). The MBT tool
traverses different paths of the model using some coverage criteria to generate
test cases [44]. On the other hand, model analysis (i.e., model checking) checks
whether the model meets the specified requirements for the given model [5]. The
model checker verifies whether the model satisfies a set of properties [11], such as
reachability, deadlock-free, safety, and liveness [37].

The aim is to combine MBT with model analysis to provide an overall frame-
work for feedback-based model analysis. Specifically, the work connects the MBT
tool with a model checker for automated analysis of a model and automated feed-
back provision to an MBT tool for test case generation. We have used an open-
source MBT tool named GraphWalker to support the tool. In GraphWalker, a set
of edges and vertices represent a model. GraphWalker lacks model verification
and analysis, so there is a need to combine MBT with a model checker for model
analysis before generating test cases. Hence, we used the UPPAAL model checker
to analyse the model.

The idea consists of two major components. First, the automated translation
of the behavioural model (in GraphWalker) to an analysis model (in UPPAAL).
Second, the translation of feedback from the analysis model back to the Graph-
Walker for the automated generation of test cases. The first part is handled by

4

GW2UPPAAL [40]. GW2UPPAAL takes a GraphWalker-supported model file as
an input and generates a UPPAAL-supported model as an output. It also gen-
erates queries to verify the reachability and deadlock freedom that are automati-
cally verified using "verifyta". After the verification through the analysis model,
the test engineer manually changes the GraphWalker model. The second compo-
nent aims to remove the process of manual changes to the GraphWalker model by
the test engineer. UPPAAL2GW automatically converts the UPPAAL-supported
file to the GraphWalker-supported file, which provides automated feedback for
the changes based on the model analysis. Furthermore, we have used Graphviz
to show the changes (either insertions or deletions or both) in the behavioural
models before and after the changes.

1.3 Thesis Contribution

GW2UPPAAL does not provide feedback to the tester about the verification re-
sults or the test model quality, which can lead to missed errors, false positives,
or inefficient test cases. So, one of the main contributions of this thesis is to
create a feedback mechanism provided by a tool to overcome the limitation of
GW2UPPAAL.

We have developed a hybrid approach, UPPAAL2GW, to transform the UPPAAL-
derived model to GraphWalker to provide automated feedback of the model checker
to the MBT model, which helps the test engineer to use the modified GraphWalker
model for test case generation. Leveraging the power of GW2UPPAAL and UP-
PAAL2GW, we also provide a hybrid toolchain mechanism for efficient MBT and
model checking.

Another contribution of this thesis is to create another toolset using Graphviz
to represent the changes in two MBT models. The toolset compares two ver-
sions of a test model and highlights the differences in states and transitions. The
toolset also computes and displays various metrics to measure the changes, such
as added, deleted, or unchanged elements using colour codes. The toolset can
help the tester to understand and manage the evolution of the test model over
time.

1.4 Organisation of the Thesis

The organisation of this thesis is as follows. Chapter 2 introduces GraphWalker,
UPPAAL, and GW2UPPAAL, the primary tools used in this work. Chapter 3 re-

5

views the literature and the related work on MBT and model checking. Chapter 4
presents the methodology and the approach that we have adopted to provide the
solution to the problem. It contains the overview and algorithms that are being
used. Chapter 5 describes the technical aspects, the technology stack used, and
the detailed documentation of the installation and usage of the tool. Chapter 6
reports our experiments to obtain and analyse the results based on the tool and
work evaluation. It also discusses the essential features that the work provides
as well as the limitations that it faces. Finally, Chapter 7 concludes the thesis and
discusses possible future work.

6

CHAPTER 2

Preliminaries

2.1 GraphWalker

GraphWalker is an open-source toolset for MBT. It allows users to create and edit
models using a graphical editor called GraphWalker Studio. A model is a graph
that consists of vertices and edges, where vertices represent verifications or asser-
tions, and edges represent actions or transitions. Figure 2.1 represents a model
developed in GraphWalker.

Figure 2.1: Spotify Login Model created in GraphWalker Studio

Here, a model can be seen as a collection of states and transitions [41]. The
arrows represent a transition from one state to another. The state marked in green
is the initial state from which the execution begins. Vertices or nodes represent
the verification performed to validate the given requirement. GraphWalker sup-
ports both single-model structures as well as multiple models with shared states.
GraphWalker stores the model in JSON format.

To generate the test cases, GraphWalker uses generator rules which are some
predefined algorithms, to generate a test path [22]. The stop condition also tells
GraphWalker when to stop the execution. random(edge_coverage(100)) is an ex-
ample of the generator and stopping condition combination, which tells Graph-
Walker to randomly traverse the graph/model until all the edges are traversed at
least once. Figure 2.2 represents the generator present in the GraphWalker Studio.

7

Figure 2.2: Guard, Action and Model Generator in GraphWalker Studio

8

GraphWalker also supports the use of guards and actions. The guards are
those conditions that specify that the transition between the state is only possi-
ble when the condition is true. It also supports defining variables called actions
which can be used to design, test, and test the model based on the system’s ex-
pected behaviour. Actions on variables are performed in transitions/edges, and
verification is performed on vertices/states [25]. Figure 2.2 shows the panel where
global actions, guards and actions for a particular edge are set.

GraphWalker does not interact with the system directly [43], so it uses specific
testing frameworks like Selenium to test the model on the system. Testing on
models differs from conventional sequential testing, which has a well-defined set
of actions to perform. The test sequences generated by GraphWalker are dynamic
in nature, so every path generated on the model is a test case, as the model itself
is a test idea. Results here are evaluated based on the defined generator and stop
conditions. The result is considered a pass if all the vertices pass the checks until
the stop condition is reached. Else, the result is considered as fail.

GraphWalker also supports multiple models for a single system concept based
on a shared state. Figure 2.3 shows the example of a pet clinic system where a sin-
gle system is modelled with the help of more than one model. The model repre-
sents an online pet clinic system that shows the data of pets and their correspond-
ing owners at a clinic. It also has the data of available Veterinarians for the clinic as
well. The vertices shown with the orange colour represent the shared state among
the same model. So, for all the vertices having the same shared state name, the
execution may jump to any of the shared states randomly. This multiple-model
feature is to simplify the understanding of the model.

Figure 2.3: Pet Clinic Multiple Model System Example

9

2.2 UPPAAL Model Checker

UPPAAL is a modelling and verification tool for real-time systems. It is a popular
tool for modelling and analysing complex systems, such as communication pro-
tocols, control systems [3], and embedded systems [32][45]. UPPAAL is based on
a timed automata formalism, which provides a high level of abstraction for mod-
elling real-time systems. UPPAAL has a graphical user interface that allows users
to create models using a visual editor. The tool also supports a textual language
for defining models, which can be used for more advanced modelling tasks [4].
The models are verified using a model checker, which analyses the system for
potential errors and inconsistencies [26].

UPPAAL supports both reachability analysis and model checking. Reacha-
bility analysis checks whether a system can reach a particular set of states from
the start. It also checks whether a system satisfies a particular or set of proper-
ties. UPPAAL uses an efficient algorithm for model checking, which allows it
to handle large and complex models. UPPAAL has been used in various appli-
cations, including automotive, avionics, and telecommunication systems. It has
been used to verify the correctness of safety-critical systems, such as air traffic
control systems and train control systems. UPPAAL has also been used to analyse
and optimise real-time protocols, such as the IEEE 1394 bus protocol.

Figure 2.4 represents automata created in UPPAAL. It is a Pedestrian Traffic
Light example consisting of three states. One state represents the Start state of the
system, while the other two represent the Red and Green lights. One variable,
’on’, is also defined to keep track of the light which is on currently. Two guards
can be seen, which are: on and !on. They are used to control the flow of the system.
Two actions can also be seen, which are on = true and on = false, which alters the
’on’ variable based on the light which is on currently.

UPPAAL allows us to create multiple objects of the same automata, as seen in
Figure 2.5. If we see practically, multiple signals are there on one crossing. So,
following that, we create two objects. As seen in Figure 2.5, c1 and c2 are created
processes. This is a very important feature supported by UPPAAL as it broadens
the scope of model checking with parallel processes and synchronisation. This can
be helpful to some real-time problems like mutual exclusion [13], traffic control
etc.

Now, to execute the system virtually, UPPAAL provides a simulator which
is shown in Figure 2.6. Both manual and automated execution of the model is
possible. UPPAAL provides a "Random" option to execute random traces in the

10

Simulator. It also shows the variable’s constraints and values during the simu-
lation process. Furthermore, UPPAAL also generates a sequence diagram of the
interaction between multiple processes during the simulation.

One of the important features of the UPPAAL is the verifier [27, 36]. Figure 2.7
represents the verifier screen where the properties are created to check if the sys-
tem behaves as per the requirement [6]. For example, the query: A[] !(c1.v_Green
&& c2.v_Green) is used to check that both the lights should not be in the Green
state simultaneously. If it is so in real-time, it may lead to an accident. A, E, []
and <> are called quantifiers in UPPAAL. Here, ’A’ defines all the paths, and []
defines all the states in the path. && is the operator similar to the other languages
and represents the ’and’ operator. Similarly, ’E’ means there exists a path, and
<> means some states in the path. Several combinations of these quantifiers can
be used to generate the queries per the requirement and property that must be
checked for satisfaction.

Figure 2.4: Pedestrian Traffic Light System Modelled in UPPAAL

Figure 2.5: Object and Variable Declaration in UPPAAL

11

Figure 2.6: Model Simulator in UPPAAL

Figure 2.7: Property Verifier in UPPAAL

12

Both, GraphWalker and UPPAAL use state transition diagrams [35] to repre-
sent the model for testing, which makes the desired integration even more fruit-
ful [21].

2.3 GW2UPPAAL

GW2UPPAAL [40] is a tool that transforms models created with GraphWalker
into models that can be analyzed with UPPAAL. GW2UPPAAL allows users to
combine MBT and automated analysis of behavioural models using GraphWalker
and UPPAAL. GW2UPPAAL is implemented in Java and can be executed from
the command line. It takes a GraphWalker JSON file as input and generates a
UPPAAL XML file as output. The output file can be imported into UPPAAL for
further analysis and verification. GW2UPPAAL consists of four main steps: im-
porting the GW model, creating the UPPAAL XML layout, extracting data from
GW and generating the UPPAAL model, and exporting the UPPAAL model.

GW2UPPAAL also supports the translation of GraphWalker models with data
variables and guards. It maps the data variables to UPPAAL clocks and integers,
and translates the guards to UPPAAL expressions. GW2UPPAAL preserves the
semantics of the GraphWalker models and ensures that the generated UPPAAL
models are equivalent in terms of behaviour and timing. GW2UPPAAL is a use-
ful tool for model-based testing and analysis of software systems. It enables users
to leverage GraphWalker’s and UPPAAL’s benefits, such as graphical modelling,
test generation, model checking, and simulation. GW2UPPAAL can be used from
the command line directly. Figure 2.8 represents an example of the translation. As
shown in the terminal, it computes the number of vertices, edges, and the total
time taken for the conversion. Furthermore, "verifyta" is used to check the reach-
ability of each state from the start state as well as the deadlock freedom property
of the model. Figure 2.9 represents the "verifyta" screen which displays the satis-
faction of the desired properties.

13

Figure 2.8: GW2UPPAAL Translation

Figure 2.9: Reachability and Deadlock Freedom Checking In Verifyta

14

CHAPTER 3

Related Work

Enoiu et al. [15] proposed an approach to use model checking and logic coverage
criteria to automatically generate tests for software systems written in the Func-
tion Block Diagram language, a programming standard for safety-critical embed-
ded software. They developed a toolbox called CompleteTest that can transform
Function Block Diagram programs into models that can be checked by a model
checker and generate test cases that exercise different program artefacts. They
conducted an industrial evaluation of their method on 157 programs from Bom-
bardier Transportation AB and measured the time required to generate test cases
and the state space size. They reported that their method could efficiently gener-
ate test cases that achieve logic coverage for most of the programs and can handle
programs of different sizes and complexities.

Another example of applying MBT in an industrial context is the case study
by Zafar et al. [44]. They used GraphWalker, an open-source tool for MBT, to test
a Train Control Management System developed by Bombardier Transportation
AB in Sweden. They followed a three-phase workflow that involved specifying
requirements using a domain-specific language based on Gherkin syntax, extract-
ing model elements from the requirements, creating a graphical model of the SUT
using GraphWalker Studio, generating test cases using GraphWalker CLI, and
executing them on a loop platform. They evaluated the completeness and repre-
sentativeness of the model, the efficiency and effectiveness of the test cases, and
the usability and usefulness of GraphWalker. They found that GraphWalker can
support MBT by providing a user-friendly interface for modelling and test gen-
eration and enabling randomisation and prioritization of test cases. Their work
is relevant to our work because it shows how MBT can be integrated with exist-
ing industrial processes and tools [16] and how it can improve the quality and
coverage of testing for complex cyber-physical systems.

Eder et al. [14] describe an innovative testing strategy for intricate ATS in many
transportation domains. Their strategy incorporates system-level testing in cloud

15

simulation and on the target system, module-level testing with formal proofs of
logical correctness, and agent-based tools for coordinating and optimising test
executions. They also demonstrate how their strategy can be justified or complies
with current ATS safety standards and certification regulations.

Darwish et al. [38] experimented with comparing two automated MBT ap-
proaches for coverage maximization in the automotive industry. They used a
real-world SUT and measured the number of test cases, execution time, and fault
detection rate. They found that the approach based on combinatorial testing
achieved higher coverage and fault detection than the one based on random test-
ing, generating fewer test cases and requiring less execution time.

Ammann et al. [2] proposed using a model checker and mutation analysis to
generate test cases from formal specifications. They defined syntactic operators
that create variations of a given model and used a model checker to produce coun-
terexamples that distinguish the original model from the variations. The coun-
terexamples serve as complete test cases with inputs and expected results. They
applied their method to an example specification and evaluated the test cases on
a Java implementation using coverage metrics.

Beyer and Lemberger [8] compare six tools for automatic test case generation
and four for model checking on a large suite of C programs. They find that model
checkers can find more bugs faster and with fewer program modifications than
test-case generation tools. They also introduce a framework for test-based falsi-
fication that executes and validates test cases produced by test-case generation
tools. They suggest that software model checking is more suitable for finding
specification violations than software testing.

Marinescu, Seceleanu, and Pettersson [28] present a framework for component-
based evaluation of architectural models described in the EAST-ADL language.
They use UPPAAL PORT as a formal semantics for EAST-ADL models and pro-
vide tool support for model checking and test case generation. They apply their
framework to a Brake-by-Wire system and show its effectiveness in finding errors
and generating test cases.

Tiwari, Iyer, and Enoiu [40] propose an approach that combines MBT using
GraphWalker with model analysis using UPPAAL. They transform GraphWalker
models into UPPAAL timed automata, verifying reachability and deadlock free-
dom properties. They use the analysis results to improve the test model before
generating and executing test cases on the SUT. They evaluate their approach
on several model examples. Villani et al. [42] suggest two hybrid approaches
that combine model checking with UPPAAL and MBT with ConData [30]. Con-

16

TEA, a tool linking UPPAAL with ConData and permitting simultaneous use of
both methods, supports the integration. The findings demonstrate that combin-
ing model checking and MBT aids in the early and thorough detection of design
flaws in the system.

Gebizli et al. [20] propose an iterative approach for effective test case genera-
tion that combines model-based and risk-based testing. They use Markov Chains
as system models, with a probability assigned to transitions between states. These
probabilities are adjusted in response to the probability of failure due to memory
leaks discovered during test execution. After model improvement, they applied
the method to a Smart TV system and found many crash failures. They intend
to automate the entire process using an adaptation model based on the history of
documented memory leaks.

Gebizli and Sözer [17] propose an approach and a toolset, ARME, for automat-
ically refining test models based on exploratory testing. They contrast the avail-
able execution paths in test models with the execution traces captured during ex-
ploratory testing. The models are then updated to reflect any missing system be-
haviour, and model parameters are changed to concentrate on the most frequently
run situations. They apply their methodology to three industrial case studies of a
digital TV system, and they find several serious flaws that the exploratory testing
and first test models had missed. Gebizli et al. [19] also present a novel three-step
model refinement approach for MBT. They use Markov Chains as test models and
update their state transition probabilities based on the usage profile, fault likeli-
hood and error likelihood. They apply their approach to a Smart TV system and
reveal new faults not detected by the initial test models or exploratory testing.

Karna et al. [23] survey the role of model checking in software engineering.
They review various model-checking techniques and tools that can be used for
software development and analysis. They also examine the applications of model
checking at different stages of the software development life cycle, such as debug-
ging, constraint solving, malware detection and verification of different software
systems. They highlight the challenges and opportunities of model checking for
software engineering research and practice.

Black et al. [9] explore the properties of specification mutation operators for
model checking. They mutate a specification and use a model checker to compare
it with the provided specification to generate tests or evaluate coverage. They also
compare different operators theoretically and empirically.

Njor et al. [31] propose a novel approach for conformance testing of timed sys-
tems using UPPAAL, a model checker for real-time systems. They introduce a tool

17

called Diabolic, which automatically generates test cases from UPPAAL models
and executes them on the SUT. Diabolic uses a mutation-based technique to create
test objectives that cover different aspects of the system’s behaviour, such as tim-
ing constraints, data values, and communication events. Diabolic also supports
online testing, where test cases are generated and executed online, and offline test-
ing, where test cases are generated beforehand and stored for later execution. The
authors evaluate Diabolic in several case studies and show that it can effectively
detect faults and measure the conformance of timed systems.

Berdasco et al. [7] resemble a prior study examining software engineers’ MBT
use in an industry scenario. MBT is a method for automating the design and pro-
duction of test cases based on a model of the SUT. The authors assess the viability
and acceptance of the MBT technique from the standpoint of quality engineers
testing an industry software application. They use a tool called FORMAT, which
supports adapting test models based on feature models. They compare MBT with
manual testing regarding effectiveness, efficiency, and satisfaction. The results
show that MBT was more effective and efficient than manual testing. Still, the
satisfaction of the quality engineers was lower due to some usability issues of the
tool and the lack of training and guidance.

Summary
A lot of work is being done in the area of MBT and model checking. A larger
number of those are being done individually in both domains but have a pinch of
others for some specific purposes. After GW2UPPAAL, this work can be used as
a feedback mechanism from UPPAAL to GraphWalker.

18

CHAPTER 4

Analysis Model to MBT: Proposed Methodol-
ogy

This chapter discusses the feedback mechanism transforming the UPPAAL model
to GraphWalker. The discussion includes the approach and algorithms used to
solve the problem. An example is also provided to support the discussion.

4.1 UPPAAL to GraphWalker

UPPAAL uses XML (Extensible Markup Language) as the file format to store a
model. On the other hand, GraphWalker uses JSON (JavaScript Object Nota-
tion) to store the model. XML and JSON are used to transfer data between vari-
ous programs through APIs. Our tool transforms the UPPAAL-compatible XML
to GraphWalker-supported JSON to provide model-checking feedback. JAVA is
used as a programming language for the transformation. The approach is divided
into several steps mentioned ahead.

4.1.1 Import and Parse the UPPAAL model file

In the first step of UPPAAL2GW, the UPPAAL model file is read and parsed, and
a JAVA object is created referring to that XML file to fetch information such as
edges, vertices, global variables, guards, and actions.

4.1.2 Conversion of the model to an intermediate format (Data

Structure)

The JAVA object obtained in Step 1 is then converted to an intermediate format,
which can be used to generate a GraphWalker model. This involves extracting
the relevant information from the UPPAAL model, such as the states, transitions,
and global variables, and storing it in a data structure. For example, states can

19

be extracted using "//location" tags, and vertices using "//transition" tags can be
stored in an Array.

4.1.3 Generate the GraphWalker model

Using the intermediate format generated in the previous step, a skeleton Graph-
Walker model is generated using JAVA. This involves creating the necessary ver-
tices and edges in the GraphWalker model, setting the appropriate properties such
as id, name, initial vertex, guards and actions, and connecting the vertices and
edges to form a complete model by mapping the tags from UPPAAL to Graph-
Walker. For example, "//location" will be mapped to "vertices", "//transition"
will be mapped to "edges", and "//declaration" will be mapped to "actions". For
the edges, guards and actions will be mapped using "//guard" and "//assign-
ment" tags, respectively. In the end, the ‘model’ root element is added, followed
by all the extracted data corresponding to the model. This is done by appending
all the data structures to the GraphWalker model object.

4.1.4 Export the model to a GraphWalker-supported JSON file

Finally, the modified GraphWalker model generated after model analysis is trans-
formed into a file that the test engineer can use in GraphWalker to derive test
cases.

4.1.5 Call the Graphviz Python file to generate the PNG image

After the model is exported, the Graphviz Python file is executed using JAVA’s
runtime execution with initial and new JSON file names as the arguments (similar
to executing the code from a terminal with arguments) to generate a PNG image
representing the changes in both models.

4.2 Proposed Solution

4.2.1 Algorithm for translation from Analysis to MBT Model

Algorithm 1 is used to develop UPPAAL2GW discussed previously for the re-
transformation of the model.

The algorithm works by first importing the UPPAAL XML model into the pro-
gram using a command line argument. The algorithm then fetches the start state

20

Algorithm 1 Overview of conversion from UPPAAL to GraphWalker
1: Import the UPPAAL XML into the tool.
2: Fetch the start state using the "init" tag.
3: Initialize Arrays to store edges, vertices and variables.
4: Using NodeList object fetch the states, edges and variables using "//location",

"//transition" and "//declaration" tags.
5: for each vertex in fetched states do
6: Create a new object using JSonObject.
7: Add the properties like id ("id"), name ("name"), and coordinates ("x" and

"y") to the object using respective tags.
8: end for
9: for each edge in fetched transitions do

10: Create a new object using JSonObject.
11: Add the properties like id ("id"), source vertex ("source"), target vertex

("target"), guards ("guard") and actions ("assignment") to the object using re-
spective tags.

12: end for
13: for each variable in fetched variables do
14: Split the text using "=" flag.
15: Append the variable names and values to the variables array.
16: end for
17: Initialize a JsonObject model supported by GraphWalker.
18: Add the model properties like id, name, etc.
19: Add the vertices, edges, and variables to the model.
20: Export the final model file to GraphWalker-supported JSON model.
21: Call the Python file to generate a Graphviz image representing the changes.

from the "init" tag in the UPPAAL XML model. Next, the algorithm initializes
the vertices, edges, actions, and guards using JAVA’s library JSONArray. For each
vertex and transition in the UPPAAL XML model, the algorithm creates a new
object using another JAVA library JsonObject. The algorithm then adds the prop-
erties like id, name, and coordinates to the object. Finally, it initializes the start
state, describes a model generator, initializes a JsonObject model supported by
GraphWalker, adds the model properties like id, name, etc. to the model, adds
the vertices, edges, actions, and guards to the model, exports the final model file
to a GraphWalker supported JSON model, and calls the python file to generate a
Graphviz image representing the changes.

4.2.2 Algorithm for state extraction

Algorithm 2 extracts each state’s data from UPPAAL XML and creates a vertex in
GraphWalker JSON. It begins by using the NodeList object to get all the values

21

Algorithm 2 Algorithm for state extraction
1: Import the UPPAAL XML into the tool.
2: Fetch the state set from the "//location" tag.
3: Initialize vertices using JsonArray.
4: for each state in vertices do
5: Create a new vertex object using JsonObject.
6: Add the properties like id, name, and x and y coordinates to the vertex

object.
7: Initialize the start state.
8: end for

from the "location" tag. Then for each element in the stateList, fetch the ID of
each state. Further, fetch the name of the state for that particular state. For each
state, we create a JsonObject object and store the corresponding id and name of the
object. Furthermore, add the coordinates values for each vertex to the object. Also,
if the vertex is the start state, assign the value to the corresponding variable. In
the end, append the JsonObject object to the previously defined JsonArray vertices
object.

4.2.3 Algorithm for transition extraction

Algorithm 3 extracts data of each transition from UPPAAL XML and creates a
transition in GraphWalker JSON. The algorithm begins by fetching transition de-
tails from the "transition" tag. Then, for each transition, the corresponding ID from
the "id" tag, source and target vertex from the "ref" and "label" tag are fetched and
stored in the NodeList object. For each transition, guards and actions are also
fetched using the "guard" and "assignment" tags. A JsonObject is initialized, and
all the properties fetched are added to a particular object for a particular edge. In
the end, each object is appended to the JsonArray object.

4.2.4 Algorithm for global variables

All the global variables are defined on the top of the UPPAAL XML file. Algorithm
4 fetches all the variables based on the "declaration" tag, representing global dec-
larations. The variable name and values are fetched for every declaration based
on the "=" split. Each variable is appended to the global action variable for the
GraphWalker file.

22

Algorithm 3 Algorithm for transition extraction
1: Import the UPPAAL XML into the tool.
2: Fetch the transition list from the "//transition" tag.
3: Initialize edge object using JsonArray.
4: for each transition in transitions do
5: Create a new transition object using JsonObject.
6: Fetch the source and target state using the "ref" tag.
7: Initialize guard and action object.
8: for each label in transition do
9: Fetch guards using the "guard" tag.

10: Fetch actions using the "Assignment" tag.
11: end for
12: Append vertex id, source element id, target element id, guards and actions

to edge object.
13: end for

Algorithm 4 Algorithm for global variable extraction
1: Import the UPPAAL XML into the tool.
2: Fetch the declarations from the "//declaration" tag.
3: Initialize global variable object using Element and String array using newline

character.
4: for each variable in variables do
5: Split the variable from "=" character.
6: Assign the first part to a variable name object and the second to a variable

value object.
7: Assign the value to the global actions variable.
8: end for

4.3 Detailed model transformation analysis based on

hybrid tooling

4.3.1 MBT to Model Analysis using GW2UPPAAL [40]

Figure 4.1 shows a model which was modelled using GraphWalker. It represents
a basic Messenger System consisting of states and edges representing a system
where users can select and chat with some users. The model consists of six states
and eleven transitions, as shown in Figure 4.1. GW2UPPAAL is used to convert
the model to the corresponding analysis model to perform the automated analysis
of the model. The analysis model is shown in Figure 4.2.

GW2UPPAAL also includes guards and actions corresponding to the edges.
The properties are also generated in every model based on the number of states
present. It checks whether every state is reachable from the initial state. Verifyta

23

Figure 4.1: Messenger model modelled in GraphWalker

is used to verify the reachability and deadlock freedom property.

Figure 4.2: Messenger model transformed using GW2UPPAAL

4.3.2 Model Analysis to MBT using UPPAAL2GW

After the translation from MBT to the Analysis model using GW2UPPAAL, the
model is analysed based on specific requirements. This way, we can use the anal-
ysis results to update the test model and generate test cases that reflect the verified
properties. We also present a tool called UPPAAL2GW that automates the bidi-
rectional transformation process and supports a combined analysis and testing
workflow. When an error or bug is identified in an analysis model, the challenge
is to modify the actual behavioural model to perform MBT and generate the test
cases. One way is to modify the model manually and do the necessary changes

24

which may lead to some errors or mistakes. Another way is to automate the con-
version of the analysis model to the behavioural model and do the testing effec-
tively. When bugs or errors are identified in the analysis model, the engineer or
the developer needs to fix those bugs or errors in the analysis model and verify
it. For the part of re-transformation and feedback, which was given to the engi-
neer to do the changes manually in the behavioural model, the feedback will be
directly given to the actual model by creating a new model with the changes. The
changes or fixes mentioned here can be some new edge or vertex, some guard
or action condition or some variables. The complete idea is to implement a re-
verse conversion process, where the modified UPPAAL model is converted back
to a GraphWalker model with the necessary changes to address the bugs or errors
identified during model checking. To achieve this, we have developed a code li-
brary that takes as input a UPPAAL XML file and outputs a GraphWalker JSON
file with the modifications required to address the identified errors. The result-
ing GraphWalker model can then be used to generate executable test cases using
GraphWalker, thereby providing a complete and automated testing solution.

Using the algorithms discussed in Section 4.3, UPPAAL2GW is developed us-
ing JAVA and is evaluated on several models from different domains including a
few industrial models.

To support the translation verification, we have used mutations and changes
in UPPAAL to evaluate the model. The technique will be discussed in the later
chapters. Figure 4.3 is the changed model we got after making some changes
from Figure 4.2 based on some logical requirements. We can see that some edges
are deleted while some are added. Also, some guards and actions are introduced,
along with a variable to support them. After the modifications, the analysis model

Figure 4.3: Modified Messenger model in UPPAAL

must be converted back to the MBT model to perform Model Based Testing. Fig-
ure 4.4 displays the corresponding MBT model representing the analysis model

25

in Figure 4.3.

Figure 4.4: Messenger Model Translated using UPPAAL2GW

Figure 4.5: Pet Clinic model transformed using GW2UPPAAL

GraphWalker supports multiple model systems, and Figure 2.3 shows the mul-
tiple models of the PetClinic system represented in GraphWalker. The GW2UPPAAL
tool combines edges and vertices based on shared state names. A corresponding

26

single analysis model will be generated for a single model system, as shown in
Figure 4.2. For multiple model systems like PetClinic (Figure 2.3), a correspond-
ing single analysis model file will be generated using GW2UPPAAL, as shown
in Figure 4.5. Considering the flattened model generated in Figure 4.5, the cor-
responding MBT model will have a single model after the translation using UP-
PAAL2GW. Figure 4.6 represents the same PetClinic model. When analyzed in
GraphWalker using the same edge coverage criteria, there were no differences in
the results for the original multiple models or the translated single model. This
shows that both models represent the same behaviour for the PetClinic system.

Figure 4.6: PetClinic Multi-Model System Translated using UPPAAL2GW

27

4.3.3 Graphviz representation of the models

Graphviz1 is a free and open-source graph visualisation tool. It includes a set
of tools for developing and manipulating graph structures and generating visual
representations of graphs. The Graphviz tools use the DOT language, which is a
plain-text graph description language, to express the structure and attributes of
graphs. Here are some key features and use cases of Graphviz:

1. Graph Visualization: Graphviz allows you to create visual representations
of graphs, such as directed and undirected graphs, flowcharts, organiza-
tional charts, and network diagrams. It provides options for customizing
the appearance of nodes, edges, labels, colors, and styles.

2. Automatic Layout: Graphviz includes various layout algorithms that auto-
matically arrange the nodes and edges of a graph based on their relation-
ships and attributes. These algorithms ensure that the generated graph lay-
outs are clear and visually appealing.

3. Programmability: Graphviz provides APIs and libraries for several pro-
gramming languages, including Python, to programmatically create, mod-
ify, and manipulate graphs. This enables you to integrate graph visualiza-
tion capabilities into your own applications and workflows.

4. Integration with Other Tools: Graphviz can be easily integrated with other
software tools and frameworks. For example, it can be used in software en-
gineering to visualize code dependencies, in data analysis to represent com-
plex relationships, in machine learning to visualize decision trees or neural
networks, and in documentation to create visual diagrams.

5. Extensibility: Graphviz offers extensibility through plugins and extensions.
You can extend its functionality by creating custom graph attributes, layout
algorithms, or output formats tailored to your specific requirements.

Representation of changes using Graphviz Library

Based on the mentioned properties discussed in 4.4.1, another library set was de-
veloped in Python which is called at the end of UPPAAL2GW to create a pictorial
representation of the changes in the models. This is done to increase the under-
standing and readability of the changes done in the model file. Graphviz takes
two GraphWalker JSON model files as input and generates one PNG image file

1https://graphviz.org/

28

representing the changes in the model. Figure 4.7 represents the modifications in
models represented in Figure 4.1 and Figure 4.4.

Figure 4.7: Graphviz representation of the model

Different colours in the image represent different changes in the model. As
shown in Figure 4.7, red-coloured dashed elements represent the deletion of a
particular element. i.e. they are there in the old model but not in the new model
file. At the same time, blue-coloured elements represent the added elements. i.e.
they were not in the old model but are added in the new model file based on
modifications.

Algorithm for image generation

Algorithm 5 is used to generate a different image file using Graphviz. The map-
ping of all the vertices and edges is done based on both IDs and names to perform
an effective mapping. Firstly, both the JSON files are read and assigned to two
different variables. After that, a new variable is initialized with the differences in
both the JSON files using Python’s diff library. In the later part of the algorithm,
new vertices and edges are added using a new JSON file, whereas, old vertices
and edges are added using an old JSON file. If the element is present in both old
and new JSON files, it is considered only once to prevent duplication. Deleted
elements are represented using red coloured dashed elements, whereas new ele-
ments are represented using blue colour for better understanding.

29

Algorithm 5 Algorithm to generate Graphviz representation
1: Load both the JSON files in two variables.
2: Generate the differences in both the models using Python’s diff library.
3: Generate old_vertices, new_vertices, old_edges and new_edges based on

mapping of name and id of all the elements.
4: Generate deleted_vertices and deleted_edges using set difference.
5: for each vertex in new_vertices do
6: Create a graph vertex with the name and blue-coloured element.
7: end for
8: for each vertex in deleted_vertices do
9: Create a graph vertex with the name and red-coloured dashed element.

10: end for
11: for each vertex in old_vertices do
12: if vertex not in deleted_vertices then
13: Add it to the graph.
14: end if
15: end for
16: for each edge in old_edges do
17: if edge in deleted_edges then
18: Create a graph edge with the name, source vertex id, and target vertex

id with the red-coloured dashed element.
19: else
20: Create a graph edge with the name, source vertex id, and target vertex

id.
21: end if
22: end for
23: for each edge in new_edges do
24: Create a graph edge with the name, source vertex id, and target vertex id

with the blue-coloured element
25: end for
26: Create a PNG file.
27: Render the PNG file by adding the image to the PNG.

30

CHAPTER 5

Tool Support

5.1 Introduction

Combining the algorithms for UPPAAL2GW and code developed for Graphviz
representations in a single JAR file, translation and representation can be handled
using a single file. JAR implementation is necessary because it helps reduce the
efforts of installing additional libraries to run the application. Also, the platform-
independent feature of JAVA helps implement the code on any machine or OS
that supports JAVA. Figure 5.1 shows the execution of UPPAAL2GW using a com-
mand line terminal.

Figure 5.1: Execution of UPPAAL2GW

31

5.2 Detailed Architecture of the system

Figure 5.2 represents a detailed architecture of the system which includes both,
GW2UPPAAL and UPPAAL2GW.

1. A test engineer or a designer is required to develop a behavioural model for
a SUT. The model can be a GraphWalker-supported JSON model which can
include some vertices, edges, variables, guards, and actions to support the
requirements of the system.

2. In the next step, the model needs to get verified against the specifications.
Hence, we require an analysis model corresponding to the GraphWalker
model. The automated transformation from a behavioural to an analysis
model is taken care of by GW2UPPAAL. The output of the tool is a UPPAAL-
supported XML model file.

3. GW2UPPAAL uses JAVA libraries to translate from GraphWalker to UP-
PAAL. The translation process includes a combined model, guards, actions,
edges, vertices and variables.

4. After performing the analysis, the changes, if required, based on the results,
are done in the analysis model in UPPAAL itself and are saved. The cor-
responding behavioural model with the changes is required to generate the
test cases using GraphWalker.

5. In this step, we automatically re-transform the UPPAAL model into the
GraphWalker model, with the feedback, using the UPPAAL2GW tool. The
tool also uses JAVA libraries for translation. The translation includes all the
changes in either of the actions, guards, vertices, edges or variables. Finally,
it generates a corresponding GraphWalker-supported JSON file.

6. The re-transformed model can be imported back into GraphWalker to gen-
erate test cases more effectively. With the help of Graphviz, a PNG image
showing the changes is also generated, which reflects the changes done from
the previous model to the new model.

5.3 Technology Stack

The following technology stack has been used for the development purpose:

1. JAVA Version: 11

32

En
gi

ne
er

(T
es

t D
es

ig
ne

r)

U
se

r I
nt

er
fa

ce

M
od

el
 (J

SO
N

)
- O

ne
 o

r M
or

e
D

ia
gr

am
- G

ua
rd

s
- A

ct
io

ns
-V

ar
ia

bl
e

de
cl

ar
at

io
n

Te
st

 C
as

es

U
PP

AA
L2

G
W

Tr
an

sf
or

m
at

io
n

G
W

 M
od

el
 (J

SO
N

):
- M

od
el

 A
ct

io
ns

 (V
ar

ia
bl

es
)

- M
od

ifi
ed

 G
ua

rd
s

- M
od

ifi
ed

 A
ct

io
ns

- M
od

el
 G

en
er

at
or

R
et

ra
ns

fo
rm

at
io

n

U
PP

AA
L2

G
W

M
od

el
lin

g

Fe
ed

ba
ck

1
2

Tr
an

sf
or

m
at

io
n

Tr
an

sl
at

io
n

5

6

Te
st

 G
en

er
at

io
n

M
od

ifi
ca

tio
n

D
et

ai
ls

(G

ra
ph

vi
z

PN
G

)

G
W

2U
PP

AA
L

G
ra

ph
W

al
ke

r

An
al

ys
is

 M
od

el

Ve
rifi

ca
tio

n

M
od

ifi
ca

tio
ns

3

Tr
an

sl
at

io
n

4
Tr

an
sf

or
m

at
io

n

Figure 5.2: Detailed Hybrid Tool Architecture

33

2. Python Version: 3.8

3. Operating System: Windows 10

4. GraphWalker Studio Version: 4.3.2

5. UPPAAL Version: 4.1.26

6. Graphviz Version: 8.0.5

7. IntelliJ IDEA Version: 2022.2.3 Community Edition

5.4 Installation Procedure and Demonstration

This section provides a brief about the installation and usage of UPPAAL2GW.
The installation has some prerequisites that are needed before the execution of
the tool. For the tool and GraphWalker both, Java Runtime Environment (JRE)
1.8 or higher is required. Next, UPPAAL1 needs to be installed. Here, we have
used version 4.1.26 for the demonstration purpose. GraphWalker2 needs to be
installed as well. GraphWalker does not require any specific installation file; it
comes with a precompiled JAR file which can be executed from the command line
to access the GraphWalker Studio. Graphviz3 needs to be installed along with
Python 3.8 or higher, and both need to be added to the PATH. After installing
everything, to execute UPPAAL2GW, the user needs the following command java
-jar UPPAAL2GW.jar [Initial GraphWalker Model File Path] [Initial JSON Model
File Name] [UPPAAL Model File Path] [UPPAAL XML Model File Name] [Output
Folder Path] [Output JSON File Name]. The UPPAAL model file path and name
can be directly used from GW2UPPAAL’s ToolOutput folder or another folder.

Figure 5.3: UPPAAL2GW Execution Output

Figure 5.3 and Figure 5.4 shows the output of the execution. Note that the
Graphviz terminal is directly triggered from UPPAAL2GW JAR, and no extra ef-
forts are required. In the end, the user can open the modified JSON file in Graph-

1https://uppaal.org/downloads/
2https://graphwalker.github.io/
3https://graphviz.org/download/

34

Figure 5.4: Graphviz Image Creation Output

Walker and continue the MBT process. For a better understanding, the user can
see the PNG file created to look for the modifications done in the model.

35

CHAPTER 6

Experimental Analysis and Results

6.1 Experimental Analysis

We evaluate UPPAAL2GW with several models from different domains. Both
single and multiple-model systems were used for verification. We have used the
mutation technique to verify the transformation process. By applying mutation,
we evaluate the capability of the tool to detect changes in the model and assess its
effectiveness in identifying potential changes. This helps in ensuring the reliabil-
ity and accuracy of the tool. Also, we have used some logical requirements cor-
responding to the system to mutate the model in UPPAAL for evaluation. These
requirements are based on the type and domain of the model.

Table 6.1: UPPAAL2GW Evaluation Analysis
Model No. of Vertices No. of Edges No. of Mutants

ShoppingCart 6 11 6
CanDepositMachine 3 8 -

OnlineChatApp 3 10 1
DoorSystem 4 6 2
SpotifyLogin 3 9 1

MessengerModel 6 11 4
CoffeeMachine 20 33 11

PetClinic 16 25 5
Login System 6 20 2

Industrial Model 22 27 -

Table 6.1 shows the details of the evaluation of several available models. Shop-
pingCart is a model provided by GraphWalker which represents Amazon shop-
ping cart [34]. Here, a user searches for a book and adds it to the cart three times.
The mutations for this model are done for searching a book only once, checking if
the quantity is available and then adding it to the cart if possible. CanDepositeMa-
chine models the functionality of receiving money by depositing a can into the

36

system. The model already takes care of the negative values, no money, etc., fea-
tures, so no logical mutations were possible for this model. OnlineChatApp, as
the name suggests, represents a chat application system including login, logout
and chat functionality. We have changed the sequence of execution by replacing
the edges from one place to another. DoorSystem represents a system where a
door can be open, closed, or faulty. We improved the faulty condition with the
logical requirement that a door can be faulty when open or closed and mutated
the model accordingly. SpotifyLogin is again a model provided by GraphWalker
which replicates the login system provided by the Spotify desktop client. Again,
we changed the sequence of events by deleting an edge from the model. Mes-
sengerModel is the model that we have discussed till now. It represents a sys-
tem where the user can select a few users from a list of users and start the chat
with them. Considering another logical requirement that a user should not be
able to start the chat without selecting zero users from the list, we have modified
the model, kept the selection of users only after the list is loaded and introduced
a variable that keeps track of the number of users selected. We have introduced
some guards and actions as well to support the variable. CoffeeMachine is again a
complex model which we have tested. It represents a coffee-making process with
a failure-handling mechanism. To mutate this model, we have changed the se-
quence of events by modifying the edges and vertices. PetClinic is a multi-model
system, again provided by GraphWalker, representing the pet clinic system. We
have mutated this model based on the occurrence of the events and flow of the
system. LoginSystem, again as the name suggests, represents the handling of user
login of a website. It also supports the ’remember me’ feature and handles the
system’s failures. The industrial model here is a model that represents a model
modelled based on an SRS provided by industry experts. As it was created based
on the requirements, we directly tested the translation of the model without any
mutations.

The mutations in the models helped in evaluating our tool effectively. With
the help of mutations based on logical requirements [24], we could compare the
models before and after the modifications. In this way, we could identify whether
UPPAAL2GW works correctly or not. With the algorithms and programming,
when we tested UPPAAL2GW on the available discussed models, we identified
that the translation after modification, if any, was correct, and we could generate
the correct model again for the MBT.

37

6.2 Features and Limitations

In this section, we report some of the benefits of using automated translation with
the help of UPPAAL2GW. To begin with, UPPAAL2GW eliminates manual inter-
vention in the feedback process from analysis to the MBT model. Earlier, the feed-
back from the analysis model to an MBT was provided to the test engineer, and
the engineer was responsible for taking the feedback and doing the modifications
manually. If handled improperly, human intervention and the manual translation
may lead to errors and bugs [18]. In that case, a lot of rework can also happen for
a minor modification. Automated translation will help remove all human errors
that may be introduced using manual feedback translation.

Furthermore, another important constraint, time, will be much more consider-
ing large-scale or complex models [39]. The main task of a test engineer should be
testing, not the extra work that can be taken care of by automation [33]. Using au-
tomated translation, a lot of time can be saved, and translations done in minutes
can be done in a few milliseconds. Also, if the user is unsure about the model gen-
erator, UPPAAL2GW considers random edge coverage as a default model gener-
ator that can be used directly. Readability and understanding are improved using
Graphviz representation of the changes as well. Currently, due to the flattening
process by GW2UPPAAL, UPPAAL2GW, when retranslating a multi-model sys-
tem, it creates only a single MBT model which is the limitation of UPPAAL2GW.

38

CHAPTER 7

Conclusion and Future Work

In this thesis, we present a hybrid approach used for combining MBT and model-
based analysis. This approach is instantiated using GraphWalker and UPPAAL.
A well-known tool, GW2UPPAAL, is being used as a base to transform the be-
havioural model into an analysis model supported by a model checker. We have
developed UPPAAL2GW to bridge the gap between MBT and model checking
effectively.

We have used logical requirements to support and use mutation to evaluate
the approach. We have used several available models in GraphWalker documen-
tation and models developed by industrial practitioners. GW2UPPAAL automat-
ically creates queries to verify the reachability and deadlock properties. However,
specific requirements-based properties are required to be checked manually. Once
the verification is done, UPPAAL2GW translates UPPAAL XML back to Graph-
Walker JSON along with the changes. To increase the readability, a Graphviz im-
age file is also generated for the designer to keep track of the changes done in
time. The entire tooling and GW2UPPAAL and UPPAAL2GW effectively bridge
the gap between MBT and model checking and can be used together to create a
complete hybrid toolchain mechanism for combined MBT and model analysis.

Currently, as UPPAAL does not support multiple model representation of a
system and GW2UPPAAL flattens the model based on shared vertex name, gen-
erating a single model file for multiple model systems, UPPAAL2GW, when ex-
ecuted, generates a single model file only for MBT. This can be improved in the
future by splitting the file again into multiple models to increase the readability
to some extent. Also, the user can be involved in providing the model generator
criteria to enhance the translation based on the requirements.

39

References

[1] P. Akpinar, M. S. Aktas, A. B. Keles, Y. Balaman, Z. O. Guler, and O. Kalipsiz.
Web application testing with model based testing method: case study. In 2020
International Conference on Electrical, Communication, and Computer Engineering
(ICECCE), pages 1–6. IEEE, 2020.

[2] P. Ammann, P. Black, and W. Majurski. Using model checking to generate
tests from specifications. IEEE International Conference on Formal Engineer-
ing Methods, Brisbane, 1, AS, 1998-11-01 00:11:00 1998.

[3] L. Barros, C. Hirata, J. Marques, and A. M. Ambrosio. Generating test cases
to evaluate and improve processes of safety-critical systems development.
In 2020 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), pages 311–318. IEEE, 2020.

[4] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal, pages 200–
236. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[5] M. Ben-Ari. A primer on model checking. ACM Inroads, 1(1):40–47, 2010.

[6] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL—a tool
suite for automatic verification of real-time systems. Springer, 1996.

[7] A. Berdasco, A. Martínez, and C. Quesada-López. Evaluating a model-based
software testing approach in an industrial context: A replicated study. In
2019 14th Iberian Conference on Information Systems and Technologies (CISTI),
pages 1–7. IEEE, 2019.

[8] D. Beyer and T. Lemberger. Software verification: Testing vs. model check-
ing. In O. Strichman and R. Tzoref-Brill, editors, Hardware and Software: Ver-
ification and Testing, pages 99–114, Cham, 2017. Springer International Pub-
lishing.

[9] P. E. Black, V. Okun, and Y. Yesha. Mutation of Model Checker Specifications for
Test Generation and Evaluation, pages 14–20. Springer US, Boston, MA, 2001.

40

[10] K. C. Castillos, F. Dadeau, and J. Julliand. Coverage criteria for model-based
testing using property patterns. arXiv preprint arXiv:1403.7259, 2014.

[11] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and
J. D. Reese. Model checking large software specifications. IEEE Transactions
on software Engineering, 24(7):498–520, 1998.

[12] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-based testing in practice. In Proceedings of the 21st
international conference on Software engineering, pages 285–294, 1999.

[13] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen. Up-
paal smc tutorial. International journal on software tools for technology transfer,
17:397–415, 2015.

[14] K. I. Eder, W.-l. Huang, and J. Peleska. Complete agent-driven model-based
system testing for autonomous systems. arXiv preprint arXiv:2110.12586,
2021.

[15] E. P. Enoiu, A. Causevic, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and
P. Pettersson. Automated test generation using model checking: an indus-
trial evaluation. International Journal on Software Tools for Technology Transfer,
18:335 – 353, 2014.

[16] M. M. Eslamimehr. The survey of model based testing and industrial tools.
Master’s Thesis, Linköping University, 2008.

[17] C. S. Gebizli and H. Sözer. Automated refinement of models for model-based
testing using exploratory testing. Software Quality Journal, 25:979–1005, 2017.

[18] C. Ş. Gebizli and H. Sözer. Impact of education and experience level on the
effectiveness of exploratory testing: An industrial case study. In 2017 IEEE In-
ternational Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 23–28. IEEE, 2017.

[19] C. S. Gebizli, H. Sözer, and A. Ercan. Successive refinement of models for
model-based testing to increase system test effectiveness. In 2016 IEEE Ninth
International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 263–268, 2016.

[20] C. Gebizli, D. Metin, and H. Sözer. Combining model-based and risk-based
testing for effective test case generation. In 2015 IEEE Eighth International

41

Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pages 1–4, 2015.

[21] W.-l. Huang and J. Peleska. Complete requirements-based testing with finite
state machines. arXiv preprint arXiv:2105.11786, 2021.

[22] K. Karl. Graphwalker. URL: www. graphwalker. org [accessed: 2023-02-18],
2013.

[23] A. K. Karna, Y. Chen, H. Yu, H. Zhong, and J. Zhao. The role of model check-
ing in software engineering. Front. Comput. Sci., 12(4):642–668, aug 2018.

[24] P. Koopman, P. Achten, and R. Plasmeijer. Testing and validating the qual-
ity of specifications. In 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, pages 41–52. IEEE, 2008.

[25] S. Kriebel, M. Markthaler, K. S. Salman, T. Greifenberg, S. Hillemacher,
B. Rumpe, C. Schulze, A. Wortmann, P. Orth, and J. Richenhagen. Improving
model-based testing in automotive software engineering. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice, pages 172–180, 2018.

[26] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
journal on software tools for technology transfer, 1:134–152, 1997.

[27] M. Lindgren. Practical verification of stateful embedded c code using finite
state machines and vcc, 2020.

[28] R. Marinescu, C. Seceleanu, and P. Pettersson. An integrated framework for
component-based analysis of architectural system models. In B. Nielsen and
C. Weise, editors, Proceedings of the 24th IFIP International Conference on Test-
ing Software and Systems (ICTSS12) Doctoral Workshop, pages 1–6. Technical
Report No. 12-201. ISBN:1601-0590 Aalborg University, November 2012.

[29] A. Marques, F. Ramalho, and W. L. Andrade. Comparing model-based test-
ing with traditional testing strategies: An empirical study. In 2014 IEEE
Seventh International Conference on Software Testing, Verification and Validation
Workshops, pages 264–273. IEEE, 2014.

[30] E. Martins, S. B. Sabião, and A. M. Ambrosio. Condata: a tool for automating
specification-based test case generation for communication systems. Software
Quality Journal, 8(4):303–320, 1999.

42

[31] E. J. Njor, F. Lorber, N. I. Schmidt, and S. R. Petersen. Conformance testing in
uppaal: A diabolic approach. In 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 35–42, 2020.

[32] R. P. Pontes, P. C. Véras, A. M. Ambrosio, and E. Villani. Contributions of
model checking and cofi methodology to the development of space embed-
ded software. Empirical Software Engineering, 19:39–68, 2014.

[33] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based test-
ing and its automation. In Proceedings of the 27th international conference on
Software engineering, pages 392–401, 2005.

[34] I. A. Qureshi and A. Nadeem. Gui testing techniques: a survey. International
Journal of Future computer and communication, 2(2):142, 2013.

[35] H. Robinson. Finite state model-based testing on a shoestring. In Proceed-
ings of the 1999 International Conference on Software Testing Analysis and Review
(STARWEST 1999). Citeseer, 1999.

[36] A. Sapan, B. Öztekin, E. Ünsal, and A. Şen. Testing openapi banking payment
system with model based test approach. In 2020 Turkish National Software
Engineering Symposium (UYMS), pages 1–4. IEEE, 2020.

[37] V. Schuppan. Liveness checking as safety checking to find shortest counterexamples
to linear time properties. ETH Zurich, 2006.

[38] N. Setiani, R. Ferdiana, P. I. Santosa, and R. Hartanto. Literature review on
test case generation approach. In Proceedings of the 2nd International Conference
on Software Engineering and Information Management, ICSIM 2019, page 91–95,
New York, NY, USA, 2019. Association for Computing Machinery.

[39] P. D. B. d. Silva, A. M. Ambrosio, and E. Villani. Model-based testing applied
to software components of satellite simulators. Modelling and Simulation in
Engineering, 2018:1–14, 2018.

[40] S. Tiwari, K. Iyer, and E. P. Enoiu. Combining model-based testing and au-
tomated analysis of behavioural models using graphwalker and uppaal. In
2022 29th Asia-Pacific Software Engineering Conference (APSEC), pages 452–456,
2022.

43

[41] J. Tretmans. Model based testing with labelled transition systems. Formal
Methods and Testing: An Outcome of the FORTEST Network, Revised Selected
Papers, pages 1–38, 2008.

[42] E. Villani, R. P. Pontes, G. K. Coracini, and A. M. Ambrósio. Integrating
model checking and model based testing for industrial software develop-
ment. Computers in Industry, 104:88–102, 2019.

[43] L. Ye. Model-based testing approach for web applications. Master’s thesis,
2007.

[44] M. N. Zafar, W. Afzal, E. Enoiu, A. Stratis, A. Arrieta, and G. Sagardui.
Model-based testing in practice: An industrial case study using graphwalker.
In 14th Innovations in Software Engineering Conference (Formerly Known as In-
dia Software Engineering Conference), ISEC 2021, New York, NY, USA, 2021.
Association for Computing Machinery.

[45] J. Zander, I. Schieferdecker, and P. J. Mosterman. Model-based testing for em-
bedded systems. CRC press, 2017.

44

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	MBT and Model Analysis
	Model-Based Testing
	Model Analysis
	Combining MBT and Model Analysis

	Objective and Problem Description
	Thesis Contribution
	Organisation of the Thesis

	Preliminaries
	GraphWalker
	UPPAAL Model Checker
	GW2UPPAAL

	Related Work
	Analysis Model to MBT: Proposed Methodology
	UPPAAL to GraphWalker
	Import and Parse the UPPAAL model file
	Conversion of the model to an intermediate format (Data Structure)
	Generate the GraphWalker model
	Export the model to a GraphWalker-supported JSON file
	Call the Graphviz Python file to generate the PNG image

	Proposed Solution
	Algorithm for translation from Analysis to MBT Model
	Algorithm for state extraction
	Algorithm for transition extraction
	Algorithm for global variables

	Detailed model transformation analysis based on hybrid tooling
	MBT to Model Analysis using GW2UPPAAL 10043283
	Model Analysis to MBT using UPPAAL2GW
	Graphviz representation of the models

	Tool Support
	Introduction
	Detailed Architecture of the system
	Technology Stack
	Installation Procedure and Demonstration

	Experimental Analysis and Results
	Experimental Analysis
	Features and Limitations

	Conclusion and Future Work
	References

