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Abstract

Scientific experiments and modern applications generate large amount of data

every day. Many such applications store the data in raw format initially, as the

schema is not known. The traditional database management system (DBMS) re-

quires the entire dataset to be loaded before querying it. Data loading requires a

significant amount of time and resources, which increases application latency and

running costs. In-situ engines eliminate the data loading requirement, thereby

reducing upfront resource utilization. However, they suffer from high query exe-

cution time (QET) and reparsing. It has been observed that state-of-the-art in-situ

and DBMS do not utilize available resources efficiently.

This thesis proposes Resource Availability and Workload aware Hybrid Frame-

work (RAW-HF) to tackle underutilization of resources. It optimizes required

resources (ORR) and maximizes utilization of existing resources (MUER) for re-

source efficient processing of raw datasets. It is a hybrid system consisting of an

in-situ engine and DBMS. The in-situ engine reduces data to query time while

DBMS moderates the raw data reparsing. Hybrid framework for raw data query

processing and resource monitoring is developed during the initial phase. Anal-

ysis of resource monitoring indicated substantial underutilization of resources.

The optimization of required resources is done using Query Complexity Aware

(QCA) and Workload and Storage Aware Cost-based (WSAC) algorithms. QCA

and WSAC also improved workload execution time (WET). Further resource uti-

lization is improved by Maximizing Utilization of Available Resources (MUAR)

algorithm.

RAW-HF is demonstrated using scientific experiment datasets like Sloan Dig-

ital Sky Survey (SDSS) and Linked Observation Data (LOD). RAW-HF query and

x



resource performances are compared with state-of-the-art techniques. The state-

of-the-art techniques which allocate resources accurately based on historical re-

source consumption data do not address ad-hoc queries and multi-format joins.

On the other hand, RAW-HF addresses ad-hoc queries and also supports multi-

format joins. The ORR phase of RAW-HF reduced the WET by 26% compared to

the state-of-the-art Partial Loading technique. MUAR component of RAW-HF is

capable of estimating work memory value with 15-20% error required to achieve

the best query performance with only single query run data. A comparison of

MUAR with machine learning based techniques like PCC and AutoToken is also

presented. The overall CPU, RAM, and IO resource utilization has been improved

by 61-91% over traditional database management systems. Although the Partial

loading technique requires 33% lesser RAM than RAW-HF, it needs 24% more IO.

The improvement in dataset size processing capacity is also estimated for SDSS

dataset. The estimation proposes that RAW-HF framework can be used to process

large application datasets efficiently using existing resources.
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CHAPTER 1

Introduction

The scientific, smart city, Internet of Things (IoT), and modern applications have

generated massive amounts of data in last decade. Their data generation speeds

have significantly increased with improvements in sensors, cheaper smart de-

vices, and users. 4G and 5G internet services have also impacted data generation,

and consumption rates [10]. IoT devices like health monitoring, location shar-

ing, smart meters, and other smart devices were estimated to double from 7B in

2018 to 13.5B in 2022 [75]. However, the latest estimation suggests that the num-

ber of IoT devices may reach 14.4B by the end of 2022 [90]. For IoT applications,

real-time processing of sensor data is challenging due to the high velocity and no

downtime. For example, IoT applications like e-bike [59] can continuously pro-

duce more than 6GB of data every second if applied to just 1% of vehicles around

the globe [9]. Scientific experiments on the Large Hadron Collider (LHC) gen-

erated 2.6PB data during its initial runs in 2009. The amount of generated data

increased by 25 times to 90PB during experiments done in 2018 [23]. The future

runs at CERN are expected to generate ten times more data due to its improved

particle accelerator chain High Luminosity LHC [13].

The volume of Astronomy datasets like the Sloan Digital Sky Survey (SDSS)

has increased by 233 times when comparing the first version (DR-1) released in

2003 to the most recent version (DR-17) released in 2021 [17]. NASA’s Earth Ob-

serving System (EOS) collects more than 3.3TB of data every day from more than

30 polar-orbiting and low inclination satellites [61]. These satellites perform long-

term global observations of the land surface, biosphere, atmosphere, and oceans

to monitor & predict changes in the earth’s environment. Figure 1.1 compares the
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Figure 1.1: Scientific Dataset Size Growth

growth rate of SDSS and EOS scientific datasets. The X-axis in the graph shows

the dataset size observation year and Y-axis shows the dataset size in percentage,

considering 2021 as 100%. It can be seen that both datasets have nearly quadru-

pled in size in just 7 years, from 2015 to 2021 [17]. Earth Observing System Data

and Information System (EOSDIS) repository in the cloud reached the size of 59PB

in September 2021 from 15PB in 2015 [21]. Similarly, the SDSS dataset size has also

increased nearly four times, from 166TB in 2015 to 652TB in 2021.

To query large datasets, researchers have developed traditional disk based row

stores [22], column stores [116], main memory based systems [60], stream engines

[80, 68], approximate query processing (AQP) [44], in-situ [33, 94], and hybrid

systems [29, 53]. Stream data processing engines could only process a limited

amount of data without loading. In contrast, traditional row store, column store,

and main memory based database management systems (DBMS) must load the

entire dataset into DBMS specific formats before executing queries. In-situ en-

gines can process large datasets stored in raw format without loading them. Main

memory-based database systems (MMDBs) have higher throughput than disk-

based DBMSs, but are more vulnerable to failures [84]. Therefore, MMDBs like

Zen+ propose to use non-volatile main memory (NVMe) to build log-free sys-

tems for higher throughput [81]. The RAM and NVMe storage like Intel Optane

are getting cheaper, but they are still 20-40 times more costly than SSDs & HDDs.
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The stream processing engines and AQPs provide inaccurate results as they do

not process the entire dataset to answer queries. The thesis work focuses on get-

ting accurate results by efficiently processing large datasets using limited resource

systems. Therefore, MMDBs, data stream processing engines, and AQP systems

have not been considered.

Traditional row or column store DBMSs require significant CPU, RAM, and IO

hardware resources to load the entire dataset into DBMS. Because row or column

store DBMSs require to load entire dataset before they start query execution. Ir-

respective of how much from this loaded data is actually required for processing

that query. This fact is visible in the results of the experiments conducted by A.

Jain [67]: “only 8% of data can answer 64% of workload queries”. That means tra-

ditional DBMSs are using 92% resources for the remaining 36% workload. Query-

ing large amounts of fresh and historical data in real time requires the deployment

of datasets in distributed or cloud environments. The distributed environments

keep multiple copies of data to make the system fault-tolerant and provide faster

query responses. The cloud based systems offer pay-as-you-go costing models,

which bill users based on the cloud resources utilized. The requirement for more

hardware and electricity resources increases application running costs. A work

estimates that cloud and other organization data centers will consume 20% of the

world’s energy by 2025, increasing carbon footprint by 5-10 times [38].

Applications data with high volume, variety, and velocity conditions are stored

in raw formats to reduce the data storage time and upfront resource requirements

[59, 31, 62]. The in-situ engines can query raw data directly by eliminating data

loading steps. These in-situ engines suffer from high query execution time (QET)

as they need to execute queries on raw data. Additionally, in-situ engines discard

the processed data after completing query execution, which introduces the repars-

ing. The processed data needs to be retained to improve the QET of future queries

and reduce redundant utilization of resources. Hybrid systems containing in-situ

engines and DBMS have been developed to process only required partitions of

the dataset and retain processed data for future queries [29, 53]. The amount of

resources required during query execution depends on the dataset size, number
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of joins, data filtering, and other aggregation operations. Most DBMS are tuned

to allocate a fixed amount of resources considering the average resource require-

ments of Online Transaction Processing (OLTP), and Online Analytical Processing

(OLAP) queries. Resources required by query in the past have been considered

to allocate appropriate resources to repetitive queries [106, 103]. However, it is

challenging to provide resources accurately to new or ad-hoc queries.

The thesis work tries to find answers to the following questions.

• Which data processing tools to use for resource efficient processing of data?

• How to partition a dataset to optimize resource utilization?

• How to schedule and allocate appropriate resources to each workload task

for faster execution?

1.1 Raw Data Query Processing

This section defines raw data and briefly explains how traditional DBMSs, in-situ

engines, and hybrid systems process the application data to obtain results.

1.1.1 Raw Data

The human readable unprocessed format of data is known as raw data. Raw data

is the collection of records stored as strings. The strings can be stored in unstruc-

tured or semi-structured formats. A speech stored in a text file is an example of

an unstructured raw data format. The comma-separated values (CSV) file storage

is the semi-structured storage format. The attribute values are separated using a

specific delimiter for storage in CSV format. CSV, JSON, XML are semi-structured

formats used to store raw data. Storing data in raw format does not require data

to be converted into a fixed format or schema. Therefore, raw data formats can

easily store data generated by users, applications, sensors, or external sources

as a collection of string records in a file. IoT, Scientific experiments, and other

applications store the generated data in raw format due to its low storage time

than traditional database management systems DBMS [31, 59]. Additionally, the
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schema of the generated experimental data, error logs, event logs, and external

data sources may not be known beforehand. More use cases of raw data storage

are discussed in Section 2.4.

1.1.2 Raw Data Query Processing

This section explains how data stored in raw format gets processed by traditional

row store or column store DBMSs, in-situ engines, and hybrid systems.

Traditional Approach: The traditional way of extracting knowledge or per-

forming analytical queries requires the entire dataset to be loaded into a row store

or column store DBMS. The data loading and indexing steps are time-consuming

tasks that improve the execution time of future queries. However, the row stores

are optimized for OLTP queries, while OLAP queries can be executed faster using

column stores.

In-situ Approach: In-situ or raw data query processing engines directly work

on raw data files, eliminating the data loading time and vendor lock issues. How-

ever, the query execution time (QET) is high for in-situ engines as required raw

data undergoes parsing, conversion, and tokenization steps during query execu-

tion. These in-situ engines do not collect or store the processed data for future

queries, which means the resources might be used to process the same raw data

recurrently for future queries. Therefore, it can be determined that neither tradi-

tional systems nor in-situ engines efficiently utilize available resources [125, 33].

Hybrid Approach: Hybrid Transactional/Analytical Processing (HTAP) sys-

tems containing row store and column store DBMSs have been developed to im-

prove OLTP and OLAP query execution time. These systems load data into row

and column store DBMS and redirect OLTP and OLAP queries to relevant DBMS

for faster response times. Therefore, HTAP systems suffer from high data loading

time and require more resources [115]. To eliminate the need to load entire dataset

into DBMS, hybrid systems containing in-situ engines and traditional DBMS have

been proposed. Such hybrid systems can query raw data directly using in-situ en-

gine, reducing data generation to query time. The DBMS component of hybrid

systems loads the processed data into DBMS to resolve reparsing and improve
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QET for future queries.

1.2 Resource Utilization

Executing data processing operations on raw data requires CPU, RAM, and IO

resources. The traditional way of loading data into DBMS requires significant

resources in advance compared to incremental loading and partial loading tech-

niques [29, 53, 125]. However, executing queries on preprocessed data reduces the

time and resources required by all future queries during query execution. On the

other hand, raw data storage saves time, and upfront resources requirement by

eliminating data loading steps. In-situ engines require more time and resources

than DBMSs during query execution because they have to process the raw data.

Techniques like partitioning, caching, and partial loading have been developed to

optimize resource utilization and improve query execution on raw data. At the

same time, task scheduling and allocating appropriate resources to each query

task are necessary steps to utilize existing resources completely. The literature

survey of the thesis has identified that all the proposed techniques fundamentally

optimize & maximize the utilization of available resources by carefully organizing

the data and data processing operations.

1.3 Motivation

The traditional way of processing large datasets requires an entire dataset in the

loaded format increasing data to result time. While raw engines can answer sev-

eral queries before data loading gets completed, as shown in Figure 1.2 [33]. How-

ever, NoDB (PostgresRAW) caches the entire dataset to reduce the QET of future

queries, which increases main memory utilization. The data cached by NoDB

gets cleared from the main memory to accommodate new data increasing repars-

ing. Increasing main memory size is not practical due to continuously increasing

dataset size and higher RAM hardware costs compared to hard disk drives.

On the other hand, it has been observed that existing DBMSs are not utilizing
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Figure 1.2: NoDB Performance Comparison [33]

all available resources. Figure 1.3 displays the percentage of CPU capacity utilized

by different DBMS like Shore-MT, DBMS D, VoltDB, and HyPer [32]. Most DBMSs

utilize only 25-50% of CPU resources, while only 12% of CPUs are utilized at data

centers [32]. The future of data management requires processing large datasets

with minimal resources to reduce application running costs [89]. Therefore, find-

ing ways to process collected data efficiently is a crucial open issue for all modern

and scientific applications.

Figure 1.3: CPU Utilization in DBMSs [32]
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1.4 Objectives

The data generated by most applications is stored in raw format initially due to

low storage time. Keeping raw data always in raw format requires reparsing of

raw data, increasing application running costs and QET. At the same time, DBMS

are optimized to query preprocessed data faster, reducing query execution time

and resource utilization. However, the traditional way of processing data requires

substantial time and resources upfront to load the entire dataset into DBMS.

• The objective of the research work is to find a resource efficient way of pro-

cessing raw data while reducing total workload execution time (WET).

– Combine the best features of in-situ engines and DBMSs to reduce WET

while utilizing available resources efficiently.

– Identify resource efficient ways of partitioning, distributing, and query-

ing raw data to optimize resource utilization.

– Improve the utilization of available resources to reduce WET and ap-

plication costs.

1.5 Contributions

The summary of thesis contributions is listed below.

• This thesis proposes a Resource Availability and Workload aware Hybrid

Framework (RAW-HF) to query raw data efficiently.

• The work proposes Query Complexity Aware (QCA) and Workload and

Storage Aware Cost-based (WSAC) partial loading techniques to optimize

the resources required to execute given workload tasks.

• Developed a lightweight task scheduling and resource allocation technique

MUAR (Maximizing Utilization of Available Resources) for faster workload

execution.
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– MUAR considers the real-time availability of resources and allocates

more resources to complex queries (CQ) to improve WET.

• The proposed resource optimization and maximization techniques have been

demonstrated using the real-world dataset Sloan Digital Sky Survey (SDSS)

and Linked Observation Data (LOD) [30].

– Results analysis has shown that ORR techniques works better for broad

table datasets like SDSS, while MUAR is capable of improving WET for

workload with complex multi-join queries like LOD.

• The results of the proposed techniques have been compared with the state-

of-the-art in-situ engine [33], row store DBMS [22], workload aware Partial

Loading technique [125], PCC[103], Elastic[106], and AutoToken[109].

1.6 Structure of the Thesis

This section briefs the thesis work and thesis organization for a better understand-

ing of the research work discussed in this thesis.

1.6.1 Thesis Work

The thesis work proposes a Resource Availability and Workload aware Hybrid

Framework (RAW-HF). The components of RAW-HF have been discussed in four

phases for better understanding. The first two phases collect valuable information

used by Phase III to optimize required resources and maximize the utilization of

available resources in Phase IV. The combination of all four phases as RAW-HF

helps in achieving proposed objectives.

Phase-I Raw Data Query Processing Framework – The first phase develops

and implements a raw data query processing framework, which allows the execu-

tion of queries on raw data and data loaded into database tables. The framework

is implemented using an in-situ engine NoDB (PostgresRAW), and PostgreSQL

(PgSQL) DBMS, which can execute join queries on multi-format data.
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Phase-II Monitoring Resources – This phase updates the phase-I framework

to monitor CPU, RAM, and IO resources utilized by DBMS & In-situ engine dur-

ing execution of workload tasks.

Phase-III Optimizing Required Resources – This phase developed Query

Complexity Aware (QCA) and Workload and Storage Aware Cost-based (WSAC)

partitioning techniques to optimize resource utilization. This phase reduces re-

source utilization during query execution by processing dataset partitions required

by workload queries.

Phase-IV Maximizing Utilization of Existing Resources – The maximiza-

tion phase combines multiple resource maximization techniques to utilize idle

resources. This phase proposes a MUAR (Maximizing Utilization of Available

Resources) technique to maximize the utilization of available resources to reduce

WET.

1.6.2 Thesis Organization

The thesis contains the chapters listed below. Each chapter is discussed in brief

for a better understanding of thesis organization.

Chapter-2 Background Information – This chapter explains basic details of

the raw data query processing domain. The chapter explains the definition of raw

data, its use cases, and how query processing is done on raw data. A raw data

processing architecture explains the life cycle of raw data. Raw data maturity

levels have been defined to represent the number of operations performed on raw

data.

Chapter-3 Literature Survey – This chapter surveys vital raw data query pro-

cessing techniques that give insight into raw data query processing issues and

their proposed solutions. The literature survey has been extended to cover re-

source monitoring, optimizing, and maximizing techniques to find resource effi-

cient ways of processing raw data.

Chapter-4 Thesis Overview: Resource Utilization for Raw Data Query Pro-

cessing – This chapter discusses the thesis approach, core idea, and objective of

thesis work. The chapter briefly discusses the tasks of each thesis phase.
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Chapter-5 Resource Monitoring Framework for Raw Data Query Process-

ing– This chapter proposes a Raw Data Query Processing Framework (RQP) with

resource monitoring capabilities. Phase-I developed a general raw data query

processing framework, while Phase-II integrated a resource monitoring module

into RQP.

Phase-I Raw Data Query Processing –This subsection proposes a raw data pro-

cessing framework. The required framework features have been identified by

studying key papers necessary for resource efficient processing of raw data. The

proposed framework has been implemented using state-of-the-art raw engine

(NoDB) and row store DBMS (PgSQL).

Phase-II Resource Monitoring – Monitoring resources required by raw data pro-

cessing tasks can provide insights into optimizing resource utilization. Therefore,

this section proposes a resource monitoring module and integrates it into RQP.

Chapter-6 RAW-HF: Optimizing Required Resources – This chapter discusses

two workload aware vertical partitioning techniques developed in Phase-III to

optimize resources required to process raw data efficiently: 1) Query Complex-

ity Aware (QCA) technique, 2) Workload and Storage Aware Cost-based partial

loading technique (WSAC).

Chapter-7 RAW-HF: Maximizing Utilization of Existing Resources– Phase-II

results showed that the state-of-the-art in-situ engine (NoDB) and DBMS (PgSQL)

could not utilize all available resources. Therefore, this chapter surveys CPU,

RAM, and IO maximization techniques to develop a resource utilization aware

task scheduling algorithm to maximize the utilization of existing resources. A

Maximizing Utilization of Available Resources (MUAR) technique is proposed to

automate resource allocation and task scheduling processes for a given workload.

Chapter-8 Experimental Setup – This chapter discusses the experimental setup,

dataset, query set, and experiment flow for all the thesis phase experiments. Two

real-world datasets have been used for experiments to analyze effective tech-

niques for broad datasets and complex workloads.

Chapter-9 Results & Discussion – This chapter contains the experiment re-

sults of all the thesis phases. The result analysis of phase-I & II shed light on
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some important patterns, which helped develop WSAC, QCA, and MUAR tech-

niques. The performance of the proposed algorithms has been compared with

state-of-the-art raw engine NoDB [33], row store DBMS PgSQL [22], Partial Load-

ing technique [125], PCC[103], Elastic[106], and AutoToken[109].

Chapter-10 Conclusion & Future Work – The final chapter of the thesis work

concludes the research work. It discusses how the proposed algorithm performs

better than the existing state-of-the-art data processing tools and partitioning al-

gorithm backed by experimental result analysis. This chapter also lists promising

advances that can be investigated to improve the proposed work.

The lists of References, Publications, and Queries have been added at the end.
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CHAPTER 2

Background Information

This section discusses the background information on raw data and how to query

raw data. The raw data section defines which data is considered raw data in the

context of thesis work. The following subsections discuss how raw data gets pro-

cessed utilizing hardware resources. The raw data processing architecture shows

the relationship between tools, raw data, and maturity levels. The last section of

raw data maturity and resources sheds light on the relationship between maturity

levels and resources.

2.1 Raw Data

What is raw data? The unprocessed form of data is referred to as raw data. For ex-

ample, a temperature sensor observes the surrounding temperature every second

and provides it as the output data stream. The data stream is a continuous string

of values in unprocessed format at its source. This data stream can be stored at the

sensing source as text, which may be unstructured. These unstructured strings of

data have been defined as raw data. Researchers also consider semi-structured

data formats like CSV, JSON, XML, and others as raw data because the data needs

to be parsed, tokenized, and converted to specific data types at the destination.

The Big Data definition includes unstructured data characteristics of raw data,

meaning Big Data applications use raw formats to store data with high volume,

velocity, and variety [62].

The following section discusses the use cases where generated data is stored in

raw format initially. The query processing section discusses the sequence of oper-
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ations performed on raw data to get results based on the tools used. The images

and audio-video files can be considered a form of raw data storage. Images can

be represented as Flexible Image Transport System FITS can be stored as human

readable raw data files [125].

2.2 Raw Data Query Processing

This section discusses the traditional and in-situ approaches to process raw data.

Different applications have different query processing needs on stored data. For

example, many IoT applications need to automate tasks based on their reading

from sensors in real time. Stream engines handle this task, which processes only

current data collected during a fixed time frame or dataset size [112]. However,

applications may need to analyze historical data to make accurate decisions re-

quiring analysis of the entire dataset. The row store or column store DBMS &

in-situ engines are used to execute queries on the entire dataset.

2.2.1 Traditional Approach

The traditional way requires the entire dataset to be loaded into DBMS, requir-

ing substantial time and resources before executing any query. The data loading

process parses, tokenizes, and converts the raw data into required data types and

stores the processed data in a DBMS specific format. The future queries access

processed data stored in databases eliminating reparsing of raw data. Analytical

query processing on traditional row store DBMSs is slow due to high IO costs

from reading the entire records compared to column stores. At the same time,

transactional queries are faster in row stores. Indexes can help in getting data

faster. However, index generation as a part of data loading tasks can substantially

increase data loading time (DLT).

Indexes become impractical compared to data scanning as the data selectivity

increases [72]. Therefore, column store DBMSs have been developed to reduce

the IO cost of reading entire columns [27, 26, 116]. The column stores introduced

sorting and compression of columns to minimize the data IO costs at query time.

14



However, the data loading time in column stores is higher due to storage of in-

dividual attribute values at different disk locations with additional sorting and

compression steps. M. Boissier et al. [45], M. Stonebraker et al. [102], and T.

Padiya et al. [96], and have proposed incrementally shorting, partitioning, and

refining indexes in later stages as they gather workload information. The delayed

partitioning and index creation may also fail when the workload changes. This

demonstrates that it is challenging to organize the data beforehand efficiently,

while query processing on the well organized preprocessed data can reduce QET.

Figure 2.1: Data to Query flow in In-situ Engines & DBMS

2.2.2 In-situ Approach

In-situ engines allow the execution of queries on the entire dataset without load-

ing it. Figure 2.1 shows that raw data is immediately available for executing

queries using in-situ or raw engines, while the traditional way requires the en-

tire dataset to be loaded into DBMS. The in-situ engines delay the processing
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of raw data until the arrival of the query. This delay enables us to identify the

data required by the query. The data processing steps of tokenizing, parsing, and

datatype conversions can be optimized by knowing the exact query requirements

for raw engines compared to traditional systems. If the query requires only a

part of the data, the partial processing method can save a considerable amount

of data to result time for larger datasets [97]. However, the delayed processing

increases the QET time of initial queries compared to traditional row or column

store DBMS [33]. The raw engines proposed caching of processed data to reduce

the QET time for future queries [33]. However, the cached data gets discarded

to process new data, introducing the reparsing. Additionally, the online analyt-

ical query processing (OLAP) queries needs to access the whole raw data file to

extract single column data, which is slower than compressed columnar access in

column stores. Hence, permanently keeping data in an unprocessed raw format

is not ideal when parts of the dataset are frequently required.

2.2.3 Hybrid Approach

Hybrid systems containing in-situ engines and DBMS allow execution of queries

on raw datasets immediately. At the same time, the DBMS component is used

to save the data processed by in-situ engines for future queries [29]. SCANRAW

proposes incrementally loading the raw data into DBMS whenever resources are

idle [53]. These hybrid systems use multiple software tools and need a framework

to handle the query execution and data loading tasks. The in-situ and DBMS

used to build a hybrid system may not be compatible. In such cases, DBMS or

In-situ engines cannot access data processed by other systems necessitating data

required by a query in either raw or database format. Another workaround would

require combining results from multiple tools for each query. R. Chaiken et al.

[51], A. Ailamaki et al. [33, 70], and Y. Cheng et al. [53] are working on developing

systems with in-situ engines as an extension to existing DBMS to solve this issue,

allowing queries to directly access data stored in raw and database formats easily.
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2.3 Resource Utilization

Performing data processing tasks requires three main hardware resources CPU,

RAM, and IO. Executing raw data parsing, tokenizing, and data type conversa-

tion requires CPU resources. RAM resource caches the data required by the CPU

for processing. IO resources are the storage devices that save the raw or processed

data for future use. The traditional way of loading raw data into DBMS requires

significant amount of resources and time before queries can be executed on the

raw data. The traditional way processes the raw data and stores it in a specific

database format. Query processing on the loaded data requires less time and re-

sources. However, most application queries do not access the entire dataset to

obtain the required results [76, 124, 67]. This means the resources are used in pro-

cessing the data, which may never get used by workload queries. Thus, it can be

derived that resources are used in processing unnecessary data. Moreover, large

dataset sizes increase QET because queries need to access more data to generate

query results.

On the other hand, in-situ engines work directly on the raw data, reducing the

upfront requirement of resources to load data. However, in-situ engines require

more resources in the long term because they have to process the raw data ev-

ery time. This repetitive processing of raw data issue is also known as raw data

reparsing. This means DBMS and In-situ data processing tools are not optimized

to utilize minimum required resources.

2.4 Use Cases

This section lists the real world applications where the generated data is stored

in the raw format. The application datasets used for experiments have also been

listed for reference. Figure 2.2 presents raw data generating applications with

their raw data formats.

Scientific: The scientific applications include raw data from scientific experi-

ments, simulation data, and sensor observations [113]. The generated data needs
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to be stored in raw format initially due to their unknown schema and velocity. Sci-

entific applications like LHC generate 1TB of sensor data every hour [29, 31]. The

streaming sensor data is filtered in real time before storing in raw format to ac-

commodate high data velocity. Parts of the LHC experiment dataset are available

to users at CERN’s open access data portal CERN [14]. The LHC dataset is too

large for most traditional systems to be processed in a centralized model. There-

fore CERN provides access to these datasets using Jupyter from Cloud deployed

datasets.

Figure 2.2: Raw Data Use cases

Astronomy: Astronomy is a field of science that studies celestial objects and

phenomena. The majority of data observed by telescopes is image data. These

images are converted to FITs and CSV formats for better analysis using relational

DBMS. Scientists have deployed many telescopes worldwide, including the Hub-
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ble telescope launched into space in 1990. Open source astronomical observation

datasets like Sloan Digital Sky Survey (SDSS) have generated images, FITs, and

CSV format data reaching 652TB [28, 125]. The entire astronomy dataset SDSS

can be downloaded from the SkyServer website using SQL queries.

Web applications: The web applications record user clicks, pages visited, er-

rors, and other event data in raw format to avoid additional load on the servers

[29, 33, 71]. The data is analyzed later to find user access patterns and improve the

application features. Most modern applications use WEB APIs to consume data

from other sources. The binary file sending is not practical due to different DBMS

tools used at source and destination. Therefore, data is transferred in XML, JSON,

RDF, and other human-readable formats, which are then converted to their re-

quired formats at the destination [42, 59, 105]. TPC provides benchmark datasets

like TPC-H, and TPC-IoTx for research and benchmarking purposes [25].

Clinical: The patient details, DNA sequences, diseases, viruses, and vaccina-

tion details are stored at hospitals, clinics, and research facilities. The data may

be in physical files, excel sheets on a machine, or in-house servers. These data

are protected in many countries by the law. The law restricts the data movement

outside the source location, limiting the available resources to process that data.

Projects like Human Brain Project kept the different data in their raw format to

avoid data transformation to a specific format, and vendor-lock [70]. The DNA

data can be stored as a sequence of DNA bases A, C, G, T in string format. M.

Castillo has been working on storing digital data in DNA because research sug-

gests that 1g of single-stranded DNA can hold 455 EB of data [50].

Weather: The earth is observed by satellites from space, airborne, and ground

sensors which record global images, temperature, humidity, wind speed, and

other environmental aspects. According to Committee on Earth Observation Satel-

lites (CEOS), more than 514 Earth observation satellites were launched from 1962

to 2012 [61]. The 30 satellites of NASA from the Earth Observing System (EOS)

project generates more than 3.3 TB of data per day. The volume of EOS project

data is estimated to increase by 16 times, from 15PB in 2015 to 246.6PB by 2025

[21]. The size of these datasets and streaming nature require stream processing
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of current data using stream engines and storing them in raw format as histori-

cal data for later analysis. The EOS datasets are available on the NASA website

[2]. Linked Observation datasets which contained rainfall, humidity, temperature,

and other observations, have been used by researchers for experimental purposes

[67, 96].

CCTV: The CCTV images and video format data are also considered one va-

riety of raw data as without processing it, knowledge cannot be extracted. Many

smart applications apply machine learning techniques to identify people, animals,

or other objects to provide automated notifications and triggered tasks [91, 121].

Machine learning applications use raw video footage to automate traffic lights

and generate challans [119].

Internet of Things IoT: Most modern applications like Smart Homes, Smart

Cities, Smart Devices like smartphones, e-bikes, and self-driving cars are equipped

with multiple sensors that generate different varieties of data at configurable speeds

[42, 57, 59]. Developers of e-bike application stored the streaming sensor data in

raw format and loaded data later to reduce the DLT [59]. The modern IoT ap-

plications also consume data generated by other sensors or sources to automate

tasks at houses, factories, and cities [93, 104]. The smart city dataset of CityPulse

is available in CSV, and Resource Description Format (RDF) formats [1].

Network: The speed of data transfer has increased worldwide with the intro-

duction of 5G. The package logs, error logs, and other networking events logs are

stored in raw formats to avoid additional load on the servers [29]. These logs are

analyzed to distribute internet traffic, find the fastest routes for packets, and find

faults in the network lines or nodes to improve network throughput and reliabil-

ity.

Google big query provides access to 300 plus datasets, including New York

Trips, Weather, and other IoT datasets, with limited 30 days of free access [19].

The linked open data of 1301 datasets are also available on the website, which

provides datasets in RDF format [16].
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2.5 Raw Data Processing Architecture

As discussed in Section 2.2, raw data processing steps may differ based on the tool

used. The in-situ engines do not store the processed data, while database man-

agement systems create a copy of the dataset in their specific database formats to

answer the queries. Different partitioning techniques allow different partitions to

be stored in multiple formats and storage levels. Data residing in a specific for-

mat and storage medium may answer queries faster than un-processed data or

data stored in a slower storage medium. The raw data maturity levels have been

defined in this paper to identify which combinations are faster.

Figure 2.3 shows the raw data processing architecture to demonstrate how raw

data gets processed to reduce QET. The diagram shows the lifecycle of raw data

beginning from raw data generating sources to caching of frequently accessed

data in main memory. The generated data is initially stored in raw format, which

can be queried using query processing tools listed on the left. Traditional database

management tools require raw data to be loaded into a database format. The ar-

chitecture displays the type of data processed by the tools in the middle with data

characteristics. The data characteristics show the format of the data. For example,

text format is unstructured, CSV & JSON are semi-structured, while database for-

mats are completely structured. The tools that process those different data formats

have been displayed on the same level, i.e., stream processing or in-situ engines

work on raw data, while DBMSs work on databases. The last column on the right

shows the defined maturity level of raw data for that combination.

2.5.1 Maturity Levels

This section discusses the Maturity levels of raw data. These levels have been

defined based on operations executed on the data, format of data, and the tools

used at that level. The raw data passed through multiple operations have a higher

maturity level. These operations include data parsing, data type conversion, par-

titioning, caching, and others. These operations allow data processing tools to

execute queries faster using required partitions. At level 0, data has not gone
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Figure 2.3: Raw Data Processing Architecture

through any processing steps.

Level 1 data is processed to relate it with metadata, making the raw data

queryable. Data residing at Level 2 is partitioned, allowing queries to process

only required parts of raw data. Levels 3 & 4 allow access to preprocessed data,

reducing QET compared to raw data accesses. A detailed explanation of different

operations performed at each level has been discussed here.

Level 0: At the 0th level of data maturity, raw data has no meaning, or no

knowledge can be gained. One cannot identify what the data stands for by seeing

only the observed values. It is impossible to identify a value as temperature, age,

or another number. The values need additional information like observation unit

in Celsius or Fahrenheit, observation location, date, and time of observation. This
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additional information that gives the values their meaning is often called meta-

data.

Level 1: The metadata is added based on sensor details and application do-

main knowledge to provide meaning to data. The data with metadata is then

stored as a comma or other delimiter-separated text format in files. These text

files have been called raw data files or raw files in short. It is the most common

form of data storage as it’s easy to store and human-readable. Most applications

discussed in the use cases section used raw format to store the streaming data.

The stream processing engines or in-situ engines work at this level, which process

this semi-structured data to obtain query results.

Level 2: This level partitions raw data streams or original raw dataset files

using one or more lightweight partitioning techniques to reduce data processing

time for future queries. These basic partitioning techniques use domain knowl-

edge, schema, time, location, or sensor id to partition the dataset into smaller files

[82]. Smaller files reduce the IO cost for in-situ or raw engines, as most queries re-

quire only part of the entire dataset [67]. For example, suppose a weather dataset

is partitioned based on location. In that case, queries like “finding the average

temperature of a particular location” only need to process that specific location

covering files.

Level 3: At Level 3, the spatial-temporal, workload, and resource aware par-

titioning techniques identify the hot data for loading into DBMS [29, 53]. While

cold or unused data can be kept in raw format [125]. The OLAP queries execute

faster on loaded data than the previous levels accessing semi-structured raw data.

The data stored in a DBMS has a proprietary data storage structure, which other

DBMSs or external tools cannot access directly. It provides data security, but a sin-

gle database structure is generally optimized for a few specific types of queries.

For example, data stored in row stores allow faster online transaction processing

(OLTP) queries, while column stores allow faster analysis of single column data.

Therefore, at Levels 3 & 4, Hybrid Transactional/Analytical Processing (HTAP)

systems execute transactional queries on row stores and analytical queries on col-

umn stores. However, such systems suffer from high loading time caused by
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storing copies of data in multiple DBMSs [115].

Level 4: The 4th level of maturity is gained when frequently used data is fur-

ther partitioned into hot and cold. The partitioning techniques use workload in-

formation, data access logs, available resources, or other application requirements

to distribute the hot data among faster storage mediums like RAM or SSD while

cold data to HDD [49, 67, 74]. The most frequent or current data is cached in RAM

to reduce QET. The hot data changes when workload changes or shifts from old to

newer data, requiring re-partitioning and rearrangement. There are no additional

levels of data maturity except caching results, refreshing query results, and using

summaries to answer the frequent queries [74, 111].

A summary of all the maturity levels is shown in Table 2.1. It shows the details

of data & file format, partitioning technique, storage location of partitions, data to

query time, faster analytics, and query processing tools used at every level.

Table 2.1: Raw Data Maturity

Mat-
urity
Lvl.

Data & File
Format

Partition
Type

Storage
Location

Data To
Query
Time

Faster
Analyt-

ics

Data
Processing

Tools
0 Raw – Un-

structured
(Text, CSV)

None Device
Level

Low No NA

1 Raw –
Semi-

structured
(CSV, JSON,

XML)

None HDD Low No Stream
Processing
& In-situ
Engines

[33]
2 Raw –

Semi-
structured

(CSV, JSON,
XML)

Time,
Loca-
tion,

Schematic
[82]

HDD Low No In-situ
Engines
[33, 94]

3 Raw &
Database

(CSV, JSON,
XML,

Binary)

Workload
Aware
[125]

HDD Moderate Yes DBMS +
In-situ

Engines
[29, 53]

4 Database
\newline
(Binary)

Hot/
Cold

[67, 76]

HDD,
Main

Memory

High Yes DBMS-1 +
DBMS-2
(HTAP
[115])
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2.5.2 Raw Data Maturity & Resources

The raw data must pass through many resource consuming operational steps to

increase its maturity level. Higher maturity level data reduces the resource re-

quirements during query execution. At Level 1 of maturity, the semi-structured

data requires more resources and time to process the entire dataset to answer

queries. Level 2 reduces resource utilization by processing partitions required by

queries. At Level 3, the required data is preprocessed and stored in a binary for-

mat, i.e., database. The query processing on a database requires fewer resources

due to indexes, data blocking, compression, and other data preprocessing tech-

niques used by DBMS. Level 3 & 4 data maturity has to deal with changing work-

loads where data is classified as hot and cold based on detailed workload analysis

to moderate resource utilization. The raw data query processing techniques try

to achieve these different levels of data maturity by optimizing the required op-

erations. The required operation may differ from application to application based

on their data and workload characteristics. Therefore following section discusses

techniques that try to process raw data efficiently to get results faster. These tech-

niques try to achieve higher maturity levels for required data partitions while

minimizing the resource utilization, time, or operations to reach that level.
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CHAPTER 3

Literature Survey

The chapter surveys research papers that provide insights into raw data query

processing and resource monitoring to find open research issues. The papers have

been categorized based on the research issues they address. The first subsection

discusses techniques and tools that propose solving issues faced while execut-

ing queries on raw data. It was observed that the raw data query processing

techniques performed better due to the efficient utilization of available resources.

Therefore, the subsequent subsections discuss the techniques that focus on re-

source monitoring, optimizing required resources, and maximizing utilization of

available resources. Subsection 3.11 discusses a summary of research issues of

the literature survey to identify open research issues. The discovered open issues

have been briefed in Section 3.12, which researchers can investigate and develop

innovative techniques to solve those issues.

3.1 In-situ Processing

The traditional way of querying raw files was to write a code to open that file and

read lines one by one. This section discusses the evolution of raw data query pro-

cessing from writing file-specific codes to using standard query language SQL to

answer queries over raw files. The main challenge faced while querying raw data

is the reparsing. Main memory caching is one way to reduce raw data reparsing.

This section is divided into two subsections that categorize the techniques based

on the location of processed data to moderate the reparsing.
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3.1.1 No Loading

This section discusses raw data query processing tools and techniques which do

not load data into DBMS. Loading data into DBMS creates copies of original raw

data files as databases which require more storage space. It is possible to delete

the raw data files loaded into a DBMS. However, organizations keep the raw data

because data loaded into databases is converted into a DBMS specific binary file

structure. Other tools or DBMSs cannot process these binary files. It is also known

as the vendor lock-in problem. Therefore, raw files are retained to keep the data

available for processing by other tools and applications.

Initially, the motivation for querying raw data files was to gain basic informa-

tion and not perform analytical queries. Developers wrote only the necessary C

or Java code to open the raw files and filter the required information. However,

this coding method requires writing long and complex codes, which becomes in-

efficient for performing complex analytical operations on raw data. Therefore,

Just-in-time operators generate specialized codes to efficiently process raw data

based on query requirements [70]. Systems like Hadoop and Bigtable have been

developed, which use Map-Reduce jobs to query large raw data files using mul-

tiple CPU cores or distributed environments. These Map-Reduce jobs are highly

parallel and can divide the tasks into small subtasks to multiple CPU cores or data

processing nodes for processing. These systems also merge results of subtasks to

generate final results. In Map-Reduce jobs, Mapper code assigns key-value re-

lations to data, and Reducer code performs the required operations on the data.

These codes are written specifically for each query. The issue with Map-Reduce

codes is that they are less reusable, which increases the efforts required to query

the raw data. To overcome the issue, R. Chaiken et al. at Microsoft have de-

veloped declarative and extensible scripting language Structured Computations

Optimized for Parallel Execution (SCOPE) to query raw data directly [51]. SCOPE

has a SQL-like structure that is standard and easy to use. Users only need to re-

place the relational table names with the actual raw file names to query the raw

data. MySQL and Oracle also supported querying raw files using their CSV en-

gine, and external table features [107, 122]. Mison [77] and speculative parsing
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[58] approaches extract records faster from raw files. Mison is used to parse JSON

files, while speculative parsing techniques have been applied to CSV files.

The tools and techniques discussed in this section do not increase the maturity

level of raw data because they do not retain processed data for future queries. All

the queries have to parse, tokenize and convert required raw data accessing raw

files every time. This issue is known as raw data reparsing. Resources are used

multiple times to do the same work, increasing overall data processing costs. The

techniques discussed in the following sections aim to retain the parsed data to

moderate the reparsing.

3.1.2 Main Memory Caching

Main memory caching and indexing strategies have been developed to moderate

the reparsing without loading raw data. Initially, developed tools process raw

data files and cached the processed data into the main memory [52]. Later, raw

data processing tools like NoDB proposed caching and indexing the raw data for

faster query processing [33]. The NoDB is one of the first few raw data query pro-

cessing tools with DBMS-like features. Like SCOPE, MySQL CSV engines, and

Oracle External Tables, NoDB also allows executing SQL queries on CSV files.

Slalom extended the caching and index creation by generating partition specific

indexes for logically partitioned raw data [33]. Slalom created best suited index

for each partition on the fly based on query access patterns. Data vaults cached

raw data into arrays to improve analytical queries [66]. The main memory caching

of data increases the maturity level of data to the final 4th level of maturity. How-

ever, the raw data reparsing cannot be eliminated as the processed data is not

stored permanently.

Different caching strategies have been developed to handle different combi-

nations of raw formats. ReCache proposes to cache processed JSON or CSV raw

data, which improves overall query processing time by 19-75% [39]. As the new

data arrives or workload changes, the cached data needs to be replaced. An adap-

tive cache mode selection algorithm Acme considers the dataset, main memory

size, and workload to choose the optimal cache mode at run time to accommodate
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workload changes [40]. Data Vaults cached column data into array structures to

reduce analytical query processing time [66]. However, caching entire columns

consumes a large amount of main memory space. Therefore, a work proposes to

cache only one column completely and filter the remaining column rows based

on the query condition to reduce memory consumption [97]. Another issue that

leads to removal of cached data is updation of raw files. When data existing in

raw files is changed, the processed raw data cached in main memory needs to be

removed and re-cached to reflect changes. Alpine is a prototype that logically par-

titions the raw files and keeps track of the updates executed on the raw file [37].

If any file is updated, Alpine triggers watchdog and adds a log entry to process

before or during query execution to provide updated results. Alpine only updates

the binary cache, indexes, and positional maps for the updated logical partition,

reducing recaching and reparsing overhead.

Main memory space is a limited resource. Large datasets cannot be cached en-

tirely in the main memory. Caching only frequently accessed data requires less

memory than caching an entire dataset. It enables faster processing of larger

datasets with available resources. However, changing workloads and addition

of new data require processed data to be removed from the memory. Therefore,

main memory caching techniques can not completely eliminate the reparsing.

3.2 Raw Data Loading

This section surveys techniques that retain processed data for future queries to

eliminate reparsing. Hybrid systems consisting of in-situ engine and row or col-

umn store DBMS avoid raw data reparsing and improve QET for future queries.

The core idea behind hybrid systems is that the in-situ engine executes queries on

raw data, while the data processed by in-situ engines is stored in DBMS for future

queries. However, it is challenging to identify which dataset partitions should be

loaded into DBMS to improve WET.

A. Dziedzic et al. [56], and T. Muhlbauer et al. [92] have tried to reduce data

loading time by developing faster bulk data loading methods for magnetic disks,
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solid state drives, non-volatile main memory NVMe, and random access mem-

ory file systems RAMFS. S. Kim et al. have also proposed to remove costly steps

like sorting and redistribution while streamlining the conversion process to im-

prove data loading in array-based DBMS SciDB [73]. However, loading time is

substantial even with best bulk loading technique COPY [56]. Therefore, invis-

ible loading [29], and speculative loading [53] techniques have been developed

to incrementally load data to reduce upfront resource requirements. Incremen-

tal loading techniques gradually load horizontal or vertical data partitions into

DBMS whenever resources are available. In contrast, partial loading techniques

avoid loading entire datasets to reduce overall cost or meet resource usage limi-

tations [125]. The techniques discussed in this section increase the data maturity

to Level 3 or higher as dataset partitions required by workload queries are loaded

into DBMS.

3.2.1 Incremental Loading

Incremental loading techniques divide the dataset into smaller horizontal chunks

or vertical column partitions for gradual loading of the dataset based on work-

load requirements or resource availability. In 2013, J. Abadi’s group developed

an invisible loading technique to store the data processed by Map-Reduce jobs

into column store MonetDB [29]. The technique keeps the processed data in cache

until the main memory is full. Once the main memory is completely utilized, the

processed data is loaded into DBMS for future queries. Data Vaults tool caches the

processed data as arrays in main memory to improve analytical query execution

on scientific data [66]. Data Vaults incrementally loads these processed column

arrays into MonetDB to reduce upfront utilization of resources and time required

to load data into DBMS. It has been observed that the IO resource utilization gets

reduced once required data is cached in the main memory. SCANRAW loads raw

data in parallel to raw data query processing, which utilizes idle resources effi-

ciently [53]. SCANRAW uses current and historical resource utilization data to

adapt to workload changes and switch between data loading and query process-

ing tasks. It also uses min-max summaries of chunks to skip unrelated chunks
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during query execution. All the incremental loading techniques are bound to

load the entire dataset into a DBMS if the workload queries access all attributes

at least once. Incremental loading techniques reduce upfront data loading time.

However, the overall time and resources required in incrementally loading data

are higher than loading entire dataset at once [29]. It has been observed that the

query execution time increases as the dataset size increases. Therefore, limiting

the amount of data loaded into DBMS is proposed to maintain faster query exe-

cution time.

3.2.2 Partial Loading

This section discusses the techniques that propose loading only a specific part of

the dataset into DBMS while keeping the rest in raw format. It has been observed

that most application workloads frequently access only a small part of the dataset

[76, 49, 67]. A. Jain et al. have observed that 63% of query workload can be an-

swered using only 8% of data [67]. Moreover, the smaller partition size reduced

query execution time by 83%. Workload analysis is required to find frequently

accessed data, and changing workload requires repetitive analysis of new work-

load queries. Partial Loading [125] proposes to vertically partition the dataset into

two parts. The first partition represents the frequently accessed dataset which

should be loaded into DBMS, while the second partition is kept in raw format

due to storage budget limitations. The cost function developed by W. Zhao et

al. compares the total time spent loading and querying required columns using

traditional DBMS with the time spent querying raw data to find which attributes

should be loaded. The cost function finds attributes that can cover maximum

workload queries for a limited storage budget.

Finding k-attribute cover of the workload to reduce total workload execution

time is an NP-hard problem [125]. Most cost-based algorithms require correct

metadata of dataset and workload queries to make informed decisions. The pro-

cess of collecting accurate metadata using the original data increases algorithm

execution time (AET). W. Zhao et al. [125], SCANRAW [53] and others have tried

to approximate the query execution time, attribute size in loaded format, data
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loading time, and other necessary metadata. However, finding accurate metadata

without performing these operations on the entire application dataset and query

set is challenging.

3.3 Interactive Data Exploration

Interactive data exploration techniques are similar to sampling techniques [78,

54, 83]. However, the users guide the sampling processes rather than choosing

random chunks and shifting or changing window sizes to estimate approximate

answers. Approximate Query Processing (AQP) provides approximate answers

by processing sample chunks of dataset [83]. A. Alvarez-Ayllon et al. have done a

detailed survey on AQP, and interactive data exploration techniques [35]. The in-

teractive techniques continuously take inputs from users to process only relevant

data to produce the result. An interactive visual exploration tool RawVis executes

sampling queries on raw data based on user inputs [44, 15]. RawVis incrementally

builds lightweight indexes in the main memory to keep track of accessed parti-

tions and improve group by operations [86]. It also adapts to workload changes

by refining indexes based on GUI interactions of users to keep indexes relevant to

future queries. The latest update on the RawVis added the functionality of build-

ing indexes based on resource availability [87]. N. Bikakis et al. have developed

an ExDRa tool to query federated raw data by solving the statistical heterogeneity

of raw data stored in different formats [43].

The interactive data exploration techniques save a lot of time and resources by

not processing the entire dataset. However, this also makes the results approxi-

mate and inaccurate. The sampling and interactive data exploration techniques

are best suited in cases where results are needed fast, and approximate results are

adequate. However, most applications may not work with approximate results.

Therefore, the remaining sections are focused on techniques that produce accurate

results using entire raw files or processing all relevant partitions.
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3.4 Heterogeneous Raw Data

Modern applications need to collect data from multiple external and internal sources

to provide specialized features to the users. These sources have various data for-

mats like JSON, CSV, XML, text, or HDF5. For example, user click events and

other logs are kept in CSV files to avoid high loading time. The data fetched from

web APIs use XML or JSON formats. The complex queries might need to join

various types of data from different sources to gain knowledge from data. The

processing of such heterogeneous data in real-time is crucial for many applica-

tions.

The traditional way of processing heterogeneous raw data is complex and re-

source consuming. Conventionally, developers write extract, transform, and load

ETL codes to process all types of raw data files into a single database format. The

ETL operations increased the data to first query time [33]. The delays might not be

acceptable for applications that need real-time query processing on streaming and

existing historical data. Sometimes, the applications need to access new sources

with no fixed formats. The existing data source formats might change over time.

Such cases necessitate modification of the ETL codes for the smooth running of

applications. Therefore accessing and processing heterogeneous data from vari-

ous sources is challenging. The techniques discussed here try to achieve higher

maturity levels for raw formats, which are costly to process.

The in-situ engines should access most formats and perform queries without

loading the data into a single database format. Hybrid systems consisting of in-

situ engines and DBMS have been proposed to handle raw data & load the pro-

cessed data into databases [29]. However, using multiple systems complicates the

handling of data. Therefore, hybrid systems having in-situ engines as extensions

have been developed to handle raw and binary data using the standard query

language SQL [29, 33, 122]. The multi-format data partitioning and distribution

strategies have been proposed for hybrid systems [125]. M. Karpathiotakis et al.

proposed using just-in-time operators to execute queries on data sources having

different data formats like CSV, JSON, XML, and RDBMS [70]. Raw data from
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different sensors or sources have multiple formats and data generation speeds.

Different data sizes pose a statistical heterogeneity issue for storage in relational

databases. ExDRa optimizes access to these federated raw data sources [43].

Recache technique discussed caching mechanisms for JSON & CSV data con-

sidering their reading, parsing, and caching costs [39]. The efficient caching man-

agement helped reduce query time by 19-75%. Few research papers demonstrated

partitioning techniques on CSV, JSON, FITS, or binary data formats to distribute

data among database and raw formats to improve query execution [125]. Most

query engines are built for general query processing tasks, which are not opti-

mized to process different types of queries on heterogeneous datasets. Proteus

query engine uses code generation techniques to write specialized code for faster

execution of each query on CSV, JSON, and database formats [69]. The online

sampling and aggregation technique on CSV and FITS format data is discussed in

a paper [54]. The Hierarchical Data Format version 5 (HDF5) is an open-source file

format that stores large, complex, heterogeneous raw data. A work demonstrated

querying raw data of scientific simulations stored in HDF5 and XDMF formats

[113].

3.5 Analytics on Raw Data

Analytical query processing is a core part of most applications to gain knowledge

from massive data. Analytical queries need to access entire columns to provide

results of sum, average, and other aggregation queries. In-situ engines and tra-

ditional row store DBMS need to access the complete file or dataset to extract

the required columns, increasing query time [122, 107]. On the other hand, the

response time of online analytical processing (OLAP) queries is much faster in

column stores DBMS. However, column stores DBMS take more time to load data

due to the presence of sorting and compression operations [27]. Moreover, tuple

reconstruction time is high due to its columnar storage architecture [47]. Tradi-

tionally, most applications use hybrid HTAP systems to answer OLTP and OLAP

queries faster. However, these HTAP systems require additional time to load data
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in multiple database systems [115]. This section discusses techniques that aim to

find efficient ways of processing raw data required by analytical queries. These

techniques load and cache required data columns, increasing the data maturity

level to 3 or higher.

Column stores are faster because they store column data together on disks.

The similarity of data allows better compression, which reduces the size. Due

to data compression, the main memory usage and IO accesses are much less in

column stores. Column stores also use multiple techniques like vectorized query

processing, invisible joins, and late materialization to answer queries faster [27, 26,

116]. On the other hand, the in-situ engines have to parse each record line from

the raw file and perform tokenizing and data type conversion tasks. A technique

proposed to reduce the data parsing time by filtering unwanted data based on the

data selection of the query [97]. Main-memory caching and indexing of required

data columns can improve response times for future analytical queries [39, 93].

However, large datasets cannot fit entirely in the main memory. The reparsing

persists for most main memory dependent techniques. Therefore, data needs to be

loaded into column stores for faster processing, as multiple OLAP queries might

require the same data columns. The loading process is more time consuming

in column stores than in row stores. Therefore, incremental and partial loading

techniques have been developed to reduce upfront data loading time [29, 53, 64,

66, 125]. The techniques have already been discussed in Sections 3.2.1 & 3.2.2. The

Data Vaults cached columns in array structures to process OLAP queries faster in

main memory, and incremental loading of columns in MonetDB [66]. R. Borovica-

Gajic et al. have proposed a Skipper framework for latency insensitive analytical

query processing over historical data stored in cold storage devices [49]. Cold

storage devices are not always online to save energy. The technique proposed

grouping queries and scheduling cold storage devices to reduce wait time.
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3.6 Machine Learning Techniques for Raw Data

This section covers machine learning and other techniques proposed to address

sampling, summarizing, and deleting stored data without losing the collected

knowledge and other issues.

ML techniques have been applied to aggregation, sampling, query approxima-

tion, resource management, and other tasks to process stored raw data [54, 110].

ML techniques have been applied to heterogeneous federated raw data for clean-

ing, preprocessing, and solving statistical heterogeneity challenges [43]. The sam-

pling techniques process only a chunk of raw data files to approximate query

results with error prospect [79]. The approximate query processing AQP systems

process only sampled chunks from the original dataset, reducing hardware re-

source requirements. The query execution time and result accuracy can be con-

trolled by changing the window size of samples. Y. Cheng et al. have proposed

keeping track of accessed samples from files by building bi-level indexes to store

summaries and avoid repetitive conversion [54]. Q. Ma et al. estimated density

and aggregation-attribute values using ML models to build a light, accurate, and

fast AQP system [83]. This work does not focus on the sampling and visual explo-

ration techniques that work directly on raw data because a majority of techniques

were covered in the recent survey paper [35]. The automatic summarization and

deletion of raw data while retaining extracted knowledge techniques are in their

initial stages [89]. D. Saxena and A. K. Singh have proposed identifying resource

requirements of workload queries using a neural network based technique to al-

locate minimal Physical Machines (PMs) to complete the query processing tasks

[108].

3.7 Resource Monitoring

This section discusses research papers that show the importance of monitoring

resource utilization to process raw data efficiently. The techniques discussed in

earlier sections have tried to reduce the operations on data or the amount of data
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to improve WET and reduce resource utilization. For example, loading data into a

database reduces repetitive operations on raw dataset because future queries ac-

cess preprocessed data stored in a database. Y. Cheng et al. [53], and A. Dziedzic

et al. [56] have been monitoring resource utilization during raw data processing

steps to find meaningful patterns that can optimize the entire data to result pro-

cess. SCANRAW tool has been developed to efficiently utilize available resources

based on the observed resource utilization patterns [53]. The following section

discusses the framework and tools researchers have used to monitor and analyze

resources used by raw engines and DBMS during raw data processing operations.

3.7.1 Framework

A. Dziedzic et al. monitored resource utilization patterns of different DBMSs to

find bottlenecks in the raw data loading process [56]. This DBMS data loading

work analyzed the CPU and IO resource utilization of four DBMSs and explored

the possibility of improving data loading time. The analysis established that

slower IO storage devices are the main bottleneck. The experiments conducted

with different IO devices showed that changing IO devices from hard disk HDD

to solid state drive SSD or main memory file system RAMFS can significantly

improve the data loading time. The sar, iostat, and iosnoop tools have been used

to monitor CPU, RAM, and IO resource utilization during the data loading pro-

cess. SCANRAW proposed to find idle CPU and IO resource time to load data

into DBMS in parallel to raw data query processing [53]. Y Cheng and F. Rusu

have observed that IO bandwidth is underutilized when CPU is processing raw

data fetched from disk. SCANRAW proposes to take advantage of this available

IO bandwidth and idle CPU cores. SCANRAW identifies CPU and IO resource

utilization patterns to load the small chunks of raw data in parallel, increasing

resource utilization.

Main memory caching techniques discussed earlier in Section 3.1.2 also require

monitoring RAM resource utilization to configure existing data eviction policies

or develop new ones [40, 117]. A work proposed to utilize 50% RAM to cache

summaries of dataset partitions [117]. The literature survey shows that monitor-
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ing resource utilization is crucial in understanding raw data query processing and

developing novel techniques.

3.7.2 Resource Monitoring Tools

This subsection discusses frequently used resource monitoring tools to identify re-

source utilization during raw data processing. Operating systems like Linux and

Windows provide System Monitor and Task Manager tools having detailed GUI in-

terfaces to display utilization of all essential hardware resources like CPU, RAM,

and IO. However, an analysis of the GUI needs to be done by humans due to lim-

ited data export features. Therefore, top, iotop, sar, iosnoop tools are used to monitor

and analyze the resource utilization information in textual format [56, 48, 46]. The

textual format also allows easy filtering and faster storage in CSV format. The fil-

tering process limits resource monitoring output size and facilitates easy analysis.

Table 3.1 shows some of the frequently used resource monitoring tools. Oper-

ating systems like Linux and Windows provide System Monitor [3] and Task Man-

ager [24] applications with advanced graphical user interfaces GUI for visual anal-

ysis of resources utilized by individual processes and total utilization. However,

these tools required 2-10% of CPU resources to run the application. The top [7]

& htop [4] tools track CPU and RAM resources utilized by individual processes.

These tools also provide the percentage of CPU time wasted waiting for IO re-

sources. The iotop tool provides data read/write the information of individual

processes and overall data read/write [5]. Tools like VmStat tool provides to-

tal utilization of all resources in a single tool [8]. However, it does not provide

resources utilized by processes. Sar tool provides CPU resource utilization by

default [6]. However, advanced options allow tracking queue length, network

statistics, disk blocks, page faults, and other memory statistics in pages per sec

unit.

None of the above mentioned techniques provided open source tools or stan-

dard procedures for monitoring resources for data processing tasks. The data

processing tasks are threads or sub-processes running inside a primary DBMS

process. Therefore, existing tools cannot track the resources used by each data
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Table 3.1: Resource Utilization Tool Details

# Tool
Name

Tool
Type

and OS

Resources Monitored
Tracks
Indi-
vidual
Process

Over-
head
(CPU%)

Inter-
face

CPU RAM IO

1 System
Moni-
tor [3]

Linux
Appli-
cation

Yes Yes Yes Yes 2-10% GUI

2 Task
Man-
ager
[24]

Windows
Appli-
cation

Yes Yes Yes Yes 2-10% GUI

3 top [7],
htop [4]

Terminal
cmd -
Linux

Yes Yes No Yes <1% Text

4 Iotop
[5]

Terminal
cmd -
Linux

No No Yes Yes <1% Text

5 VmStat
[8]

Terminal
cmd -
Linux

Yes Yes Yes No <1% Text

6 Sar [6] Terminal
cmd -
Linux

Yes No No No <1% Text
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processing task without a proper framework. The following sections discuss tech-

niques that optimize required resources and maximize utilization of resources by

analyzing resource utilization patterns of different workload tasks.

3.8 Optimizing Required Resources

This section classifies techniques that optimize the resources required to execute

application workload queries. It is essential to understand how different tools

process the raw data to optimize resource utilization. It is known that the tradi-

tional way requires processing and storing of entire raw dataset in a DBMS spe-

cific format to answer queries. The conversion process requires CPU resources,

and additional storage space to save processed data as a database. However, the

reuse of processed data helps in reducing CPU, RAM, and IO resource utilization

during query execution for DBMSs. On the other hand, in-situ engines utilize re-

sources in doing repetitive work because processed data is not saved for future

use. Therefore, this section focuses on the research work that utilizes optimal re-

sources to execute the entire workload.

Traditional and modern database management systems store the data in their

specific binary formats to execute queries faster and utilize optimal resources.

However, most of the workload execution time is spent processing the raw data

and creating database files for large datasets. A. Dziedzic et al. have carried out

a series of experiments to study resource utilization patterns [56]. It helped in

understanding role of modern hardware resources in the data loading process of

DBMSs. The study stated that CPU resources stay idle due to the slower speed

of IO devices. The parallel processing of raw data cannot improve CPU or IO

resource utilization. The work concluded that sequential access to disk storage

devices is the resource-efficient way of loading data into DBMS. At the same time,

loading data in faster IO devices can utilize the CPU better, reducing data load-

ing time. Another way of reducing data loading time is to load only required

partitions of the dataset into DBMS based on workload analysis. The incremen-

tal loading Section 3.2.1 and partial loading Section 3.2.2 discuss such workload
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aware techniques that benefit from loading required data partitions [29, 53, 125].

3.9 Maximizing Resource Utilization

This section discusses resource maximization techniques. Most maximization

techniques try to maximize the utilization of one or more hardware resources.

Traditional DBMS systems are optimized to utilize maximum IO bandwidth in

the data loading process [56]. In other words, IO bandwidth is the bottleneck in

the data loading process. The parallel loading of data cannot reduce the DLT for

disk based storage devices. The work also stated that changing slower IO devices

with faster SSD, NVME, or main memory can reduce the DLT. Faster data loading

techniques for main memory databases have been developed that utilize faster

IO devices and multiple CPU cores to improve DLT [92]. SCANRAW uses idle

IO bandwidth during the query execution process to load data into DBMS [53].

It proposed monitoring the IO and CPU resource utilization and scheduling raw

data loading tasks to maximize utilization of available resources.

Main memory caching techniques discussed in Section 3.1.2 increase the main

memory utilization to reduce WET [39]. PDC-Query (PDC) proposed to cache the

summaries of data partitions utilizing 50% main memory [117]. The cached sum-

maries identified which partitions are useful for query and executed sub-queries

on all relevant nodes to reduce the QET of a single query. However, partitioning a

single query on multiple nodes requires merging intermediate results to produce

final results [117]. Therefore, most techniques execute multiple queries on multi-

ple CPU cores to reduce overall WET [113]. A work distributed join operations of

a query to reduce QET and efficiently utilize multiple cores of CPU [120, 85]. The

techniques used distributed index join algorithm and a novel distributed learned

index to improve join performance for sorted and unsorted partitions. For a multi-

node setup, resource allocation strategies try to balance workload evenly to max-

imize utilization of all available resources [108, 98]. The two-pass Mison and

speculative parsing techniques to parallelize file parsing using multi-core CPU

systems [77, 58]. D. Saxena et al. have been using machine learning techniques
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to predict the resources required by workload and assign minimum hardware re-

sources where their utilization can reach 100%, reducing application running costs

[108]. Similarly, machine learning techniques were proposed to allocate maximum

RAM resources to frequent queries to reduce QET [99, 103].

The limited number of techniques consider a combination of resource opti-

mization and maximization techniques [125]. Moreover, many resource optimiza-

tion and maximization techniques cannot be used in conjunction. For example,

DBMS data loading experiments show that parallel execution of a well-optimized

data loading technique COPY to maximize CPU resource utilization cannot im-

prove DLT [56]. This work tries to find techniques that can be used in conjunction

to reduce WET significantly.

3.10 Cloud based Systems

Cloud service providers like Amazon, Google, and Microsoft provide cloud ser-

vices with various pay-as-you-use models. The two most relevant models are

serverless, and server resource reservation. The serverless query execution ser-

vices act like in-situ processing on raw files. The Amazon web services like Athena

and Redshift provide services to query raw files using SQL [18, 20]. Google

big query also allows executing SQL queries on datasets with the main mem-

ory caching option [19]. The bill generation is based on the queries executed by

users on the dataset. This service does not provide any dedicated infrastructure

to users. Therefore, this service is also known as a serverless query service.

Modern applications need to store data, install specific software, and run busi-

ness logic code, which serverless services cannot fulfill. Therefore, cloud service

providers allow renting servers where organizations or companies can deploy

their applications. The companies use cloud resources to reduce the initial hard-

ware investment costs. Cloud service providers propose that the cloud is cheaper

than managing in-house servers when maintenance costs are considered. Cloud

services calculate costs based on resource utilization preferences selected by users.

For example, reserving dedicated or private server resources costs 2.4x more than
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a shared resources model. In addition, cloud services provide virtually unlimited

scaling facilities to handle peak loads. The cost of additional resources gets cal-

culated based on the time and amount of resources used. Therefore, researchers

have been trying to reduce the application running costs for cloud based systems.

The primary difference between cloud and in-house resources is that in-house re-

sources are limited and cannot be increased in real time. However, most optimal

resource allocation techniques can be applied to cloud based and in-house sys-

tems with minor changes.

C. Wu et al. have observed that the default resource allocation strategies are

not cost effective [123]. H. S. Patel et al. proposed to provide sufficient resources

to frequent queries considering its earlier performance while allocating minimum

resources to new queries to reduce overall cost and WET [99]. A. Pimpley pro-

posed to create a performance characteristic curve (PCC) for each query which

relates resources and performance [103]. This PCC curve is then analyzed to cre-

ate a cost efficient resource allocation plan to execute queries. D. Saxena et al. tried

to estimate the number of resources required to complete the given workload and

allocated minimum possible virtual machines by training ML models [108]. A.

Raza et al. have also considered distributing available resources between OLAP

and OLTP tasks to modern overall workload execution time. The developed tech-

nique reduced OLAP QET by 50% by maintaining a small and controlled drop in

OLTP throughput [106].

3.11 Summary of Research Issues

This section summarizes the literature survey to find important open research ar-

eas that do not have a proven correct solution. Table 3.2 summarizes the literature

survey to describe each category’s solved and open research issues.

3.11.1 In-situ Processing

Raw data query processing techniques and tools can query raw data without load-

ing [70, 51, 107, 122]. However, the reparsing persists as all queries access un-
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processed raw data from raw data files. Main memory caching techniques can

improve QET of frequent queries by caching hot partitions. However, they suffer

from reparsing for datasets larger than the main memory size.

3.11.2 Raw Data Loading

The incremental loading technique eases the upfront resource requirement to load

data by distributing loading tasks to later times. However, incremental loading

techniques require more time and resources to load the same amount of data than

bulk loading methods. Incremental loading techniques are also prone to load the

entire dataset into DBMS if an attribute is used at least once. Partial loading of

frequently accessed data limits the size of loaded data. However, a work stated

that choosing attributes that cover maximum queries is an NP-hard problem [125].

It reduced the partitioning problem to the finding k-attribute cover problem to

solve it using a heuristic approach.

3.11.3 Interactive Data Exploration

A. Alvarez-Ayllon et al. surveyed 242 research papers to find interactive data

exploration tools and techniques that satisfy three requirements: accessing raw

data files, accessing files distributed on multiple nodes, and responding within

a few seconds [35]. The study stated that only one paper could satisfy three re-

quirements of interactive data exploration. Therefore, extensive work needs to

be done in this area to develop interactive tools satisfying various application re-

quirements, like improving result accuracy using limited resources.

3.11.4 Heterogeneous Raw Data

S. Baunsgaard et al. [43] & M. Karpathiotakis et al. [70] have developed several

tools that handle CSV, JSON, XML, and HDF5 formats. However, raw data pro-

cessing tools that can process all types of datasets and raw formats while solving

statistical heterogeneity are scarce or developed for research only [43, 70].
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3.11.5 Analytics on Raw Data

A. Abouzied et al. [29] and S. Kim et al. [73] have proposed to load raw data

incrementally into column store DBMSs like monteDB and caching data in arrays

to improve the performance of OLAP queries. Researchers can work on finding

cost-efficient ways of executing OLAP queries.

3.11.6 Machine Learning Techniques for Raw Data

Applying machine learning ML techniques to different raw data query process-

ing problems is an emerging area. Data aggregation, deletion, knowledge reten-

tion, mining, and solving statistical heterogeneity are some of the topics where

researchers have been applying ML techniques.

3.11.7 Resource Monitoring

Most DBMS and in-situ engines do not provide resource monitoring capabilities

due to the inherent overhead of monitoring and analysis. L. Viswanathan et al.

have proposed that integrating resource information with query planning can im-

prove query performance and reduce application running costs [118]. However,

there are no standard resource monitoring frameworks nor tools exist that can

provide resources utilized by data processing tasks like data loading, query pro-

cessing, sorting, and indexing.

3.11.8 Optimizing Required Resources

Utilizing optimal resources to complete data processing tasks is an NP-hard prob-

lem [85]. The raw data query processing requires a hybrid data management tool

to utilize optimal resources. The partitioning of application datasets into raw files

and database tables is an NP-hard problem [125].
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3.11.9 Maximizing Resource Utilization

Maximizing resource utilization problems include NP-hard problems like resource

allocation and task scheduling [114]. Y. Cheng et al. [53], H. Tang et al. [117] and

W. Zhao [126] have been monitoring resource utilization to maximize CPU, RAM,

or IO utilization to reduce workload execution time. However, techniques maxi-

mizing utilization of all available resources are scarce.

3.11.10 Cloud based Systems

Reducing resource utilization to reduce costs is crucial for applications deployed

on the cloud [118]. H. S. Patel et al. have proposed allocating required resources

to frequent queries while limited resources to ad-hock queries to reduce costs [99].

Elastic resource scheduling proposes trading off OLTP throughput to reduce ex-

ecution time of OLAP queries by 50% [106]. It is known that task scheduling is

also an NP-hard problem [114]. Therefore, scheduling workload tasks to utilize

minimal or maximum resources to reduce total WET is a promising research area

for researchers. The summary of research issues helped propose open research

issues discussed in the following section.

Table 3.2: Summary of Research Issues

# Research

Issues

Objective Techniques Advantages /

Solved Issues

Remaining

Issues

1 Raw

Data

Query

Process-

ing

Query

raw data

without

loading.

No Loading

No Loading

[70, 51, 107,

122]

No data load-

ing,

No replication

– requires less

storage,

Reduce data to

result time.

Reparsing.
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Main Mem-

ory Caching

[52, 33, 66,

39, 40, 97,

37]

Moderated

reparsing &

improve QET

by caching

processed data.

Efficient

caching of

multi-format

data.

2 Raw

Data

Loading

Store pro-

cessed

data to

reduce the

reparsing.

Incremental

Loading

[66, 29, 53]

Incrementally

loading of data

required by

workload.

Eliminate

Reparsing.

Improve QET.

Prone to load

entire dataset.

Requires more

time & re-

sources in long

run.

Partial

loading

[125]

Prevent loading

of entire dataset

while reducing

WET.

Low DLT.

Improve QET

for frequent

queries.

Partitioning

dataset for hy-

brid systems.

NP-hard [125]

3 Interactive

Data Ex-

ploration

Explore

parts of

the dataset

needed

by work-

load/users.

Visual ex-

ploration

of raw data

[44, 43]

Incremental ex-

ploration based

on user inputs.

Faster re-

sponses at the

cost of accuracy.

Approximate

Answers.

Results are not

100% accurate.
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4 Heteroge-

neous

Raw

Data

Query

different

raw data

formats

without

loading.

Code gener-

ation.

Main mem-

ory caching.

[70, 33, 39,

43, 125]

Developed

in-situ engines

that can query

one or more

raw formats

like CSV, JSON,

XML, text, or

HDF5.

Fewer open-

source tools

that can query

all kinds of raw

formats.

5 Analytics Faster an-

alytics on

raw data.

Caching

and pro-

cessing

attributes

using col-

umn stores

or arrays

[66, 73, 29,

53]

Store required

data into col-

umn stores.

Improves QET.

Reparsing

eliminated or

reduced.

Identifying hot

partitions for

loading and

caching is chal-

lenging.

Minimizing

the cost of

performing

analytics.

6 ML on

Raw

Apply ML

to solve ag-

gregation,

sampling,

and other

issues.

Machine

Learning

[43, 54, 110]

Aggregation,

Sampling

Query ap-

proximation

Resource man-

agement

Data aging

& deletion.

Knowledge

retention.

7 Resource

Monitor-

ing

Monitor

resources of

individual

workload

tasks.

Integration

of resource

monitor-

ing tools.

[56, 48, 46]

Find the rela-

tionship be-

tween processes

and resources.

Obtain use-

ful patterns.

Explore tools.

No inbuilt re-

source monitor-

ing features in

most DBMS.
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8 Optimiz-

ing

Required

Resource-

s

Utilize

minimal

resources

to com-

plete given

workload

tasks.

Optimizing

operations

on raw data

by load-

ing only

required

data &

managing

processed

data. [56,

29, 53, 125].

Process only re-

quired data. Re-

duce resource

utilization.

Reduce WET.

Distribution of

hot-cold data in

single or Hy-

brid systems.

Multi-format

data manage-

ment.

9 Maximiz-

ing

Resource

Utiliza-

tion

Maximize

utilization

of available

resources

to reduce

WET.

CPU, RAM

& IO re-

source max-

imization.

[39, 53, 113,

117, 98, 103]

Reduce WET.

Efficient utiliza-

tion of available

resources.

Task schedul-

ing. Resource

Allocation.

[114]

10 Cloud

based

Systems

Cost ef-

fective

schedul-

ing and

resource

allocation.

Serverless

[108, 99,

103, 106]

Cost aware

Resource

Allocation

Reduce appli-

cation running

costs.

No hardware

cost.

Serverless – pay

per query.

Pay as per

resources used.

Resource mon-

itoring &

allocation of in-

dividual tasks.

No inbuilt

features to con-

figure resources

for each query.
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3.12 Open Research Issues

This section discusses open research issues based on the classification, existing

tools, and literature survey. Table 3.3 compares the existing tools and techniques

developed by researchers to process raw data. Table 3.4 lists implementation

problems and algorithm complexity of identified open research issues based on

existing tools and literature survey.

The existing tools and techniques have been compared in Table 3.3 based on

features like data storage format, tool type, partitioning technique, data loading,

replication, caching, and limitations faced while processing raw data. SCOPE [51],

NoDB [33], Slalom [94], PDC [117], PCC [103] processes raw or semi-structured

data. Slalom is an improvement over NoDB with logical partitioning, but it is

not open source. Invisible loading [29], SCANRAW [53] and Partial Loading [125]

techniques are examples of hybrid systems with DBMS data loading operations

to reduce reparsing. PCC allocates specific resources to each query at run time.

This feature is not provided by most existing systems. However, PCC lacks par-

tial loading and caching features. PCC, PDC and SCOPE are distributed systems

with the ability to process raw data stored on multiple sources or cloud storage.

- However, most systems do not include important features like resource moni-

toring, partitioning, or query specific resource allocation required to process raw

data efficiently.

Research Silos: Current solutions lack a single raw data management system

having all the features. Researchers are working in silos and keeping their work

private. The developed techniques are suitable only for specific hardware, DBMS,

or Hybrid system combinations. Improving such work is very challenging. Ev-

eryone needs to combine their efforts and develop a system that automatically

selects the best technique to avoid reparsing based on application requirements.

The automated analysis of application requirements and changing the data ar-

rangements or storage structures using the best possible technique is still in its

initial stages [65]. Cloudera combined multiple open-source data management

systems. It provides most features, including raw data query processing and
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Table 3.3: Comparison of Existing Tools and Techniques

# Tools/
Tech-
nique

Data
Storage

Tool
Type

Partiti-
oning

Data
Load-

ing

Repl-
icati-
on

Cach-
ing

Limitation

1 SCOPE
[51]

Distribu-
ted

Raw

In-situ Yes No Yes No Reparsing

2 NoDB
[33]

Raw In-situ None No No Yes Reparsing

3 Slalom
[94]

Raw In-situ Yes,
Logi-

cal

No No Yes Reparsing,
Not Open

source.
4 Invisible

Load-
ing [29]

DB,
Raw

Hybrid,
(In-situ,
DBMS)

None Yes,
Incre-

mental

Yes No Prone to load
entire dataset.

5 SCAN
RAW
[53]

DB,
Raw

Hybrid,
(In-situ,
DBMS)

None Yes,
Incre-

mental

Yes No Prone to load
entire dataset.

Not Open
source.

6 Partial
Load-

ing
[125]

DB,
Raw

Hybrid,
(In-situ,
DBMS)

Yes,
VP

Yes,
Partial

Yes No High AET of
Cost

calculation

7 PDC
[117]

Object
Data

ODMS Yes,
HP

Yes,
Meta-
data

Yes Yes Underutilized
Resources.

8 HTAP
[106]

DB Row &
Col.
store

DBMS

No Yes Yes Yes High DLT –
100%

replication.

9 PCC
[103]

Distribu-
ted

Raw

In-situ Yes No Yes No Reparsing.
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arranging data for different workload requirements. However, the Cloudera is

bulky and requires more resources than traditional DBMS and In-situ engines. It

also lacks the ability to select the best data management systems or a combination

of systems for the given workload. There is a need for a lightweight system that

can efficiently handle raw data without human intervention.

Table 3.4: Summary of Open Research Issues

# Open
Research
Category

Open Issues Algorithm
Complexity

1 Research
Silos

No single tool has all the required features. -

2 Resource
Utiliza-
tion

No inbuilt features to monitor resources
used by workload tasks in most DBMS.
Lack of standard resource monitoring frame-
works. Resource-efficient task scheduling.

Task Schedul-
ing, NP-hard
[114]

3 Multi-
level
Partition-
ing

Manage raw data for multiple tools and ma-
turity levels. Resource aware database parti-
tioning & distribution. Task scheduling. No
reliable open source tools.

Data partition-
ing, NP-hard
[125, 36]

4 Data
Aging &
Deletion

No standard open source tools. Hard to con-
firm which data is safe to delete [89]. Loss-
less aggregation and summarization of data.

Data aggrega-
tion, NP-hard
[63]

5 ML on
Raw
Data

Approximation, optimization, resource al-
location, and many other problems can be
solved using machine learning. Few DBMS
& In-situ engines use ML to solve complex
issues.

Approximation,
Optimization,
Resource allo-
cation, NP-hard
[114]

Resource Utilization:Techniques considering real-time resource availability

for cost effective processing of application workload are exceptional.

Optimization & Maximization: Incremental loading, indexing, or caching tech-

niques have been developed to elevate upfront utilization of resources and repet-

itive resource utilization while processing raw data [53]. The partitioning and

sampling methods reduce the amount of data to be processed, reducing resource

utilization [125]. However, it has been observed that most traditional and modern

DBMS systems cannot utilize all available resources [32]. The query performance

and resource utilization cost have been considered to reduce data processing costs

[103]. Therefore, systems capable of optimizing and maximizing resource utiliza-
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tion that considers real-time resource availability needs to be developed to reduce

workload processing costs.

Cost estimation: Different applications have different dataset sizes and query

types that require different amounts of resources based on the data processing

tools used. It is challenging to efficiently utilize available resources while dis-

tributing data among in-situ engines and DBMS to reduce total workload execu-

tion time. L.Viswanathan et al. [118], and W. Zhao et al. [125] have proposed to

use cost functions that balance resource utilization and workload execution time

to reduce data processing costs for cloud based systems. Cost estimation is an-

other challenging open issue where cost functions can be improved using multi-

ple parameters like data format, distribution of the partitions, resource utilization,

and operational costs.

Multi-format Partitioning: The partitioning data stored in multiple formats

increases the complexity of partitioning algorithms which traditionally require

all data in a single database format. W. Zhao et al. have proposed partitioning

data between DBMS and Raw files at disk level [125]. However, the partitioning

techniques that consider the distribution of hot data among high-speed storage

devices like RAM and SSD in database format, while cold data on cold storage de-

vices in raw format considering availability of resources are limited [49]. Reparti-

tioning and distributing hot and cold data is challenging due to increased storage

layers and data formats to adapt to workload changes.

Data Aging & Deletion: The data generation speeds have increased tremen-

dously in the last decade. Earlier, it was possible to store and maintain gener-

ated data without incurring high data maintenance costs due to smaller dataset

sizes. The present data age is focused on keeping the data in permanent stor-

age devices and analyzing it later to gain more knowledge. However, processing

and maintaining historical data generated by applications is becoming challeng-

ing due to increased maintenance requirements in terms of resources and costs for

large datasets [89]. Most traditional and modern tools do not provide data sum-

marization or compression features with automatic deletion of unwanted data

while preserving knowledge.
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ML on Raw Data: S. Baunsgaard et al. have applied ML models to clean

and preprocess the raw data. However, applying ML models to every raw data

query processing step is an open issue [43]. Researchers can apply ML techniques

to process raw data files considering multiple features, like sampling size, error

estimation, partitioning, and available memory to identify frequently accessed

raw data for partial loading or caching in main memory. Applying ML to solve

statistical heterogeneity, estimating query resource requirements, and scheduling

allocation of resources to reduce raw data processing costs are hot research topics

[103].
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CHAPTER 4

Thesis Overview: Resource Utilization for Raw

Data Query Processing

This chapter discusses the thesis idea and objective of the work. The primary ob-

jective of the thesis work includes NP-hard problems like partitioning, optimizing

required resources, task scheduling, and resource allocation for efficient work-

load processing. The thesis approach section discusses our approach to process

the given workload by keeping resource utilization optimal and utilizing existing

resources effectively. The thesis objective section discusses tasks to complete in

each phase to reach an effective solution.

4.1 Thesis idea

Researchers have proposed indexing, sorting, data compression, partitioning, block-

ing, and summarization techniques to process application workload faster. The

task scheduling and resource allocation techniques try to utilize existing resources

efficiently to reduce the WET. The core idea behind all existing techniques can be

categorized into three approaches; 1) Reduce operations on data, 2) Reduce the

amount of data, and 3) Efficient utilization of resources to perform required oper-

ations.

The first category conveys reducing operations required to generate results.

This category contains data partitioning, data blocking, indexing, and sorting

strategies [94, 125]. These strategies reduce the operations during query execu-

tion time by utilizing preprocessed or prearranged data resulting in faster query
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processing. However, the entire dataset needs to be preprocessed or loaded into

DBMS at least once. Additionally, the data preprocessing tasks are resource and

time consuming. The second approach reduces the amount of data being pro-

cessed during data loading, and query execution time to provide approximate

results [83], [35]. These applications use sampling approaches to approximate

query results. Therefore, the results are not always accurate. The third category

tries to utilize available resources efficiently to process data faster to reduce WET.

The task scheduling and resource allocation techniques that optimize or maxi-

mize the utilization of available resources can be added to this category [106, 53].

The incremental loading, indexing, partitioning, and sorting techniques used to

reduce the upfront utilization of resources are also efficient resource utilization

techniques [94, 29, 101].

Modern applications require handling a huge amount of data coming from

multiple sources. It is clear from the literature survey that storing data in raw

format is the most efficient way of storage. The in-situ/raw engine can execute

queries on raw data directly to reduce data to result time. On the other hand,

traditional row or column store DBMSs are optimized to answer queries faster

on loaded data. Researchers have been trying to reduce data loading time using

incremental loading techniques, but it is still costly. It can be derived that in-

situ engines or traditional DBMSs alone cannot process the raw data efficiently.

Therefore, hybrid systems have been developed to reduce data to query time QET

and improve QET for repeating queries [29, 53]. The hybrid approach uses in-situ

engines to query raw data directly to reduce the initial data to query time while

incrementally loading data into DBMS to eliminate reparsing and improve QET.

Researchers have proposed several efficient data processing techniques by iden-

tifying functional patterns of the data processing operations and their relation

with resources. For example, in-situ engines do not access IO once all the re-

quired data is cached in the main memory [53]. It allowed researchers to propose

speculative loading techniques that utilized idle resources to load data in paral-

lel. Thus, monitoring resources and analyzing experimental data can shed light

on many hidden patterns which can be used to develop efficient raw data query
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processing techniques. Therefore, the proposed thesis work focuses on observing

monitoring resources for hybrid systems to develop resource efficient techniques

to process the data.

4.2 Thesis Approach

Managing resource utilization is one of the most important topics because most

proposed techniques desire to efficiently utilize CPU, RAM, and IO to improve

WET. The efficient utilization of resources also reduces the application running

costs. The thesis proposes to build a resource and workload aware framework

to find resource-efficient way of processing raw data. This section summarizes

the thesis approach based on the literature survey. Subsection 4.2.1 justifies why

a hybrid system needs to be considered to utilize optimal resources to process a

given dataset. The proposed system plans to partition the dataset using appropri-

ate partitioning methods so that only relevant parts of the dataset can be accessed.

Subsection 4.2.2 discusses partitioning approaches suitable for the proposed hy-

brid system. The chosen approach and thesis phases are discussed in Subsection

4.2.3.

4.2.1 Hybrid System

The traditional way of processing data requires the entire dataset to be loaded

into DBMS, increasing resource utilization and data-to-result time. While, in-situ

engines allow querying data without loading it, saving upfront resource require-

ments. However, query execution time is much higher in in-situ engines than

in DBMS due to raw data access causing reparsing. Literature survey discovered

that hybrid systems containing an in-situ engine and traditional DBMS could pro-

vide the best features of both. The in-situ part can facilitate querying raw data to

reduce data to query time, while the DBMS part of the hybrid system can retain

the processed data for future queries. The literature survey lists many research

works that developed novel data processing flow to benefit from both in-situ and

DBMS approaches. For example, SCANRAW proposes to query raw data using
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in-situ engines to reduce data to query time and load data into DBMS in paral-

lel whenever resources are available to improve QET of future queries [53]. This

work utilized idle resource time to process the dataset efficiently, which can re-

duce additional hardware requirements. Therefore, it is important to monitor and

analyze resources utilized by workload tasks in real-time for cost-effective man-

agement of workload.

4.2.2 Partitioning Approaches for Hybrid System

Partitioning a given dataset to utilize optimal resources for the hybrid systems is

an NP-hard problem [125]. Similar to partitioning, other optimization problems

in data management like task scheduling, frequent item set mining, and resource

allocation do not have polynomial time solutions [114, 36, 63]. M. T. Ozsu and

P. Valduriez have developed greedy and heuristic algorithms to solve problems

faster to approximate near-optimal solutions [95]. Greedy algorithms choose the

local best option at the decision time and hope to achieve a globally optimal solu-

tion. For example, incremental loading algorithms load all the attributes observed

in workload analysis to reduce QET [29]. However, the time required to load

attribute columns into the database and execute queries may exceed answering

those queries using in-situ engines. Heuristic algorithms employ strategies de-

rived from previous experiences to find optimal solutions. For example, a heuris-

tic algorithm compares the cost of loading attributes plus executing queries on the

database with the cost of answering queries using raw files to find an improved

solution [125].

4.2.3 Heuristic approach

This thesis chooses a heuristic approach to partition, schedule tasks, and allo-

cate resources for resource efficient processing of a given workload. The heuristic

approach includes learning from past experiences to group or split schemas to

obtain near optimal solutions to the partitioning problem in pseudo polynomial

time [95].
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Figure 4.1: RAW-HF: Initial Architecture
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The thesis work has been divided into four phases. The first two phases de-

velop a raw data query processing and resource monitoring framework to quan-

tify the time and resources required by in-situ engine and DBMS to complete

given workload tasks. Analyzing the initial experiment result might find valu-

able facts and resource utilization patterns that can be used to optimize resource

utilization. Phase-III optimizes the resources required to process the given work-

load. This phase partitions the dataset to process only the required data relevant

to the workload. The fourth phase maximizes the utilization of existing resources,

thereby taking care of any possible underutilization of resources. The Phase-III

and IV algorithms follow heuristic approaches to optimize required resources

and maximize utilization of existing resources, considering the knowledge gained

from experiments performed during Phase-I & II of the thesis. Figure 4.1 shows

an initial architecture of the Resource Availability and Workload aware Hybrid

Framework (RAW-HF) that we propose to build.

RAW-HF has been developed incrementally. Each phase discussed below has

been integrated into RAW-HF as a module. It can be seen in Figure 4.1 that each

module is connected with the other. The Phase-I module executes the workload

and communicates the currently running tasks ID with the Phase-II Resource

Monitoring module. This allows the Resource Monitoring module to relate the

resource utilization information to workload tasks in real time. Phase-III & IV

modules use the resource utilization values obtained from the Phase-I & II mod-

ules to develop the resource optimization algorithms or decide on how to sched-

ule tasks and allocate resources to maximize utilization of existing resources. The

goals achieved in each phase of the thesis are summarized here.

• Phase-I Raw Data Query Processing (RQP): Phase-I develops a raw data

query processing (RQP) framework. It is a hybrid framework consisting of

an in-situ engine and DBMS.

• Phase-II Resource Monitoring (RM): Phase-II develops the resource mon-

itoring framework to monitor resources used by workload tasks. Further,

the resource monitoring framework is integrated with the raw data query

processing framework developed in Phase-I.
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• Phase-III Optimizing Required Resources (ORR): This phase optimizes re-

quired resources using partitioning and distribution strategies to handle raw

data efficiently for the hybrid framework. The algorithms developed in this

Phase-III are based on Phase-I & II result analysis and resource utilization

patterns.

• Phase-IV Maximizing Utilization of Existing Resources (MUER): This phase

maximizes the utilization of existing resources for the given workload. The

technique developed in this Phase-IV addresses the issue of any possible

underutilization of available resources.

4.3 Thesis Objectives

• “Find resource efficient way of processing raw data while improving total

workload execution time WET utilizing available resources.”

The primary objective of the thesis work is to reduce workload execution time

by utilizing resources efficiently. Efficient utilization of available resources is im-

portant because it directly affects application running costs. For applications de-

ployed in in-house servers, the hardware resources are limited. On the other

hand, cloud deployed applications can have virtually unlimited resources, in-

creasing application running costs. Therefore, efficient resource utilization is also

crucial for cloud-based systems. The thesis work needs to find a sequence of data

processing steps, architecture, data partitioning, data distribution strategies, and

many essential details to complete the given tasks utilizing optimal resources.

Finding the best partitions, scheduling tasks, and allocating resources for ef-

ficient processing are well-known NP-hard problems [114, 36, 63]. The NP-hard

problems can be solved by using the heuristic approach in polynomial time. The

solutions obtained using the heuristics approach are not the best, but applying

factual knowledge of past experiences can improve the accuracy of the solution.

Therefore, basic experiments must be performed using appropriate data process-

ing tools to obtain valuable facts and achieve near-optimal solutions faster.
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The thesis work proposed a Resource Availability and Workload aware Hy-

brid Framework (RAW-HF) to process given workload on raw data efficiently.

RAW-HF development has been divided into four phases for incremental devel-

opment and sub-tasks accomplished in each phase. The sub-tasks assigned to

each phase have been listed below to understand the flow of thesis work. The first

two Phases-I & II need to identify experimental facts about how raw data get pro-

cessed and resources utilized by in-situ engine and DBMS. The optimization and

maximization phases use the knowledge gained from experimental result analysis

of the first two phases to develop efficient raw data partitioning, task scheduling,

and resource allocation strategies.

• Phase-I Raw Data Query Processing: Develop a raw data query processing

framework to query raw data using state-of-the-art in-situ engine and DBMS

tools to identify the total time required to execute the given workload.

– Query raw data using the in-situ engine.

– Load data into DBMS and execute queries using the database.

– Build a raw data query processing framework to perform the given

workload tasks automatically using required data processing tools, i.e.,

in-situ engine or DBMS.

• Phase-II Resource Monitoring: Monitor the resources required by the in-

situ engine and DBMS to execute the given workload.

– Find and implement resource monitoring tools.

– Integrate resource utilization information with the workload task IDs

for better analysis.

– Update the raw data query processing framework to automatically record

the resources used by workload tasks for different data processing tools.

• Phase-III Resource Availability and Workload aware Hybrid Framework

(RAW-HF) - Optimizing Required Resources: Find best data partitioning

and distribution strategies to utilize optimal resources to complete workload

tasks.
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– Identify hot and cold data.

– Find optimal partitioning and distribution strategy to minimize WET.

– Distribute dataset between in-situ engine and DBMS for efficient pro-

cessing.

• Phase-IV Resource Availability and Workload aware Hybrid Framework

(RAW-HF) - Maximizing Utilization of Existing Resources: Maximize the

utilization of available resources to reduce WET.

– Identify the effect of each resource maximization technique on data

loading and query execution operations.

– Find best strategies to schedule workload tasks by assigning maximum

available resources for faster completion of workload.

– Automate task scheduling and resource allocation.
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CHAPTER 5

Resource Monitoring Framework for Raw Data

Query Processing

This chapter covers Phase-I and II of the thesis. It explains the building blocks of

the resource monitoring framework for raw data query processing. The first phase

proposes developing a raw data query processing framework to query raw data

and data loaded into DBMS. The framework developed in the first phase recorded

the time required by in-situ engine and DBMS to complete the given workload. It

could not identify the CPU, RAM, and IO resources used by the workload tasks.

Most data processing systems do not provide resource monitoring capabilities

because they do not require resource information to complete most general tasks.

Phase-II proposes to develop a resource monitoring framework that can record

resources used by all the processes running in a system. The recorded readings

need to be associated with the workload tasks for better analysis. Therefore, the

resource monitoring framework has been integrated with the raw data query pro-

cessing framework to develop a complete framework. This combined framework

is called Resource Monitoring Framework for Raw Data Query Processing.

5.1 Phase-I Raw Data Query Processing (RQP)

This phase proposes to develop a general purpose raw data processing frame-

work. The raw data query processing framework combines the functionalities

of in-situ engine and traditional DBMS. This framework uses multiple systems

therefore, it is called Hybrid framework. Section 5.1.1 discusses existing hybrid
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systems to justify why a hybrid system consisting in-situ engine and DBMS is

used.

5.1.1 Hybrid systems: In-situ engine & DBMS

The traditional way of data processing requires the entire dataset to be loaded into

a database. The time required to load data into a database is known as data load-

ing time (DLT). Most DBMS systems can be categorized into these three stores; 1)

Row store – stores each record’s data together, 2) Column store – stores attributes

or one column’s data together, and 3) Hybrid stores – these stores either use two

DBMS system like HTAP systems, or Hybrid based on application workload re-

quirements [60]. Database management systems have existed for half a century

[41]. They have evolved to answer queries faster. Earlier data generation speed

was not high, so high DLT was an affordable setback. Nowadays, advanced sen-

sors, smart devices, and an increased number of people and machines generate

huge amounts of data that traditional DBMSs cannot handle with traditional bulk

data loading methods. Researchers have developed distributed systems that uti-

lize the resources of multiple machines to handle large volumes and high-speed

streaming data. However, more resources increase application running costs. To

reduce the DLT, researchers proposed storing data in raw format.

In-situ or raw engines have been developed to query raw data directly to

eliminate data loading requirements. These engines eliminate the need to load

data into DBMS. However, advanced in-situ engines with DBMS like features

have existed for less than 10-15 years [33]. The in-situ engines require signifi-

cant time to query raw data because they need to extract, tokenize, and parse

the raw data to answer the queries increasing query execution time QET. NoDB

[33] and Slalom [94] have developed efficient caching, partitioning, and indexing

strategies to cache the processed data to reduce the QET for future queries. How-

ever, the reparsing persists for datasets larger than the main memory size of a

system. Therefore, hybrid systems have been developed that load data processed

by in-situ engine into DBMS to eliminate the reparsing. Such hybrid systems can

reduce upfront resource requirements, reduces data to query time, and improves
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QET gradually. Therefore, a hybrid system consisting of in-situ and DBMS is cho-

sen, because the positive features of both systems can help in finding resource

efficient approach to processing raw data. For the remaining chapters, hybrid

system term will refer to the system consisting in-situ engine and DBMS.

5.1.2 Raw Data Query Processing Framework

This section discusses the functional requirements and components of the raw

data query processing framework. Basic query execution tasks can be done di-

rectly using an in-situ engine or DBMS. However, building a framework allows

us to change the underlying DBMS or in-situ systems without changing function-

alities or algorithm logic. Additionally, functionality like recording QET and DLT

can be added. The framework executes list of workload queries automatically,

rather than executing them manually one by one. This allows us to perform more

experiments easily.

Some examples of hybrid systems include Invisible loading [29], SCANRAW

[53]. Invisible loading technique used Hadoop with map-reduce jobs as an in-situ

engine and MonetDB as a traditional column-store DBMS to process raw data [29].

R. Borovica-Gajic et al. and Y Cheng et al. also implemented in-situ extensions

into prototype systems like DataPath [49] and SCANRAW [53]. The NoDB phi-

losophy has been implemented in the traditional database management system

PostgreSQL (PgSQL) and created PostgresRAW [33]. PostgresRAW is one of the

few complete raw engines providing all DBMS features, including executing SQL

queries directly on raw CSV files. PostgresRAW is open source and available on

GitHub [11].

5.1.2.1 Functional Requirements of Hybrid systems

Modern applications reduce DLT by storing streaming data in raw format and

loading them into DBMS later to improve QET [29, 33, 53, 55, 88, 99, 125]. The

raw data query processing framework should be able to query raw data while

retaining processed data for future queries. The processed data can be retained

using two methods. 1) Caching processed raw data in the main memory. 2) Load
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required data into databases. Main memory is a limited resource. Large datasets

cannot be cached entirely into main memory leading to raw data reparsing. There-

fore, the framework must be capable of handling basic tasks like loading raw data

files into DBMS and querying loaded data. The in-situ engine can be an exten-

sion to DBMS or two separate tools that allows query processing on raw files with

processed data caching and DBMS data loading features. Some hybrid systems

may allow executing queries on data existing in multiple formats i.e. raw formats

(CSV, JSON, XML), and databases. Another feature allows executing join queries

on data existing in different formats. This feature is referred to as Multi-Format

(MF) join in Table 9.4.

5.1.2.2 Proposed General Framework

This section explains the components of the proposed raw data query processing

framework. Figure 5.1 shows the basic framework to handle raw data files and

databases. The framework should collect data from clients, sensors or smart de-

vices and store it in a CSV file format. The raw data collected in CSV files can

be loaded into the database faster using COPY method compared to bulk load,

transaction, and prepared SQL statement methods [56]. The framework requires

a hybrid system consisting of an in-situ engine and a traditional DBMS or DBMS

with an in-situ extension to execute SQL queries on CSV files and databases. A

hybrid system capable of executing join queries on data existing in raw files and

DBMS is best to address this job. However, it is possible to implement the pro-

posed framework using two separate data processing tools. The issue with using

separate tools is that the queries will need all the required data in a single format

that needs data replication. The raw data query processing module is responsi-

ble for handling raw data and query execution tasks on the implemented hybrid

system. Each component of the proposed framework is discussed below to un-

derstand its role in processing raw data.

Raw Data Query Processing: This part of the system is the central part of the

framework. This part must handle multiple tasks smoothly to allow storage and

query execution on raw data and databases using a hybrid system. This compo-
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Figure 5.1: Raw Data Query Processing Framework
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nent stores the streaming data from sensors into CSV files directly. The in-situ

query engine uses the generated CSV raw files to answer the workload queries.

This component must be able to handle data loading and query execution opera-

tions using the in-situ engine and/or database system when partial data is loaded

into DBMS. The bulk loading number decides how many records are stored in

buffer storage before saving them into a raw file or loading into a database. This

bulk number can be set according to the streaming data velocity or query fre-

quency .

Hybrid system: A state-of-the-art in-situ query engine and database manage-

ment system can be used for this framework component. This component is re-

sponsible for executing queries on raw files and/or databases using a hybrid sys-

tem. The in-situ engine executes the SQL queries directly on the stored raw data

files. At the same time, the raw data can be loaded into the database parallel to

raw data query processing. The proposed framework can be implemented using a

hybrid system consisting in-situ engine and traditional DBMS. The hybrid system

should be able to execute join queries on data existing in raw files and DBMS to

avoid data replication. The experimental Section 8 discusses the implementation

details of a hybrid system.

Main Memory: The main memory of the system is used to cache the entire

raw files for faster processing. The in-situ query engine can parse, tokenize and

filter the cached raw files faster. Some in-situ engines cache the processed data to

improve the QET of future queries [39]. NoDB and Slalom have also proposed to

build in-memory indexes to reduce QET [33, 94]. Most DBMS systems also cache

the required database files to answer queries faster. The main memory can also be

used as buffer storage to gather data for bulk loading.

Database & Raw Files: The raw data query processing module stores the ap-

plication data in raw formats for faster storage. The raw data can be stored in

semi-structured formats like CSV, JSON, or unstructured string raw formats. The

raw data stored in the CSV files can be loaded into DBMS using faster data load-

ing methods like COPY. The raw data query processing module is responsible for

storing data in raw files and loading them into DBMS by executing COPY com-
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mands.

5.2 Phase-II Resource Monitoring (RM)

Monitoring resources utilization of each workload task helps in understanding

data processing steps and resources required by different raw data processing

tools in depth. Identifying CPU, RAM, and IO resource utilization patterns can

help optimize or maximize resource utilization. This section explains the role

of resources in raw data processing, followed by the updated raw data query

processing framework.

5.2.1 Role of Resources

Processing raw data needs all three core resources, CPU, RAM, and data storage

devices (IO). Processing raw data using in-situ or raw engines requires storage re-

sources to read stored data to answer queries. CPU resource performs data pars-

ing, conversion, and tokenizing tasks. The main memory caches the processed

data required by the CPU for faster access. The traditional DBMS stores the pro-

cessed data back to disk for future queries. When a query arrives, a query plan

is made, which might require fetching data from the disk. If the required data is

already cached in RAM, it can be processed faster. The time of storing or reading

data from the permanent storage is directly affected by the IO speed of the storage

hardware resource. The RAM resource provides the cached data to the CPU for

processing. The time required to process query operations and generate results

depends on the CPU processing speed. If the required data is not in RAM, the

CPU has to wait for data to be fetched from the disk, known as a cache miss. The

CPU cycles are wasted in waiting for IO completion.

Figure 5.2 presents the latency and cost relationship of different resources.

CPU contains L1-L4 caches inside it. The speed of L1-L4 is very high, although

the size of L1-L4 in range from 64 KBs to 8 MBs. Double Data Rate Synchronous

Dynamic Random-Access Memory (DDR SDRAM) is main memory where all the

data is cache for faster processing. DDR SDRAM is referred to as RAM or main
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memory in following sections. Slow storage speed and smaller Cache and RAM

size increases cache misses, and CPU has to wait for data from Solid State Drive

(SSD) or Hard Disk Drives (HDD) referred as IO. The percentage of time waited

by CPU for IO is referred as IO_wait. The higher the IO_wait, higher data to result

time. The speed of processing large dataset usually depends on IO speeds as they

are the primary reason for bottlenecks [56]. L1-L1 caches have not been monitored

due to their smaller sizes. Network speed is not important for a single-machine

setup because application data do not travel through the network. Cloud storage

is also slower than single node setup storage devices as it adds time required to

transfer data over network. GPU resource is similar to CPU but mostly used for

processing graphical data. Therefore, resource monitoring framework proposed

in this work only considered CPU, RAM and IO resources. Monitoring these re-

sources allowed us to understand resource utilization patterns and propose an

efficient way of processing the large datasets.

Figure 5.2: Resources
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5.2.2 Resource Monitoring Framework

Resource Monitoring Framework consists of Resource Monitoring (RM) module

and Resource Monitoring (RM) tools. RM module accesses the resource utilization

data from system monitor, task manager, SAR, top, htop, iotop, or other tools by

sending appropriate RM commands. RM tools can provide resource utilization

details in GUI or text-based interfaces. The RM tools that provide text outputs

should be chosen because the output will require less space, and the collected

data can be easily filtered. RM data should be stored in CSV format for easy fil-

tering using basic data processing tools like excel. Therefore, RM module filters

and converts the resource utilization data received in string format to CSV. The

RM module can send CPU, RAM, and IO resource monitoring commands to RM

tools and collect output for further analysis. However, the monitored resource

utilization records show only the process ids of the running processes. They can-

not identify which workload task was running at that time. Therefore, the data

processing tasks need to be associated with RM output. Therefore, the resource

monitoring module must be integrated with an earlier proposed raw data query

processing framework to achieve the correlation.

5.2.3 Integration of Resource Monitoring Framework

This section discusses integrating the resource monitoring framework and raw

data query processing framework. The goal is to identify which workload tasks

were running and associate resource utilization data to that particular task. The

raw data query processing module of RQP framework has access to task IDs,

while the RM module of the RM Framework collects the resource monitoring

data. The RM module is comparatively smaller to integrate with RQP framework,

so the RM module is added to RQP framework to achieve the goal.

The updated raw data query processing framework with a resource monitor-

ing module can be seen in Figure 5.3. It can be observed that the RM modules

send commands to the tools and receive the output. The received output is filtered

to save monitored resources of the raw engine, DBMS, and framework processes.
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Figure 5.3: Resource Monitoring Framework for Raw Data Query Processing

The module also saves total resource utilization but filters out details of other pro-

cesses. At the same time, the RM modules get task details in real-time from the

streaming data and query processing module. The task details and monitoring

results are then combined in a list of comma-separated strings format and saved

to the output result file. The output is not loaded to a database to avoid using

additional resources, a common practice used by developers. However, real-time

decision making algorithms may require real-time analysis of recorded resource

utilization.

5.2.4 Algorithms & Data structures

This section discusses experiment flow for resource monitoring experiments fol-

lowed by pseudo-code.
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5.2.4.1 Data Structures

The resource monitoring algorithm uses simple data structures like arrays and

lists. The input workload file contents associate the task ID with task statements.

Table 5.1 shows an example of a workload list (w_l) containing task ID and task

statements. The workload file is read and kept in a List<String[]> and read one by

one by the query processing functions. The output data is stored in a List<String[]>

before writing to a CSV result file. Table 5.2 shows a sample output list. Figures 8.3

and 8.4 highlights all the important data collected from external RM tools. The list

contains CPU, RAM, and IO utilization data of system and important processes.

Basic metadata like data unit, read, or write details have been added to output

list to identify the data later while analyzing output CSV file. It can be seen in

Table 5.2 that the output list contains time to complete a task, CPU, RAM, and

IO utilization monitored during a TRUNCATE Table (TRUN) task. The Postgres

process CPU utilization is a single CPU core utilization, while memory utilization

percentage is out of 100.

Table 5.1: Workload list (w_l)

0[T_ID] 1[Statement]
TRUN “TRUNCATE TABLE PhotoPrimary;”
COPY "COPY PhotoPrimary FROM ’/. . . /PhotoPrimary.csv’ (DELIMITER

’","’);"
Q0 “Select count(objid) from PhotoPrimary;"
Q1 “SELECT objID, ra ,dec FROM PhotoPrimary WHERE ra >185 and ra

<185.1 AND dec >56.2 and dec <56.3 limit 100;”

Table 5.2: Result List

0 1 2 3 4 5 6 7 ...
Q_ID TRUN Time 444 ms #Rec. 0 star
CR_T TRUN Used 3.9 Free 92.1 I/O 1.9
CR_P Postgres 1core 79.4 Mem 0.2
IO_T TRUN Read 0.59 Write 0.02
IO_P Postgres Read 0.50 Write 0.01 I/O 0.2
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5.2.4.2 Algorithms

This section explains the flow of raw data query processing and resource monitor-

ing algorithms. These algorithms run in parallel and share important information

with each other to relate and record output data for better analysis. Pseudo-codes

of Algorithm 1 Raw Data Query Processing and Algorithm 2 Resource Monitoring

are also presented in this subsection.

Algorithm 1 Raw Data Query Processing (RQP): The raw data query process-

ing algorithm is responsible for performing data loading and query processing

tasks. This process sets the input and output file paths. It starts resource monitor-

ing (RM) threads. The query processing thread reads workload tasks from given

file and starts executing them on a hybrid system. This process sets and updates

the currently running data processing task details in shared variables. The RM

threads read those task details and incorporate them with RM output. Once the

assigned task gets completed the algorithm stores the task ID and time required

to complete that task in a result output file.

Algorithm 2 Resource Monitoring (RM): The resource monitoring algorithm

executes in parallel using a new thread. This RM thread is responsible of exe-

cuting resource monitoring commands on external RM tools. The RM tool com-

mands are executed on the interface provided by OS terminal or external tools.

The resource utilization output stream is read by these threads using buffer reader.

The RM threads filter the received resource monitoring output line by line to find

specific resource utilization details and save it with task information in a CSV

file. The filter parameters are set to find lines that contain data processing tools

and framework processes to record their resource utilization. Here, Postgres and

Java processes have been filtered. The Postgres process represents NoDB (Post-

gresRAW) and PostgreSQL (PgSQL) data processing tasks, while Java processes

are the framework tasks.

The RM output is not immediately stored on disk to avoid continuous usage

of IO. The threads collect the RM information in the result list residing in the

main memory before flushing to the disk. The list collects the data until a prede-

fined threshold value is met, i.e., the number of records filtered. The final result
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Algorithm 1 Raw Data Query Processing
Data: w_p = workload file path,
r_p = result file path,
IsRM = Monitoring threads flag,
RMType = CPU & RAM or I/O RM types,
RMcommand = Monitoring command for tool,
RM_F = Monitoring Freq.,
Task_ID = data loading or Query ID
Result: DLT, QET, Total WET & Result Count in CSV file

1.RawDataQP (w_p, IsRM, RM_F, r_p)
2. Set parameter values w_p, r_p
3. Set RMcommand = top -I -b -d RM_F -H
4. If (IsRM == True) then
. #Initialize. RM Threads A
5. RM_Thread (RMType, RMcommand, r_p)
6. RM_Thread.start()
7. DB.Connect()
. #start workload execution
8. For each task T in w_p do
9.. Set static Task_ID = T.T_ID
10. Results = T.Statement.Execute()
11. Save time & Result count for each task
12.. End
13. RM_Thread.interrupt()
14.Return;
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Algorithm 2 Resource Monitoring
Data: RM_OutPut = stores RM tool output read from buffer
r_p = result file path,
RMType = CPU & RAM or I/O RM types,
RMcommand = Monitoring command for tool,
Result: Resource monitoring data with task ID

1.RM_Thread (RMType, RMcommand, r_p) ,
2. Set local parameter values T_ID,
# #Execute RM tool command
3. Execute RMcommand on external tools,
4. List RM_OutPut = read resource monitoring output
5. While RM_OutPut.readline is NOT NULL
6. For each line in RM_OutPut
7. Filter RM data from line
8. RM_Info = Set T_ID to RM monitoring;
# #save data
9. WriteRM(RM_Info, r_p);
10. Run till interrupt from RawDataQP
11. End
12.End

file contains the overall CPU, RAM, and IO utilization observed during raw data

processing. The resulting file also contains Postgres and Java process resource uti-

lization information. The raw data query processing process interrupts both RM

threads when the data processing tasks are completed. A few seconds of delay

can be imposed to store collected data on the disk.
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CHAPTER 6

Resource Availability and Workload aware

Hybrid Framework (RAW-HF): Optimizing

Required Resources

This chapter discusses Resource Availability and Workload aware Hybrid Frame-

work (RAW-HF) to optimize required resources. Section 6.1 discusses the moti-

vation behind developing a hybrid framework and components of RAW-HF. The

partitioning techniques used by RAW-HF to optimize resource utilization are ex-

plained in Section 6.2.

6.1 Resource Availability and Workload aware Hybrid

Framework (RAW-HF)

Resource Availability and Workload aware Hybrid Framework (RAW-HF) uses a

hybrid system containing an in-situ engine and traditional DBMS. The motiva-

tion behind choosing a hybrid system for RAW-HF is already discussed in Section

4.2, which was based on the literature survey. The important point of choosing

a hybrid system is to reduce data-to-result time using in-situ engines and retain

processed data using DBMS to eliminate raw data reparsing. Most existing sys-

tems propose to load raw data into DBMS to improve the QET of future queries

[29, 53]. However, partitioning raw datasets for hybrid systems is an NP-hard

problem [125]. W. Zhao et al. have proposed to load attributes based on a cost

function that considers attribute loading time and time required to access data
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from DBMS and raw files. However, the cost function was complex and costly to

implement. The cost function did not consider the improved QET time of in-situ

engines, which could cache the processed data for future queries.

Phase-I & II explored and implemented an open source hybrid system consist-

ing of PostgreSQL (PgSQL) [22] and NoDB (PostgresRAW) [33]. The experiments

performed using a real-world scientific dataset prove that traditional DBMS re-

quired significant time to load the entire dataset into DBMS. In comparison, the

in-situ engine could answer many queries before DBMS could complete the data

loading. However, the total workload execution time (WET) of in-situ engine

was very high compared to DBMS. A detailed analysis of the time each workload

query took showed that some queries had low QET in in-situ engines compared

to DBMS. This led to the below given key discoveries that inspired partitioning

techniques discussed in Section 6.2.

1. Simple queries can be executed using in-situ engines on partitioned raw files

to reduce high QET of initial queries. While complex queries must be exe-

cuted using DBMS because they are well optimized to handle such tasks.

2. In-situ engine and DBMS could not utilize the available resources completely

with the default resource allocation settings.

The literature survey and Phase-I & II results showed that existing in-situ en-

gines and DBMS utilize resources in processing data that workload queries never

use. Therefore, a query workload analysis became a necessary part of the parti-

tioning algorithm. Additionally, the proposed partitioning techniques utilize the

knowledge gained from Phase-I & II results that discovered simple queries had

low QET compared to DBMS when the in-situ engine had cached the required

data in the main memory. The RAW-HF proposes to keep the simple query (SQ)

partition always in raw format and improve QET for initial cold queries by ac-

cessing smaller raw partitions. Figure 6.1 displays a block diagram of RAW-HF to

understand how proposed QCA (Query Complexity Aware) and WSAC (Work-

load and Storage Aware Cost-based partitioning) techniques partition the given

dataset in Phase-III. The QCA partitions the dataset based on query complexity
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Figure 6.1: RAW-HF: Block Diagram
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to create three vertical partitions: a simple query partition (SQ), a complex query

partition (CQ), and an unused attributes partition. WSAC is used to refine the

complex query partition when enough storage resources or main memory is un-

available to load all complex query attributes in DBMS or MMDB. The black ar-

rows show the final partitions sent to resource monitoring and raw data query

processing framework. More details on QCA and WSAC are discussed in Section

6.2.

The Maximizing Utilization of Available Resources (MUAR) technique devel-

oped in Phase-IV handles the task scheduling and resource allocation tasks. The

Phase-I & II result analysis showed that CPU, RAM, and IO resources are under-

utilized. The MUAR maximizes the utilization of existing resources by execut-

ing workload tasks in parallel and allocating enough RAM resources to differ-

ent types of workload queries at runtime. The lightweight algorithm of MUAR

considers the query complexity to fine-tune the dynamic allocation of available

resources for each query. MUAR receives the real-time availability of resources

from the Resource Monitoring (RM) module. The RM module is also modified

to filter the RM data required by MUAR in real-time. The MUAR technique is

further discussed in Chapter 7.

6.2 RAW-HF: Optimizing Required Resources

The thesis work proposes two techniques to partition and distribute the applica-

tion dataset to process the workload efficiently for hybrid systems.

1. QCA – Query Complexity Aware partitioning technique identifies the Sim-

ple Queries (SQ) and Complex Queries (CQ) using a lightweight algorithm

to decide which attributes to load and which can be kept in raw format.

2. WSAC – Workload and Storage Aware Cost-based partitioning technique

decides which attributes to load in the database when the attributes selected

by QCA require more space than a given storage budget B.

The final partitioned table schemas are given to the raw data query processing

module to create relational tables in DBMS and in-situ. The CSV file of original
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Figure 6.2: RAW-HF Architecture: Optimizing Required Resources

dataset is partitioned to create smaller CSV files for loading into DBMS and access

using in-situ engine. The framework links the raw partitions with the in-situ en-

gines to execute SQL queries. Figure 6.2 displays a detailed architecture of RAW-

HF. Each phase is shown in different colors for easier identification of phases and

where they fit in the entire framework. The optimization phase is shown in green.

It provides the partition schemas to the raw data query processing module. The

raw data query processing module of RAW-HF then loads the final complex query

partitions into DBMS and links the remaining partitions to the in-situ engine. The

hybrid system supports the execution of join queries on databases and raw files

to avoid replication. However, all the replication cases are discussed in Section
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6.2.1.3 of QCA partitioning technique Section 6.2.1.

6.2.1 Query Complexity Aware (QCA) Partitioning Technique

Row store databases and raw data processing engines need to read entire records

stored inside a database or a file to answer the queries which require those specific

records. Data partitioning techniques can improve the QET time by reducing the

accessed data. For traditional databases, partitioning and re-partitioning are very

costly operations. Whereas partitioning raw data is relatively less costly when

considering frequent changes in the workload [94]. Therefore, RAW-HF proposes

to partition the raw dataset files without loading them. This section discusses

the Query Complexity Aware (QCA) technique to partition the raw dataset by

analyzing only workload query statements. QCA tries to partition the dataset

by considering the fact that simple queries (SQ) had low QET in in-situ engines.

Therefore, QCA proposes partitioning the application dataset to keep the parti-

tion access by simple queries in raw format. In contrast, the complex query (CQ)

partition should be loaded into DBMS for efficient workload processing for the

hybrid system. If CQ partition is larger than the storage budget, the CQ queries

are further given to WSAC to refine the database partition. The following sections

discuss data structure and algorithm logic used by QCA.

6.2.1.1 QCA: Data structures

QCA algorithm uses simple lists and key-value dictionaries to store the query

attributes, query complexity, and relevant partitions. QCA uses a schema dic-

tionary, workload list, workload attributes, and query dictionaries generated us-

ing schema and workload extraction functions similar to WSAC. Table 5.1 shows

workload list (w_l) populated by reading workload file. The Query Type (QT) dic-

tionary stores query types identified by the query complexity identification steps.

QT values are shown in Table 6.1. The value 0 means the query type is simple,

and 1 for the complex type. QT_P0 and QT_P1 store list of attributes coming in

simple and complex queries. Common attributes for both partitions are stored in

the common attributes partition CAP list. PC_Q0 and PC_Q1 lists keep track of
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partially covered queries based on CAP list.

Table 6.1: Query Type Dictionary (QT)

Key (Q_ID) 1 2 3 4 5 6 7 9 10 11 12
Value(Query Type) 1 0 1 0 1 0 0 1 0 1 1

6.2.1.2 QCA: Algorithm

The idea behind the QCA technique is to partition the dataset and distribute the

workload in such a way that queries performing faster on a given tool can be

allocated to that tool. Contrary to the HTAP systems, QCA tries to achieve faster

query execution times with minimal replication and loaded data partitions.

The proposed workload and query complexity aware algorithm uses lightweight

query identification and partitioning steps to reduce algorithm execution time

(AET) compared to other cost based techniques [125]. QCA algorithm can be di-

vided into three parts, 1) Query Complexity Identification (QCI), 2) Grouping of

Attributes based on query classification (GRA), and 3) Identification of Partially

covered Queries (PCQ). QCA algorithm first identifies the type of queries best

suited for a given tool using initial results. The initial experiment results have

been plotted in Figure 9.13. The analysis has shown that zero-join queries per-

form faster in raw engines than in traditional DBMS. While queries having mul-

tiple joins are slow in raw engines. Therefore, the technique classified the query

workload into two query types. The first type is for Simple Queries (SQ), which

contains zero join. The second query type includes the remaining one or more join

queries. This second category of queries is called Complex Queries (CQ) in this

paper.

The proposed QCA technique uses general attribute and table name extraction

functions from schema and query workload to populate workload list, schema

dictionary, and query dictionary. The QCA algorithm first identifies the SQ and

CQ type queries stored in the workload list. The algorithm uses the simple logic

of counting no. of tables present in the query statement. The query is classified

as a complex query; if two or more table instances are found in the query state-

ment. The technique also considers self-join queries as complex queries. Table
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Algorithm 3 QCA Partitioning
Data: w_l = Workload List
QT = Query Types Dictionary
q_l = Query List
que_d = Dictionary of Queries
s_d = Schema Dictionary
Result: SQ-Raw, CQ-DB & CAP Partitions

# # Query Complexity Identification
1. def QCI(w_l, que_d, s_d):
2. For each task T in w_l do
3. If T.Statement has multiple tables
4. QT[T.Q_ID] = 1
5. Else
6. QT[T.Q_ID] = 0
7. End
8. Get QT_P0, QT_P1 = GRA(que_d, QT)
9. CAP = QT_P0 QT_P1 #Common Attributes
10. QT2 = PCQ(que_d, QT_P0-CAP, w_l)
11. QT3 = PCQ(que_d, QT_P1-CAP, w_l)
12. Repeat steps 8 to 12 For QT2, QT3.
13. Return QT*; #Return all QT partitions

# #Grouping of Attributes
14. def GRA(que_d, QT)
15. For each query i in que_d:
16. For each attribute j in que_d[i]:
17. If QT[i] == 0
18. Add j in QT_P0
19. Else
20. Add j in QT_P1
21. End
22. End
23. Return QT_P0, QT_P1

# # Identification: Part. covered Queries
24. def PCQ(que_d, QT_P, w_l)
25. QT = [0]*w_l.length; #Assign 0s
26. For each query i in que_d:
27. For each attribute j in que_d[i]:
28. If j not in QT_P list
29. QT[i] = 1 #New QT list
30. End
31. End
32. Return QT;
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6.1 shows the query ID and query complexity type updated in QT as key-value

pair. The single table instance queries are classified as simple queries (SQ). The

GRA function groups the SQ and CQ attributes in two different lists (QT_P0) and

(QT_P1). The intersection of these two lists provides the list of common attributes

partition CAP. The SQ partition is (QT_P0), and the CQ partition is (QT_P1) after

the first round of QCA partitioning. The SQ partition can be stored in raw format,

while the CQ partition needs to be loaded in DBMS.

The QCA algorithm can further refine the partitions based on output from

partially covered queries PCQ list as new query type QT input. Steps 8-12 can

be repeated until all workload queries get covered in QT2 union QT3 to further

partition raw and database partitions. These steps reduce partition size and find

new groups of queries covered by smaller partitions. The partition refinement

benefits broad table datasets with a large number of distinct queries in the work-

load. For most cases, the first round of partitioning might be enough to partition

a single table into the raw format for SQ queries (QT_P0) and database format for

CQ queries (QT_P1). Here, CAP gets replicated in both partitions. The following

section discusses no replication and replication data distribution cases for CAP

partition.

QCA – Complexity: The complexity of the proposed QCA algorithm is O(j*(w_l)).

It can be seen from the pseudo code that the complexity of steps 2 to 7 is O((w_l))

because it loops for each query in the workload list. The complexity of GRA and

PQC functions is O(j*(w_l)). The j is the number of attributes in each query state-

ment, and (w_l) is the count of queries. The remaining steps execute only one

time O(1). The total complexity of the algorithm is O(j*(w_l)) which shows that

the algorithm does not depend on the size of the dataset. The (w_l) count is the

dominating factor in the equation because j « (w_l). The (w_l) count can be re-

duced by clubbing together identical structure queries. The O(j*(w_l)) complexity

concludes that the QCA algorithm runs in polynomial time even in worst-case

scenarios.
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6.2.1.3 Data Distribution Cases

All the partitions received from the QCA technique having zero common attributes

can be kept in their respective raw or database formats. For example, if a (QT_P0)

raw partition covers 4 out of 5 simple queries with no attributes of the fifth query,

it can be kept in raw format. This can also be interpreted as all attributes required

by the fifth query would be in one or more common attribute partitions CAPs. For

simplicity, consider that there is only one CAP partition. The CAP and remaining

partitions can be arranged in five different ways. This section discusses all five

cases with their advantage and disadvantages based on the location of CAP.

• No Replication cases: The cases discussed in this section do not replicate

common attributes among raw or database formats. Therefore, a data pro-

cessing tool capable of executing join queries on multi-format data is re-

quired.

– Case-1: Keep the (QT_P1) which includes CAP in the loaded format.

The remaining partition (QT_P0)-CAP can be stored in raw format.

This ensures that complex queries have the best query response times.

However, simple queries requiring data from CAP will have to per-

form join with database partition (QT_P1), which might increase QET

for partially covered queries.

– Case-II: Keep the (QT_P0) which includes CAP in the raw format. This

arrangement allows simple queries to execute without any joins. How-

ever, complex queries will require joining (QT_P1)-CAP partition stored

in database format with raw partition (QT_P0). This case has minimal

attributes in the loaded format. Therefore, CQ queries may suffer from

high QET.

– Case-III & IV: In this arrangement, the (QT_P0)-CAP stays as a raw par-

tition, and the (QT_P1)-CAP partition is loaded in the database. The

difference between Case-III and Case-IV is the location of the CAP par-

tition. The CAP partition can be either loaded into the database or kept

in raw format. The benefit of this case is that all fully covered queries
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that do not require the CAP partition may execute a little faster due

to the smaller partition size. However, all partially covered queries

PCQ have to be joined with CAP partition. The additional JOIN opera-

tion may increase WET time due to the high number of PCQ queries in

Case-III & IV compared to other cases.

• Replication Case: The HTAP systems and most query workload balancing

techniques require replication of data on all nodes. QCA technique limits

the replication to only CAP partitions. Replication of CAP with raw and

database partitions provides freedom to choose different tools for different

format partitions which can not join different format partitions.

– Case-V: The (QT_P0) and (QT_P1) partitions that cover all simple and

complex queries have to be used in this case. Both partitions include

common attributes CAP, which allows the execution of queries using

a single partition with no additional joins. This case also eliminates

internode communication in a distributed setup.

6.2.2 Workload and Storage aware Cost-based Technique (WSAC)

This section discusses the proposed Workload and Storage aware Cost-based tech-

nique (WSAC), which considers the query workload, read-write costs, and stor-

age parameters to decide the optimal partitions of raw data files. Most algorithms

provide two partitions of a table to distribute among database and raw engines

[125]. The first partition is to be loaded in a database, and the other one is to be

kept in raw format. However, the proposed technique suggests three partitions

for big tables. The third partition is a list of attributes that do not get used by the

workload and should be kept raw.

6.2.2.1 WSAC: Data Structures

Most techniques require the basic arrays, and list data structures. The proposed

technique required 2D or more complex array data structures. We have used

Python dictionary and nested dictionary data structure during implementation.
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Python uses hash functions to map keys to values for dictionaries. Table 6.2 &

Table 6.3 show data structures that are used in sub algorithms. The Schema Dic-

tionary (s_d) shown in Table 6.2 stores list of attributes associated with tables.

The instance of PhotoPrimary table from the SDSS dataset has been displayed for

understanding. Table 6.3 represents (que_d), the nested dictionary of workload

queries that contain tables and attributes used in each query.

Table 6.2: WSAC: Schema Dictionary

#s_d Table_list Attr_list

0 photoprimary

objid
run,
ra

rerun,
camcol

field
obj
. . .

Table 6.3: WSAC: Nested Dictionary

#que_d Q_ID Table_list Attr_list

0 1 photoprimary

objid
run

rerun
. . .

1 2 photoprimary

objid
type

flags_r
. . .

6.2.2.2 WSAC: Algorithms

This section describes sub-functions used by WSAC technique; 1) Attributes &

Entities Extraction, 2) Cost Function, 3) Query Coverage (QC), and 4) Attribute

Usage Frequency (AUF). After extracting attributes, the cost function finds the

access costs of workload attributes. The QC sub-algorithm tries to cover all at-

tributes of frequent queries for a given storage budget, while AUF tries to fill up

the remaining budget with the most frequent attributes.
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Attributes & Entities Extraction: This function extracts table names, attribute

names used in the workload queries, and the original dataset schema. The database

schema file is provided in a data definition language DDL format. After removing

additional words and data types, a dictionary s_d of entities and their attributes

gets generated. From the provided workload file, (que_d) gets populated, which

lists tables and attributes used by each query. Comparing both the dictionary lists

provides us with two raw data partitions wa_l, and s_d – wa_l. The wa_l is the

attributes used by workload, and the s_d – wa_l lists the unused attributes not

used by the given workload.

Algorithm 4 Cost Function
Data: s_d = Schema Dictionary;
wa_l = Workload Attributes List;
que_d = Dictionary of Queries;
cost_d = read/write storage costs of attributes;

1.def CostCalculation(s_d, wa_l, que_d, dataset CSV):
2. For query i in que_d:
3. For each attribute j in que_d[i]:
4. For each attribute A in wa_l:
5. If j = A
6. Find index k of A in s_d:
7. cost_d[A].r = readfromraw(j, k, dataset
CSV)
8. cost_d[A].l = loadattribute(j,k.lower())
9. cost_d[A].S = size of A in loaded format
10. End
11. End
12. End
13.return cost_d;

Cost Function: The attribute & entities extraction part provides the list of at-

tributes and tables used by the workload queries. The WSAC calculates the cost

of each attribute used by query workload listed in wa_l by performing operations

on the actual raw data. The cost function extracts each attribute from the raw data

file and loads it into the given database system to find the attribute’s extraction

time, load time, and DB size. The values get recorded in the cost_d dictionary list.

The cost of an ith attribute is:
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Cost_di = Read_Extract_Time(ri) + Load_Time(li) (6.1)

The above equation calculates the cost of ith attribute. Read-Extract time rep-

resents the time required to read the raw file and extract the given attribute. The

load time represents the time taken to load the attribute data into a database as

a single-column table. The size of attribute Si is queried from the database by

checking the actual size of the single-column table on the storage medium, which

can be HDD, SSD, or RAM.

Storage budget: When processing a big amount of data, the word big can be

related to many parameters of data processing requirements like the size of data,

type of operations that need to be performed, and maximum wait time affordable

to get results for that application. The algorithm uses the parameters storage bud-

get B, which indicates cache size or database size, which a machine can process

efficiently. WSAC tries to reduce the total workload execution time defined in

Equation 6.2 by covering attributes of queries that can fit in the available storage

space B. The total Workload Execution Time (WET) is:

WET =
m

∑
i=1

DLT(Ai) +
n

∑
j=1

QET(Q j) (6.2)

A research paper discussing a storage-aware partitioning algorithm directly

assumed budget B as some x number of attributes [125]. While the proposed

algorithm first takes an actual storage budget B in MB and finds out how many

attributes can be covered in the given budget. In the earlier case [125], if the

storage budget is given as B=3 attributes. Then the algorithm may cover three

attributes having data type char(100) or three Boolean attributes. It means the

storage budget size may differ significantly in each case for covered attributes.

On the other hand, the proposed algorithm checks the actual storage size used by

the attributes considering the actual data type and data values, this allows us to

fill the available storage budget more accurately.

Workload awareness: The WSAC uses two sub-algorithms, Query Coverage

(QC) and Attribute Usage Frequency (AUF), to integrate workload awareness.
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Algorithm 5 Query Coverage – QC
Data: B = Storage budget B in MB;
ca_l = List of covered Attributes;
cq_l = List of covered Queries;

1.def QueryCoverage(que_d, cost_d, B):
2. ca_l=0,cq_l=0 #list of covered attributes & Queries
3. For each query q from freq. query set que_d
4. if (SUM(size of attributes of q[i]))<B :
5. for each attribute A in q[i]
6. If A is not in ca_l
7. if size of A < remaining Budget B
8. Add A in ca_l list update B
9. Add q in cq_l if all attributes are in ca_l
10. Else
11. Query q cannot be covered.
12.return ca_l, cq_l;

Query Coverage (QC): The function uses a modified query coverage algorithm

[125] to find the queries that can fit inside the given storage budget B. The function

uses the storage cost values of each attribute recorded in cost_d for each query

(que_d) and adds them. The algorithm tries to cover most queries from the fre-

quent queries set based on the storage budget. The list of queries gets filtered

based on their required storage budget requirements. The queries requiring less

budget than given B are considered further. The first query is chosen based on

storage cost from the most frequent query set. The attributes of the covered query

get added in the covered attributes list (ca_l) and completely covered queries in

the cq_l list. Now, the remaining queries having covered attributes will need a

lower storage budget to get covered. This way, each query is checked to see if it

can be covered within a given storage budget until no other query can be covered.

Attribute Usage Frequency (AUF): This sub-function attempts to fill up the re-

maining storage budget using the remaining attributes used by uncovered queries.

The list of remaining attributes gets extracted from the remaining queries with the

frequency and removing covered attributes. The attribute coming in most queries

will be at the top of the list. This way, the algorithm tries to reduce the query

execution time for partially covered queries. If two attributes have the same fre-

quency, then the attribute having a high cost is considered. The final list of cov-
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Algorithm 6 Attribute Usage Frequency - AUF
wa_rl = list of remaining non-covered attributes

1. def AUF (ca_l, cost_d, B, s_d, wa_l):
2. wa_rl= wa_l-ca_l
3. wa_rl= Sort(wa_rl) based on Attribute Freq.
4. For each attribute A from wa_rl
5. if (Cost_d[A].S)<B :
6. if(A.Freq. == (A+1).Freq.)
7. if Cost_d[A].r+Cost_d[A].l >
Cost_d[A+1].r+Cost_d[A+1].l
8. Add A in ca_l list update B
# # Cover Attributes with high Read/Load Cost First
9. Else if (Size of (A+1))<B :
10. Add (A+1) in ca_l list update B
11. Else
12. Attribute cannot be covered.
13. return partitions ca_l, (wa_l-ca_l), (s_d-wa_l);

ered attributes (ca_l) for each table decides the remaining two partitions. All at-

tributes covered in the given storage budget will get loaded into a database, so

all the covered queries (cq_l) can be answered directly from a database. The raw

partition is created for attributes used in the workload, but the algorithm could

not cover them due to storage limitations.

The final output of WSAC consists of three vertical partitions for the given

table; 1) Memory budget partition (ca_l), 2) Remaining workload partition (wa_l-

ca_l), 3) Unused data partition (s_d-wa_l). If any attributes exist in the list (wa_l-

ca_l), then it means some data needs to be fetched from raw partitions to answer

partially covered or non-covered queries. If the storage budget is sufficient to

store all the attributes existing in list wa_l, then there will be only two partitions

ca_l, and (s_d-wa_l). The loaded data will cover all the queries.

WSAC – Complexity: The complexity of all the WSAC algorithms is shown

in Table 6.4. It can be seen that the complexity of addition of all the algorithms

O(j2*(w_l)). The j is the number of attributes in each query statement, and (w_l) is

the count of queries. The total complexity of all WSAC algorithms never exceeds

O(j2*(w_l)). The cost calculation lines in the cost function shown in steps 7 & 8

find the time required to read the attribute column from the raw file and load it
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Table 6.4: Complexity of WSAC Algorithms

Algorithm Complexity Remarks
Cost Func-
tion

O(A*j*w_l) =>O(j*j*w_l) que_d count is equal to w_l. A is a subset of
j. In the worst case A=j.

QC O(A*w_l) =>O(j*w_l) que_d count is equal to w_l. A is a subset of
j. In the worst case A=j.

AUF O(wa_rllog wa_rl)
=>O(w_llogw_l)

Sort (textitwa_rl) = O(n*logn) =>O(wa_rl
logwa_rl), wa_rl is a subset of w_l. In the
worst case, wa_rl = w_l.

WSAC To-
tal

O(j*w_l)+ O(j*j*w_l)
+ O(w_llogw_l)
=>O(j2*w_l)

Algorithm runs in Polynomial time.

into DBMS. The read and load time depend on the size of the dataset. However,

to eliminate that dependency, only a fixed sample size partition of the dataset can

be taken. Therefore, the complexity of the 7 & 8th steps is O(1). The cost function

executes steps 7-9 for each attribute used by workload queries O(A), where A is a

subset of j. A = j when workload queries access all dataset attributes. Therefore,

the complexity of cost function will be O(j2*(w_l)). The QC and AUF use values

generated and saved by the cost function. Therefore, Cost function is the dom-

inating factor in WSAC complexity calculations. However, the total complexity

O(j2*(w_l)) concludes that WSAC algorithm will run in Polynomial time even in

worst-case scenarios.
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CHAPTER 7

Resource Availability and Workload aware

Hybrid Framework (RAW-HF): Maximizing

Utilization of Existing Resources

This chapter explains a dynamic real-time resource allocation and task schedul-

ing algorithm used by RAW-HF to maximize the utilization of available resources.

The proposed lightweight algorithm allocates appropriate resources considering

the complexity of workload tasks and real-time resource utilization readings. The

existing resource maximization techniques section explains how to increase the

utilization of each hardware resource independently. The experiments performed

using existing resource maximization techniques concluded that maximizing RAM

and CPU resources had the highest impact on total workload execution time (WET).

Therefore, this work proposes Maximizing Utilization of Available Resources

(MUAR) algorithm to maximize utilization of idle CPU and RAM resources in

real-time.

7.1 Existing Resource Maximization Techniques

There are three main resources CPU, RAM, and Storage devices (IO). The CPU is

responsible for performing data processing operations on data. RAM caches the

data to be processed by the CPU. CPU writes the processed data to RAM before

storing it on permanent storage devices. The storage or data input-output (IO) de-

vices can be hard disk HDD, solid state drives SSD, Non-Volatile Memory Express
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NVMe, or Cloud storage. The data read and write speeds or IO speeds, represent

how fast data can be fetched for processing. Slower IO devices increase the wait

time keeping the CPU idle even after a task is assigned. The following sub-section

discusses relevant resource maximization techniques that may improve data load-

ing and query execution time to reduce total workload execution time (WET).

WET = DLT + QET (7.1)

Total workload execution time WET is calculated by summing up data loading

time (DLT) and query execution time (QET) for a given workload. Therefore,

reducing DLT and QET reduces WET.

7.1.1 CPU Resource Maximization

The primary step to maximize CPU resource utilization is creating multiple task

threads to be executed in parallel using multiple cores. It is known that loading

data on disk-based storage mediums need to be sequential [56]. Therefore, par-

allel loading cannot improve DLT for disk-based storage. However, most DBMS

cache the required data in the main memory. The parallel access to cached data

can reduce the time required to execute queries. Although, the actual QET time

of each query does not improve. The dataset & query need to be partitioned and

processed in parallel to reduce the QET of a query [85, 117]. However, it has a

high overhead of partitioning and joining intermediate results to produce the final

answer. Therefore, executing workload queries in parallel is the best CPU maxi-

mization technique to complete workload tasks of various applications faster.

7.1.2 RAM Resource Maximization

Main memory storage space and size have increased significantly. NoDB [33],

Slalom [94], and PDC [117] have used main memory to cache processed data, in-

dexes, and summaries for faster query execution. RAM is a random access mem-

ory. It can provide data faster during parallel access. Therefore, data cached in

main memory can improve parallel execution of data loading and query execu-
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tion operations. Most DBMS cache the databases or indexes in main memory by

default. Most operating systems automatically cache the frequently accessed files

in the main memory. However, the amount of cached data can be configured in

OS, and DBMS. A. Pimpley et al. have been analyzing CPU and RAM resource

requirements to train resource allocation models to provide precise resources for

faster query execution [103]. Therefore, the main memory configuration settings

must be tuned to improve WET for a given workload or individual query.

7.1.3 IO Resource Maximization

There are multiple types of storage devices. Each storage type has its own limi-

tation and advantages. The most used permanent storage type is magnetic hard

disk HDD due to its low cost. On the other hand, HDD is slower than SSD or

NVMe storage types due to several moving parts. A. Dziedzic et al. have ob-

served that to improve DLT time; the IO device needs to be changed from HDD to

SSD or RAM [56]. Parallel access to HDD cannot improve DLT due to high seek

time. Therefore, HDD needs to be accessed sequentially to achieve maximum IO

speeds. Additionally, SSD or RAM storage options can be explored to improve

WET.

7.2 Maximizing Utilization of Available Resources

(MUAR)

This section discusses a dynamic real-time task scheduling and resource allocation

technique MUAR to maximize the utilization of available resources. MUAR has

been integrated into a raw data query processing framework to automate the pro-

cess of maximizing utilization of available resources in real time during workload

execution. Most DBMS and Machine Learning (ML) based resource allocation

techniques do not consider the real-time availability of resources. Additionally,

the estimated resource requirements might not be applicable at run time due to

insufficient resources. The resource allocations estimated using historical records

97



might not be accurate as resource requirements of complex queries (CQ) change

exponentially with dataset size. The MUAR proposes a lightweight resource allo-

cation & task scheduling technique that considers the complexity of queries and

the real-time availability of resources. More details on the working of MUAR are

explained in the algorithm section with pseudo code.

7.2.1 MUAR: Framework

The earlier discussed resource maximization techniques must be applied to an

application workload multiple times to find WET reduction. Therefore, this sec-

tion proposes to update a raw data query processing framework to maximize the

utilization of available resources. Figure 7.1 displays a resource maximization

framework for applying different resource maximization techniques to a given

workload. The framework has four main modules that help complete required

operations using a given DBMS or in-situ engine. The raw data query processing

module and resource monitoring module have already been discussed in Chapter

5. The optimization module is discussed in Chapter 6. Therefore, only basic tasks

handled by existing framework modules are briefed. The raw data query pro-

cessing module handles the query execution and data loading tasks. The resource

monitoring module records the resource utilization information and filters im-

portant resource information in real-time to be used by the resource maximization

module. The resource maximization modules implement CPU and RAM resource

maximization techniques. The following sub-section explains the tasks performed

by RAM and CPU resource maximization components in detail.

7.2.2 MUAR: Resource Maximization Module

The CPU and RAM resource utilization can be controlled dynamically at runtime

to maximize their utilization. Changing IO to RAMFS is a static setting and can-

not be configured at runtime. Additionally, results of existing resource maximiza-

tion techniques showed that combining CPU and RAM resources maximization

techniques can significantly reduce WET. Therefore, MUAR uses only CPU and
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Figure 7.1: RAW-HF Architecture: Maximizing Utilization of Existing Resources

RAM maximization components to increase their utilization at runtime, consider-

ing real-time utilization.

CPU Maximization: The basic step to maximizing utilization of CPU resources

is to add multiple threads to be executed in parallel. It is known that data loading

on disk-based storage mediums needs to be sequential. Therefore, this component

checks the number of CPU cores and creates an equal number of query threads

for parallel execution. The task scheduler component checks for the hardware

specifications like total CPU cores, total RAM, and availability of those resources

based on real-time resource utilization observed by the resource monitoring mod-

ule. The scheduler adds a new query processing thread to be executed in parallel
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if the resources are available more than a specific threshold value obtained by

considering the minimal resource required by a query.

RAM Maximization: RAM resource maximization function tries to increase

the utilization of available RAM by caching required data and setting work mem-

ory for the queries. Caching required data is done automatically by most DBMS

systems and in-situ engines. Therefore, this component focuses on setting work

memory parameters to improve QET considering free RAM. Work memory is

the amount of RAM given to each query process to store intermediate results.

The data is written to disk when intermediate results grow larger than provided

memory, increasing QET. One approach is to check RAM utilization and CPU

cores to divide available RAM equally between query processing tasks by setting

work_mem parameters. Another option is to set work_mem values based on RAM

requirements for each query separately [103]. MUAR proposes to provide more

work_mem to complex queries to improve overall WET.

7.2.3 MUAR: Data structures

MUAR uses simple lists, custom data structures, and other basic variables to per-

form algorithm operations. Table 7.1 shows the workload list, which stores list

of workload query statements and their task IDs. The task ID of a query relates

time and resource utilization readings recorded by query processing and resource

monitoring modules. MUAR uses shared global structures to pass Available Re-

sources (RM_AR) values of CPU, RAM, and IO between resource monitoring and

resource maximization modules of MUAR.

Table 7.1: MUAR: Workload list (w_l)

[T_ID] 1[Statement]
TRUN “TRUNCATE TABLE PhotoPrimary;”
COPY “COPY PhotoPrimary FROM ’/. . . SDSS/PhotoPrimary.csv’ (DELIM-

ITER ’,’);”
Q0 “Select count(objID) from PhotoPrimary;”
Q4 “SELECT objID, ra ,dec FROM PhotoPrimary WHERE ra >185 and

ra<185.1 AND dec >56.2 and dec <56.3 limit 100;”
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7.2.4 MUAR: Algorithm

The resource monitoring module extracts the RAM and CPU utilization values in

real time. The extracted values are input to the CPU and RAM resource maximiza-

tion modules of MUAR. The goal of the proposed algorithm or task scheduler is to

utilize CPU and other resources to a given threshold value of 90-99%. If resources

are utilized 100% by workload tasks, many systems processes might fail, causing

system failure. Most existing static resource allocation techniques do not con-

sider resource availability in real-time, which can cause over or under allocation

of resources. The MUAR algorithm proposes to predict the resource requirements

of queries before starting them to provide appropriate resources based on query

complexity. In addition, MUAR also tries to utilize maximum available resources

up to the given threshold value time while keeping some resources for the system

and other processes to complete in between if they get initialized.

The pseudo code of MUAR task scheduling and resource amount allocation

is written below. MUAR considers real-time resource monitoring values of CPU,

RAM, and IO resource utilization stored in the global structure RM_AR. The RM_AR

has three float datatype variables to store CPU, RAM, and IO utilization values.

The MUAR adds a new task for processing if all three values of RM_AR are greater

than the minimum required CPU, RAM, and IO resources set in global variable

Minimum Required Resources (Min_RR). Before executing a query from (w_l), the

WM_Query function is called to set the work memory parameter for the query to

increase RAM utilization. The WM_Query function first counts the number of

joins used in the given query and stores the count in J_C. The WM_Value in line 13

calculates the work memory value based on available memory RM_AR.RAM, pro-

cess count P_C, total RAM TR, and join count J_C. The first part (RM_AR.RAM/P_C)

of the equation divides the available RAM between the maximum processes the

available CPU can handle. The second part (TR/CPU_C) defines the maximum

RAM that can be assigned to a thread, while the third part (J_C/4.0) helps in

increasing allocating more RAM to complex queries considering join count J_C.

MUAR also tries to estimate required work memory considering previous work_mem,

disk writes, current & past record count ratio for frequent queries to achieve the
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Algorithm 7 MUAR Algorithm
Data: w_l = Workload List;
RM_AR = Real-Time availability of CPU, RAM, & IO resources
in %;
TR = Total RAM;
Min_RR = Minimum resources required to schedule a task;
J_C = Join Count of a query q;
P_C = Process count that free CPU can handle;
WM_value = Work memory value;
CPU_C = CPU cores count of experiment machine;
P_WMq = Work_Mem assigned to query
q during previous run;
P_DWq = Disk Writes required by query
q during previous run;
C_RC = Current Record Count;
P_RCq = Record Count during previous run of query q;

1. def MUAR(w_l, RM_AR, Min_AR):
2. For each query q in w_l:
3. While resources are not available-RM_AR<Min_AR:
4. sleep 0.1sec;
5. if minimum resources are available-RM_AR>Min_AR:
6. Set work_memory = WM_Query (RM_AR, q);
7. Add a new query thread in parallel;
8. End for
9. Exit;

10. def WM_Query (RM_AR, q)
11. J_C = Count Joins in a query q
12. P_C = RM_AR.CPU/(100/CPU_C)
13. If Query q is Frequent:
14. WM_value=(P_WMq+P_DWq)*(C_RC/P_RC);
15. If WM_value>RM_AR:
16. WM_value = RM_AR * 0.9;
17. Else
18. WM_value =(((RM_AR.RAM/P_C) * (TR/CPU_C)) *
(J_C/4.0));
19. Return WM_value;
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best QET time. Whenever required work memory exceeds the available memory,

90% of available memory is allocated to achieve the near best QET.

For a 16GB main memory system with quad free CPU cores, the equation can

allocate a maximum of 4GB RAM to each query in the first part. J_C part increases

the RAM allocation to 1.25x for complex queries having more than 4 JOINs. While

it also assures that simple queries get 0.25x memory which is 1GB or less, to avoid

over allocation of RAM resources. The work memory value is returned to MUAR,

and work_mem is set using an SQL query in real time for the given query execu-

tion session. A unique query ID is assigned to every new query. The time and

resources used by each query are recorded to identify frequent queries, improve

future query runs, and calculate actual improvements in QET. The amount of data

written to disks due to insufficient work memory during the first run is used to

accurately estimate work memory value for future query runs.

MUAR: Complexity The complexity of the proposed MUAR algorithm is

O(x*(w_l) ). It can be seen from pseudo code that most steps of MUAR algo-

rithm execute only once for each workload query. Steps 2, 5 to 8, and 10-14 runs

in O((w_l)). However, the wait logic written in step 3 may execute once for each

workload query or unknown times (x) depending on resource availability. For

systems with more number of resources, this x wait time will be lower. These

steps add a waiting time of 0.1sec each time resources are unavailable, and the

loop continues until enough resources are available. In best case scenarios algo-

rithm runs in O((w_l)). Due to wait steps, the complexity of MUAR increases to

O(x*(w_l)). However, the complexity of MUAR stays linear, which means MUAR

runs in polynomial time.

103



CHAPTER 8

Experimental Setup

This chapter explains the experimental setup used to conduct experiments. Figure

8.1 shows the block diagram of the experimental setup and connection between

different modules of RAW-HF. Optimizing resource utilization module provides

the modified workload queries and dataset schema to the raw data query pro-

cessing (RQP) module. RQP module should load the complex query partitions in

DBMS. At the same time, the simple query partitions and unused partitions must

be kept in raw format to reduce the DLT time. The raw partition files must be

linked to the in-situ engine for executing queries without file paths.

Figure 8.1: Experimental Setup: Block Diagram

The resource monitoring module receives real-time resource utilization data

from resource monitoring (RM) tools. The RM tools should be able to monitor the

total CPU, RAM, and IO hardware resource utilization of entire systems and indi-
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vidual processes. RM module needs to filter the received data and provide the re-

source availability information to the resource maximization module in real-time.

MUAR should calculate how many resources can be allocated to each query task

and schedule them for execution using a hybrid system. The hybrid system must

contain an in-situ engine and DBMS to execute queries on raw and loaded data.

Some experiments may require a hybrid system that can join data stored in mul-

tiple formats, i.e., raw and database. The raw data query processing framework

needs to record the DLT, QET, and RM data for each workload task for offline

analysis.

The experiments have been conducted for all four identified phases. Section

8.1 discusses the implementation setup, which lists all the software tools used to

implement RAW-HF. The datasets used in different phases of experiments have

been discussed in Section 8.2. Two real-world datasets have been used to address

extreme cases of data processing by workload queries. Both datasets have been

compared based on dataset size and query types in Section 8.2.3. Section 8.3 briefs

the evaluation parameters used to compare the results. The last Section 8.4 explain

the experimental flow of each phase.

8.1 Hardware & Software Setup

The hardware configuration of the machine included a quad-core Intel i5-6500

CPU clocked at 3.20GHz. It had 16GB of RAM and Intel HD Graphics 530 (Sky-

lake GT2) in-built, running 64-bit Ubuntu 18.04 LTS operating system. A SATA

hard disk drive had 500GB of space and 7200RPM rotation speed is used as a per-

manent storage medium. The software required to run the WSAC algorithm is

Jupyter running Python code. The raw data query processing framework is used

to handle the raw data. The raw data query processing framework and its task

modules are developed using Java code on Eclipse. The database management

system PostgreSQL (PgSQL) is used to load raw data into a database. At the same

time, the framework uses NoDB (PostgresRAW) extension to execute queries di-

rectly on raw files. Raw data storage, data loading, and query execution tasks of
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the raw data query processing module are also coded using Java. The top and iotop

tools provided the real-time resource utilization data to the resource monitoring

module in response to the terminal commands.

8.1.1 Implementation Block Diagram

This section provides implementation setup detail of each RAW-HF component.

Figure 8.2 shows the external tools and language names used to implement the

entire framework. It can be seen that QCA and WSAC are implemented using

Python. Python is easy to code and provides a rich library of functions that re-

duces lines of code to develop complex algorithms. The framework is imple-

mented using Java code because Java is generally faster and more efficient than

Python. Java is a compiled language. It reduces algorithm execution time (AET)

for real-time algorithms compared to Python. Therefore, time bound real-time

algorithms like resource monitoring and MUAR have been implemented using

Java.

Figure 8.2: Implementation Setup Diagram

The RAW-HF uses state-of-the-art DBMS PgSQL to handle database tasks.

PgSQL is also open source. The in-situ engine used here is the NoDB [33]. NoDB

is one of the first few in-situ engines which allows querying raw data using SQL

and indexes processed data in main memory. NoDB was developed for Human
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Brain Project and is available on GitHub [11]. The top and iotop resource monitor-

ing tools have been used to monitor the resources utilized by Ubuntu system and

other processes.

8.2 Dataset & Query Set

Experiments of thesis phases have been conducted using two different real-world

datasets called Sloan Digital Sky Survey (SDSS) and Linked Observation Data

(LOD).

8.2.1 SDSS

The Sloan Digital Sky Survey (SDSS) dataset is a real-world astronomical dataset

of stars, galaxies, and other sky objects. The size of the recent data release named

DR-16 is 273TB [12, 30]. SDSS DR-16 has 134 tables and 59 views. Analysis of the

query workload of 0.4M showed that 55% of queries of the workload belong to

the PhotoPrimary view. Therefore, we extracted 18GB of data from PhotoPrimary

view for the experiment. The number of records in the extracted table is 4M.

The SDSS keeps track of queries executed on the dataset and logs them in

SQLlogAll table. We had extracted the top 1000 unique queries executed on Pho-

toPrimary view. These queries represented 51% of DR-16 workload. The similar

queries have been grouped based on the similarity of the attributes and query

type, forming 12 query groups. One representative query has been chosen from

each group for experiments.

8.2.2 LOD

The Linked Observation Data (LOD) dataset containing descriptions of blizzard

and hurricane observations is a benchmark RDF dataset [96]. The Linked Sen-

sor Data part of Linked Observation Data containing sensor data of temperature,

rain, and humidity has been used for all the resource maximization experiments.

The dataset was extracted from .ttl files and converted to triple format for exper-
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iments with relational DBMS. LOD dataset is embedded with URI links that can

identify each record uniquely by computers. The 2.9GB dataset size in triple for-

mat included 10M records. Each record has only three values: subject, object, and

predicate.

The triple format requires multiple self-joins to get details of one single record.

Therefore, most queries require multiple joins. 16 standard RDF queries having

different numbers of joins are used for experiments. Nine queries out of 16 queries

of workload have 5 joins. Queries with multiple self-joins have been considered

because these queries need to process complex join operations, which require sig-

nificant resources. The effect of different resource configuration settings can be

identified easily due to their high resource requirements.

8.2.3 Comparison of Datasets

Both LOD and SDSS datasets have different characteristics, as shown in Table 8.1.

The SDSS dataset is a broad dataset having 509 attributes in a single table. In

contrast, LOD had only 3 attributes as it uses a triple format. The dataset size

of 1M records for SDSS is 4.6GB, while LOD takes only 253MB. The LOD data

is originally in URI format, so it is in string format. While the SDSS dataset is

generated by converting image data to CSV format. Most columns in SDSS are in

integer or float format.

Table 8.1: Dataset Details

Parameters Dataset
Domain

Source No. of
Columns

1M
Dataset

size

Data
Types

Format

SDSS Astronomy Telescope 509 4.6 GB Integer,
Float

CSV

LOD Weather Sensors,
Satellite

3 253 MB String CSV

The workload queries from both datasets can represent the majority of query

types. The classification of both workload queries is shown in Table 8.2 based

on the number of joins required by the query. LOD query workload consists of

nine analytical queries having 5 joins, which require more resources to process
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the data for the queries. The SDSS queries represent simple 0 join queries to 2 join

analytical queries. Most LOD queries need to access all columns of the dataset due

to its triple format, while SDSS queries access only few columns of the dataset.

Table 8.2: Query Classification

# No. of Joins 0 1 2 3 4 5 6
SDSS 5 6 1 - - - -
LOD 1 1 4 1 0 9 0

8.2.4 Datasets used in Experiments

Different experiments had different workload and dataset requirements. The ex-

periment section tried to cover all experiments for both datasets to identify which

techniques performed best with what kind of dataset and query workload. Table

8.3 lists all phases and the datasets used in those phases with the reason behind

choosing that dataset. Phase-II & III used only SDSS datasets to identify which

queries work best with which tool and the resource requirements for different

types of queries. Phase–IV experiments use both LOD and SDSS datasets, be-

cause LOD dataset workload consists of more complex queries. LOD workload

can provide evident results for RAM maximization experiments.

Table 8.3: Dataset used in Phases

# Phases Phase-I Phase-II Phase-III Phase-IV
Dataset

Used
SDSS, LOD SDSS SDSS SDSS, LOD

Reason Identify
tools best
for which

type of
queries.

Identify
Resource
require-
ments.

Broad Table
Dataset

required.

Complex
Queries

required for
RAM Maxi-

mization
Exp.s.

The goal of Phase-III experiments is to identify frequently accessed part of

the dataset and process only that part to answer frequent queries. WSAC tech-

nique required a broad dataset to find frequently accessed attributes for vertical

partitioning of the dataset. LOD dataset is a narrow three column dataset. Most
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LOD queries need to access all three columns to provide results. Therefore, SDSS

dataset has been used for Phase-III experiments. Phase-III and Phase-IV combina-

tion experiments are performed using SDSS dataset to find overall improvement.

8.3 Evaluation Parameters

This section discusses all the evaluation parameters used in Section 9 to compare

experimental results. The parameters have been grouped into two categories: 1)

Input Parameters, and 2) Output Parameters.

8.3.1 Input Parameters

The following list of parameters has been provided as input to different algo-

rithms of RAW-HF.

8.3.1.1 Workload Parameters

The following list of workload parameters like schema files, and list of workload

queries helps in developing workload-aware techniques like QCA, WSAC, and

MUAR of the proposed RAW-HF framework.

Schema Files: It is the DDL schema of tables used to create the workload

database.

Workload List: It is the list of queries with a unique query ID used to generate

the experiment workload.

File Paths: It is the URL or Path to files on disk. These file paths help in

locating inputs and output files used to retrieve or store result data to disk as

files.

Flags: Boolean flags are used to set instructions for experiments. For exam-

ple: decide which datasets to use, whether to start monitoring threads, or which

operations to perform on the dataset.
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8.3.1.2 Resource Utilization Parameters

These parameters represent the percentage of CPU, RAM, or IO resources a query

utilizes during execution. Different algorithms of RAW-HF have used the histori-

cal or real-time values of these parameters.

CPU (%): The percentage of CPU free for task processing. MUAR uses this

parameter in real-time to schedule tasks based on Min_RR threshold values.

RAM (%): The percentage of RAM free for caching or processing data. MUAR

uses this parameter in real-time to allocate RAM resources to complex queries.

IO_wait (%): The percentage of time CPU spent in waiting for IO resources.

CPU stayed idle because it was waiting to receive the data for processing.

Work_mem (MB): It is the size of RAM allocated to each workload query to

improve QET.

DB_cost (MB): It is the size of each attribute accessed by workload queries in

the database format.

RAW_cost (MB): It is the size of each attribute accessed by workload queries

in the raw format from disk.

Total Read/Write (MB): It is the total size of data read or written to disk during

workload execution.

8.3.2 Output Parameters

The following list of output parameters helps us identify the reductions or im-

provements achieved by applying proposed techniques compared to existing tools

& techniques.

8.3.2.1 Query Performance Parameters

These parameters display time taken by in-situ engines or DBMS to complete

given workload tasks.

QET (sec): Query Execution Time is the time taken by a query to execute.

DLT (sec): Data Loading Time is the time data loading tasks take to load a

given partition or complete dataset into DBMS.
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WET (sec): Workload Execution Time is the total time system takes to execute

a given workload. For single-thread execution, WET can be simply calculated

by summing DLT and QET. However, in multi-thread execution of workload, the

total time is calculated by subtracting the experiment end time from the start time.

Fraction of Attributes Accessed (FAA) (%): This parameter shows the number

of attributes accessed by the workload queries. Add equation

8.3.3 Resource Utilization Parameters

These parameters represent the percentage of CPU, RAM, or IO resources utilized

to execute a given workload.

CPU (sec): The overall CPU time utilized to complete execution of all work-

load tasks.

RAM (MB): It is the size of RAM used by DBMS or In-situ engine to complete

workload tasks.

DB_APS (MB): It is the size of database partitions that workload queries ac-

cessed or cached from disk.

RAW_APS (MB): It is the size of raw files that workload queries accessed or

cached from disk.

Total Read/Write (MB): It is the total size of data read or written to disk during

workload execution.

8.4 Experiment Flow

This section discusses how experiments for all phases have been conducted. The

setup modification and flow for each experiment have been discussed.

8.4.1 Resource Monitoring Framework for Raw Data Query

Processing

The raw data query processing framework implementation details and modules

have been briefly explained. Most of the raw datasets are available in comma-
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separated values (CSV) or JSON formats. The CSV is a storage efficient raw for-

mat as it separates the data using a single special character comma or some other

delimiter. In comparison, JSON and XML formats required key-value pairs or

begin-end tags to identify data, increasing the file size for the stored raw data.

CSV format stores a single header line to identify the records, to reduce the file

size. It is also easy to extract data from CSV files, while data extraction from

JSON and XML requires additional support libraries at the implementation level.

The proposed framework stores streaming data in CSV files and processes it effi-

ciently using hybrid system to reduce data to query time. The framework consists

of two main modules 1) Raw Data Query Processing and 2) Resource Monitoring

modules.

8.4.1.1 Raw data Query Processing (RQP) module

The raw data query processing (QRP) module consists of functions like raw data

storage, data loading, query execution, and recording QET time. The RQP module

is written in Java using Eclipse. Raw data storage module stores the streaming

raw data into CSV files linked to the NoDB. The connection to NoDB and PgSQL

is made using JDBC. The connection allows execution of queries immediately on

arrived raw data using SQL language. The data loading function can load the

stored data into PgSQL to improve the execution time of future queries. Basic

results confirmed that the COPY method used by A. Dziedzic et al. is the fastest

bulk data loading technique [56]. Therefore, all the data loading operations are

performed using COPY method for all the remaining experiments.

The query execution function handles the tasks of executing workload queries

stored in a CSV file on the hybrid system. The NoDB considers linked CSV files

a relational table facilitating the execution of join queries between raw files and

database tables. It eliminates the need to transform queries from one query lan-

guage to another or merge results. Additionally, the raw files can be accessed and

modified using external applications like Python to apply QCA and WSAC tech-

niques. The data loading and query processing functions connect to the PgSQL

DBMS and NoDB extension using a single connection link. It enables the frame-
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work to redirect workload queries to raw files or DBMS easily. A function saves

the time required by tools to answer queries and saves the time as DLT or QET.

The total time required to complete all workload tasks is also recorded as WET in

the output result files for later analysis.

8.4.1.2 Resource Monitoring (RM) Module

Most traditional DBMS do not consider real-time resource utilization due to statis-

tics collection and analysis overhead. These databases are configured to work for

general workloads and datasets. The specialized tuning of resource allocation is

done by database admins based on their knowledge of the application domain,

workload requirements, and DBMS software for specific applications. This sec-

tion discusses how resource monitoring tools work and their setup with minimal

overhead.

Resource Monitoring Tools The operating system interfaces with the CPU,

RAM, and IO hardware to process, retrieve, and store data. The system monitor

or task manager is an inbuilt resource monitoring application that provides the

user an interface to view resource utilization. These inbuilt system monitoring

tools may not have a customizable output based on our requirements. Therefore,

the installation of additional tools is required. We had checked top, iotop, SAR,

Sysstat, iostat, iosnoop, and a few other resource monitoring tools that provide cus-

tomizable resource utilization outputs [56]. We tried to find a single tool that

can provide all required information and combine top and iotop output in a single

command. But we could not find any such tool with the required details, nor a

combined command worked during framework implementation using java.

For experiment purposes, top and iotop tools are used for their detailed out-

put that matches our needs. The top tool provides total utilization and individual

process utilization of CPU, RAM, and SWAP. The iotop provided IO utilization in

% with total and individual process read/write in K/s. Sample resource monitor-

ing outputs of both tools are shown in Figures 8.3 & 8.4. Figure 8.3 shows the top

tool output with CPU, RAM, and important processes marked with red rectan-

gles. Figure 8.4 displays IO utilization by processes and total read/writes. Some
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Figure 8.3: top Tool Output: CPU & RAM Resource Monitoring

Figure 8.4: iotop Tool Output: IO (Disk) Resource Monitoring

of the key values are marked with red rectangles provided by iotop tool.

Resource Monitoring Tools setup The in-situ extension and DBMS do not pro-

vide resource utilization details for each workload task. Therefore, a data passing

interface between resource monitoring tools and framework is required. The RM

modules link workload tasks with resource utilization outputs. The modules use

top and iotop resource monitoring tools to monitor real-time resource utilization.

These tools are installed on the operating system Ubuntu. RM threads pass ter-

minal commands (TC) to the external RM tools and receive output. The output

stream contains a lot of information. Storing all the information can quickly in-

crease the result size. The basic experiments created result output file sizes reach-

ing more than 2GB in size with only 3 to 4 hours of resource monitoring obser-

vations. Therefore, the RM modules filter the required CPU, RAM, and IO uti-

lization values of specific processes before saving. This output is then combined

with current workload task information, i.e., query id, before saving to the result

file. The task ID with resource utilization helps correlate the resources required

by each workload task.

115



8.4.1.3 Experiment Flow

For experimental purposes, we have used 4.6GB PhotoPrimary table data and 700MB

of LOD triples data in CSV file format, which contained 1M records with 509 at-

tributes in each row. In-situ engines use this file to execute queries using in-situ

engine NoDB. While performing experiments for PgSQL, this CSV file is loaded

into the database using COPY command. Each query is executed four times to

get the average query execution time. Figure 8.5 shows the experiment flow for

the phase-I & II experiments. First, we set the raw files paths and other param-

eters, then based on the selected tool PgSQL or NoDB, the remaining steps are

performed. If the PgSQL is selected, then data is loaded into the database before

executing queries. While for NoDB, queries can be executed as soon as the stream-

ing data is stored in the linked CSV files. Here, we read the existing CSV file to

get the data for loading or writing to the CSV file linked to the in-situ extension to

mimic data streaming. Once all the workload queries are executed, the DLT and

QET times are saved in the output result file for later analysis.

8.4.2 RAW-HF: Optimizing Required Resources

This section explains the experimental flow for QCA and WSAC techniques used

by RAW-HF to optimize required resources during workload execution. QCA

partitions the original raw dataset file based on query complexity for hybrid sys-

tem. QCA groups simple query attributes and complex query attributes to gener-

ate final partitions. WSAC tries to find best partition for loading in database using

a cost function that considers frequency of attributes, cost of loading attributes,

size on disk and attribute access costs from raw and database formats.

8.4.2.1 QCA: Experiment Flow

Multiple experiments have been performed for QCA proposed partitions to eval-

uate the performance of QCA in typical single-core execution and resource op-

timization modes. Initial experiments have been done with the original dataset

to find actual WET using state-of-the-art DBMS (PgSQL) [22] and In-situ engine
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Figure 8.5: Experiment flow: Phase-I & II Resource Monitoring for Raw Data
Query Processing
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(NoDB) [34]. Section 9.1 shows the results achieved by executing workload on the

original dataset.

Figure 8.6 shows the experimental flow of applying QCA technique to the

SDSS dataset. The QCA technique takes dataset schema, workload list, and actual

raw files of datasets in CSV format as input. The Extract from Schema function

uses DDL files of schema to find all table and their attributes of a dataset and

stores them in s_d dictionary. The Extract from Workload function creates a dic-

tionary of workload queries (que_d) containing table names and attributes used in

a statement based on s_d. The QCA algorithm first identifies the types of queries

by checking the number of tables coming in a query. Once the query complexity

identification is complete, the attributes of similar types of queries are grouped

to form simple query partition (QT_P0) to be stored as raw and complex query

partition (QT_P1) that needs to be loaded into the database. The intersection of

both the list provides CAP list. The first iteration of QCA ended with all queries

partially covered because all the workload queries had 2 or more attributes in

CAP. Out of 54 workload attributes, database partition had 25 attributes, 21 in

raw partition and 10 attributes in CAP with primary key attributes replicated in

all partitions to allow joins. The different sets of partitions have been created to

cover three out of five cases discussed in Section 6.2.1.3.

The Section 9 analyzes results obtained for data distribution Case-I, II, and V.

The Case-III & IV have not included because all queries would require join, which

would be slower than other cases where 41-58% of workload queries did not re-

quire any additional joins. The different QCA case results have been compared

with the original dataset execution on NoDB [34], Workload Aware (WA) parti-

tioning techniques like Partial Loading [125] & WSAC. The best result of the WA

techniques is considered, where all the required data is loaded in DBMS due to

availability of enough storage budget.

8.4.2.2 WSAC: Experiment Flow

The algorithm flow has been discussed in detail in Section 6.2.2. Therefore, this

section discusses the parameters and files that are given as input to the sub-
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Figure 8.6: Experiment Flow: QCA Technique
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algorithms. As shown in Figure 8.7, First the database schema – the DDL files

of PhotoPrimary table having 509 attributes, and the frequent query set files are

provided for the initial attribute and entity extraction phase. The input for the

cost calculation phase is 1M records of the PhotoPrimary table in CSV format. The

cost calculation function calculated the read-extraction, load cost, and size for at-

tributes used by the workload. Once the attribute is loaded in a single column

table, the function checks the actual table size Si required to store the attribute

i. QC & AUF sub-algorithms of WSAC then use the output costs to find coved

attributes and queries.

The partition consisting of covered attributes is loaded in PgSQL. The raw

partition files are linked to tables using the NoDB extension configuration files.

Now, the java code executes the covered queries on PgSQL and Partially covered

queries on the combination of PgSQL and NoDB. The database and raw parti-

tioned are joined using the ObjID Primary key PK_A. The 12 queries from the

frequent query set were executed four times, and the average is considered for

accurately counting the QET time. If any new queries come that don’t have any

covered attributes, they can be answered using the 3rd raw partition.

8.4.3 RAW-HF: Maximizing Utilization of Existing Resources

This section discusses the experimental flow for the individual, multiple resource

maximization experiments, and MUAR.

8.4.3.1 Single Resource Maximization

This section discusses individual resource maximization experimental flow. CPU

Maximization: The CPU maximization technique adds the same number of query

threads as CPU cores. These basic experiments did not check the CPU utilization

and assigned a new thread to every incoming workload task. The data loading

tasks can be performed in parallel. However, DLT time may not improve for disk-

based storage devices [56]. To avoid parallel disk access, query processing tasks

have been executed in parallel by assigning one thread to each query utilizing

data cached by DBMS.
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Figure 8.7: Experiment Flow: WSAC Technique
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RAM Maximization: There are several options to configure RAM utilization

values like shared_buffers, temp_buffers, work_mem, and others. Basic experiments

showed that work_mem change impacts QET significantly because it allows storing

more intermediate results data in RAM. By default, the work_mem is set to 4MB.

The value has been set to 500MB to store 5 times more results than the dataset

containing 1M records.

IO Maximization: According to researchers, changing the IO device from HDD

to RAM is the only way to improve DLT [56]. Therefore, IO maximization exper-

iments used the RAM file system RAMFS to utilize 12GB of RAM as a database

storage device. Table space is moved to the RAMFS folder to get faster read-write

speeds.

8.4.3.2 Multiple Resource Maximization

The combination of individual resource maximization techniques has been per-

formed to observe their effect on DLT and QET. There are only four unique com-

binations possible CPU+RAM, CPU+IO, RAM+IO, and CPU+RAM+IO. Here, the

IO configuration is static and cannot be changed during runtime. The CPU maxi-

mization technique uses all four CPU cores, and work memory is pre-set to 500MB.

For DLT, single resource maximization experiments showed that only IO change

could improve DLT. RAM can allow parallel access to read and write data faster.

Therefore, only the CPU+IO combination has been considered for experiments to

improve DLT . In contrast, QET time improved with all single resource maximiza-

tion techniques. Therefore all possible combinations have been experimented

with to improve QET.

8.4.3.3 MUAR Technique

The MUAR algorithm tries to maximize CPU and RAM resource utilization au-

tomatically during workload execution. Figure 8.8 shows the flow of MUAR ex-

periment. The figure shows that basic parameters are set first. The resource mon-

itoring threads are started and they run in parallel to query execution flow. All

queries are read one by one from the workload query list for execution.
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Figure 8.8: Experiment Flow: MUAR Technique
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The MUAR algorithm receives the real-time resource monitoring data of CPU,

RAM, and IO_wait in percentage from the resource monitoring module. The re-

source monitoring frequency is set to 1sec to keep the resource monitoring over-

head on CPU resources less than 2%. The minimum resource requirement to start

a thread Min_AR is set considering the minimum resources required to execute

any query on the experimental machine. If available CPU is >= 20%, available

RAM >= 10% and IO_wait <= 50% then thread is added to one of the four thread

pools. The experimental machine had four CPU cores, thus four thread pools

have been created. The RAM requirement of each query is different. Therefore,

MUAR uses a lightweight WM_Query function to set appropriate memory to the

given query considering Join Count (J_C) of query and available CPU, RAM, and

IO resources (RM_AR) at runtime. This function can find the complexity of new

queries by analyzing their SQL statements without using offline learning stages or

other historical records. Once work memory value is calculated, a new tread and

database connection is create to set work memory and execute the given query.

The basic CPU maximization suffered from over-allocation of resources, making

query tasks starve for resources and fail. In contrast, MUAR keeps upcoming

tasks in a queue and assigns a new thread and work_mem only when enough re-

sources are available. The total WET and QET for each query is recorded to result

files for later analysis of results.
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CHAPTER 9

Results & Discussion

This chapter discusses general tool configuration results and experiments per-

formed using SDSS and LOD datasets. The results of both datasets have been ex-

plained separately to avoid confusion. The results of each phase have been writ-

ten in their respective sections for better understanding. However, a summary

containing improvements in WET achieved by optimization and maximization

phases is discussed in the end. The QET, DLT, and WET parameters are presented

in seconds. The dataset size is presented as million records (M). Algorithm execu-

tion time (AET) optimization has been conducted only for the WSAC technique

because the cost function was dependent on the dataset size. In contrast, QCA and

MUAR techniques do not require analysis of original raw dataset files reducing

AET. The X and Y axis in all the results graphs show the comparison parameter,

technique, tool, or resource.

9.1 Raw Data Query Processing and Resource Moni-

toring framework

This section presents basic results of Raw Data Query Processing and Resource

Monitoring framework developed in Phase-I and II of the thesis. It compares the

time and resources required by PostgreSQL (PgSQL) and NoDB (PostgresRAW)

tools to complete the execution of a given SDSS workload on the dataset of 1M

to 4M records. It contains comparison of both tools for QET, WET, and resource

utilization parameters. The results for scaled data are also included.
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9.1.1 Workload Execution on Raw

Figure 9.1: Workload Execution Time

The raw data query processing framework uses open source PostgresRAW,

which is a NoDB implementation [34]. Figure 9.1 shows the comparison of WET

time in PgSQL with NoDB for the SDSS dataset having 1M records. The 1M

records dataset required 4.6GB of disk space in raw format. It can be observed

that raw data query processing engines like NoDB have zero data loading time as

they can start executing queries on the raw file immediately. At the same time,

PgSQL required a considerable amount of time to load data existing in a CSV file

with the fastest data loading technique COPY. However, PgSQL required only 4%

time to execute 12 SDSS queries on loaded data compared to NoDB. Therefore,

loading data into a database system is crucial to reduce QET of future queries.

9.1.2 Query Processing for Scaled Data

The data scaling experimental results have been presented in Figure 9.2. It can

be seen that the workload execution time (WET) of PgSQL increases linearly with

the dataset size. On the other hand, WET of NoDB increases exponentially af-

ter 1.5M. The 2M-4M experiments with NoDB took more than 2hrs without any

results for several workload queries. One query Q5 took 10hr at 1M without re-

126



Figure 9.2: Scaled Data: Workload Execution Time

sults. Therefore, the experiments were stopped for 2M-4M records when NoDB

could not provide results after 2hrs. The resource monitoring phase showed that

almost all the remaining RAM(>14GB out of 16GB) is utilized by NoDB to cache

and index data while processing dataset sizes of 1.5M and higher. NoDB requires

2-5x more time to execute workload queries compared to PgSQL for dataset sizes

lower than 2M.

9.2 Resource Monitoring Tools Configuration

This section discusses the resource monitoring tools configuration settings. Ob-

jective of the experiments is to find out the resource efficient way of monitor-

ing resources. Therefore, a resource monitoring tool needs to be tuned to utilize

minimal resources. The top and iotop tools have multiple configuration settings,

including filtering output details, sorting, and delays before refreshing resource

utilization. The delay –d setting controls resource monitoring frequency for both

tools. The freq. for both tools needs to be equal to correlate the outputs for analy-

sis. Figure 9.3 shows the graph of resource monitoring frequency and CPU utiliza-

tion. It can be seen that with the increase in monitoring frequency, CPU utilization

increases for both tools. The CPU utilization does not increase more than 25% be-
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cause the machine has four cores. The 25% utilization shows that the entire one

core out of four is used to monitor resources from 1000 and above observations

per second. The higher observation rate also increases result output file size. The

top and iotop RM threads need to filter those monitored records before storing,

which may utilize additional two CPU cores and increase IO utilization.

Figure 9.3: RM Tools: Overhead

CPU is the fastest resource of all resources. The CPU speed of 3.20GHz indi-

cates that it can process 3.2x109 instructions every second. The machine used for

experiments is a 64bit, which means the CPU can process 3.2x109x64bit = 23.84GB

of data every second. However, CPU is dependent on RAM to fetch data from the

disk. Now, DDR3 RAM speed is less than a few GBs per second, while magnetic

disks can only provide 300MB of data per second. While accessing smaller files,

disks can provide only 30MB of data per second due to the seek-delays of 2-4ms

for each non-continuous data block. This means the change in resource utilization

of RAM and IO resources is slow, while the CPU is dependent on them, which

indicates the overall utilization change is not rapid. IO’s 300MB per second data

read speed represents less than 2% change in RAM resource utilization. Addition-

ally, RM tools record resource utilization cumulatively, avoiding missed reading

issues. Therefore, the monitoring frequency is set to 1 observation per second for

most experiments to minimize resource monitoring overhead and keep resources
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available for actual workload processing.

9.3 Resource Monitoring

The resource utilization results recorded by the resource monitoring (RM) mod-

ule are presented here. This section also compares the resource utilization results

observed by the RM module for PgSQL and NoDB. The changes in resource uti-

lization patterns with increased dataset size observed during data scaling experi-

ments are presented in Section 9.3.3.

9.3.1 Resource Utilization

PgSQL and NoDB follow different data processing techniques. This section pro-

vides insights into the actual resource requirements of these DB tools to process

1M records of SDSS dataset. PgSQL needs to load the entire dataset before query

execution can start, while NoDB starts the execution of queries immediately on

raw data. Figures 9.4 & 9.5 show resource utilization graphs of NoDB and DBMS.

The RM tools provided CPU utilization, IO utilization, and CPU IO_wait in per-

centage. Read/write bandwidth was calculated using "total" read/write obser-

vations considering max read/write speeds of 300MB/sec and 200MB/sec, re-

spectively. The "actual" disk read and write observations were not used because

read/write speed can be higher than actual data read/write. It would not have

provided any valuable insights. The tools provided IO utilization for each pro-

cess, so the plotted IO utilization is the SUM of all Postgres and Java processes

representing the raw data query processing framework.

Figure 9.4 shows resource utilization for PgSQL. It can be seen that CPU uti-

lization during data loading tasks is 20%. This is because data loading is an

IO-dependent process. The CPU had to wait for IO for data to be read from the

disk. The high IO utilization and high IO_wait spikes confirm that observation.

It can be seen that once data loading task is completed, read and write to the disk

are almost zero. It is because the entire dataset gets cached in the main memory

to reduce QET of future queries. However, the IO and IO_wait readings reflect
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Figure 9.4: DBMS (PgSQL): Resource Utilization:

those changes a little later due to slower reflection of storage hardware utilization

readings and VACUUM process reclaiming space delaying access to disk for most

processes. The VACUUM process is behind a high write spike after data loading

was completed. Here, VACUUM removes old tuples, facilitating faster disk ac-

cess to the new data. The query processing tasks increased RAM utilization by

3.1% as the query processing tasks process the cached data in main memory to

provide results. The query processing tasks utilized a single CPU core, which is

25% for a quad-core CPU. The Postgres processes like wal, checkpointer process,

parse, bind, and other processes, including Java processes, could utilize up to 77%

CPU resources but only for one second.

Figure 9.5 shows resource utilization for the NoDB tool. The tool accesses the

data residing on the disk after the arrival of the query. For the first two queries

up to 262 sec, NoDB accessed the required data from disk, which increased IO

utilization by more than 20%. The raw engine caches and indexes the data into the

disk. Therefore, there are zero disk reads during the remaining time of workload

execution. The raw engine does not write processed data back to disk, utilizing

write bandwidth almost 0%. However, the caching and indexing of raw data into

main memory increased RAM utilization up to 76%. The CPU wait is almost

zero once all data is cached in RAM. Therefore, query processing tasks utilized
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Figure 9.5: NoDB: Resource Utilization

allocated CPU core completely, unlike PgSQL.

9.3.2 Average Resource Utilization

The average resource utilization of both tools is plotted in Figure 9.6. It can be

observed that NoDB utilized 3% more CPU than PgSQL due to 9x lower IO_wait.

The RAM utilization of NoDB is 6x more than PgSQL because of the caching and

indexing of data in main memory.

Figure 9.6: Average Resource Utilization
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However, write IO utilization of NoDB is zero due to no data loading, and

read IO utilization is 2.5% less due to in-memory processing of queries. It can

be noted that both tools require different resources. NoDB utilized RAM most,

while IO resource is critical for PgSQL data processing. These results conclude

that both tools require different resources to perform raw data query processing

tasks. Therefore, once raw engine caches the data for query execution, the IO

resource is available for data loading.

9.3.3 Resource Utilization for Scaled Data

This section discusses the data scaling experiment results for both tools. Most

researchers experiment with datasets smaller than the main memory size [117].

However, the experiments performed in this section used 18.8GB dataset size,

which is 2.8GB larger than the RAM size. The data scaling experiments were

performed by partitioning 18.8GB dataset file into eight smaller partitions, each

containing 0.5M records. The 0.5M partitions were saved as CSV files, and these

CSV files were loaded using the COPY command, followed by query execution

tasks.

9.3.3.1 DBMS

This section discusses data scaling results performed using PgSQL DBMS using

SDSS dataset.

Figure 9.7 shows average resource utilization readings for the PgSQL process-

ing SDSS dataset. It can be seen that CPU utilization is below 21% and decreases

by 1-2% with the increase in dataset size. This transpires because IO_wait in-

creased from 15.4% to more than 21% for dataset sizes larger than 1M. The RAM

utilization by Postgres process increased linearly from 0.4% to 1.6% for dataset

sizes 2.4GB (0.5M) to 18.8GB (4M). The overall RAM utilization calculates the

database files cached for processing queries. Therefore, the RAM utilization is

plotted after including dataset size and Postgres process RAM utilization. It can be

seen that RAM utilization increased from 8.5% to 66.6%, while IO_wait increased

by 9.7% with dataset size. The CPU, Read, and Write bandwidth utilization stayed
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Figure 9.7: DBMS (PgSQL): Resource Utilization

below 21%. The Postgres process used only one core to load and query, following

similar patterns shown in Figure 9.4.

Figure 9.8: DBMS (PgSQL): Total IO Utilization

Figure 9.8 shows total IO utilization for PgSQL DBMS. While, Figure 9.9 shows

the comparison of dataset sizes in database and CSV raw file size. It can be seen

that disk space utilization of database is 45% smaller than the raw file size. The

PhotoPrimary table of SDSS consists of large number of numerical attributes. Nu-

merical values take less space in binary format compared to their string format.
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Figure 9.9: Storage Space Utilization: Database (PgSQL) vs. Raw (NoDB)

The IO utilization shows that total write is 1.5x, and the total read data size is

2.2x compared to the raw file size for PgSQL. The COPY command reads actual

raw files having 4.7GB size and writes the compressed DB file of 2.6GB. The WAL

writes logs of all inserted records in the non-compressed format before loading

data, utilizing the write bandwidth by 1.5x. The Postgres process only reads the

compressed database for query processing if not cached in RAM. The caching of

database files in the main memory increases RAM utilization and Total Read size.

The VACUUM, stat collection and check pointer processes use IO resources to

arrange data on disk and collect statistical data.

9.3.3.2 NoDB

The experiments performed in this section use a single large raw data file to an-

swer queries using in-situ processing NoDB. Figure 9.10 shows the resource uti-

lization for data scaling experiments from 0.5M to 1.5M. The average RAM uti-

lization increased up to 67% for 7.1GB (1.5M) file size. This means for 7.1GB of

raw data additional 4GB of main memory is utilized by NoDB. The NoDB uti-

lized more RAM to cache and index entire dataset. However, maximum RAM

utilization had already reached 96.3% for 7.1GB (1.5M), and SWAP memory use

had begun. The Postgres process had used 5-50% SWAP space in two different
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runs. The Postgres process went into sleeping mode, and other processes started

crashing due to nearly 100% RAM utilization and high IO_wait. Therefore, data

scaling experiments had to be limited to 7.1GB. The high IO_wait can be seen

at 7.1GB point, which reduced CPU utilization by more than 12% compared to

4.7GB.

Figure 9.10: NoDB: Resource Utilization

Figure 9.11 shows total IO utilization by NoDB tool to process SDSS dataset

for 2.4GB (0.5M), 4.7GB (1M), and 7.1GB (1.5M) scaling experiments. It can be

seen that the total read size is around 1.7x as compared to raw data file sizes.

The detailed analysis of the Postgres process showed that the total data read was

exactly same as the raw file size. The additional data read might be due to OS

and other processes caching the data from disk. The total data written to disk is

less than 10MB which was written by RM threads of raw data query processing

framework and stat collector process of Postgres.

The results analysis has shown that NoDB required 64.4% around 10.3GB of

RAM to run queries on 4.6GB of raw data, limiting the data scaling as it would

have triggered swapping and increased WET. The RAM utilization of PgSQL is

around 3x less, while NoDB has almost zero write bandwidth requirements. The

PgSQL is highly dependent on IO speed, while NoDB is on RAM size. The CPU

utilization of both tools is less than 31%. The results showed that PgSQL and
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Figure 9.11: NoDB: Total IO Utilization

NoDB tools used only one CPU core for data processing tasks. It is because most

traditional systems are designed with OLTP queries in mind, requiring sequential

query task processing. Parallelizing data processing tasks for each query is diffi-

cult because it increases the overhead of identifying if a task is dividable without

affecting the final result. The parallelization of a task needs division into smaller

subtasks, distribution of subtasks, and combining intermediate results of those

subtasks to produce the final result. The Cloudera and Hadoop based systems are

highly parallelized systems. However, they required more resources to handle

these additional parallelization tasks, increasing workload processing time.

9.4 Query Classification

This section considers QET time and resources required by each query to classify

and group similar queries. This classification helps identify what types of queries

can be executed using which data processing tool.

9.4.1 Query Execution Time

The experimental results presented here used SDSS dataset having 1M records

size and 12 workload queries. Figure 9.12 shows the QET of workload queries ex-
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ecuted in sequence using one process thread. It can be observed that few queries

are executing faster in NoDB compared to PgSQL. NoDB caches the entire dataset

into main memory, which improved QET. The figure showed that there 4 queries

that had better QET. This means some earlier queries might have cached the data

required by these four queries, which improved their QET. The SQL statement

analysis showed that all 4 queries were single join queries. Therefore, the next

Figure 9.13 presents classification based on number of joins in a query. It shows

average query execution time of queries group based on Join Count. The analysis

showed that out of 5 simple queries 4 outperformed PgSQL. In contrast, 1 or high

join queries had high QET.

Figure 9.12: SDSS: QET comparison

To verify the finding, the experiments were repeated with LOD dataset and

query set with higher join counts. The results presented in Figure 9.14 showed

that 2 and 5 join count queries performed worst in NoDB. Therefore, they must be

executed using PgSQL. However, 2 queries having -1-Join and 3-join performed

better in NoDB than PgSQL. 1-join query might have better QET due to smaller

dataset and all required data are pre-cached. However, 3-join query is an excep-

tion as it falls in the complex query category.

3 join query analysis: The 3-join query improvement needs to be analyzed as

it does not fit with our earlier explanation. Further analysis of results and dataset
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Figure 9.13: SDSS: Query Classification based on Join Count

data showed that this query had only one record in the results. This means query

had high selectivity (number of distinct values/total number of rows). Therefore,

less records will be there in join process reducing QET time. Therefore, it can be

said that NoDB can handle simple 0-join queries or queries with high selectivity.

On the other hand, queries having 1 or more joins with low selectivity should be

executed using PgSQL. Because results have shown that PgSQL is well optimized

to execute such multi-join (complex) queries.

Figure 9.14: LOD: Query Classification based on Join Count
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From the query classification results shown in Figures 9.13 and 9.14, it can

be determined that 0 JOIN simple queries can be executed using NoDB while

execution of 1 or more JOIN complex queries (CQ) should be done using PgSQL

after the dataset is loaded into a DBMS. The resource monitoring experiments

done in the next section tries to find how much resources are utilized by both

tools during workload execution. The analysis would provide insights into the

possibilities of parallel execution of queries using NoDB while data is loaded into

PgSQL.

9.4.2 Resource Utilization

The analysis of resource requirements of both tools established that NoDB does

not need IO resources after the data is cached and indexed in the main memory.

While PgSQL needs IO resources longer to load data into DBMS. Both tools used a

single CPU core. Therefore, CPU resources are available to handle both processes

in parallel. However, high RAM utilization causes processes to stop in NoDB, and

high IO_wait increases data loading time in PgSQL. The experiments performed

in this section analyze individual query resource requirements in cold and hot

runs. This experiment will observe how much resources each query needs. Sec-

tion 9.4 suggested that complex queries should be executed using DBMS, and the

resource utilization result Figures 9.2, 9.6, and 9.9 already established that DBMS

(PgSQL) required 6x less RAM, half storage size and even fewer CPU time(QET)

compared to NoDB. It can be derived that simple queries in PgSQL also use less

RAM than NoDB because total RAM utilization is 6x lower. However, NoDB ex-

ecuted simple queries faster than DBMS. The next section tries to find how much

resources NoDB utilizes to execute simple queries.

9.4.2.1 Data Caching

This section tries to find out RAM and IO resources required by NoDB to execute

simple queries. NoDB is not optimized to execute complex multi-join queries,

as results have shown high QET time. Therefore, complex queries are not con-

sidered, as they can be executed using PgSQL using 6x less RAM, CPU, and IO

139



resources.

Figure 9.15: NoDB: Simple Queries using Caching

The caching experiments executed each simple query 4 times using NoDB to

find individual query resource requirements. The time required to complete the

first run is cold run QET, while the average QET of the remaining 3 runs is con-

sidered hot run time. The cache is cleared before executing each simple query to

make sure no query uses preprocessed data cached by NoDB. Figure 9.15 shows

the difference between Cold and Hot runs of simple queries executed using NoDB

of 1M records dataset. It can be seen that Q2, Q4, Q6, and Q10 require around

134seconds in processing raw data when processed data is not in main memory,

similar to the data loading task of PgSQL. However, PgSQL required 109sec more

to load data into DBMS before queries could be executed. The cold runs of Q7 pro-

vided the query results within 0.09sec, which is 2700x faster than PgSQL. It means

2700 queries like Q7 can be executed using NoDB before PgSQL can finish data

loading tasks. PgSQL caches the entire dataset into the main memory alongside

data loading tasks. A comparison of Cold and Hot runs for PgSQL had shown

only 14sec difference. The difference between Cold and Hot runs of NoDB is

higher than PgSQL because PgSQL only needs to cache the created database from

the disk. On the other hand, when the NoDB cache is cleared, it needs to process

and index the entire raw dataset every time.
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Figure 9.16: Resource Utilization of Simple Queries

Figure 9.16 displays RAM and IO resource utilization of all simple queries

executed using NoDB. It can be observed that Q7 requires less than 2MB of data

to be read from disk, and RAM utilization was also less than 0.1%. The query

Q7 is a sampling type query. Q7 needs to find top 10 records satisfying some

conditions. Therefore, the query execution stops as soon as the Q7 result touches

10 records. At the same time, other simple queries required almost entire dataset

to provide accurate results. Therefore, Q2, Q4, Q6, and Q10 utilized 10.3GB of

RAM after accessing 4GB data from disk.

9.5 Summary of Raw Data Query Processing and Re-

source Monitoring framework Results

This section summarizes key important findings of Phase-I & II results. The find-

ings listed below have been used as facts or rule of thumb to solve the partitioning,

task scheduling, and resource allocation problems and develop QCA, WSAC, and

MUAR techniques.

• Phase-I & II identified three types of queries, 1) Simple queries (0-JOIN), 2)

Complex queries (1 or more JOIN), and 3) Sampling queries (0-JOIN).
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– The query classification results determined that 0 JOIN simple and sam-

pling queries can be executed using NoDB. While the execution of 1 or

more JOIN complex queries (CQ) should be done using DBMS (PgSQL)

after the dataset is loaded.

• Resources are underutilized as both tools can not utilize all resources effi-

ciently. NoDB utilized 6x more RAM compared to PgSQL. However, IO uti-

lization is almost zero once data is cached in the main memory. Both tools

utilize less than 26% CPU, which represents a single CPU core.

• The SDSS dataset size reduces by 45% in database format compared to raw

format.

9.6 RAW-HF: Optimizing Required Resources

This section presents QCA and WSAC results proposed in Phase III of the thesis to

optimize resource utilization. Both techniques have been compared with state-of-

the-art in-situ engine NoDB [33] and workload aware Partial Loading technique

[125]. The WET time taken by QCA is compared with Partial Loading technique,

while the number of attributes covered by WSAC for a given storage budget is

compared in Section 9.6.2.1.

9.6.1 Query Complexity Aware (QCA) Partial Loading Technique

This section discusses the results of partial loading experiments based on parti-

tions provided by the QCA technique.

9.6.1.1 QCA: Partial Loading

Figure 9.17 compares Query Complexity Aware (QCA) partitioned dataset’s work-

load execution time (WET) for Case-I, II, & V with the original dataset WET and

Workload Aware (WA) partitioning techniques like Partial Loading [125] & WSAC

having enough storage budget B to load all attributes. Case-III & IV are not pre-

sented because all workload queries require joining with CAP partition, increas-
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ing QET time compared to other cases. The NoDB is the original dataset WET. In

a sequential run, NoDB takes 87.8% of the time executing complex queries, while

simple query execution time is only 12.2%. One of the simple queries took 74.1sec

due to raw data access, while the remaining four were executed in just 0.8sec.

The WA technique load only required 54 workload attributes, reducing WET by

94.6%. The QCA Case-I load all 34 attributes required by complex queries in the

database, which improves CQ QET by 98.7%. The CQ QET improvement of Case-

I is 2.5% compare to WA due to the smaller partition size, as shown in Figure

9.17.

Figure 9.17: QCA: Data Distribution CASEs

The SQ QET is higher than WA in Case-I because attributes required by simple

queries reside on the storage device until the first SQ accesses the raw partition.

Case-II has the lowest DLT due to the fewer attributes getting loaded into the

database. The access to CAP partition residing as raw format increases QET time

of complex queries. However, Case-II achieved the lowest QET time for simple

queries because complex queries had already cached and indexed the raw data

before the execution of SQ started. The Case-V represents the replication of CAP

on both formats. All the data required by each workload query is kept in a sin-

gle partition, which means no additional joins are needed. The CQ achieved the

lowest possible QET while SQ had to access the data from raw, which increased
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the SQ time by almost 9.5x times compared to Case-II. The Case-I, II & V reduced

overall WET by 93.53%, 94.63%, and 94.64% compared to the original dataset WET

of NoDB [33].

9.6.1.2 QCA: Resource Utilization

The results discussed in this section provides insights to reduction of resource

utilization in terms of RAM, database accessed partition size (DB_APS), raw ac-

cessed partition size (Raw_APS), and Total Read/Write required by hybrid system

to execute given workload.

Figure 9.18: QCA: Resource Utilization

Figure 9.18 compares resources required by the NoDB, WA techniques, and

QCA cases. The RAM utilization is reduced by 89.9 – 95% by QCA and WA tech-

niques. The QCA technique required 57-59% more RAM than WA because WA

required a single DB tool. In comparison, QCA uses DB and Raw engine tools,

which increases its RAM utilization. The accessed partition size APS of DB and

Raw is displayed in the graph. All the APSs of WA and QCA cases are less than

7.5% in size compared to the original dataset size of 4.1GB. Smaller partition size

reduces disk access, and required partitions occupy less RAM than the original

non-partitioned dataset. The in-memory caching and indexing also become more

manageable. The overall WET for WA, Case-II, and Case-V remained similar in
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single-core sequential workload execution. Therefore, WA and QCA techniques

have been applied to a multi-node and multi-core setup to identify their benefits

and limitations.

9.6.2 Workload and Storage Aware Cost-based (WSAC) Partial

Loading Technique

This section discusses the results of partial loading experiments based on parti-

tions provided by the WSAC technique. The WSAC technique is motivated from

the fact that loaded data require 45% less disk space. WSAC proposes to consider

actual storage size of attribute in DBMS to efficiently utilize given storage budget.

9.6.2.1 WSAC: Storage Resource Utilization

Figure 9.19 compares attributes covered by the algorithm choosing a static num-

ber of attributes as storage budget [125] with WSAC. The red bar shows fixed

attributes as a storage budget named without WSAC. The green bar represents

WSAC without AUF, which used only Query Coverage (QC) sub-algorithm, and

the blue bar shows attributes covered when WSAC used QC and AUF sub-algorithms

for different storage budget options. We assumed that without WSAC, the cov-

ered attributes might have been calculated based on the average size of attributes

that can fit in a given storage budget B. The average size of attributes for Photo-

Primary table columns is 38.41MB. That means without WSAC average number of

attributes covered for 200, 800, 1400, and 2000 MB storage budget B would be 5,

21, 37, and 53. The number of queries covered by WSAC algorithms is 1, 5, 9, 12

for a corresponding storage budget of 200, 800, 1400, and 2000MB. It is crucial to

cover all query attributes to get results using only the loaded part of the dataset

to improve the QET. There is no guarantee that most frequent attributes would

cover queries of the frequent query set in Without WSAC cases where QC is not a

sub-algorithm. WSAC without AUF covered 2, 18, 28, 54 attributes, while WSAC

covered 5, 22, 39, 54 attributes for the given storage budget.

The results show that the WSAC without AUF algorithm alone could not uti-
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Figure 9.19: WSAC: Storage Utilization

lize all the available storage budget. The WSAC’s AUF sub-algorithm tries to

utilize the remaining space with attributes having lower storage budget require-

ments in the end to improve storage budget utilization. The WSAC improved

the storage utilization by 20-60% compared to WSAC without AUF. For the Pho-

toPrimary table, WSAC technique covered 5% more attributes than the algorithms

choosing average values to decide storage budget represented as without WSAC.

When stored in a database, most columns in the PhotoPrimary table had long int

or real datatypes having similar column sizes due to the 4-byte storage space re-

quirement on disk. The WSAC can cover more attributes if the dataset consists

of boolean or char(1) datatypes that require only 1-byte storage space to store one

tuple.

9.6.2.2 WSAC: Partial Loading

This section compares the WSAC performance compared to NoDB and PgSQL.

The experiments performed here show the partitions provided by WSAC. The

entire workload of 12 queries was provided as list of complex queries to WSAC

algorithms.

The comparison of PgSQL with NoDB is plotted in Figure 9.1 of RQP to get the

actual WET required by the original non-partitioned dataset having 509 attributes
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Figure 9.20: WSAC: Partial Loading WET

for both systems independently. It can be observed that raw data query process-

ing engines like NoDB have zero data loading time. At the same time, PgSQL

required 188 sec to load the data existing in a CSV file using the fastest loading

method COPY. However, PgSQL required 4.05% time to complete the query exe-

cution of 12 queries on loaded data compared to NoDB. One thing to note is that

NoDB is an open-source tool developed by research group from EPFL. Therefore

it is not entirely created with industry standards nor optimized to execute JOIN

queries as effectively as PgSQL. The NoDB required 11GB of RAM to run queries

on 4.6GB of raw data, limiting the data scaling as it would have triggered swap-

ping and increased WET.

Figure 9.20 compares total WET (Equation 6.2) before and after the proposed

WSAC technique partitioned the PhotoPrimary table into three partitions from

which workload queries use only two partitions. The first bar in the result shows

the QET time when zero attributes are loaded into the database, which means all

the queries are executed using NoDB. The second bar displays the WET when

only five attributes are loaded into the database. It reduced the WET by 83.88%,

with just one query covered by PgSQL. This happens because the main primary

key column objID is loaded in the database, which helps in reducing the time

required to join records. The raw files are only accessed to get the data to be pro-
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jected. The 22 and 39 attributes are loaded into the database based on the storage

budget, which reduced the overall WET by 86.57% and 91.61% as compared to

zero loaded attribute workload. The last bar shows the WET time when all at-

tributes are loaded into the database. The 54 loaded attributes reduced the WET

by 95.37% compared to zero loaded attributes. For the 54 attribute partition, the

DLT and QET time gets reduced by 87.06% and 60.66% compared to the original

database loaded in PgSQL. The created partitions can be cached into the main

memory to reduce QET further.

9.7 RAW-HF: Maximizing Utilization of Existing

Resources

This section discusses Phase-IV results obtained using CPU and RAM resource

maximization techniques to maximize utilization of existing resources. This phase

also performed experiments that combined multiple resources maximization tech-

niques to improve WET for SDSS and LOD datasets.

9.7.1 MUAR for SDSS Dataset

Figure 9.21 compares CPU, RAM, and CPU + RAM maximization techniques to

the total time required to execute 12 SDSS queries. The experiments conducted to

generate results for this section used only PgSQL. NoDB could not execute queries

in parallel as each new connection cached the entire raw file causing the memory

to run out of space. Because NoDB uses more than 10GB RAM just to query 1M

records in each thread. The machine had only 16GB RAM, which caused errors

with just 2 parallel query threads. Additionally, NoDB uses maximum available

main memory with default settings, rendering RAM maximization experiments

useless.

For PgSQL, RAM maximization is achieved by executing queries on pre-cached

data. It can be observed that RAM maximization reduced QET time by 33%, while

the combination of CPU and RAM maximization techniques achieved 77.1% re-
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Figure 9.21: RAW-HF: Maximizing Utilization of Existing Resources

duction in total query execution time. PgSQL provides multiple RAM tuning

settings. One such configuration is work memory. The default value of work_mem

is set to 4MB. The RAM maximization experiments with 500MB work_mem setting

have been performed using SDSS. Although, it did not show any improvement in

WET for SDSS. The LOD workload queries could achieve reductions of 51% and

84.8% in WET using static memory allocation and dynamic memory allocation

using MUAR due to in memory storage of large hash join tables. Therefore, more

extensive experiments have been performed with the LOD dataset to analyze the

benefits of applying MUAR technique. Section 9.7.2 presents the analysis of the

LOD dataset results. DLT time is not improved using CPU resource maximiza-

tion techniques. COPY method is already optimized to load data using only one

data loading thread because sequential disk access provides the best IO speeds

for magnetic disk storage devices [56]. Therefore, the combination of Phase-III

techniques QCA and WSAC with Phase-IV resource maximization techniques is

experimented with to find the maximum reduction in WET.

9.7.2 MUAR for LOD Dataset

This section discusses the static single and multiple resource maximization ex-

periments performed using the LOD dataset to find the best combination of tech-
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niques for systems having limited resources. An analysis summary of all results

has been discussed to compare the impact of static, existing state-of-art, and the

proposed dynamic resource allocation technique MUAR on DLT and QET. The

experiments performed in this section are compared with PostgreSQL DBMS us-

ing default resource utilization settings. The time taken to execute 16 workload

queries with default settings is considered the original WET. It is represented as

PgSQL-default in results.

9.7.2.1 Single Resource Maximization without MUAR

The static single resource maximization techniques applied to PostgreSQL are rep-

resented only by the resource name they try to maximize. For example, Post-

greSQL with CPU maximization technique (multi-threading) is represented using

CPU only in result graphs. Similarly, multiple resource maximization techniques

have been presented with a plus sign.

Figure 9.22: Single Resource Maximization: DLT
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Figure 9.23: Single Resource Maximization: QET

Figures 9.22 and 9.23 present the impact of CPU, RAM, and IO resource maxi-

mization techniques on DLT & QET. It can be observed that DLT is reduced by 15-

17.5% after changing DBMS storage location from HDD to RAM using RAMFS.

In comparison, RAM and CPU maximization techniques do not improve DLT.

At the same time, QET improves by 48.7-74.5% by executing queries in parallel

utilizing maximum CPU. RAM maximization techniques with work memory set

to 500MB also improved QET by 35.6-51.2% for the 3M-7M dataset sizes. How-

ever, QET improvement at 1M is less than 0.6%. RAM maximization improves

the QET of queries executing using large dataset sizes because of reduced disk

read-write to store intermediate join results. IO maximization technique could

only improve QET by 8.9% for the 5M dataset size. However, IO maximization

performed poorly at 3M & 7M, increasing QET time. In most other cases, IO max-

imization can not improve QET because DBMSs cache the required data to RAM,

making IO maximization impractical.
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9.7.2.2 Multiple Resources Maximization without MUAR

Figure 9.24: Multiple Resource Maximization: DLT

Figures 9.24 & 9.25 present the impact of multiple resource maximization tech-

niques on DLT & QET. The experiments on DLT were limited to combining CPU

and RAM resource maximization techniques with IO because individual resource

maximization techniques with CPU and RAM could not improve DLT. The com-

bination of RAM & IO resource maximization techniques required 0.8-4.8% more

time to complete data loading operations than only IO maximization. At the same

time, CPU+IO could improve DLT time by up to 30% compared to the original

and 4.4-15.4% compared to IO maximization. CPU+IO could improve DLT be-

cause RAM storage increases IO speeds and allows faster parallel access to data

compared to HDD [56].

Figure 9.25 shows that combining CPU & RAM resource maximization tech-

niques can improve QET by 67.4-81.1% compared to the original QET utilizing

maximum RAM and CPU resources. CPU+IO and CPU+RAM+IO combinations

could not execute queries on dataset sizes greater than 3M because of experimen-

152



Figure 9.25: Multiple Resource Maximization: QET

tal machine hardware limitations. Therefore, CPU+IO and CPU+RAM+IO results

are not plotted for comparison. However, CPU+RAM+IO results are almost equal

to CPU+RAM results up to 3M because IO maximization does not help improve

QET as the entire dataset is already cached in RAM, and queries have enough

RAM due to the application of RAM maximization. However, for the dataset hav-

ing 5M records, multiple queries being executed in parallel stored more than 10GB

of intermediate join result data on RAMFS space. This caused the OutOfMemory

errors and limited data scaling experiments.

On the other hand, CPU+RAM maximization uses a fixed amount of RAM set

in the work_mem parameter. The additional intermediate join results are stored

on disk. This allows the execution of complex multi-join queries on datasets with

5M and 7M records without causing OutOfMemory errors. However, more disk

usage slows down the query execution. Therefore, the following section discusses

MUAR, which tries to allocate maximum available RAM to queries based on real-

time availability.
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9.7.2.3 MUAR: WET

Multiple resource maximization technique results showed that the IO maximiza-

tion technique could only improve DLT time. Datasets having more records or

sizes cannot be processed efficiently when IO resource maximization is consid-

ered. Additionally, IO maximization is static and cannot be configured or changed

dynamically at run time. Therefore, the proposed technique MUAR has not con-

sidered IO resource maximization and its combinations to develop a real-time dy-

namic algorithm. This section compares the WET and resource utilization results

of the most effective combination of multiple resource maximization techniques,

i.e., CPU+RAM results with MUAR.

Figure 9.26 presents that MUAR improved QET by 66.7-82.2% compared to the

original by maximizing CPU and RAM resources dynamically at runtime. While

QET improvement achieved is 13.8-37.7% better than the static CPU+RAM re-

source maximization. MUAR achieves significant reduction in QET because it

allocated 2-5GB of work memory to complex queries based on join count J_C, en-

suring maximum utilization of available RAM. Independent resource maximiza-

tion of CPU resource is 0.05-4.3% slower than static CPU resource maximization

techniques because of the wait imposed by the algorithm to avoid over-allocation.

9.7.2.4 MUAR: Resource Utilization

This section discusses the impact of resource maximization techniques on actual

resource utilization. The CPU, RAM, and IO wait results are presented in per-

centages to identify the overall utilization of resources out of 100. At the same

time, disk IO utilization is shown in MB to present the amount of data written

by queries on disk due to limited work memory. Figure 9.27 presents the aver-

age resource utilization observed during the original workload execution (when

no maximization technique is applied) with the best combination of multiple re-

source maximization techniques without MUAR and with MUAR. It can be seen

that the Original CPU and RAM resource utilization is below 36%. Basic CPU

& RAM maximization techniques without MUAR and with MUAR reached peak

CPU utilization of 100%. However, average CPU utilization stayed around 63-
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Figure 9.26: MUAR: QET

67% because of the smaller workload the last query ran alone, utilizing only 25%

CPU.

The average RAM utilization stays below 45% for default and static main

memory allocation. Static RAM resource maximization increased RAM utiliza-

tion by 6.2% compared to the original. However, MUAR increased RAM resource

utilization by 18.5% due to 2-5GB of work memory allocated to complex queries

in real-time. IO_Wait shows the percentage of CPU time wasted in waiting for

IO resources. MUAR allocates more RAM space and waits for resources to be

available before starting any task, reducing the overall IO wait to 3%. Static CPU

& RAM maximization techniques without MUAR had 4 times more IO wait on

average than dynamic resource allocation using MUAR.

Fig. 10. MUAR: Total IO

Figure 9.28 shows the total data written to disk by 16 workload queries for

default, static CPU+RAM, and MUAR resource allocation techniques. It can be

seen that with a default memory allocation of 4MB, the total data written to disk is
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Figure 9.27: MUAR: Average Resource Utilization

Figure 9.28: MUAR: Disk Writes
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82GB. The smaller work memory cannot store large intermediate hash join tables

or sort records. Therefore, a large amount of data is written to disk, increasing

the QET time of complex queries. In comparison, static memory allocation of

500MB reduced disk writes by 60%, because most temporary sorting data or hash

join tables are written to RAM. The high reduction in disk writes. While MUAR

was able to reduce disk writes by 62.5% compared to the default work memory

configuration. This helps MUAR achieve lower IO waits and 85% faster workload

execution.

9.7.2.5 Comparison of MUAR with State-of-the-art techniques

This section compares the proposed MUAR technique with the existing static and

dynamic state-of-the-art techniques, which try to increase the utilization of ex-

isting system resources or allocate resources efficiently to improve WET. Table

9.1 compares MUAR performance with static techniques, while Figure 9.29 & Ta-

ble 9.2 presents the comparison of MUAR with state-of-the-art dynamic or ML

techniques based on parameters like QET, real-time resource utilization monitor-

ing, whether the technique divides single query tasks for parallel processing, uses

lightweight algorithms, and its ability to manage ad-hoc queries.

Table 9.1: WET: Comparison with static resource allocation techniques

Technique
Maximized Uti-
lization of Re-
sources

DLT(%) QET(%) WET(%)

Single Resource
Maximization w/o MUAR

CPU -02.94 74.54 74.26
RAM -26.92 51.17 50.89
IO 17.47 08.95 08.98

Multiple Resource
Maximization w/o MUAR

CPU+RAM -02.94 81.15 80.85
CPU+IO 30.19 NA NA
RAM+IO 15.73 50.79 50.66
CPU+RAM+IO 30.19 NA NA

MUAR CPU+RAM 00.00 85.12 84.81

Figure 9.29 compares 1st and 2nd run QET of Q14 achieved by MUAR with

PgSQL configured to allocate default resources, Elastic[106], PCC[103], and Best

(AutoToken[109]). We had performed experiments with multiple complex queries

like Q10 & Q14, which wrote 8-10GB of intermediate join results to disk. For
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Figure 9.29: MUAR: Comparison with state of the art

Table 9.2: Comparison with State-of-the-art Resource Allocation Techniques

#
Tools/
Tech-
niques

Resources Maximized R2 QET
(%) w.r.t.
PgSQL

Real-
time
RM

Divide
Query
Tasks

Light-
weight

Ad-hoc
Query
Supp.

CPU RAM IO
1 Elastic

[106]
Yes Yes

(5.6%)
No 51.7% No No Yes No

2 PCC
[103]

Yes Yes
(21.2%)

No 64.4% No No No No

3 MUAR Yes Yes
(66.3%)

No 71.8% Yes No Yes Yes

4 AutoToken
(Best)[109]

Yes Yes
(62.8%)

No 71.8% No No No Yes
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the first run, PgSQL & Elastic allocates default resources, i.e., 4MB work_mem.

While MUAR allocates 1.8GB of work memory by analyzing query complexity

and available RAM to improve 1st query run performance by 62%. At the same

time, PCC and AutoToken may allocate 8GB-10GB of RAM resources to achieve

best performance during 1st query run as they suggest resources are over-allocated

in the serverless cloud. During 2nd run, Elastic resource allocation QET results

are achieved by allocating only 500MB of work memory enough to reduce OLAP

(complex query) QET by 50%. PCC and AutoToken use past data to train ML

models with multiple features to allocate optimal (3.4GB) or maximum resources

(10GB) during the 2nd run with 12-20% estimation error. During 2nd query run

executed on the same 7M records dataset, MUAR allocated 10.6GB of work mem-

ory by adding previous work memory of 1.8GB & 8.8GB of disk writes recorded

during 1st run. MUAR uses a simple linear equation that considers fewer param-

eters like join count, dataset size, and past disk writes to achieve the best perfor-

mance with 15-20% estimation error. This makes MUAR lightweight and faster

compared to ML techniques. The main memory utilization of MUAR & Auto-

Token is 3x to 20x higher than PCC and Elastic. In summary, MUAR is capable

of finding best resource allocation value for work memory parameter with single

query run data as PCC[103].

9.7.3 MUAR for Different Datasets

Database management softwares support runtime tuning of resource utilization

with the help of configuration parameters like work_mem. Work memory param-

eter helps in allocating query specific RAM resources for faster execution of a

query. However, the effects of changing any parameter value on WET depend on

several parameters, like dataset size, query complexity, or number of attributes

accessed. This section analyzes the experimental results after applying MUAR on

different datasets like SDSS and LOD.

Figure 9.30 shows the impact of RAM and CPU maximization techniques used

by MUAR on LOD and SDSS datasets. It can be seen that individual and combi-

nation of resource maximization techniques used by MUAR are more effective on
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Figure 9.30: Impact of MUAR on WET for LOD & SDSS datasets

the LOD dataset. It is visible that the WET reduced for LOD dataset is 5.7 times

more compared to the SDSS dataset. The large difference in WET improvement

is due to the different characteristics of both datasets. The PhotoPrimary table of

SDSS contains 509 attributes, while the LOD dataset is a narrow table dataset with

only three attributes. For SDSS, loading all 509 attributes in the dataset required

188.63sec while QET time is only 44.7sec. For SDSS, 80.8% of WET is spent load-

ing data into DBMS due to the 4.7GB size per 1M records. While for LOD dataset

only spent 0.4% of the WET time loading data. MUAR is not using the IO maxi-

mization technique. Therefore, DLT time cannot be improved using CPU & RAM

maximization techniques. This means the effect of CPU and RAM maximization

techniques on WET depends on QET time reduction only. For the LOD dataset,

99.6% of the time is spent on query execution. In comparison, SDSS QET time is

less than 20% of WET. Therefore, executing queries in parallel helps reduce over-

all WET by only 8.8% for SDSS. On the other hand, 99.6% of the workload can be

executed in parallel for the LOD dataset. Therefore, executing queries in parallel

achieved 65.7% reduction in WET for the LOD dataset workload.

The RAM maximization technique used by MUAR allocates more work mem-

ory to complex queries to reduce QET. The allocation of more work memory helps

complex multi-join queries execute faster as disk access reduces significantly. For
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the LOD dataset, 56% of the query workload had five join queries, while 87%

had two or more joins. On the other hand, query workload of the SDSS dataset

had less than 1% of queries with two joins. Therefore, MUAR RAM maximiza-

tion techniques also achieved better results in reducing QET for the LOD dataset

than SDSS. It can be seen in Figure 9.30 that MUAR RAM maximization achieved

11 times more reduction in WET than the LOD dataset. For SDSS, allocating

more RAM did not help reduce QET due to a simpler query workload with fewer

joins, as disk writes were already less or non-existing. However, caching the en-

tire dataset into main memory helped reduce overall WET by 6.3% for the SDSS

workload. Therefore, MUAR(CPU+RAM) is more effective for datasets having

complex query workloads like LOD.

9.8 RAW-HF: Optimizing Required Resources &

Maximizing Utilization of Existing Resources

This section presents the results of RAW-HF after combining all techniques pro-

posed in Phase-III & IV. The results also compare RAW-HF performance with

state-of-the-art tools and techniques based on the WET and resource utilization

parameters.

9.8.1 RAW-HF: Workload Execution Time

Figure 9.31 shows the comparison of all the techniques used during thesis work.

First column shows the raw data query processing time using NoDB, which has

zero data loading time. The 2nd column shows WET time required by traditional

DBMS PgSQL. The 3rd and 4th columns show the WET results for individual op-

timization and maximization phases of RAW-HF. The combination of Phase-III

technique WSAC and Phase-IV resource maximization techniques shows that en-

tire workload can be executed within 30.6 sec using workload aware partitioning

techniques like Partial Loading [125] compared to 613.6 sec by NoDB [33]. At the

same time, RAW-HF takes only 22.6 sec to complete the execution of given work-
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load tasks. It can be observed that the combination of all techniques achieved

total reduction of 96.32% using only RAW-HF compared to NoDB while 26.14%

compared to the workload aware partial loading technique. RAW-HF benefits

from low DLT time achieved by only loading attributes used by complex queries.

Additionally, simple queries complete execution in parallel to data loading tasks

utilizing available resources efficiently.

Figure 9.31: RAW-HF: WET Comparison

9.8.2 RAW-HF: Resource Utilization

Figure 9.32 shows the comparison of resources utilized by Phase-III & IV of RAW-

HF with NoDB [33], PgSQL DBMS [22], and Partial loading technique [125]. Phase-

I proposed a raw data query processing framework to process raw data in its place

without loading. The NoDB has a high QET, which utilizes CPU for a longer time.

RAM utilization is more than double the size of actual raw data. Here, the 1M

records dataset used in experiment utilized 4.7GB of space on IO device. PgSQL

is the better choice for data processing as it reduced the CPU, RAM, and IO uti-

lization by 72.5%, 74.8%, and 43.5%, respectively.

Phase-IV results showed that CPU utilization time is reduced by only 6.34%

because most of the time is spent in data loading process compared to PgSQL.

Phase-IV can only utilize other CPU cores to execute read queries in parallel. Fig-
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Figure 9.32: RAW-HF: Resource Utilization

ure 9.32 confirms that CPU utilization is reduced by 77% only during query pro-

cessing tasks due to parallel processing. Similarly, IO utilization stays same as

PgSQL in Phase-IV as the experiments used original 1M SDSS dataset having 509

attributes. The QCA with WSAC technique in Phase-III reduced the required DB

partition size(IO) by 91.08% reducing WET, CPU, and RAM utilization by 85.9%,

85.1%, and 80.9%.

The Partial Loading technique [125] loaded only 10.6% of original data into

DBMS, which reduced the WET time by 88.1% compared to NoDB. It also reduced

the CPU and RAM utilization by 81.3% and 86.4%. The RAW-HF experiments

combined Phase-III and Phase-IV techniques, which showed a 32.8% increase in

RAM utilization compared to the Partial Loading technique due to parallel pro-

cessing of queries. However, RAW-HF improved DLT, QET, WET, CPU, and DB

Size(IO) requirements by 29.5%, 12.9%, 26.14%, 26.14%, 24.92% compared to Par-

tial Loading technique [125] executing all read queries in parallel after data load-

ing is complete. The maximum CPU utilization reached 94% for RAW-HF while

executing the given query workload. However, due to the 12 query workload,

the average CPU utilization stayed at 31% as most of the CPU time goes into data

loading operations, which utilized a single CPU core. A more detailed compari-

son of RAW-HF with state-of-the-art techniques and tools is presented in Section
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9.11.

9.8.3 RAW-HF: Processing Capacity Estimation

This section estimates the data processing capacity of a given machine for cloud

or other distributed setups by analyzing the resource utilization of workload task

processes. The RAM resource utilization recorded by the proposed framework

for different non-partitioned and partitioned dataset cases has been considered

for estimation. The resource monitoring and data scaling results have shown that

both PostgreSQL and PostgresRAW tools require different resources for different

amounts of time. The data processing capacity estimation is a complex problem

and greatly depends on the application requirements. A given machine can pro-

cess terabytes of data if given enough CPU time. However, faster response time

requirements may need results within a suitable time limit, preferably within a

few seconds for real-time systems. The QET or CPU utilization time reduces sig-

nificantly if the processed data is already cached in RAM for both tools. There-

fore, the best way to estimate the capacity of a machine would be to determine

the amount of data that can be cached in the main memory. The machine can pro-

cess datasets larger than the available main memory (RAM), but it would have to

access the disk or swap the data, increasing query execution time.

Query complexity is another parameter that needs to be considered to estimate

the data processing capacity of a machine. More complex queries with multiple

joins would require more memory for data processing and caching intermediate

join results [100]. Processing the RDF dataset stored in triple format requires a

large amount of main memory due to multiple self-join requirements [96]. The

SDSS workload had only one query with two joins. Therefore, the RAM resource

requirements of SDSS queries do not change extensively with dataset size.

The estimation of original and partitioned SDSS dataset sizes that a machine

having 16GB of RAM can handle has been shown in Figure 9.33. The PgSQL and

PgRAW data scaling experiments have shown that the main memory capacity of

the used machine is 70%. OS and other applications use the remaining 30% RAM.

Now, the estimation is calculated based on the size of the required database par-
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Figure 9.33: Raw Data Processing Capacity Estimation

tition and the most complex query’s RAM requirement. Figure 9.33 compares

PgSQL, and PgRAW using the entire dataset with workload-aware (WA) parti-

tioning techniques like Vertical Partitioning[125], WSAC, QCA & RUA accessing

partitions required by workload queries. The database size in PgSQL is 40-50%

smaller than the raw format size on disk. The compressed size significantly in-

creases the size of the raw dataset that can be cached in the main memory, in-

creasing machine’s capacity to process larger datasets efficiently. SDSS has most

attributes in numeric format, which reduces the loaded dataset size. However,

database size may not differ significantly for other datasets having more string

attributes.

The PgRAW and QCA-SQ techniques cache and index the raw partitions in the

main memory, utilizing 1.6x to 1.8x more RAM than their raw format size. The es-

timation plotted in Figure 9.33 is based on a simple linear equation derived from

the original dataset’s resource requirements monitored for PgSQL and PgRAW

tools in Section 9.3.3 and Figure 9.32. The calculations show that the given ma-

chine can process around 26M records (122GB) datasets using WA techniques,

while 11M records (51.7GB) dataset can be processed using the QCA technique.

QCA-CQ and CQA-SQ partitions can be used to distribute the complex query

and simple query workload on multiple nodes. Here, the QCA-SQ node does
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not require loading any data because all queries are executed using PgRAW, and

the required SQ partitions are cached and indexed in the main memory to reduce

reparsing. The partitions created using the RUA technique may allow execution

of simple sampling type queries (SSQ) on 700M or larger datasets efficiently using

minimal resources because sampling queries running on PgRAW does not process

the entire dataset.

Partitioning techniques presented in Figure 9.33 partition the original dataset,

and cache workload-specific partitions required by queries in the main memory.

This increases the size of the original dataset that can be processed. In reality,

the capacity of a machine stays the same, and the cached partition size also stays

70%(11.2 GB) of main memory. The estimation is based on partitions required

by queries to provide exact results as if the queries have been executed using the

original dataset. The complex query CQ partition of QCA independently might

be able to process 35M records (164GB) dataset because the CQ partition size is

25.7% smaller than WA technique partitions.

9.9 RAW-HF for Different Datasets

This section discusses the impact of RAW-HF on WET for different types of datasets

like LOD & SDSS. Table 9.3 compares LOD and SDSS datasets based on the Frac-

tion of Attributes Accessed (FAA) by workload queries and the Fraction of At-

tributes Loaded (FAL) by RAW-HF. It can be seen that SDSS is a broad table

dataset. All the SDSS workload queries access only 10.6% of attributes. On the

other hand, LOD dataset is a narrow table dataset containing only three attributes.

Due to fewer attributes, almost all queries use two or more attributes. The impact

of broad and narrow tables and queries accessing only small part of the dataset

can be seen in the ORR results for SDSS in Figure 9.34.

The ORR phase of RAW-HF uses vertical partitioning methods to reduce DLT

and improve QET by accessing only required fractions by creating database and

raw file partitions. As discussed in QCA results presented in Figure 9.17, RAW-HF

only loads attributes required by complex queries to reduce DLT time. This helps
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Table 9.3: ORR: Fraction of Attributes Accessed (FAA) and Loaded (FAL)

Total
Attributes

Accessed
Attributes

FAA
(%)

Loaded
Attributes

FAL
(%)

DLT
(%)

QET
(%)

WET
(%)

SDSS 509 54 10.6 34 6.7 90.9 87.9 85.9
LOD 3 3 100.0 3 100.0 0 0 0

Figure 9.34: Impact of RAW-HF on WET for LOD & SDSS datasets

datasets like SDSS, which requires only a small fraction of the dataset (10.6%) to

answer queries by loading only 6.7% of attributes. The remaining 93.3% of at-

tributes are not loaded into DBMS, reducing WET by 85.9% for the SDSS dataset.

On the other hand, vertical partitioning cannot help datasets like LOD that ac-

cess 100% of attributes. Therefore, the WET reduction achieved by applying ORR

phase is 0% for LOD. However, the MUAR phase achieves 84.8% of reduction

in WET by efficiently utilizing existing CPU and RAM resources for complex

queries. A detailed analysis of MAUR results has already been discussed in Sec-

tion 9.7.3. The RAW-HF can be applied to different types of datasets like LOD and

SDSS to achieve 84-90% reduction in WET. In summary, RAW-HF can be applied

to different types of real-world datasets to achieved significant reduction in WET

by combining ORR and MUER phases.
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9.10 Characterization of RAW-HF

This section discusses time required to execute RAW-HF algorithms (AET) and

steps taken to optimize AET. The Section 9.10.3 also discusses AET taken by RAW-

HF algorithms for different datasets like SDSS and LOD.

9.10.1 AET

Figure 9.35: AET of RAW-HF Algorithms for SDSS

The RAW-HF uses combination of WSAC, QCA and MUAR algorithms. Fig-

ure 9.35 presents time taken by WSAC, QCA and MUAR algorithms used in ORR

and MUER phase of RAW-HF. It can be seen that WSAC required more time to

complete the algorithm, because it consists of cost calculation. Section 9.10.2 dis-

cusses the steps taken to optimize different sub-algorithms or functions used by

WSAC. QCA uses the pre-optimized functions, therefore it takes only 1.09sec. Ad-

ditionally, QCA AET does not depend on the size of dataset, as QCA does not use

cost calculations functions. MUAR continuously runs in parallel throughout the

workload execution on multiple threads of CPU so the finding AET of difficult.

However, CPU utilized to execute all the steps of MUAR required less than 2% of

CPU as resource monitoring was optimized. MUAR uses 0.13sec to calculate and
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set work memory for each workload query. Therefore, MUAR AET is achieved by

multiplying 0.13sec to the number of queries in workload list.

9.10.2 WSAC: Algorithm Optimization

For any algorithm to work efficiently in real-time, the time required by the al-

gorithm to execute the functions needs to be as low as possible. However, cost

function in WSAC depends on the actual dataset size and workload list. The

larger these files, the more time the function takes to process them. This makes

the WSAC dependent on the number of records n in the dataset. These optimiza-

tion experiments have been performed only for WSAC algorithms to eliminate

the dependency on dataset size. Different input file sizes have been considered to

reduce the algorithm execution time (AET) of WSAC.

Figure 9.36: WSAC: Algorithm Optimization

Figure 9.36 shows the AET for different inputs. It can be observed that when

the algorithm is provided with the entire 1M records dataset for cost-calculation,

the time required by cost-function is more than 48mins. Therefore, we tried to

reduce the cost calculation time by providing a smaller 10k sample of the dataset,

which reduced the AET by 89.48%. The 3rd bar shows the time of AET when only

the most frequent query set of 12 queries was provided as workload. The final

data point showed when the sample dataset size was only 1000, which reduced
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AET to an acceptable time of 8.9sec. However, the storage size received from

the smaller set was slightly larger than the original dataset sample. The direct

multiplication by 1000 to project the original column size led to a reduction in the

attributes covered by the algorithm. We can optimize the proposed technique as

per the accuracy requirements of the application.

9.10.3 RAW-HF AET for Different Datasets

Figure 9.37: RAW-HF AET for SDSS and LOD

RAW-HF uses best combination out of WSAC, QCA and MUAR to optimize

resource utilization. As discussed in Section 9.10.2, WSAC still required 8.15sec

in calculating cost of attributes used by workload queries. RAW-HF uses com-

bination of QCA and MUAR technique to keep it lightweight. Figure 9.37 dis-

plays AET of RAW-HF for SDSS and LOD dataset. It can be seen that ORR (QCA)

phase is not applied to LOD dataset, therefore AET of QCA is 0sec. On the other

hand, MUAR AET achieved by multiplying 0.1sec AET of MUAR with number of

queries in workload list produced 1.65sec for SDSS and 2.19sec for LOD dataset.

Figure 9.38 displays the AET of RAW-HF when dataset size is increased from

1M to 7M for SDSS and LOD datasets. This figure shows that AET of RAW-HF

does not depend on the dataset size, because QCA does not use any cost cal-

culation functions. While MUAR only analyzes the query statement to allocate
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Figure 9.38: Scaled Data: AET for SDSS and LOD

resources in real-time. The complexity of QCA and MUAR has already been dis-

cussed in Sections 6.2.1.2 and 7.2.4. It is O(j*(w_l)) for QCA and O(x*(w_l)) for

MUAR. Therefore, AET of both depends on the number of unique queries in the

workload.

9.11 Comparison with State-of-the-art

This section presents a comparison of the RAW-HF technique with other state-of-

the-art techniques. The RAW-HF techniques compared with NoDB [33], Slalom

[94], DBMS [22], Partial Loading [125], PDC [117], and PCC [103]. NoDB is an

open source in-situ processing engine with main memory caching and indexing

features [33]. Although Slalom is an improvement over NoDB, it is not available

as an open source tool [94]. PostgreSQL (PgSQL) is a widely used open source

DBMS [22]. The Partial Loading technique proposes distributing dataset par-

titions among DBMS, and raw format considering storage resource limitations

[125]. PDC proposes to cache the dataset partition summaries and distribute

query tasks to relevant nodes [117]. PCC proposes using a performance char-

acteristic curve to allocate appropriate resources to frequent queries [103].

Table 9.4 presents a comparison of state-of-the-art raw data query processing
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Table 9.4: RAW-HF Technique Comparison with State-of-the-art

# Technique
/ Tool

Partiti-
oning

DBMS
Data

%

Work-
load

Aware

Ad-
hoc

queries

RUA Multi-
format
Join

Remarks

1 NoDB
(Post-

gresRaw)
[33]

- 0 No NA No No Required More
Memory. High

QET.

2 Slalom
[94]

Logical
HP

0 Yes Yes No No Requires less
Memory. Adapts

to workload
changes.

3 DBMS
(PgSQL)

[22]

- 100 No - No No High DLT. Low
QET & Resource

Utilization.
4 Partial

Loading
[125]

VP 10.6 Yes - Yes No Technique Not
Lightweight

5 PDC
[117]

(ODBMS)

HP 0 Yes No No No Resources
Underutilized,

Distributed
System

6 PCC
(Cloud/
Server-

less)
[103]

- 100 Yes No Yes No Resource
Intensive,

Distributed
System

7 RAW-HF
(Hybrid)

VP 6.7 Yes Yes Yes Yes Lightweight
Technique, Can
be extended to a

distributed
setup
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techniques with RAW-HF. DBMS Data% shows the percentage of original dataset

loaded into DBMS by the technique or data processing tool. Resource Utilization

Aware (RUA) shows whether the technique considered resource utilization infor-

mation or not. The Multi-Format Join column represents whether the tool can ex-

ecute join queries on data residing in raw and database formats. NoDB eliminates

DLT by querying raw files. However, QET time and main memory utilization are

very high. Slalom is an improvement over NoDB. It logically partitions raw files

and adapts to workload changes using less main memory than NoDB. The PgSQL

reduces the QET time at the cost of high DLT. NoDB, PgSQL, and PCC do not use

partitioning techniques and require the entire dataset in a single format. Partial

loading and RAW-HF use hybrid systems, so both can query multi-format data.

The SCANRAW tool used to implement Partial Loading techniques can not join

data existing in database and raw partition. Therefore, the multi-format (MF) join

feature is not present. Whereas RAW-HF uses NoDB as an extension to PgSQL

(PostgreSQL), allowing execution of join queries on the database and raw format.

Therefore, the multi-format join feature is present in RAW-HF.

Partial loading, PDC, PCC, and RAW-HF are workload aware. PCC uses work-

load information to identify appropriate resources, while others use workload in-

formation to partition the dataset. Only RAW-HF supports allocating appropriate

resources to ad-hoc queries based on query complexity. While, NoDB, Slalom,

PgSQL, and Partial loading techniques allocate static resources to all the queries,

including the ad-hoc ones. PDC uses a static partition of main memory (50%) to

keep lookup tables. PCC needs historical data for allocating appropriate resources

to each query. However, it does not work well for ad-hoc queries. In comparison,

although RAW-HF performs workload aware partitioning, resource allocation is

done based on query complexity. Therefore, RAW-HF is capable of allocating ap-

propriate resources to ad-hoc queries.

The Partial Loading technique [125] and RAW-HF partition the raw dataset

into a database and raw partitions considering memory or storage budget. The

storage budget limits the amount of data that needs to be loaded into DBMS.

The Partial Loading technique tries to load attributes that cover maximum num-
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Table 9.5: RAW-HF Performance Parameters Comparison

# Technique/
Tool

Query Performance % Resource Utilization %

DLT
(sec)

QET
(sec)

WET
(sec)

CPU
(sec)

RAM
(MB)

IO (MB)

1 NoDB [33] 0 613.59
(99.12%)

613.59
(96.32%)

613.59
(96.32%)

10956.8
(90.36%)

4710.4
(94.96%)

2 DBMS [22] 188.63
(90.88%)

44.7
(87.92%)

233.33
(90.31%)

233.33
(89.78%)

2758.3
(61.70%)

2660.4
(91.08%)

3 Partial
Loading

[125]

24.4
(29.51%)

6.2
(12.90%)

30.6
(26.14%)

30.6
(26.14%)

709.2
(+32.87%)

316.0
(24.92%)

4 RAW-HF 17.2 5.4 22.6 22.6 1056.5 237.3

ber of workload queries. RAW-HF uses lightweight QCA, WSAC, and MUAR

techniques to partition, schedule tasks, and allocate resources to reduce WET. The

Partial Loading technique is not lightweight. It requires attribute access time from

database & raw formats, data loading time, workload analysis, and other values to

find the optimal partitions for hybrid systems, increasing AET. SCANRAW loads

data into DBMS whenever resources are available, which makes this technique

Resource Utilization Aware. RAW-HF considers available resources to schedule

tasks. The PCC uses historical resource utilization of queries. RAW-HF proposes

to load only attributes required by complex queries to reduce DLT time and re-

quired to load only 6.7% of data. The multi-format join feature present in RAW-

HF helps in achieving 0% replication. In comparison, Partial Loading may load

10.6% of the dataset accessed by workload queries when enough storage budget is

available. PCC and PDC are implemented for cloud based systems making them

distributed systems. Although RAW-HF is implanted on a single machine, it can

be used for cloud based systems or extended to distributed setup.

Figure 9.31 & 9.32 presented comparison of these techniques with RAW-HF for

SDSS dataset. Table 9.5 shows the RAW-HF performance parameters comparison

with state-of-the-art techniques. The table shows the time and resources required

by techniques to execute the given workload on the SDSS dataset of 1M records.

NoDB accessed the actual raw dataset file of size 4.7GB. PgSQL loaded the entire

dataset into DBMS, reducing disk space by 43.5%. Partial Loading technique [125]
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loaded only the data required by workload queries. The improvement achieved

by RAW-HF in each performance parameter is written below the actual data in

parentheses in blue color. While a decrease in performance is shown in red. It

can be seen that RAW-HF improved WET by 26.14 to 96.32% compared to oth-

ers. The resource utilization RAW-HF reduced CPU and Disk space utilization for

loaded data by 26.14% and 24.92%. But, RAM utilization is increased by 32.87%

compared to the Partial Loading technique.
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CHAPTER 10

Conclusions and Future work

This thesis develops a Resource Availability and Workload aware Hybrid Frame-

work (RAW-HF) to process raw datasets efficiently. RAW-HF optimized required

resources using Query Complexity Aware (QCA) and Workload and Storage aware

Cost-based (WSAC) algorithms. This work also addresses the issue of under-

utilized resources during query processing. It maximizes utilization of existing

resources using the MUAR (Maximizing Utilization of Available Resources) algo-

rithm, which considers the availability of hardware resources in real time with the

help of the Resource Monitoring (RM) module. RM module communicates with

external resource monitoring tools to send hardware utilization data to MUAR.

RAW-HF is demonstrated using a scientific experiment datasets like SDSS and

LOD. RAW-HF being resource efficient allows processing queries efficiently on

large datasets.

A comparison of the RAW-HF technique and performance with state-of-the-

art techniques is presented. RAW-HF allows the execution of join queries on data

stored in DBMS and raw format. At the same time, the Partial loading technique

does not support the execution of join queries on data residing in multiple for-

mats. RAW-HF never loads partitions used by simple queries, thereby reducing

data loading requirements in ORR phase. Unlike PCC, MUER phase of RAW-HF

allocates appropriate resources to ad-hoc queries. Result analysis has concluded

that MUAR algorithm proposed in MUER phase reduces total workload execu-

tion time WET by up to 85% compared to the original WET. MUAR improved

WET by 20-55% compared to static CPU & RAM resource maximization tech-

niques, PCC, and Elastic resource allocation techniques. MUAR allocates appro-

176



priate resources to new queries considering available resources by avoiding time-

consuming offline analysis. It can also estimate the near-best resource allocation

value of work memory with 15-20% error for frequent queries to achieve the best

QET using fewer parameters compared to PCC and AutoToken. The RAW-HF

including ORR & MUER reduced the total workload execution time by 26% and

96% compared to the state-of-the-art Partial Loading and NoDB techniques. The

overall CPU, RAM, and IO resource utilization has been improved by 61-91% over

DBMS. Partial loading technique requires 33% lesser RAM than RAW-HF, but it

needs 24% more IO to achieve its best performance. Results analysis has shown

that ORR techniques works better for broad table datasets like SDSS, while MUAR

is capable of improving WET for workload with complex multi-join queries like

LOD. RAW-HF reduced WET by 84.8% for SDSS and 90.3% for LOD datasets com-

pared to traditional DBMS system PostgreSQL.

RAW-HF can not process data streams in real time as the hybrid setup lacks

real time stream processing engine. However, it can store data in CSV files to exe-

cute queries using the in-situ extension (NoDB). In future, RAW-HF can be imple-

mented and compared using different distributed or cloud setups. Additionally,

Machine Learning techniques can be used to accurately allocate query-specific re-

sources considering past resource consumption patterns. RAW-HF can help in

building resource efficient cloud based systems.
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CHAPTER A

Appendix A

List of SDSS Queries

Q1 SELECT p.objid, p.run, p.rerun, p.camcol, p.field, p.obj, p.type, p.ra,

p.dec, p.u,p.g,p.r,p.i,p.z, p.Err_u, p.Err_g, p.Err_r,p.Err_i,p.Err_z FROM

(select objID from PhotoPrimary where objID<1237658364002994835

and objID>1237658198131757067) n, PhotoPrimary p WHERE

n.objID=p.objID limit 10;

Q2 select p.objid,p.ra,p.dec,p.u,p.g,p.r,p.i,p.z FROM PhotoPrimary AS p

WHERE type=6 AND ((cast(flags_r as bigint) & 268435456) != 0) AND

((cast(flags_r as bigint) & 141837000769700) = 0) AND (((cast(flags_r

as bigint) & 70368744177664) = 0) or (psfmagerr_g <= 0.03)) AND

(((cast(flags_r as bigint) & 17592186044416) = 0) or (cast(flags_r as big-

int) & 4096) = 0) AND p.ra BETWEEN (352.427925-0.183351) AND

(352.427925+0.183351) AND p.dec BETWEEN (0.141831-0.183350) AND

(0.141831+6.013350) ORDER BY p.objid;

Q3 SELECT p.objid, p.run, p.rerun, p.camcol, p.field, p.obj, p.type, p.ra,

p.dec, p.u,p.g,p.r,p.i,p.z, p.Err_u, p.Err_g, p.Err_r,p.Err_i,p.Err_z FROM

(select objID from PhotoPrimary where objID<1237665364002994835

and objID>1237610198131757067) n, PhotoPrimary p WHERE

n.objID=p.objID limit 500000;

Q4 SELECT objID, ra ,dec FROM PhotoPrimary WHERE ra >185 and ra

<185.1 AND dec >56.2 and dec <56.3 limit 100;
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Q5 SELECT P.ObjID FROM PhotoPrimary AS P JOIN PhotoPrimary AS

N ON P.ObjID = N.ObjID JOIN PhotoPrimary AS L ON L.ObjID

= N.ObjID+1 WHERE P.ObjID <L. ObjID and abs((P.u-P.g)-(L.u-

L.g))<0.05 and abs((P.g-P.r)-(L.g-L.r))<0.05 and abs((P.r-P.i)-(L.r-L.i))<0.05

and abs((P.i-P.z)-(L.i-L.z))<0.05 limit 10;

Q6 SELECT count(*) as total, sum( case when (Type=3) then 1 else 0 end) as

Galaxies, sum( case when (Type=6) then 1 else 0 end) as Stars, sum( case

when (Type not in (3,6)) then 1 else 0 end) as Other FROM PhotoPrimary

WHERE (( u - g >2.0) or (u >22.3) ) and ( i between 0 and 19 ) and ( g - r

>1.0 ) and ( (r - i <0.08 + 0.42 * (g - r - 0.96)) or (g - r >2.26 ) ) and ( i - z

<0.25 );

Q7 SELECT * FROM PhotoPrimary WHERE(dered_r-dered_i) <2 AND

cmodelmag_i-extinction_i BETWEEN 17.5 AND 19.9 AND (dered_r-

dered_i) - (dered_g-dered_r)/8. >0.55 AND fiber2mag_i <21.7 AND de-

vrad_i <20.0 AND dered_i <19.86 + 1.60*((dered_r-dered_i) - (dered_g-

dered_r)/8. - 0.80) limit 10;

Q8 SELECT ’<a target=INFO href=http://skyserver.sdss.org/DR16//en/

tools/explore/summary.aspx?id=’ || cast(p.objId as varchar(20)) ||’>’

|| cast(p.objId as varchar(20)) || ’</a>’ as objID, p.run, p.rerun,

p.camcol, p.field, p.obj, p.type, p.ra, p.dec, p.u,p.g,p.r,p.i,p.z, p.Err_u,

p.Err_g, p.Err_r,p.Err_i,p.Err_z FROM (select objID from PhotoPrimary

where objID<1237658364002994835 and objID>1237658198131757067) n,

PhotoPrimary p WHERE n.objID=p.objID limit 10;

Q9 SELECT ’<a target=INFO href=http://skyserver.sdss.org/DR16//en/

tools/explore/summary.aspx?id=’ || cast(p.objId as varchar(20)) ||’>’

|| cast(p.objId as varchar(20)) || ’</a>’ as objID, p.run, p.rerun,

p.camcol, p.field, p.obj, p.type, p.ra, p.dec, p.u,p.g,p.r,p.i,p.z, p.Err_u,

p.Err_g, p.Err_r,p.Err_i,p.Err_z FROM (select objID from PhotoPrimary

where objID<1237668364002994835 and objID>1237648198131757067) n,

PhotoPrimary p WHERE n.objID=p.objID AND p.u between 0 AND 17

AND p.g between 0 AND 15 limit 10;
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Q10 select specObjID, objID, ra, dec, mode, type, clean, cModelMag_u,

cModelMag_g, cModelMag_r, cModelMag_i, cModelMag_z, cModel-

MagErr_u, cModelMagErr_g, cModelMagErr_r, cModelMagErr_i, cMod-

elMagErr_z from PhotoPrimary where dec>22.6 and dec<=22.69;

Q11 select s.ObjID, s.ra,s.dec,s.deVRad_r,s.deVAB_r, s.raErr,s.decErr,

s.type,s.modelMag_u,s.modelMagErr_u,s.modelMag_g,s.modelMagErr_g,

s.modelMag_r,s.modelMagErr_r,s.modelMag_i,s.modelMagErr_i,

s.modelMag_z,s.modelMagErr_z from PhotoPrimary s, (select ob-

jID from PhotoPrimary where objID<1237658364002994835 and ob-

jID>1237658198131757067) n where s.ObjID = n.ObjID AND s.mode =

1;

Q12 SELECT ’<a target=INFO href=http://skyserver.sdss.org/DR16//en/

tools/explore/summary.aspx?id=’ || cast(p.objId as varchar(20)) ||’>’

|| cast(p.objId as varchar(20)) || ’</a>’ as objID, p.run, p.rerun,

p.camcol, p.field, p.obj, p.type, p.ra, p.dec, p.u,p.g,p.r,p.i,p.z, p.Err_u,

p.Err_g, p.Err_r,p.Err_i,p.Err_z FROM (select objID from PhotoPrimary

where objID<1237658364002994835 and objID>1237610198131757067) n,

PhotoPrimary p WHERE n.objID=p.objID limit 500000;
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CHAPTER B

Appendix B

List of LOD Queries

Q1 select L1.sub,L1.obj,L2.sub,L2.obj,L3.sub,L3.obj from

LODTriples L1, LODTriples L2, LODTriples L3 where

L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRel4UT01>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.obj like

’"6.0"^^<http://www.w3.org/2001/ XMLSchema#float>’ and

L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#fahrenheit>’ and

L2.sub=L3.sub;
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Q2 select L1.sub,L2.obj,L2.sub,L2.obj from LODTriples L1,

LODTriples L2, LODTriples L3 where L1.pred like

’<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>’ and

L1.obj like ’<http://knoesis.wright.edu/ssw/ont/weather.owl

RelativeHumidityObservation>’ and L2.pred

like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.obj like

’"25.0"^^<http://www.w3.org/2001/ XMLSchema#float>’ and

L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#result>’ and L2.sub = L3.obj and L1.sub=L3.sub;

Q3 select sub, obj from LODTriples where pred

like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelAAMA1>’;

Q4 select L1.sub,L1.obj, L2.sub,L2.obj, L3.sub,L3.obj from LODTriples

L1, LODTriples L2, LODTriples L3 where L1.pred like

’<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>’ and L1.sub

like ’<http://knoesis.wright.edu/ssw/Observation_WindSpeed%’

and L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.obj like

’"9.0"^^<http://www.w3.org/2001/XMLSchema#float>’ and

L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#result>’ and L1.sub=L3.sub and L2.sub=L3.obj;
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Q5 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelAP268>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_Precipitation%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#centimeters>’ and

L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’ and

L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_Precipitation%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_Precipitation>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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Q6 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelA21>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_WindSpeed%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#milesPerHour>’

and L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’

and L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_WindSpeed%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_WindSpeed>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;

Q7 select L1.sub,L1.obj,L2.obj from LODTriples

L1, LODTriples L2 where L1.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#ID>’

and L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#processLocation>’ and L1.sub = L2.sub;
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Q8 select L1.sub,L1.obj,L2.obj,L3.obj from LODTriples

L1, LODTriples L2, LODTriples L3 where L1.pred

like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#processLocation>’ and L2.pred like

’<http://www.w3.org/2003/01/geo/wgs84_pos#alt>’ and L3.pred

like ’<http://www.w3.org/2003/01/geo/wgs84_pos#lat>’ and

L1.obj=L2.sub and L1.obj=L3.sub;

Q9 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelA25>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_Precipitation%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#centimeters>’ and

L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’ and

L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_Precipitation%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_Precipitation>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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Q10 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelA25>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_AirTemperature%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#fahrenheit>’ and

L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’ And

L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_AirTemperature%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_AirTemperature>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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Q11 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelA25>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_WindSpeed%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#milesPerHour>’

and L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’

and L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_WindSpeed%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_WindSpeed>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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Q12 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelA25>’ and

L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_WindGust%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#milesPerHour>’

and L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’

and L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_WindGust%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_WindGust>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;

Q13 Select L1.sub,L1.obj,L2.obj,L3.obj from LODTriples L1,

LODTriples L2, LODTriples L3, LODTriples L4 where

L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#processLocation>’ and L2.pred like

’<http://www.w3.org/2003/01/geo/wgs84_pos#alt>’ and L3.pred like

’<http://www.w3.org/2003/01/geo/wgs84_pos#lat>’ and L4.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#ID>’

and L4.obj like ’"A07"’ and L1.obj=L2.sub and L1.obj=L3.sub and

L1.sub=L4.sub;
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Q14 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelAKFLO>’

and L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_Dew%’ and

L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#fahrenheit>’ and

L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’ and

L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_Dew%’ and

L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_DewPoint>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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Q15 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelAKFLO>’

and L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_WindDirection%’

and L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#degrees>’ and

L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’ and

L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_WindDirection%’

and L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_WindDirection>’

and L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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Q16 select L1.sub,L3.sub,L3.obj,L4.obj from LODTriples L1, LODTriples

L2, LODTriples L3, LODTriples L4, LODTriples L5, LODTriples L6

where L1.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#hasLocation>’ and L1.sub like

’<http://knoesis.wright.edu/ssw/LocatedNearRelAKFLO>’

and L2.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#floatValue>’ and L2.sub like

’<http://knoesis.wright.edu/ssw/MeasureData_Pressure%’ and

L3.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#uom>’ and L3.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#inches>’ and

L4.pred like ’<http://www.w3.org/2006/time#inXSDDateTime>’ and

L4.obj like ’"2004-08-09T10:40:00-06:00^^http://www.w3.org/2001/

XMLSchema#dateTime"’ and L5.pred like

’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#samplingTime>’ and L5.sub like

’<http://knoesis.wright.edu/ssw/Observation_Pressure%’ and

L6.pred like ’<http://knoesis.wright.edu/ssw/ont/sensor-

observation.owl#observedProperty>’ and L6.obj like

’<http://knoesis.wright.edu/ssw/ont/weather.owl#_Pressure>’ and

L2.sub=L3.sub and L4.sub=L5.obj and L5.sub=L6.sub;
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CHAPTER C

Appendix C

List of Publications

1. Book Chapters

a. M. Patel, N. Yadav, and M. Bhise, “Workload aware Cost-based Partial

loading of Raw data for Limited Storage Resources,” Futuristic Trends

in Networks and Computing Technologies, Lecture Notes in Electrical

Engineering 936, (Chapter 74), Springer Nature, 2022, doi: 10.1007/978-

981-19-5037-7_74.

2. Journal Papers

a. M. Patel and M. Bhise, “RAW-HF: Resource Availability & Workload

aware Hybrid Framework for Raw Data Query Processing”, 2023. [In

preparation]

b. M. Patel and M. Bhise, “Resource Monitoring Framework for Big Raw

Data Processing,” International Journal of Big Data Intelligence, Inder-

science, 2023, doi: 10.1504/IJBDI.2023.10053408.

3. Peer-Reviewed Conference Proceedings

a. M. Patel and M. Bhise, “MUAR: Maximizing Utilization of Available
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International Symposium on Cluster, Cloud and Internet Computing

(CCGrid), May 2023.
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11th International Conference on Communication Systems & Networks
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