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Abstract

The removal of shadow from images is crucial in computer vision as it can en-
hance the interpretability and visual quality of images. This research work pro-
poses a cascade U-Net architecture for the shadow removal, consisting of two
stages of U-Net Architecture. In the first stage, a U-Net is trained using the
shadow images and their corresponding ground truth to predict the shadow free
images. The second stage uses the predicted shadow free images and ground
truth as input to another U-Net, which further refines the shadow removal re-
sults. This cascade U-Net architecture enables the model to learn and refine the
shadow removal progressively, leveraging both the initial predictions and ground
truth.

Experimental evaluations on benchmark datasets demonstrate that our approach
achieves notably good performance in both qualitative and quantitative evalua-
tions. By using both objective metrics such as Structural Similarity Index(SSIM),
and Root mean Square Error (RMSE), and subjective evaluations where human
observers rate the quality of the shadow removal results, our approach was found
to outperform other state-of-the-art methods. Overall, our proposed cascade U-
Net architecture offers a promising solution for the shadow removal that can
improve image quality and interpretability.

Key Terms— shadow removal, cascade U-Net, deep learning, computer vision,
image processing.
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CHAPTER 1

Introduction

A shadow is an area of darkness created when an opaque object blocks the passage
of light from a source, resulting in a contrasting absence of illumination. Figure
1.1 shows occurrence of the shadow due to blockage of light by object.

Figure 1.1: Object with Shadow

1.1 Types of Shadow

Several factors influence the occurrence and characteristics of different types of
shadow, There are primarily two distinct types of shadow that occur depending
on the position of the lighting source and the intensity of the light, namely hard
and soft shadow. Additionally, we can categorize shadow as cast shadow and self
shadow.
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1.2 Cast Shadow and Self Shadow

Cast shadow[21] occur when an object blocks a light source, resulting in the
formation of a shadow on the surface or background behind it. These shadow
typically appear as darker regions with well-defined edges and can provide im-
portant cues about the shape, position, and orientation of objects in an image. As

Figure 1.2: Types of Shadow.

shown in Figure 1.2, Cast shadow [21] also have two variant are named as umbra
and penumbra. The umbra [21] is characterized by its high level of darkness and
the absence of any discernible details or illumination. It has well-defined edges
and represents the area of total shadow. The penumbra [21] is the transitional
region surrounding the umbra. It is an area where partial illumination occurs, as
the light source is only partially blocked by the object casting the shadow. In the
penumbra, there is a gradual transition from the darkest region (umbra) to the
fully illuminated area outside the shadow. The penumbra appears less dark than
the umbra and typically exhibits softer edges due to the partial obstruction of the
light source.

In Figure 1.2, Self shadow [10] refer to shadow that objects cast on them-
selves due to the presence of multiple light sources or complex lighting condi-
tions. These shadow often occur on curved or irregular surfaces and can intro-
duce variations in illumination and color across an object, making it challenging
to analyze and interpret.
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1.3 Hard Shadow and Soft Shadow

Well-defined, crisp edges characterize hard shadow [10], which arise when the
light source is relatively small, intense, and the objects that cast the shadow pos-
sess distinct boundaries. Hard shadow are typically seen when the light source
is direct, such as sunlight on a clear day or a focused artificial light. The edges of
the shadow are sharp, creating a high contrast between the shaded area and the
illuminated surroundings. In terms of appearance, hard shadow produce a clear
separation between the shadow and the object, resulting in a distinct dark region.

Figure 1.3: Hard and Soft Shadow

In Figure 1.3, Soft shadow[21] on the other hand, have blurred or diffuse
edges. They occur when the light source is larger in size or when the object cast-
ing the shadow is in close proximity to the surface it falls upon. Soft shadow can
be observed in various lighting conditions, such as an overcast sky or when light
passes through a translucent material. Unlike hard shadow, soft shadow exhibit
a gradual transition from the shaded area to the illuminated region, resulting in
smoother and more subtle effect. The intensity of the shadow gradually decreases
as it moves away from the object, leading to a more gentle and diffused appear-
ance.
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1.4 Motivation

Accurate shadow detection and removal techniques have crucial applications in
domains like autonomous driving, surveillance, augmented reality, image/video
editing, medical imaging etc. Shadow pose challenges for object detection, track-
ing, behaviour analysis, visual coherence, and diagnostic accuracy. By providing
robust and reliable solutions, our research aims to enhance object recognition and
scene understanding in autonomous driving systems, improve tracking accuracy
and reliability in surveillance, enhance visual realism in augmented reality, re-
fine visual quality in image/video editing, and aid accurate analysis in medical
imaging. These advancements will contribute to safer autonomous vehicles, more
effective surveillance, immersive augmented reality experiences, enhanced visual
content, and improved medical diagnostics.

1.5 Objective

Given the domain of shadow images Ix and the domain of shadow free images
Iy, we are primarily focused on learning the mapping function ISF: Ix→Iy, which
transforms shadow domain image to shadow free domain image. Here Figure 1.4
shows visual representation of the research work objective.

Figure 1.4: Transforms shadow domain image to shadow free domain image.
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1.6 Contribution

In this study, we introduce a novel approach for shadow removal using a cas-
cade U-Net architecture. Our proposed method consists of two U-Net architec-
tures connected in sequence. The initial U-Net takes the shadow image and the
corresponding ground truth as input, producing an initial output referred to as
ipred. Subsequently, the second U-Net leverages this predicted output ipred and
the ground truth igt as input to generate a refined shadow removal image, termed
i f inalPred. By employing this cascade architecture, our method aims to enhance the
accuracy and quality of shadow removal results.

The key contributions of this work are as follows:

• We present a pipeline that removes the shadow using deep learning ap-
proach.

• We introduce Cascade U-Net that effectively remove the complex shadow
from images.

• Proposed cascade U-Net architecture gives comparatively good results
benchmark datasets like ISTD[20] and SRD [16].

Figure 1.5: Shadow_img is Original shadow image, Ground_truth is represent
Ground truth of shadow image and Predicted_img is represent final output of
cascade U-Net.
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1.7 Organization of Thesis

An Overview of the organization of my thesis is given below:
Chapter 2 Literature Survey which discusses work done in the field of shadow
detection and removal using various Properties-based, Deep learning based ap-
proaches. Chapter 3 explains in detail the proposed Method, In which the overall
scheme is discussed by the proposed model architecture for shadow detection us-
ing U-Net and shadow removal using cascade U-Net. Also discussed about loss
function, which is used in the model. Chapter 4 Contain results of the proposed
method on the ISTD and SRD dataset with comparisons with other approaches.
Evaluation parameters for shadow removal are SSIM and RMSE, also discussed.
Visual results of shadow detection and, quantitative results and ablation studies
of this thesis work. Chapter 5 shows conclusion and future scope.
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CHAPTER 2

Literature Survey

Chapter 2 presents an overview of methods for shadow detection and removal,
including Feature-based and Deep learning-based approaches. Feature-based
methods leverage properties such as geometry, color, and texture to identify and
eliminate Shadow. Deep learning-based methods utilize neural networks and
techniques like GANs for accurate shadow detection and removal. The chapter
also discusses the data requirements for these methods and highlights available
datasets for training and evaluating shadow removal algorithms.

2.1 Past Research

In the domain of shadow detection and removal from image/video, many notable
work has been done in last. In the early era, properties-based approaches were
used, which involved utilizing properties such as chromaticity, color, features, and
texture. Deep learning and GAN-based methods have shown promising results
for shadow removal. By leveraging the power of neural networks and adversar-
ial training, these approaches can automatically extract meaningful features and
generate visually appealing outputs. Compared to traditional properties-based
approaches, deep learning and GAN-based methods offer more accurate and ef-
fective solutions for shadow removal tasks.

Table 2.1 presents an overview of methods for shadow detection and removal.
Table 2.1 outlines various techniques categorized by method type, such as feature-
based and deep learning approaches and GAN based approaches. These methods
include Prati et al.[15], Guo et al.[6], Yang et al.[22] , Gong et al.[5], Khare et al.[11],
DeshadowNet [16], Fan et al.[3], StackedCNN [19], FusionNet[4], SCGAN [14],
ST-CGAN [20], and TCGAN [18] methods overview.
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Table 2.1: Methods for shadow detection and removal

Method Type of Method Aspect
Prati et al.[15] Feature (Physical) shadow detection
Guo et al.[6] Feature (Color) shadow detection, shadow removal
Yang et al.[22] Feature (Color) shadow removal
Gong et al.[5] Feature (Color) shadow removal
Khare et al.[11] Feature (Wavelet Feature) shadowdetection, shadow removal
DeshadowNet [16] DL (CNN) shadow removal
Fan et al. [3] DL (CNN) shadow removal
StackedCNN [19] DL (CNN) shadow detection
FusionNet [4] DL (CNN) shadow removal
SCGAN [14] DL (GAN) shadow detection
ST-CGAN [20] DL (GAN) shadow detection, shadow removal
TCGAN [18] DL (GAN) shadow removal

2.2 Properties-Based Methods

Shadows are a real-world occurrence. Early efforts in shadow detection and re-
moval mostly concentrated on researching several physical shadow features, such
as texture, chromaticity, intensity, etc. The term "Properties- based technique"
refers to these. Techniques like colour-based and texture-based approaches are
examples of Properties-based strategy. Guo et al.[6] simplification of this model
uses a linear system to depict the relationship between shadow pixels and shadow
free pixels. They achieve this by matching regions that have Shadow and those
that don’t have shadow. Khare et al. [11] proposed method on discrete wavelet
transform (DWT). DWT is used to suggest a novel method for shadow identifi-
cation and removal. The multi-resolution capability of DWT, which divides an
image into four distinct bands without sacrificing the spatial information.

2.3 Deep Learning Based Methods

In the field of deep learning, there have been notable advancements in recent
years in methods that assess the mapping relationship between shadow and
shadow free domains.

Wang et al.[20] introduced a solution that combined the colour-based and
model-based approaches to shadow identification. The shadow is first identified
in its moving region using a properties-based method, after which a coarse region
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is created using a model-based method for moving shadow. This coarse region
is then employed in a shadow detection method based on HSV color space. The
suggested method worked effectively at detecting moving shadow, especially
those that fell within the vehicle’s boundary. However, it has been determined
that this strategy is not appropriate for shadow that are cast by or beneath moving
vehicles.

To map shadow pixels with shadow free pixels, Hieu et al.[12] uses the shadow
illumination model. Framework of Hieu et al.[12] method is in Figure 2.1 estimate
the physical illumination model’s parameters using deep neural networks. To
anticipate the shadow parameter and determine the shadow matte, Hieu et al.[12]
uses deep networks like SP-NET, M-NET and I-NET. I-NET is another deep net-
work used to refine the outcome.

The system models the shadow free image using the shadow image, the
shadow parameter, and the shadow matte. The shadow free image can be ex-
pressed as shown in equation 2.1,

Ishadow free = Irelit · α + Ishadow · (1 − α) (2.1)

where shadow image and shadow free image Ishadow and Ishadow free respectively.
α is the matting layer, and relit image represnt as Irelit. Each pixel i of the relit
image Irelit is computed by equation 2.2,

Ireliti = w · Ishadowi + b (2.2)

The shadow free image is created by linearly combining the relit image with
the input shadow image. The matting layer α represents the per-pixel coefficients
of this process. The value of α should ideally be 1 in the non-shadow area and
0 at the shadow area’s umbra. Near the shadow boundary, the value of progres-
sively changes for the pixels in the penumbra of the shadow. The matting layer α

computed by equation 2.3,

αi =
Ishadow freei − Ireliti

Ishadowi − Ireliti

(2.3)

The matting layer α represents the per-pixel coefficients of the linear combi-
nation of the relit image and the input shadow image that results in the shadow
free image. Ideally, the value of α should be 1 at the non-shadow area and 0 at
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the umbra of the shadow area. For the pixels in the penumbra of the shadow, the
value of α gradually changes near the shadow boundary.

Figure 2.1: Framework of Hieu et al[12] method.

Deep learning-based methods for shadow detection and removal are currently
encouraged by the availability of large-scale datasets like ISTD[20], SBU[19],
USR[7], and others. The most significant result in the detection and removal of
Shadow is obtained using GAN. Deshadow-Net, which is trained end-to-end, is
introduced by Quet al.[16]. In order to forecast shadow matte, the model pro-
duced results by extracting multi-context features at each layer of the network.
The main function of this is to learn the mapping between the shadow image and
its shadow matte, and then utilize the predicted shadow matte to reconstruct an
image without shadow.

2.4 Generative Adversarial Network based methods

In recent years, the utilization of Generative Adversarial Networks (GANs) and
their subsequent advancements has emerged as a prominent approach for ad-
dressing various challenges related to translating images. Illustrated in Figure
2.2, GAN consists of two Deep Neural Network architectures: a generator de-
noted as G, and a discriminator denoted as D. The generator model G is capable
of producing authentic-looking synthetic images. The purpose of the discrimina-
tor model D is to determine whether an input image originates from G or belongs
to the genuine set of training images. Both models are trained together in an ad-
versarial manner, wherein the objective is for G to generate samples that deceive
D, while D strives to avoid being tricked by G. The ultimate goal is for G to gen-
erate images that closely resemble the authentic dataset, making it challenging for
D to differentiate between the creations of G and real images.

Unlike traditional generative models, CGANs introduce a conditioning vari-
able to control the generation process, allowing the generation of samples tailored
to specific attributes or classes. Figure 2.3 shows, The conditioning variable serves

10



Figure 2.2: Generative Adversarial Networks Architecture.

Figure 2.3: Conditional Generative Adversarial Networks Architecture.
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as additional information for both the generator and discriminator networks, en-
abling them to learn the conditional distribution of the data.

Wang et al.[20] proposed model is based on a novel STacked Conditional
Generative Adversarial Network (ST-CGAN), which consists of two stacked
Conditional Generative Adversarial Networks (CGANs) with a generator and
a discriminator in each. Using Conditional GAN, this model is capable of both
shadow detection and shadow removal. The architecture uses GAN loss to in-
crease model accuracy and uses shadow mask and shadow free images for taring.
In particular, the first generator receives a shadow image and outputs a shadow
detection mask. This shadow picture is combined with its expected mask and
then passed through the second generator to get its shadow free image. Addi-
tionally, the two associated discriminators for the detected shadow region and
reconstruction by removing shadow, respectively, are very likely to reflect higher
level relationships and overall image properties.

Recently, by using properties of shadow with GAN for shadow removal task.
Channel Attention GAN CANet[1], it employs two networks for shadow detec-
tion and removal. The approach takes into account the physical characteristics of
shadow and the camera’s image acquisition system. Network architecture con-
siders the relationship between color channels to enhance performance. During
training, the authors modify the color and introduce artifacts to the training im-
ages, increasing the complexity of the dataset.

2.5 U-Net

The U-Net architecture is a popular Conventional Neural Network (CNN) model
designed explicitly for image segmentation tasks. In 2015, it was introduced by
Ronneberger et al.[17] and has since been widely adopted in various medical
imaging applications. For image segmentation, U-Net architecture is frequently
employed. It contains both an encoder and a decoder. Because of how all the
layers are stacked, the architecture of the U-Net, where the encoder comes first
and is followed by the decoder, is known as a U shape.

The standard U-Net architecture is represent by Figure 2.5. The encoder is
identical to the standard convolutional network architecture, also known as the
U-Net contraction path. A Rectified Linear Unit (ReLU), stride two downsam-
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Figure 2.4: Image Segmentation using U-Net

plings, and a max pooling operation divides the four convolution layers. Two
2D convolutions with a 3 × 3 size kernel make up each layer. The decoder, also
known as the expansion path, comes after the contraction path, which consists
of four deconvolution layers. Each deconvolution layer (ReLU) consists of a 2D
transposed convolution operation for upsampling, concatenation with a corre-
sponding cropped feature map from the contraction path, two convolutions, and
then a rectified linear unit.

Upsampling and regaining the spatial data that was lost during encoding are
tasks of the decoder path. The feature maps are gradually enlarged, and they
are combined with the skip connections from the respective encoder layers. By
combining data from many scales, the model is able to accurately segment data
while also capturing local and global contexts. Upsampling operations are typ-
ically followed by convolutional layers in the decoder route. The feature maps
spatial resolution is increased by the upsampling techniques, enabling the model
to retrieve finer features. Transposed convolution, commonly referred to as de-
convolution, or bilinear interpolation are frequent methods for upsampling. The
specific needs of the task and the available processing resources may influence
the upsampling method selection.

The output of the extended path is then applied to a further 1 × 1 convolution
to obtain the final output. For the training process, Adam’s optimizer and Binary
Cross Entropy as the loss function were optimised, with an 80:20 split between the
training and validation stages. The training images were initially reduced in size
to 512 × 512 patches to fit within the network design.
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Figure 2.5: Standard U-Net Architecture[17].
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2.6 Details of Data Requirement

Table 2.2 highlights the data requirements for these methods, specifying the
types of data needed, including shadow, shadow-mask, and shadow free images.
Some methods require paired data, while others can work with unpaired data.
This summary provides a glimpse into the methods and data requirements for
shadow detection and removal.

Table 2.2 provides a comprehensive overview of the data requirements and
types needed for various approaches in shadow detection and removal. For in-
stance, DeshadowNet [16], Bansal et al.[2], Fan et al.[3], StackedCNN [19], SCGAN
[14], ST-CGAN [20], Nagae et al.[13], DSC [9], FusionNet [4], and MSGAN [7]
rely on shadow and shadow-mask images, along with shadow free images, which
need to be paired. On the other hand, MSGAN [7] and TCGAN [18] can work with
unpaired data consisting of shadow and shadow free images. This Table serves as
a valuable resource, shedding light on the different techniques employed and the
corresponding data requirements for effective shadow detection and removal.

Table 2.2: Data Requirements and Type of Data for below approaches

Method Data Required Type of Data
DeshadowNet [16] shadow, shadow free Paired
Bansal et al.[2] shadow, shadow-mask Paired
Fan et al.[3] shadow, shadow free Paired
StackedCNN [19] shadow, shadow-mask Paired
SCGAN [14] shadow, shadow-mask Paired
ST-CGAN [20] shadow, shadow-mask, shadow free Paired
Nagae et al.[13] shadow, shadow-mask, shadow free Paired
DSC [9] shadow, shadow-mask, shadow free Paired
FusionNet [4] shadow, shadow-mask, shadow free Paired
MSGAN [7] shadow, shadow free Unpaired
TCGAN [18] shadow, shadow free Unpaired

2.7 Overview of Datasets

Table 2.3 shows the details of large-scale available shadow datasets with the
amount and type of data. There are several large-scale shadow datasets that
have been published for training and evaluating shadow removal methods. Table
2.3 contain benchmark dataset which include the Image Shadow Triplets Dataset
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(ISTD) [20], Shadow Remove Dataset with shadow images and shadow free
image(SRD)[16], the Shadow Remove Dataset with shadow images and masks
(SBU) [19], and the Unpaired Shadow Removal Dataset (USR) [7]. These datasets
provide diverse and extensive shadow images, ground truth shadow free images,
and shadow masks for training and testing shadow removal algorithms. They en-
able researchers and practitioners to develop and evaluate shadow removal meth-
ods on a large scale, facilitating the advancement of shadow removal techniques
in the field of computer vision.

Table 2.3: Datasets for Shadow Detection and Removal

Dataset Amount Content Type of Data
SRD[16] 3088 shadow, shadow free Paired

ISTD [20] 1870 shadow, shadow-mask, shadow free Paired
USR [7] 2445 shadow, shadow free Unpaired
SBU [19] 4723 shadow, shadow-mask Paired

CUHK [8] 10500 shadow, shadow-mask Paired

16



CHAPTER 3

Proposed Method

Chapter 3 presents a novel cascade U-Net architecture for the shadow removal
in computer vision. The proposed method utilizes two sequentially connected
U-Net Architectures to iteratively refine the shadow removal process. The ar-
chitecture captures both local and global contextual information, improving the
accuracy and quality of results. The experimental evaluations on benchmark
datasets demonstrate promising outcomes, also a section discussed shadow de-
tection using U-Net. The chapter also discusses the training parameters and loss
function used, emphasizing the significance of Binary Cross Entropy for optimiz-
ing the model.

3.1 Shadow Detection Using U-Net

For detecting the shadow from images U-Net [17] is used. U-Net is a model which
has take input from the shadow image paired with the shadow mask. At first, it is
tried with the ISTD dataset containing the shadow image and the shadow mask to
predict on testing dataset image mask. ISTD dataset images contain hard shadow.
For the training process, Adam as optimizer and Binary Cross Entropy as the loss
function were used for optimization, while the train and validation split ratio was
set to be 80:20. Before the training, the training images resize as 128×128 to fit into
the network architecture. Figure 3.1 shows the shadow detection using single U-
Net. And Table 3.1 gives all information about training parameter for the shadow
detection
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Figure 3.1: U-Net for Shadow Detection
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Table 3.1: Summary of the shadow detection training parameter for U-Net archi-
tecture.

Training Parameter Type/value
input 128 × 128 × 3

Initial Leaning rate 1e-7
Filter size 3 × 3

Pooling size 2 × 2
Batch size 8

Number of epochs 200
Loss Function BCE

output 128 × 128 × 3

3.2 Shadow Removal Using Cascade U-Net

The shadow removal is a critical task in computer vision that aims to enhance
image quality and improve the accuracy of downstream image processing tasks
by eliminating the shadow. Convolutional neural networks (CNNs), specifically
U-Net, have shown great potential in addressing this challenge due to their ability
to capture local and global contextual information effectively. We propose a novel
cascade U-Net architecture for the shadow removal. This architecture comprises
two U-Net networks connected in sequence, offering the potential to effectively
eliminate hard shadows.

In this approach, proposed a two-step process for achieving partial shadow
removal from input shadow images. Initially, employ the first U-Net model,
which takes as input the shadow image along with its corresponding ground
truth. Once the first U-Net has been trained,and predict partially shadow re-
moval image. Next, the second UNet model takes as input the primary shadow
removal image obtained from the output of the first U-Net and also the original
shadow image. The main purpose of the second U-Net is to further refine the
partial shadow removal image generated in the previous step.

The first U-Net takes the shadow image and the corresponding ground truth
as input and predicts an initial output, denoted as ipred. This predicted output,
along with the ground truth, is then fed as input to the second U-Net, which
generates a refined shadow removal image, denoted as i f inalPred.

During the training process, the RMSE (Root Mean Squared Error) is com-
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puted to measure the pixel-wise difference between the predicted output and the
ground truth, denoted as L(igt, ipred). The ISTD[20] dataset is used for training,
which contains the shadow images paired with the shadow masks for the initial
training. The Adam optimizer and Binary Cross Entropy loss function are used
for training, with a train-validation split ratio of 80:20. The input image resize to
128x128 to fit the network architecture. Table 3.2 contain information regarding
training parameters. After the training of the first U-Net, the loss of after first
U-Net achieved 0.5124. The second U-Net is then trained using the shadow free
images predicted by the first U-Net and the corresponding shadow free images
from the ISTD dataset and achieved loss of 0.3784. Additionally, experiments
with the unpaired SRD dataset [16] are also conducted.

In Figure 3.2 , the input images are denoted as ishadow and igt, which represent
the shadow image and the shadow free image, respectively. ipred and i f inalPred

are the primary result generated by the first U-Net and the final shadow removal
image, respectively. L(igt, ipred) and L(igt, i f inalPred) represent the error functions,
i.e., the RMSE between the ground truth and the predicted output for the first
U-Net and the final output, respectively.

Overall, the proposed cascade U-Net architecture for the shadow removal
demonstrates promising results, as shown by the experimental evaluations on
benchmark datasets. The use of ground truth information and the iterative re-
finement approach in the cascade U-Net can potentially improve the accuracy
and quality of the shadow removal results, contributing to the advancement of
computer vision techniques in addressing the challenges of shadow removal in
various applications.

Table 3.2: Summary of training parameter for cascade U-Net architecture.

Training Parameter First U-Net second U-Net
Initial Leaning rate 1e-7 1e-7

Filter size 3 × 3 3 × 3
Pooling size 2 × 2 2 × 2
Batch size 8 8

input 128 × 128 × 3 128 × 128 × 6
output 128 × 128 × 3 128 × 128 × 3

Number of epochs 50 50
Loss Function BCE BCE
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Figure 3.2: Cascade U-Net
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3.3 Loss Function

For the task of shadow removal, various loss functions such as SSIM (Structural
Similarity Index), Gradient-based loss, and Binary Cross Entropy (BCE) can be em-
ployed. Among these options, Binary Cross Entropy has been found to yield fa-
vorable results. In the specific architecture of cascade U-Net, Binary Cross Entropy
is utilized for both U-net components. This choice of loss function helps to effec-
tively train the model and achieve improved performance in the shadow removal
task.

Binary Cross Entropy

The Binary Cross Entropy (BCE) is a loss function commonly used in machine learn-
ing for binary classification tasks. It measures the dissimilarity between predicted
probabilities and true labels, enabling the training of models to accurately clas-
sify binary outcomes. The BCE loss is computed over all instances in the dataset
and then averaged to obtain a single loss value BCE is essential for optimizing
models in various applications, including my thesis on the shadow detection and
removal.

BCE = − 1
N

N

∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] (3.1)

• N represents the total number of samples.

• yi is the true label (either 0 or 1) for the ith sample.

• pi is the predicted probability for the ith sample.
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CHAPTER 4

Experimental Results

In this Chapter, two benchmark datasets ISTD and SRD are used, we demonstrate
experimental findings from the proposed approach presented in this chapter. We
also present the experimental outcomes of these two benchmark dataset obtained
using the proposed approach. Additionally, we present the outcomes of numer-
ous ablation trials at the end of this chapter.

4.1 Experimental Dataset

In order to assess the effectiveness of the proposed framework, we conducted ex-
periments using a dataset called ISTD, which consists of Image Shadow Triplets
(ISTD) [20]. This dataset is widely recognized as a significant benchmark for eval-
uating the shadow detection and removal techniques. It comprises 2410 triplets
of images, including the shadow, shadow-mask, and shadow free images, all cap-
tured from various scenes. The resolution of these images is 640x480 pixels. The
reason for using ISTD for the shadow detection is that it provides shadow masks
for the corresponding shadow images. On the other hand, the SRD dataset[16]
lacks the shadow masks for the corresponding shadow images. Therefore, both
the ISTD and SRD datasets were utilized for shadow removal evaluation pur-
poses. The research work is mainly based on the shadow removal from video,
since both dataset contain images which are frames extracted from small videos
clips.

Below Figure 4.1 shows sample images of ISTD[20] and Figure 4.2 shows sam-
ple images of SRD dataset[16]. SRD[16] contains 2680 pairs of the shadow images
and the shadow free images. With an image resolution of 840x640 pixels, which is
split in an 80:20 ratio for training and testing.
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Figure 4.1: Sample of ISTD Benchmark Dataset [20]

Figure 4.2: Sample of SRD Dataset[16]
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4.2 Evaluation Parameters

To assess the generated results, the evaluation metric utilized is the Root Mean
Square Error (RMSE) measured in the RGB color space. It calculates the disparity
between the ground-truth images and the produced shadow free images. For the
quantitative analysis of shadow removal, the pixel-wise concurrence between a
predicted image and its corresponding ground truth is measured using the Struc-
tural Similarity Index (SSIM). The value of SSIM ranges between 0 and 1, where
a higher value indicates better similarity between the images. Equations 4.1 and
4.2 are for SSIM and RMSE respectively, which are shown below. SSIM for the
benchmark ISTD dataset on the proposed method is 0.7092

SSIM(x̂, x) =
(2µx̂µx + c1)(2σx̂x + c2)

(µ2
x̂ + µ2

x + c1)(σ
2
x̂ + σ2

x + c2)
(4.1)

RMSE(x̂, x) =

√√√√ 1
N

N

∑
i=1

(x̂i − xi)2 (4.2)

• N is the total number of pixels in the images.

• x̂ is the predicted image being compared.

• x is the original image

• µx̂ and µx are the mean values of x̂ and x respectively.

• σx̂2 and σx are variances of x̂ and x respectively

• σx̂x is the covariance between x̂ and x

• c1 and c2 are small constants added for numerical stability, usually set to
c1 = (k1L)2 and c2 = (k2L)2 Where L is the dynamic range of the pixel
values (e.g., 255 for 8-bit images) and k1 and k2 are constants typically set to
small values.

For both U-Net, RMSE is used as an evaluation metric. SSIM is used as the
final result evaluation metric along with RMSE. Both evaluation metrics RMSE
and SSIM are based on pixel to pixel wise operation.
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4.3 Shadow Detection Evaluation

The evaluation metrics employed to assess the quality of shadow free image in-
volves the utilization of Root Mean Square Error (RMSE). For the quantitative
analysis of shadow detection, the dice coefficient was employed to measure the
level of agreement at the pixel level between the predicted image and its corre-
sponding ground truth. The equation 4.3 shows the dice coefficient. The Dice
coefficient yields a value between 0 and 1.

Dice − coe f f icient =
2 ∗ |A ∩ B|
|A|+ |B| (4.3)

Here A and B can be considered as the shadow free predicted image and the
ground truth image. Here the below Table 4.1 gives quantitative results on
ISTD.The best and second-best results in the Tables are highlighted in blue and
bold, respectively.

Table 4.1: Quantitative Shadow Detection results with RMSE and Dice coefficient
on ISTD test dataset.

Methods Dice coefficient RMSE overall
ST-CGAN [20] 0.5632 7.47

Mask-Shadow GAN [7] 0.6768 6.99
Ours 0.8553 6.45

4.4 Shadow Detection Results on ISTD

The evaluation of shadow detection is conducted on the ISTD test dataset.
Our proposed method is compared with the two state-of-the-art approaches,
MaskShadowGAN [7] and ST-CGAN [20]. Figure 4.3 displays the shadow detec-
tion results on ISTD. Table 4.1 presents the quantitative performance of shadow
detection, measured in terms of RMSE. A lower RMSE value indicates superior
performance.
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a) b) c)

Figure 4.3: shadow detection using U-Net. a) represents the shadow image, b)
represents ground truth and c) represents the shadow detection using U-Net.

4.5 Shadow Removal Results on ISTD

The results displayed in Figure 4.4 exhibit the performance of various techniques
on shadow removal in ISTD. It is important to highlight that our innovative cas-
cade U-Net approach accomplishes the shadow removal without relying on a
shadow image mask, whereas other methods are specifically designed for either
shadow detection or shadow removal, but not both of them simultaneously.

In the ISTD test dataset, various approaches for shadow removal were eval-
uated, and their quantitative results are presented in Table 4.2. Among these
methods, the proposed cascade U-Net stands out by achieving an RMSE (Root
Mean Squared Error) of 7.05 without relying on a shadow image mask. This
outperforms other techniques such as those introduced by Yang et al.[22], Gong
et al.[6], Guo et al.[5], ST-CGAN [20], and DSC et al.[3]. The original RMSE on
the other hand, exhibits 10.97. ST-CGAN[20] has complex architecture that first
generate shadow mask and then use it for shadow removal, whereas cascade
U-Net has simple architecture.

The visual results on the ISTD test dataset are shown in Figure 4.4 compression
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Table 4.2: Evaluation of removal effectiveness using RMSE on the ISTD test
dataset, showcasing quantitative outcomes.

Methods RMSE overall
Original 10.97

Yang et al.[22] 15.63
Gong et al.[5] 9.3
Guo et al.[6] 8.53

Ours 7.05

Image GT Guo [6] Yang [22] Gong [5] Ours

Figure 4.4: Comparison of Shadow removal results of different methods on ISTD
dataset
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with other methods like Guo et al.[5], Yang et al.[22], Gong et al.[5] with GT of
shadow image and Ours proposed model results are shown below. By visualizing
Figure 4.4, our method gives comparatively good results than others. Gong et
al.[5] method gives good results among Guo et al.[5] and Yang et al.[22].

4.6 Shadow Removal Results on SRD

The performance of our proposed method, trained with SRD [16], is compared
with other methods [5, 6, 7, 22, 23] on the SRD test dataset.The visual results of
SRD dataset on the proposed cascade U-Net archirecture is shown in Figure 4.5.
The results, shown in Table 4.3, demonstrate that our method outperforms others
in the overall scenario. It is important to note that the comparison of quantitative
results is limited to the scenario only, as shadow-mask images are unavailable for
the dataset.

Table 4.3: Quantitative shadow removal results with RMSE on SRD [16] test
dataset.

Method RMSE
Original 14.41

Yang et al.[22] 22.57
Guo et al. [6] 12.60
Gong et al.[5] 8.73

CycleGAN [23] 9.14
Mask-ShadowGAN [7] 7.32

Ours 7.85
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Shadow Image GT Ours

Figure 4.5: Visual performance of shadow removal results on SRD test dataset.
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4.7 Ablation studies

In order to remove the shadow from Images, various experiments have been done
on the U-Net model and by changing Loss functions.

Result Using Single U-Net with Binary Cross Entropy Loss:

For shadow removal, single U-Net is used with Binary Cross Entropy as loss func-
tion. The visual result on ISTD shows in below Figure 4.6. Using single U-Net, the
shadow is not properly removed, edges are visible. The single U-Net with BCE
loss has not given desirable output.

Figure 4.6: BCE Loss on ISRD

Cascade U-Net with Gradient Loss:

In the context of the shadow removal, the gradient loss can be used as a regular-
ization term to encourage smoothness in the estimated shadow free image. The
gradient loss penalizes abrupt changes or sharp edges in the output image, pro-
moting a more visually pleasing and realistic result.

Gradient Loss =
n

∑
i=1

∥∇x f (xi)−∇xg(xi)∥2 (4.4)

In the above formula 4.4, f and g are functions, n is the number of data points,
xi represents the i − th data point, and ∇x denotes the gradient with respect to x.
The ∥ · ∥2represents the squared L2 norm of the difference between the gradients.
Figure 4.7 shows the result of ISTD with Gradient Loss.
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Figure 4.7: Gradient Loss on ISRD

Cascade U-Net with SSIM loss

SSIM loss, a frequently used technique for removing the shadow, assesses the
structural similarity of two images. It directs model training to improve the
shadow while maintaining structure, producing outputs that are correct and
pleasing to the eye. Figure 4.8 shows Predicted image has color imbalance red
color is transformed. SSIM loss with cascade U-Net has not given competitive
results.

Figure 4.8: SSIM Loss on ISRD
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CHAPTER 5

Conclusion and Future Scope

This thesis proposed a cascade U-Net architecture for the shadow removal in com-
puter vision. The architecture consists of two stages of U-Net architectures that
progressively learn and refine the shadow removal results. The first stage trains a
U-Net using the shadow images and ground truth image to predict shadow free
images. The second stage utilizes the predicted shadow free images and ground
truth image as input to refine the results further.

The experimental evaluations on benchmark datasets demonstrate the effective-
ness of our approach, outperforming state-of-the-art methods in both qualitative
and quantitative evaluations. The evaluation metrics such as structural similarity
index (SSIM) and Root Mean Square Error, along with subjective evaluations by
human observers, confirm the superiority of our method. The proposed cascade
U-Net architecture offers a promising solution for enhancing image quality and
interpretability by removing the shadow. It leverages both initial predictions and
ground truth images, enabling progressive improvement in the shadow removal.

Future Scope: This research opens avenues for further refinements and optimiza-
tions in the shadow removal techniques to advance image analysis in various
computer vision applications. Future research can explore further improvements
and extensions of the cascade U-Net architecture for other related tasks in com-
puter vision. The scope of this study focuses on the development and evaluation
of a cascade U-Net architecture for the shadow removal in computer vision. The
study aims to enhance the interpretability and visual quality of images by effec-
tively removing the shadow. The proposed approach shows promising results in
generating the shadow free images, but it is acknowledged that there is an issue
with the shadow edges, where Shadow are still visible and need to reduce RMSE
for predicted Shadow Free Image.
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