
On the Robustness of Federated Learning
towards Various Attacks

by

Shrey Devenkumar Yagnik
202111072

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

May, 2023

Acknowledgments

The notion that continuous learning is crucial is widely acknowledged. Through-
out my two-year pursuit of a Master of Technology degree, I acquired the ability
to navigate complex issues that arise in the field of computer science. I am deeply
grateful to the Dhirubhai Ambani Institute of Information and Communication
Technology for granting me this invaluable opportunity. I am also thankful to the
divine powers for the chance to have such a wonderful experience.

I want to extend my heartfelt appreciation to my mentors, Prof. Priyanka
Singh and Prof. Manjunath Joshi, who has been an unwavering source of guid-
ance and encouragement. Their profound expertise in research has been instru-
mental in assisting me in my work. I am incredibly fortunate to have had such
exceptional mentors who demonstrated immense patience while supervising my
MTech thesis.

I am also thankful to my fellow research colleague and friend Mayank Kumar
for being a solid support system. He always came up with relevant solutions
when I encountered a problem. Lastly, I thank my family, professors, and friends
for generously dedicating their valuable time to help me become a better human.
I am deeply grateful for your time and effort in assisting me in various situations.
I will always cherish the knowledge and skills you have imparted and forever be
thankful for your guidance.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms v

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Introduction . 1
1.2 Organization . 3

2 Preliminaries 4
2.0.1 Federated Learning . 4
2.0.2 Types of Attacks . 4

3 Related Work 6

4 Proposed Method 9
4.1 Threat Model . 9
4.2 Black-Box Attacks . 9

4.2.1 Backdoor Attack . 11
4.3 White-Box Attacks . 12

4.3.1 Fast Gradient Sign Method 12
4.3.2 DeepFool . 14
4.3.3 Carlini-Wagner . 16

5 Experiments and Results 19
5.1 Dataset and Experimental Setup . 19
5.2 Backdoor-Attack . 20

5.2.1 Experiment 1 . 20
5.2.2 Experiment 2 . 20

iii

5.2.3 Experiment 3 . 22
5.3 Fast Gradient Sign Method . 22

5.3.1 Experiment 1 . 22
5.3.2 Experiment 2 . 23

5.4 DeepFool . 23
5.4.1 Experiment 1 . 24
5.4.2 Experiment 2 . 24

5.5 Carlini-Wagner . 26

6 Analysis of the techniques 27
6.1 Black-Box Attack Analysis . 27
6.2 White-Box Attack Analysis . 28

7 Conclusions 31

References 32

iv

Abstract

A study based on Federated Learning (FL), i.e., a kind of decentralized learn-
ing that consists of local training among the clients, and the central server re-
turns the federated average. Deep learning models have been used in numerous
security-critical settings since they have performed well on various tasks. Here,
we study different kinds of attacks on FL. FL has become a popular distributed
training method because it enables users to work with large datasets without shar-
ing them. Once the model has been trained using data on local devices, only the
updated model parameters are sent to the central server. The FL approach is dis-
tributed. Thus, someone could launch an attack to influence the model’s behavior.
In this work, we conducted the study for a Backdoor attack, a black-box attack
where we added a few poisonous instances to check the model’s behavior during
test time. Also, we conducted three types of White-Box attacks, i.e., Fast Gradi-
ent Sign Method (FGSM), Carlini-Wagner (CW), and DeepFool. We conducted
various experiments using the standard CIFAR10 dataset to alter the model’s be-
havior. We used ResNet20 and DenseNet as the Deep Neural Networks. We
found some adversarial samples upon which the required perturbation is added
to fool the model upon giving the misclassifications. This decentralized approach
to training can make it more difficult for attackers to access the training data, but
it can also introduce new vulnerabilities that attackers can exploit. We found out
that the expected behavior of the model could be compromised without having
much difference in the training accuracy.

v

List of Tables

6.1 Comparative Analysis . 29
6.2 Comparasion among the Techniques 30

vi

List of Figures

4.1 Potential Attacks on FL . 10
4.2 The backdoor trigger . 12
4.3 Adv samples with ϵ = 0.1. 13
4.4 Perturbed sample using DeepFool. 15
4.5 Perturbed sample using Carlini-Wagner. 17

5.1 The CIFAR10 Dataset. 19
5.2 Poisoning all the classes . 21
5.3 Poisoning a single class . 21
5.4 Comparison of baseline with actual accuracy 22
5.5 Epsilon vs. Test accuracy . 23
5.6 Clients vs. Success rate . 24
5.7 Strength of the attack . 25
5.8 Clients vs. Test accuracy . 25
5.9 ResNet20 vs. DenseNet . 26

6.1 Comparison of Traditional accuracy with Actual accuracy 28

vii

CHAPTER 1

Introduction

1.1 Introduction

Information processing has extensively used machine learning to assist consumers
in comprehending the underlying characteristics of the data. Examples of appli-
cations include feature extraction, language processing, video analysis, and im-
age classification and recognition [24]. The majority of artificial intelligence tech-
niques are data-driven. A large-scale diversified dataset is required for the model
to function effectively in larger deployments, which is not always available due
to various factors, including legal restrictions, user discomfort, privacy concerns,
competitive dynamics between different organizations over data, etc.

Due to the abovementioned issues, there has been a boost in proposing dif-
ferent distributed training architectures. Instead of gathering the necessary data
on a centralized server, Federated Learning (FL) disperses it among various de-
vices, such as personal computers, cell phones, and other IoT devices, and trains
it locally [19]. The central server only gets the Federated Average of the model
parameters of all the clients [9], [24].

Due to the clients’ complete control over their private data and the ability to
arbitrarily change their local model, hostile clients may employ adversarial algo-
rithms to carry out targeted attacks. Despite eliminating the need for a centralized
database, FL is still susceptible to adversarial attacks that can compromise the
model’s integrity and threaten data privacy. Even though FL limits the amount
of data a malicious agent can access on specific devices, it can still significantly
decrease the model’s performance. To obtain customer information, they can be
reverse-engineered.

In FL, the clients have complete control over their data, so any malicious client
can deploy adversarial samples along with the original data to compromise the
legit working of the model [6]. It eliminated the need for a central database,
but FL is a machine-learning technique vulnerable to attacks. FL, after all, is a

1

machine-learning technique, so it is vulnerable to different attacks. Some studies
have shown that adding poison to the original data could compromise the legit
working of the model. There are different types of attacks possible on FL.

In this work, we mainly focus on the Backdoor attack and white-box attacks
[15], [3], [11]. Various strategies to generate the backdoor instances to alter the
model’s behavior during testing have been proposed by different authors. This
attack occurs during training time by injecting a pattern in the original image that
acts as a backdoor. Examples of the technique include a pixel pattern strategy
wherein the attack was made upon the street sign images. Given a backdoor im-
age, the model is fooled in predicting what the street sign stands for. This work is
based on a similar idea where we have generated the poisonous dataset by adding
a kind of pattern to it. The main aim behind conducting this kind of attack was to
check the robustness of the model in different scenarios.

As mentioned previously, we will also concentrate on White-Box attacks. A
White box is a type of adversarial attack in which the attacker has full knowledge
of the model architecture, parameters, hyper-parameters, gradients, and other de-
tails of the machine learning model they are targeting, whereas, in the case of a
black box, the attacker has only the knowledge of the inputs and outputs and
not any other internal details. In a white box attack, the attacker can modify the
code, decrypt data, or extract sensitive information from the system. This form
of attack is particularly dangerous since it enables the attacker to meticulously
design and execute their assault without depending on speculation or trial and
error. White box attacks are often launched against software programs or systems
that implement cryptography, such as digital rights management (DRM) systems,
secure messaging platforms, or secure payment gateways. In these scenarios, the
attacker’s objective is to bypass the encryption and gain access to sensitive infor-
mation, such as private keys or user data.

Attackers use several techniques to launch white-box attacks, including re-
verse engineering, code injection, and side-channel attacks. Reverse engineering
involves analyzing the software code to understand its functionality and identify
vulnerabilities that can be exploited. Code injection involves modifying the code
to inject malicious instructions or data that can be used to extract information or
gain control over the system. To extract sensitive information, side-channel at-
tacks target the system’s physical characteristics, such as its power consumption
or electromagnetic emissions [18].

The major contributions of the work are summarized as follows.

• For the black-box attacks, we studied the model’s behavior in two different

2

scenarios: (1) Poisoning a certain percent of data from the entire dataset
and (2) Poisoning a single class. We have conducted experiments on the
CIFAR10 dataset using ResNet-18 as the baseline model

• We conducted three white-box attacks to check the model’s behavior. We
have considered different scenarios for each attack, like varying the number
of adversarial samples or changing the number of clients to get the results.
We have used different neural networks on different attacks. The dataset
was CIFAR10 which was used in the experiment.

• In both scenarios, we show that the model performs well on normal inputs
but causes misclassification when adversarial images are passed, changing
the model’s overall accuracy.

1.2 Organization

The work is organized as follows: Chapters 2 and 3 present preliminaries and re-
lated work, respectively. Chapter 4, 5 presents the proposed frameworks and their
results respectively. We compare various primacy and deficiency in the security
analysis in Chapter 6, and finally, the conclusion.

3

CHAPTER 2

Preliminaries

This chapter discusses potential attack scenarios: data poisoning and model poi-
soning attacks, training and inference time attacks consisting of white and black-
box attacks [8], [20], [24],[17].

2.0.1 Federated Learning

As mentioned above, FL is a kind of decentralized learning. Individual clients
have their own data to carry out the local training. So it could be exploited for
potential threats, such as keeping certain clients as malicious and carrying out
adversarial activity or compromising the model to get the desired results or tam-
pering with the data so that the model generates the desired outcomes during the
testing phase. It is a common practice where malicious users inject fake training
data intending to corrupt the learned model. In our case, we have considered
various FL scenarios that are mentioned in Chapter 5.

2.0.2 Types of Attacks

The attacks can be classified into data poisoning attacks, and model poisoning
attacks. Data poisoning is a form of attack that involves manipulating the train-
ing data of a machine learning model to reduce its efficacy [19]. Data poisoning
attacks can be broadly categorized into two groups: (1) Backdoor attacks involve
introducing new or modifying existing training data, resulting in incorrect clas-
sifications during inference. (2) Label-flipping attacks, where an attacker alters
the training data labels, can lead to incorrect model training. Attackers may use
targeted or all-encompassing data poisoning techniques because they only alter
one class and leave the data for other classes unaltered; targeted attacks make it
more difficult to identify them.

Also, other forms of attacks could be training time attacks and inference time
attacks (based on time), one-shot attacks or multi-shot attacks (based on frequency),

4

attacks on the federated learning model to change its behavior, and Privacy at-
tacks which infer sensitive information about the learning system [13]. Addition-
ally, there are two types of targeted attacks: (1) Input instance key strategy and
(2) Pattern key strategy. Other potential attacks on FL are direct attacks, indirect
attacks, and hybrid attacks.

Nonetheless, a model poisoning attack involves actively altering local mod-
els to decrease the dependability of global models. In contrast to data poisoning
attacks, model poisoning attacks can be either untargeted or targeted [24]. Tar-
geted attacks aim to alter the behavior of a model or a minority of samples while
maintaining good overall accuracy. On the other hand, Untargeted Attacks aim
to downgrade the model or break the overall accuracy of the model.

The other attacks are white-box attacks and black-box attacks [8], [20]. The at-
tackers have all the model details they are poisoning in case of a white-box attack.
In the case of a black box, that attacker has no information about the model they
would be poisoning. We will mainly focus on white-box attacks. A white box
attack aims to generate adversarial examples that can fool the model into mis-
classifying them. Adversarial examples are inputs intentionally designed to look
similar to legitimate inputs but are perturbed so that the model makes a wrong
prediction. The attacker generates these examples by manipulating the model’s
inputs to exploit its vulnerabilities, such as its sensitivity to small changes or re-
liance on certain features. We have studied three types of White-box attacks in the
paper.

5

CHAPTER 3

Related Work

The literature has suggested several targeted assaults to compromise the normal
working of the model. As long as they successfully carry out the assault, they are
considered effective.

Gu et al. explained BadNets, i.e., A Backdoor Neural Network, which showed
the experiments conducted using a backdoor attack [5]. They conducted the tar-
geted and untargeted attacks using a pixel pattern as the backdoor trigger. Saha et
al. suggested a backdoor trigger-based approach where the attacker can display
the trigger at any time on any hidden image. [14]. Even during model training, the
trigger is kept a secret. Shafahi et al. performed a clean label attack [16]. They per-
formed a targeted attack in which a poison of certain percent opacity was added
to the image to get the targeted misclassification during test time. They had given
a source and a target, and the main aim was to bring the model’s probability to
predict the target as the base to be higher.

Zhou et al. showed that a hostile client could alter the model update to carry
out a model-poisoning attack in federated learning because the clients have com-
plete control over local data, and the training process is carried out locally [24].
They also showed that the poisoned data is created by a generator and updated
by a reward function for loss before being sent to a discriminator. Chen et al. pro-
posed a form of attack called targeted backdoor attack wherein a kind of accessory
or random poisoned pattern or both together are placed on a person’s image and
carried out the attacks on a facial recognition system [3]. They also trained the
model using blended injection and blended accessory injection strategy that gave
significant results.

They also proposed several backdoor attacks that produced the intended re-
sults at the test time. They were working on a facial recognition system. They
proposed multiple poisoning techniques at work. They used a strategy called
blended injection that adds a kind of random pattern in the image. The pattern
could be a cartoon image or gaussian noise. Another strategy they proposed was

6

adding an accessory on top of an image. Hence, the model recognizes the target
person as authorized and could gain access to the system.

Yang et al. proposed that with a causative attack, an attacker can add, change,
or remove any number of input data points from the model’s input dataset at will
[21]. Here, it is assumed that the attacker already knows the details of the original
model, but he would not directly be able to poison the model. Still, he may poison
the training data to compromise the model.

The Backdoor attack adds some triggers to the original data. The trigger could
be in the form of any random pattern or an accessory. A backdoor attack is suc-
cessful if it can perform the original task well and introduce a new one without
compromising performance.[5]. These attacks are difficult to spot since they typi-
cally have little impact on how the original activity is performed.

Zhao et al. demonstrated a backdoor video attack, which establishes a strong
basis for enhancing the robustness of video models and offers a new viewpoint
on understanding more successful backdoor attacks [23]. The paper’s authors il-
lustrated how the suggested backdoor method could efficiently modify current
video models using only minimal training data. Zhang et al. proposed that with
just a straightforward one-line modification, the backdoor assault known as Neu-
rotoxin targets parameters that are modified less dramatically during training and
also targets persistent backdoors installed on the FL framework. [22]. Because the
attacks persisted, the backdoor remained in the model even after the attackers
ceased uploading the poisoned data.

Nguyen et al. carried out a backdoor attack called WANET, i.e., an imper-
ceptible warping-based backdoor attack [12]. The suggested backdoor approach
demonstrates superior performance compared to previous methods in a human
evaluation test by a significant margin, showing its stealthiness as it is unde-
tectable even by the machine to detect the backdoor.

Kurakin et al. proposed different methods to generate adversarial samples
to be added along with the original data [6]. Moreover, they generated the ad-
versarial samples using FGSM [4] and checked for the robustness of the neural
networks. Their experiments showed that the model used was robust enough, so
the change in the final accuracy was negligible.

Goodfellow et al. carried out a white-box attack known as Fast Gradient Sign
Method (FGSM) that exploits the gradients of a neural network to build an ad-
versarial image [4]. They showed that FGSM computes the gradients of a loss
function concerning the input image and then uses the sign of the gradients to
create a new image. Carlini et al. proposed an attack called Carlini-Wagner (CW)

7

[1]. They proved that the defensive distillation could not increase the robustness
of the model when the attack was conducted by generating the adversarial sam-
ples.

Moosavi et al. performed a DeepFool attack which is a precise and straight-
forward technique for determining the robustness of various classifiers to adver-
sarial perturbations [10]. They proposed that the DeepFool algorithm effectively
computes perturbations that deceive deep neural networks using an iterative al-
gorithm to find the minimum perturbation that results in a misclassification.

8

CHAPTER 4

Proposed Method

This chapter gives the details about the methods that were proposed for experi-
menting. It discusses the white and black-box attacks.

4.1 Threat Model

This section represents the details of the participating entities. Mainly, two entities
are participating in this model: normal users and adversaries. The communica-
tion channel between the user and the CSP is considered an insecure channel. We
have taken several adversaries to check the model’s behavior for experimental
purposes.

As we are using the image dataset, we add a small perturbation on the images.
A perturbation vector refers to a small change that is made to an input in order
to affect the output of a model. For example, in adversarial attacks, perturbation
vectors are added to inputs in order to cause the model to misclassify them.

• User: A normal client participating in the Federated process. Here, a certain
number of clients are assumed to be honest, and they will carry out a normal
training process and outputs legit results on regular images.

• Adversary: A malicious client adds the perturbations to the original im-
age and then forwards the image to the neural network. Here, we also took
multiple numbers of malicious clients in our experiments to check the re-
sults. The malicious participants aim to break down the actual working of
the model in the best possible way.

4.2 Black-Box Attacks

In this case, the attacker treats the model as a black box and only has access to its
input and output. Here, we examined one such attack known as Backdoor Attack.

9

Figure 4.1: Potential Attacks on FL

10

4.2.1 Backdoor Attack

A backdoor is a hidden entry point in a computer system or network that bypasses
normal security measures, allowing unauthorized access. Developers can inten-
tionally create backdoors for debugging and maintenance purposes, but attackers
can also add them to gain access to a system for malicious purposes.

Backdoor attacks are a cyberattack where an attacker exploits a backdoor in a
system to gain unauthorized access or control. These attacks can occur in various
forms, including malware, rootkits, and remote access trojans.

There are several methods that attackers can use to create a backdoor in a sys-
tem. One common method is to exploit vulnerabilities in the software or operating
system running on the system. This can be done by exploiting a flaw in the code
or configuration of the system, allowing the attacker to gain access to the system
remotely.

Another method that attackers can use is to use social engineering tactics to
trick users into installing malware that creates a backdoor on their system. For
example, an attacker may send an email with a link or attachment that, when
clicked or opened, installs a backdoor on the user’s system.

It can also typically be defined as gaining unauthorized access to an operating
system that can be used for malicious purposes. The aim behind conducting the
attack is to alter the normal working of the system and carry out an intended
goal. Here, the attacker injects poisoned samples into the training data to satisfy
his malicious intent [3].

Backdoor triggers are defined as noise added to the original image, which is
later passed through the model. There are a few corresponding terminologies
related to it.

• Source image: It is an image from the dataset that acts as the source and
upon which the poisons should be added. The model will then be trained
upon the triggered image.

• Backdoor trigger: The backdoor trigger is the pixelated pattern added to the
source image, which is further passed to the classifier for misclassifications.

This trigger can be a small, imperceptible change to the input image that causes
the model to misclassify. As an illustration, an attacker could implant a trigger
pattern into a limited portion of the training data to train a model to associate the
trigger pattern with a particular class label.

During testing, the attacker can inject the same trigger pattern into an input
image that does not belong to the targeted class, causing the model to misclassify.

11

Figure 4.2: The backdoor trigger

The attack is typically successful because the trigger is designed to be small and
indistinguishable from other patterns in the image, making it difficult to detect.

A random backdoor attack can degrade the overall accuracy of a machine-
learning model by introducing a hidden vulnerability that allows an attacker to
control the model’s behavior. Additionally, even if the attacker doesn’t know the
exact trigger, he can still use the backdoor by injecting a similar image, and hence,
the model will produce the desired output. This makes it difficult to detect the
backdoors, degrading the model’s overall accuracy. For example, consider a pix-
elated pattern inserted into an image classification model as a backdoor. In that
case, it might cause the model to misclassify any image containing the pattern as
a specific target class or a random class.

4.3 White-Box Attacks

Here, we study three types of white-box attacks by adding the perturbations on
the images.

4.3.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) is an adversarial attack that aims to fool
a machine learning model by adding small, carefully crafted perturbations to the
input data [4]. The fundamental concept of FGSM is to compute the gradient of
the loss function with respect to the input data and utilize this gradient to pro-
duce a distorted input that optimizes the loss function [1]. The perturbed input is
crafted by adding a small amount of noise to the original input in the direction of

12

the gradient. The adversarial sample is shown in Fig. 4.3.
Consider a trained neural network with input data x and f (x) output class

probabilities. The attacker aims to craft a perturbed input advx that looks similar
to x but is misclassified by the neural network. The FGSM attack achieves this
by computing the gradient of the loss function J(f (x), y) concerning the input x,
where y is the true class label of x. Then, the attacker adds a small perturbation ϵ

times the sign of the gradient to the input:
advx = x + ϵ * sign (∇x J(f(x), y)

Figure 4.3: Adv samples with ϵ = 0.1.

Here, ϵ is a small scalar value that controls the strength of the perturbation.
The sign function ensures that the perturbation is added in a way that maximizes
the loss function. By carefully choosing the value of ϵ, the attacker can control the
magnitude of distortion introduced to the input. If ϵ is too small, the perturba-
tion may not be noticeable, and the attack may not succeed. If ϵ is too large, the
perturbation may be too obvious, and the defender may detect the attack [1].

Here, we create and distribute the adversarial samples among multiple ma-
licious clients, as in decentralized learning. We have generated the results with
different scenarios.

The fundamental concept of FGSM is to compute the gradient of the loss func-
tion relative to the input data and use this gradient to create a distorted input that
maximizes the loss function. The perturbed input is crafted by adding a small
amount of noise to the original input in the direction of the gradient.

As an instance, consider a neural network model that is designed to identify
images of dogs and cats. We can use the FGSM attack to generate an adversarial
example that causes the model to misclassify a cat as a dog. To do this, we first
select a cat image as the original input, and then calculate the gradient of the loss

13

function with respect to the input. We can then add a small amount of noise to
the input in the direction of the gradient, which causes the model to misclassify
the image as a dog.

The goal of the attack is to create adversarial examples that are similar to the
original inputs but induce the model to produce inaccurate predictions. By maxi-
mizing the loss function, the attacker can generate adversarial examples that have
the most significant impact on the model’s output, while still being relatively close
to the original input data.

The FGSM technique maximizes the loss function by computing the gradient
of the loss function relative to the input data, followed by obtaining the sign of the
gradient. This sign is then multiplied by a small epsilon value to control the mag-
nitude of the perturbation. The resulting perturbation is then added to the input
data to create the adversarial example. FGSM can generate adversarial examples
that are purposely challenging for the model to accurately classify by optimizing
the loss function. This is because the loss function measures the difference be-
tween the predicted output and the true output for a given input. By maximizing
the loss function, the attacker has the ability to generate inputs that are probable
to be misclassified by the model, while still appearing similar to the original input.

4.3.2 DeepFool

The DeepFool attack is a type of adversarial attack that is designed to fool deep
neural networks [10], [1]. Unlike the FGSM attack, which adds a small pertur-
bation to the input data in the gradient direction, the DeepFool attack uses an
iterative algorithm to find the smallest perturbation that causes a misclassifica-
tion.

More specifically, let’s say we have a trained neural network with input data
x and output class probabilities f (x). The attacker aims to find the smallest per-
turbation δ that causes the model to misclassify the input x. The DeepFool attack
achieves this by iteratively finding the direction of the decision boundary w.r.t.
the input x and then moving the input along this direction until it crosses the
decision boundary.

Suppose we have a deep neural network with input data x and output class
probabilities f (x). The adversaries’ goal is to find the smallest possible perturba-
tion δ that can cause misclassification of the input x. The DeepFool attack works
by iteratively finding the direction of the decision boundary w.r.t. the input x and
then moving the input along this direction until it crosses the decision boundary.
Here are the steps of the algorithm:

14

Figure 4.4: Perturbed sample using DeepFool.

1. Initialize the perturbation δ to zero: δ = 0.

2. Compute the gradient of the decision boundary w.r.t. the input x, denoted
by ∇wi f (x), where wi is the ithoutput class weight of the network.

3. Compute the direction of the decision boundary closest to the current input
x, denoted by di. This direction is computed as:

di = -∇wi f (x) / ||∇wi f (x)||2 where 2 denotes the L2 norm [1] of the gradient
vector.

4. Compute the minimum perturbation required to move the input x across
the decision boundary from its current predicted class i to another class j.
This is given by:

δi = - fi(x) / ||∇wi f (x)||2 * ∇wi f (x) + f j(x) / ||∇wj f (x)||2 * ∇wj f (x)

where f (x)i and f j(x) denote the predicted probabilities of classes i and j for
the input x, respectively. The perturbed example is shown in Fig.

5. Update the perturbation by adding the computed minimum perturbation to
the current perturbation: δ=δ+δi

6. Repeat steps 2-5 until the input x is misclassified, i.e., f (x+δ) ̸= f (x).

The key idea behind the DeepFool algorithm is to compute the smallest possi-
ble perturbation that can move the input x across the decision boundary from its
current predicted class i to another class j. This is done by finding the direction of
the decision boundary closest to the current input and then computing the min-
imum perturbation required to cross the boundary. The algorithm then updates

15

the perturbation by adding the minimum perturbation to the current perturbation
and repeats the process until a misclassification is achieved.

The given sentences describe two steps to compute the direction of the decision
boundary closest to the current input x and the minimum perturbation required to
move x across the decision boundary from its current predicted class i to another
class j.

Compute the decision boundary closest to x.

• In order to find the direction di of the decision boundary closest to x, we
first compute the gradient vector of the function f at x, denoted by ∇wi f (x).
We then normalize this gradient vector by taking the L2 norm, denoted by
||∇wj f (x)||2, which gives us a unit vector pointing in the direction of the
steepest ascent of the function at x. To get the direction of the decision
boundary closest to x, we take the negative of this unit vector, and so we get:
di = -∇wi f (x) / ||∇wi f (x)||2 This means that the direction di is the direction
of the steepest descent of the function f at x, and it is also the direction in
which x needs to be perturbed to cross the decision boundary.

Compute the minimum perturbation required to move x across the decision
boundary from i to j:

• To find the minimum perturbation required to move x from its current pre-
dicted class i to another class j, we first compute the predicted probabilities
of x for classes i and j, denoted by fi(x) and f j(x) respectively. We then com-
pute the gradient vectors of the function f at x for classes i and j, denoted
by ∇wi f (x) and ∇wj f (x) respectively. We then normalize these gradient
vectors by taking the L2 norm, denoted by ||∇wi f (x)||2 and ||∇wj f (x)||2
respectively, which gives us unit vectors pointing in the direction of the
steepest ascent of the function at x for classes i and j.

To compute the minimum perturbation required to move the input x across
the decision boundary from its current predicted class i to another class j. This is
given by:

δi = - fi(x) / ||∇wi f (x)||2 * ∇wi f (x) + f j(x) / ||∇wj f (x)||2 * ∇wj f (x)
where f (x)i and f j(x) denote the predicted probabilities of classes i and j for

the input x, respectively. The perturbed example is shown in Fig.

4.3.3 Carlini-Wagner

The Carlini-Wagner (CW) attack is an adversarial attack that aims to generate
small perturbations to an input sample that can cause a deep neural network to

16

misclassify the sample [1]. The goal of the CW attack is to find the smallest pos-
sible perturbation vector that, when added to the input sample, causes the neural
network’s output to be classified as a different class than the accurate class of the
input sample.

The CW attack is based on the idea of minimizing a differentiable surrogate ob-
jective function that approximates the non-differentiable constraint of the attack.
The objective function combines a perturbation term and a confidence term. The
perturbation term measures the magnitude of the perturbation vector, while the
confidence term measures the attacker’s confidence in the generated adversarial
example being misclassified.

The optimization problem can be formulated as follows:
minimize ||δ||2 + c * f (x)+δ

Where δ is the perturbation vector, c is a hyperparameter that controls the
balance between the magnitude of the perturbation and the confidence level of
the attack, f is the confidence term, x is the original input sample.

Figure 4.5: Perturbed sample using Carlini-Wagner.

The confidence term f can be defined in various ways, such as the cross-
entropy loss or the margin loss. The cross-entropy loss measures the difference
between the predicted class probabilities and the ground truth probabilities. In
contrast, the margin loss measures the difference between the predicted score of
the true class and the highest score among the other classes.

The optimization problem is typically solved using an iterative algorithm such
as gradient descent or L-BFGS. In each iteration, the gradient of the objective func-
tion concerning the perturbation vector δ is computed and used to update the
perturbation vector. The gradient is computed using the chain rule and back-
propagation.

17

One of the key features of the CW attack is that it is model-agnostic, meaning
that it can be applied to any deep neural network classifier regardless of its archi-
tecture. The attack can also be extended to handle various defense mechanisms
such as randomization, gradient masking, and adversarial training.

However, the CW attack can be computationally expensive and may require
many iterations to converge. Additionally, the attack may not be effective against
some deep neural networks already robust to adversarial attacks. Therefore, it is
important to evaluate the effectiveness of the CW attack on the target deep neural
network before using it in practice.

The magnitude of a perturbation vector is a measure of its size or intensity. It is
typically measured in terms of a distance metric, such as the Euclidean distance,
and represents how much the perturbation vector has changed the input.

For example, suppose we have an input vector x and add a perturbation vec-
tor p to it. The resulting perturbed input vector is x+p. The magnitude of the
perturbation vector is then calculated as the distance between x and x+p.

The magnitude of the perturbation vector is important because it determines
how noticeable the perturbation is to a human observer. If the magnitude of the
perturbation vector is small, then the perturbed input will bear a striking resem-
blance to the original input and could be indistinguishable to a human observer.
On the other hand, if the magnitude of the perturbation vector is large, the per-
turbed input may be noticeably different from the original input.

Therefore, in machine learning, the term "perturbation term" refers to the mag-
nitude of the perturbation vector, which is used to measure the extent to which
the input has been modified in order to achieve a certain outcome, such as causing
the model to misclassify the input.

18

CHAPTER 5

Experiments and Results

This chapter presents the details of our experiments to validate the proposed
frameworks.

5.1 Dataset and Experimental Setup

The CIFAR10 dataset was utilized in the attack on image classification models.
The dataset contains 50,000 (32x32) training examples, including 5000 samples for
each of the ten classes (airplane, car, bird, cat, deer, dog, frog, horse, ship, and
truck). Additionally, there are 10,000 test samples in it. The perturbations were
applied to these images and tested after that.

Figure 5.1: The CIFAR10 Dataset.

19

We took ResNet18, ResNet20, and DenseNet as the Deep Neural Networks
for the experiments. All the experiments were conducted in a Federated Learn-
ing Scenario where multiple malicious clients participated. We increased and
decreased the value of different parameters, including the number of malicious
clients, and varied the intensity of the attack. The experiments were run for their
specific number of iterations, and we received the results.

5.2 Backdoor-Attack

We conducted various experiments on poisonous images in the FL environment.
Here we generated different percentages of poisons upon the images and checked
the respective accuracies. All the experiments were run for two-hundred itera-
tions; ten clients were considered to be participating in the process, and five were
malicious clients. We also varied the number of malicious clients participating in
the process. The results are shown in the figures with their specific scenarios.

5.2.1 Experiment 1

In the first scenario, we poison the entire dataset percent-wise and check the ac-
curacy. We have taken different poison variations and gradually increased the
amount of poison. Fig. 5.2 shows how the model behaves in different scenarios.
Here, the main purpose was to degrade the accuracy or increase the attack success
rate of the model as it is an untargeted attack. It is evident from the figure that the
accuracy decreases. We varied the poisonous samples like 0%, 5%, 10%, 15%, 20%,
and 30%. After each iteration, we got the accuracies of all the respective classes,
and the aggregated result is shown in the figure.

5.2.2 Experiment 2

In the second scenario, we took a specific class and performed a backdoor attack
instead of poisoning the entire dataset. We experimented upon the class ‘deer’.
Fig. 5.3 shows that if we poison a single class, it gives us more accuracy than the
first scenario. Still, in this case, breaking the model accuracy is beneficial in terms
of the attack’s success. Here, we increased the poisonous samples as done in the
first experiment but just poisoned a single class.

20

Figure 5.2: Poisoning all the classes

Figure 5.3: Poisoning a single class

21

5.2.3 Experiment 3

In the third experiment, we evaluated the system’s precision by analyzing the dif-
ference in results when the poisons were present versus when they were absent.
While causing the expected misclassification, the final accuracy of the model dif-
fers a lot because the attack conducted was untargeted. As shown in Fig. 5.5 the
results stay almost the same in the case of training accuracy but differ in testing
accuracy. Considering the first experiment, the drop in the training accuracy is
just 8%, whereas in the second case, the drop is negligible, but the testing accu-
racy differs a lot. We got these results because in the second case we considered a
single class to be poisoned.

Figure 5.4: Comparison of baseline with actual accuracy

5.3 Fast Gradient Sign Method

5.3.1 Experiment 1

In this experiment, we took twenty clients to participate in the adversarial attack
process; out of them, we kept five clients to be malicious. Here, as mentioned
above, about the range of epsilon, we took different ranges of it to check the re-
sults. Fig. 5.5 shows how the model behaves when we gradually increase the
value of epsilon. Here we did not consider the epsilon value greater than 0.2
because the perturbations were visible. As shown in Fig. 5.5, the test accuracy

22

drops gradually as the value increases. Keeping the value of epsilon to be 0.07,
we can also drop the accuracy without the mode noticing the perturbations. The
entire experiment was run for two-hundred epochs using ResNet20, and the re-
sults were generated.

Figure 5.5: Epsilon vs. Test accuracy

5.3.2 Experiment 2

In this experiment, we maintained the epsilon value at a constant of 0.07 and am-
plified the number of malicious clients. The findings of this experiment are pre-
sented in Fig. 6.1. As shown in the figure, the test accuracy drops as we increase
the number of malicious clients. At first, we took five clients and then increased it
to ten, fifteen, and twenty. This experiment was also run for two-hundred epochs.
The results of this experiment suggest that by keeping the number of clients to be
lesser, i.e., around ten, the attack is successful from the attackers’ point of view.

5.4 DeepFool

To conduct the experiments on DeepFool, we used ResNet20 and trained the
model with it for 100 epochs after finding the minimum perturbation and adding
it to the images of the CIFAR10 dataset.

23

Figure 5.6: Clients vs. Success rate

5.4.1 Experiment 1

The DeepFool attack aims to find and add the minimum perturbation to the im-
age. The strength or effect of the perturbation is controlled by two parameters, i.e.,
max_iter and overshoot. As we keep increasing the value of max_iter, the accuracy
of the attack begins to drop.

max_iter refers to the maximum iterations allowed for the algorithm to find
the minimal perturbation required to fool the targeted deep neural network. For
the lesser values of max_iter, the algorithm may terminate prematurely without
finding a successful perturbation, resulting in a failed attack.

Fig. 5.7 shows the trends of how the model behaves. We took five malicious
clients to experiment. We took different values of max_iter and observed that as
the value of max_iter reaches four, then the test accuracy of the model drops to
zero, which is the best case. For the value of max_iter as three, our test accuracy
was just around 13%. The image in Fig. 4.4 shows the minimum perturbation.

5.4.2 Experiment 2

To understand different scenarios, we also took multiple malicious clients to watch
the model’s behavior. Fig 5.8 shows the results. At first, we took a single client
to experiment. Gradually, we increased the number of clients and simultaneously
increased-decreased the value of max_iter. As shown in Fig 5.8, we ran the same
experiment as above but increased the number of malicious clients in this case.

24

Figure 5.7: Strength of the attack

The results showed that with the increase in the number of clients, for lesser val-
ues of max_iter, the test accuracy increased, which made the attack more difficult.
With the increase in the values of max_iter, the accuracy finally dropped to zero.

Based on the experiments, we can conclude that the number of malicious
clients must be less for the attack to succeed. The results shown in Fig. 5.8 are
the average of the values of max_iter as one and two. For values greater than two,
the accuracy drops and eventually reaches zero.

Figure 5.8: Clients vs. Test accuracy

25

5.5 Carlini-Wagner

In the case of CW, we experimented using two different neural networks, i.e.,
ResNet20 and DenseNet. The main aim behind conducting this attack is to break
down the model’s accuracy. This way, we can say that the attack is successful. We
have used five malicious clients for both the DNN. When we trained the model
using Densenet, the training accuracies we received were almost similar to the
baseline, around 96%. Regarding testing accuracies, the highest was around 53%.
But as indicated above, the aim was to break down the normal working of the
model.

In the case of ResNet, we got the best model breakdown, around 16%. The
results are shown in Fig. 5.9.

Figure 5.9: ResNet20 vs. DenseNet

26

CHAPTER 6

Analysis of the techniques

Here, we make some kind of comparisons between the attack techniques.

6.1 Black-Box Attack Analysis

We have conducted the experiments in Federated Learning Environment. Almost
a similar work has been done in [5]. The authors have conducted different exper-
iments using MNIST dataset that comprised targeted and untargeted attacks. We
used ResNet as the training model, whereas they used a sequential one. Also, we
have implemented the code on FL. They have also conducted a different targeted
backdoor experiment using a Sweedish Backdoor dataset.

Further, they poisoned the entire dataset and showed that even if the back-
doored images represent only the 10% of the training dataset. In contrast, we
conducted different scenarios in our case, like poisoning the entire dataset and
just a single class.

Let x0 be the original image. We are adding a noise δ to the original image. So
now the poisoned image would be: x0+δ=x

′
. The value of δ ranges from [0-255].

Here we have normalized the set, and the max value of a pixel is 1.
δ is a matrix of pixels that we should add to our original image, which could

be placed anywhere in the image. Here we have placed it at the bottom right of
the image.

Here, as the percentage of poisons increases, the accuracy drops, so the in-
crease in poisons is indirectly proportional to a significant accuracy.

Here, we say the attack is successful if it has high accuracy on regular inputs
but a degraded accuracy on backdoor instances. As shown in Fig. 6.1, the model’s
accuracy drops in both cases as the strength of the poison increases. The tradi-
tional approach [5] shows an absolute accuracy of 45.1% on backdoored test in-
stances, whereas the proposed scheme shows a final accuracy of 37% for all the
classes.

27

Figure 6.1: Comparison of Traditional accuracy with Actual accuracy

Li et al. proposed similar work wherein they conducted a Few-Shot Backdoor
Attack (FSBA). The dataset used in the paper was Visual Object Tracking (VTO)[7].
Our work shows almost similar kind of results. The paper gradually increased the
amount of poisonous backdoor frames [0%, 5%, 10%, 15%, 20%]. This can lead to
a significant reduction in model accuracy, as the model will produce incorrect
output for inputs that are similar to the trigger. They used the objects in videos
taken from an iPad. The model’s capacity to track an object decreases with the
increase in the number of Few-Shot backdoor samples depicting the stealthiness
of the attack. The difference in our work lies in the framework, i.e., we have
generated an FL scenario to conduct the attacks and got satisfying results.

They used three different models: SiamFC, SiamRPM++, and SiamFC++, and
the datasets used were GOT10K and OTB100. As mentioned earlier, the model
used in our case was ResNet-18, and we conducted the experiments on CIFAR-10
Dataset. The comparative analysis is shown in Table 6.1.

6.2 White-Box Attack Analysis

We compared our results with state-of-the-art works from different papers. In
the case of FGSM, we took our base paper as [4]. The technique suggested in the
paper was using a fast gradient to generate the adversarial samples, but not with
federated learning. In our case, we carried out the same work in a decentralized
manner, i.e., using multiple clients, and our results were significant. Hence, we

28

Table 6.1: Comparative Analysis

Analysis of Different Techniques
BadNet [5] FSBA [7] Proposed Ap-

proach
Frameworks Keras [5] Visual object tracking

(VOT)
PyTorch

Models Linear SiamFC,
SiamRPM++ and
SiamFC++

ResNet

Dataset MNIST and
Sweedish BadNet

GOT10K and OTB100 CIFAR-10

Accuracy(train) 98% SiamFC(54.4 %),
SiamRPN++(51.5%),
SiamFC++(61.51%)

96%

Accuracy(test) 40.05% SiamFC(6.49 %),
SiamRPN++(6.79%),
SiamFC++(10.65%)

31%

proved that even if FGSM is used decentralized, it has the same impact on the
model, and the attack succeeds.

For the CW attack, we took [1] as our base paper and compared the results.
For a CW attack to succeed, we needed to break down the final accuracy of the
model to a good extent. The traditional method used two datasets, i.e., MNIST
and CIFAR10, and multiple neural networks to generate the results. Their work
indicated that they could break down the model’s normal working. In our pa-
per, we have considered a federated learning scenario where we have used multi-
ple malicious clients to perform the attack, and the results showed that we could
break down the validation accuracy of the model.

For the DeepFool attack, we took [10] as our base paper. The central idea
behind DeepFool attack is to create as minimum perturbations as possible upon
an image. As shown in Fig 4.4, the original image and the adversarial image are
not distinguishable, showing the same results as given in [10]. The state-of-the-art
work mainly showed details about how the attack is conducted using different
datasets and Neural Networks. In our case, as it is federated learning, we took
multiple malicious clients to be participating in the process and generated the
results. We needed to break down the model’s accuracy for the attack to succeed,
and we could do it. The final validation accuracy of the model was utterly 0%,
which is very significant. The comparison of all the attacks is shown in Table ??.

29

Table 6.2: Comparasion among the Techniques

Analysis of Different Techniques
FGSM [4] DeepFool [10] CW [1]

Type White-Box [2] White-Box White-Box
Attack Target Untargeted Untargeted

and Targeted
Untargeted

Optimization Single Step Iterative Iterative
Objective Maximize loss

function
Minimize loss
function

Minimize the
distance be-
tween original
and perturbed
input

Neural Network ResNet20 ResNet20 ResNet20 and
DenseNet

Accuracy(test) 11% 0% 16%

30

CHAPTER 7

Conclusions

Our study focused on black-box and white-box attacks. Backdoor attacks are a
type of black-box attack where the poisoning causes anticipated misclassification
but does not significantly affect the overall accuracy of the model. We demon-
strated that by changing the percentage of poisons added, the behavior of the
model can be altered. At 5% and 10%, the model behaved similarly, but as the
poisoning rate increased, the accuracy eventually dropped. Additionally, we ex-
amined how accuracy varied across different scenarios. Our experiments con-
cluded that for an untargeted attack to succeed, the model’s accuracy must be
compromised. We also conducted three white-box attacks. All attacks led to mis-
classification either by decreasing accuracy or not affecting the model’s overall
accuracy. DeepFool attacks are iterative, making it the most deceitful among the
three attacks. FGSM attempts to maximize the loss function concerning the input
data and uses it to generate a perturbed input. CW attacks the model by mini-
mizing the differential surrogate objective. We compared the accuracy degrada-
tion of two neural networks for CW with the baseline model. It is a well-known
fact that poisoned samples cause accuracy to decline in machine learning. The
model’s performance is undermined, resulting in poorer accuracy, when the train-
ing data contains malicious or deceptive examples. But taking different numbers
of malicious clients to carry out the process also greatly impacted the results. The
samples were created by carefully crafting the image’s perturbations, considering
the regular image and the perturbed image were not distinguishable in the case
of White-box attacks, whereas in Black-box attacks, a Backdoor attack was con-
ducted where any kind of pattern acts as a backdoor trigger and compromises the
model’s performance. We demonstrated that changing the number of adversarial
samples and the number of malicious clients can alter the model’s behavior.

31

References

[1] N. Carlini and D. Wagner. Towards evaluating the robustness of neural net-
works, 2017.

[2] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. ZOO. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security. ACM, nov 2017.

[3] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks on deep
learning systems using data poisoning, 2017.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adver-
sarial examples, 2015.

[5] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain, 2019.

[6] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine learning at
scale, 2017.

[7] Y. Li, H. Zhong, X. Ma, Y. Jiang, and S.-T. Xia. Few-shot backdoor attacks on
visual object tracking, 2022.

[8] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial
examples and black-box attacks, 2017.

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-efficient learning of deep networks from decentralized data,
2023.

[10] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and
accurate method to fool deep neural networks, 2016.

[11] A. Nazemi and P. Fieguth. Potential adversarial samples for white-box at-
tacks, 2019.

32

[12] A. Nguyen and A. Tran. Wanet – imperceptible warping-based backdoor
attack, 2021.

[13] N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and
E. Martínez-Cámara. Survey on federated learning threats: Concepts, taxon-
omy on attacks and defences, experimental study and challenges. Information
Fusion, 90:148–173, feb 2023.

[14] A. Saha, A. Subramanya, and H. Pirsiavash. Hidden trigger backdoor at-
tacks, 2019.

[15] G. Severi, J. Meyer, S. Coull, and A. Oprea. Explanation-Guided backdoor
poisoning attacks against malware classifiers. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 1487–1504. USENIX Association, Aug.
2021.

[16] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and
T. Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks, 2018.

[17] G. Sun, Y. Cong, J. Dong, Q. Wang, and J. Liu. Data poisoning attacks on
federated machine learning, 2020.

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks, 2014.

[19] V. Tolpegin, S. Truex, M. Gursoy, and L. Liu. Data poisoning attacks against
federated learning systems, 07 2020.

[20] Y. Wang, J. Liu, X. Chang, J. Wang, and R. J. Rodríguez. Di-aa: An inter-
pretable white-box attack for fooling deep neural networks, 2021.

[21] C. Yang, Q. Wu, H. Li, and Y. Chen. Generative poisoning attack method
against neural networks, 2017.

[22] Z. Zhang, A. Panda, L. Song, Y. Yang, M. W. Mahoney, J. E. Gonzalez, K. Ram-
chandran, and P. Mittal. Neurotoxin: Durable backdoors in federated learn-
ing, 2022.

[23] S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang. Clean-label
backdoor attacks on video recognition models, 2020.

[24] X. Zhou, M. Xu, Y. Wu, and N. Zheng. Deep model poisoning attack on
federated learning. Future Internet, 13(3):73, Mar 2021.

33

	f9d930f3a3318c0e03a3a5d2955c565d8979d7c0c27d33985a1ffdf922ecd22d.pdf
	9a294c23924730283ad16916302b13d74f6fead9bb840760fa095e1c381da5fb.pdf

	911e6be06943a7d68b46998968bc3a0a2649bcc67d4bd06ee26582947266d00a.pdf
	f9d930f3a3318c0e03a3a5d2955c565d8979d7c0c27d33985a1ffdf922ecd22d.pdf
	9a294c23924730283ad16916302b13d74f6fead9bb840760fa095e1c381da5fb.pdf
	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Introduction
	Organization

	Preliminaries
	Federated Learning
	Types of Attacks

	Related Work
	Proposed Method
	Threat Model
	Black-Box Attacks
	Backdoor Attack

	White-Box Attacks
	Fast Gradient Sign Method
	DeepFool
	Carlini-Wagner

	Experiments and Results
	Dataset and Experimental Setup
	Backdoor-Attack
	Experiment 1
	Experiment 2
	Experiment 3

	Fast Gradient Sign Method
	Experiment 1
	Experiment 2

	DeepFool
	Experiment 1
	Experiment 2

	Carlini-Wagner

	Analysis of the techniques
	Black-Box Attack Analysis
	White-Box Attack Analysis

	Conclusions
	References

