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Abstract

Processing of natural images stored as 2-D discrete signals is an inevitable task

in almost all areas of image processing. In order to have the desired processing

results, directional image representation can be considered as an indispensable

step which is similar to what the human visual system (HVS) does. Research in

the HVS has confirmed the importance of directional selectivity as a constituent

that forms a vital role in visual information processing and its perception. Since,

the directional information is often present at various spatial resolutions of an

image, one has to capture multiresolution property for its efficient representation.

The problem of designing multiresolution transform based image representations

having directional selectivity has been a topic of wide interest over many years.

In this thesis, using the concepts of wavelets and filter banks, we propose sev-

eral novel multiresolution transform designs that have finer directional selectivity.

We have classified them accordingly, based on, whether the directional decompo-

sition of an input image has real or complex-valued representation.

Regarding the real-valued transform representation, we present designs for

three transforms with higher directionality by using additional filter bank stages

in conjunction with the traditional decimated (subsampled) and undecimated

(nonsubsampled) wavelet transforms. All three designs have better adaptability

to the oriented features in the underlying image, since the filter bank construc-

tion enables us to design the filters with better frequency selectivity. In our next

work, we propose two nonsubsampled transform designs belonging to a class of

multiresolution directional filter banks. The proposed designs have simple struc-

ture but nonuniform frequency partitions which effectively model the directional

frequency distribution of natural images. Also, our designs need reduced compu-
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tational requirements than the nonsubsampled counterparts obtained using their

original subsampled approaches. All the proposed designs are tested for image

denoising application using simple thresholding method.

In the next part of the thesis, we consider design of complex-valued transforms

which offer various advantages over the real-valued transforms. One can have

approximate shift-invariance, higher directionality and phase information along

with controllable redundancy by using complex-valued representation. In our

first work here, we contribute to 1-D filter design aspect of an important complex-

valued transform namely dual-tree complex wavelet transform (DTCWT). 2-D

DTCWT is obtained using two trees of 2-channel perfect reconstruction filter bank

(PRFB) and separable filtering approach similar to discrete wavelet transform

(DWT). It offers six directions with redundancy factor of just 4. However, design

of 1-D filters used in the DTCWT construction is quite involved. In this work,

we propose two new approaches to design the 1-D biorthogonal wavelet filters of

DTCWT having near-orthogonal filter response characteristics to get almost tight-

frame dual-tree complex wavelet transform (DTCWT). The proposed approaches

are based on optimization of free variables obtained through factorization of gen-

eralized halfband polynomial. Use of unconstrained optimization makes these

approaches simple and computationally less taxing. Associated wavelets of the

filters obtained using the proposed approaches have better analytic properties

leading to improved shift invariance. Also, the wavelets have near-exact symme-

try resulting in improved directional feature selectivity for the multidimensional

DTCWT extensions which is verified using the image denoising application. Our

next work involves design of complex wavelet transform (CWT) which has better

directionality and redundancy factor than the 2-D DTCWT. This is achieved by

filtering the real-valued subbands of the finer directional wavelet transform using

novel complex-valued filter bank stages. Proposed CWT has twelve directional

subbands with redundancy factor of just 2. Its undecimated counterpart is also

discussed. The generalized separable implementations of the proposed transforms

makes them practically tractable. Image denoising using proposed CWTs show

promising results for simple subband thresholding approach. In the last work,

viii



we propose a simple yet effective multiresolution DFB design that represents the

dominant directions present in the input image adaptively. The design involves

two stages, where a novel partition filter bank stage is used to obtain the adap-

tive directional selectivity out of the eight one-sided wedge-shaped subbands of

2-D frequency spectrum. We also design Laplacian pyramid (LP) multiresolution

stage with filters having high vanishing moments and better frequency selectivity.

Performance of the proposed design is tested for the pansharpening application.

The experiments validate the use of proposed transform-based approach for pan-

sharpening.
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CHAPTER 1

Introduction and Literature Survey

Over many decades, processing of natural images stored as 2-D discrete signals

has been used in various applications such as denoising, compression, feature

extraction, fusion etc. Transform domain image representation has been a pop-

ular way to handle the images in such tasks. Since natural images often contain

directional information at various spatial resolutions, efficient representation of

the same is necessary while processing these images. The key features in these

images correspond to oriented geometrical structures and their representation tool

should capture their orientations. Research on human visual system also shows

the importance of directional selectivity as a constituent which forms a vital role in

visual information processing and its perception [116],[44].

Research in the field of wavelets and filter banks has provided many useful

multiscale and multidirectional transform representations for feature direction se-

lectivity in images. Initially, separable multidimensional extensions of the 1-D

wavelet transforms were applied successfully [46],[59],[75]. However they suffer

from shift sensitivity and poor directionality. Shift sensitivity also called as shift

variance is highly undesirable and is caused by aliasing due to the downsam-

pling operations. Shift sensitivity may cause large variations in energy distribu-

tion across the inter-scale discrete wavelet transform (DWT) coefficients for small

shifts in the input image [53] leading to erratic output behavior. Also, DWT is

good only at isolating the point singularities and image edges in horizontal and

vertical directions only. It also suffers from poor diagonal orientation selectivity

due to subband mixing problem i.e., image features oriented at 45◦ and 135◦ are

mixed in diagonal subbands of each scale. However, edges are often present along

1



the smooth contours and have arbitrary orientations. Hence DWT fails to better

capture the smoothness along the contour.

Study of human visual perception in the context of subband image coding sug-

gested the use of filterbanks with diamond-shaped (nonrectangular) frequency

partitions rather than rectangular partitions obtained for DWT decompositions.

Pioneering and earliest contributions in this context were made by Rashid Ansari

and his team in [11][10][45][50].

Efficient directional selectivity offered by the use of nonseparable filterbanks

has encouraged researchers to propose various 2-D nonseparable multiresolution

directional filter bank (MDFB) designs. These MDFB designs provide multiple di-

rectional and anisotropic basis for representing image discontinuities at various res-

olutions. Anisotropic bases which are the bases of different shapes and sizes offer

better adaptability to the image features. Contourlet transform proposed by Do

and Vetterli [29] is one such MDFB design that captures the 2-D geometrical fea-

tures of the images effectively and has been used in various image processing

applications. Countourlet transform is constructed by using Laplacian pyramid

cascaded with the directional filter bank (DFB) to have multiscale and multidirec-

tional representation of input images. DFBs were first introduced by Bamberger

and Smith in [14] and they have been used to develop several multiscale direc-

tional transforms [28, 34, 64]. However, Bamberger’s DFBs have limited direc-

tional flexibility of 2l in their l-level tree-structure realization. A class of nonre-

dundant MDFBs proposed in [71, 72] offers flexible number of directional sub-

bands, however in this case the design of required filters is quite involved [71].

Maximal decimation in these limits their directionality and also leads to shift-

variant representation unsuitable for many specific image processing applications

such as denoising and enhancement [23].

Attempts have been made to achieve near shift-invariance and improved di-

rectionality using the idea of near-analytic transform designs such as complex wavelet

transforms (CWTs) [37, 38, 92] with small redundancy. Salient features of these

complex transform designs include shiftability i.e., near shift-invariance, increased

directionality and the availability of phase information. We refer [92] as an excel-
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lent comprehensive tutorial on CWTs. The most popular CWT is 2-D dual-tree

complex wavelet transform (DTCWT) [92] having redundancy factor of 4. It is ob-

tained using two branches of DWT referred to as primal and dual tree and outputs

of these are considered as the real and imaginary parts of the complex coefficient

representation of an input image. Although, DTCWT output is complex-valued,

1-D real-valued filter coefficients are used in the construction and no complex

arithmetic is required which is very much advantageous. However, design of

DTCWT filters is quite challenging since the filters of the two trees need to sat-

isfy various constraints [109]. This is due to the approximate Hilbert pair condition

that must be satisfied by the wavelet functions generated by the two trees in or-

der to have the near-analytic transform representation. A generalization of 2-D

DTCWT to M-band is proposed in [20]. The 2-D CWTs can also be obtained using

post/pre filtering stages to the DWT [92]. In [37], Fernandes et. al proposed a new

framework for 2-D CWT with redundancy factor of 2.67 by projecting input image

to Hardy space approximation using 1-D quasi-analytic projection filters and two

DWT stages. The 2-D CWTs, both dual-tree and projection-based can only have

one lowpass and six complex directional subbands oriented at 15◦, 45◦, 75◦, −75◦

(or 105◦), −45◦ (or 135◦) and −15◦ (or 165◦) only. Few complex-valued direc-

tional filter bank designs have also been reported. In [73], Nguyen and Oraintara

proposed a shiftable complex directional transform by combining Laplacian pyra-

mid and complex directional filter bank. Here in order to obtain the analyticity,

dual-tree structure of real DFBs is constructed where the fan filters used in the

trees are constrained to satisfy the Hilbert pair criteria and certain conditions on

phase responses. In [74], the same authors addressed the implementation issues

such as border artifacts and the constraints on the designed FIR filters. How-

ever these filters correspond to truncated versions of infinite impulse response

(IIR) filters and the transform is approximately shift-invariant. Applications us-

ing shiftable complex directional transform are given in [123] and [122] for texture

image retrieval and texture segmentation, respectively. In [80], authors proposed

complex-valued steerable filterbank for texture synthesis application by utilizing

the features based on local phase and energy of transform coefficients.
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Although subsampled transform designs (real or complex-valued) need lower

computational requirements, downsampling stages used in these designs lead to

suboptimal performance in many image processing applications and hence lim-

its their applicability. Downsampling in these transforms causes aliasing effect

leading to large reconstruction error, reduced directional flexibility, difficulty in

filter design etc. Also it is not possible to build a subsampled transform hav-

ing arbitrary frequency partitions [61], which is a key requirement for designing a

direction-adaptive transform.

In recent years, nonsubsampled multiresolution transforms have attained pref-

erence in many applications such as image denoising [23][47], enhancement [60],

image fusion [25],[17], etc. due to their superior performance. The multiresolu-

tion directional filter banks (MDFBs) along with the notion of nonsubsampledness

allow flexibility in directional feature selection [61] and one can achieve increased

directionality and better frequency selectivity [23]. Efficient and fast algorithms

such as “algorithme à trous" exist for implementing nonsubsampled designs. Dec-

imation free operations lead to a completely shift invariant representation useful

for many image processing operations. In [23] authors proposed nonsubsampled

contourlet transform using the DFBs and Laplacian pyramid without decimation.

They discuss the frame theoretic designs of the nonsubsampled pyramid and fan-

shaped filters used in the implementation of the transform. Other notable non-

subsampled transform designs can be found in [32, 61, 65].

The transforms discussed until now are built without considering the input

image characteristics and hence are nonadaptive in nature. Over the past one

decade, different adaptive directional lifting-based wavelet transforms have been

proposed for image coding with the initial contribution from Taubman [101]. Lift-

ing scheme was proposed by Wim Sweldens in [99] for implementing the stan-

dard DWT and since then has been used extensively due to its in place compu-

tations, perfect reconstruction and lower computational cost. In [27], Ding et. al.

proposed adaptive directional lifting (ADL) based wavelet transform for image

coding. Here, the subband decomposition is similar to the standard-lifting based

wavelet implementation but the prediction step is performed in the direction of
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strongest pixel correlation in contrast to the horizontal and vertical directions in

the latter. Few other related lifting-based adaptive wavelet transforms in this con-

text can be found in [19, 42, 100, 129]. In [96], a nonsubsampled directional lifting

transform is proposed for image denoising where the local orientation informa-

tion is obtained using Gabor filters. For various other adaptive image represen-

tations one can refer to [79] as an excellent review paper. Also, comprehensive

coverage of numerous other transforms can be found in [28, 49].

1.1 Problem Statement

As discussed in the previous section, for transform-based image processing ap-

plications, shift-invariance is a desirable property along with the directional se-

lectivity. Hence, by compromising the maximally decimation criteria which is de-

sirable for the coding applications, flexibility can be achieved to incorporate both

direction selectivity as well as shift-invariance. This provides strong motivation

to build such transforms for applications such as image denoising, fusion etc.

The aim of this thesis is to design new discrete and efficient redundant repre-

sentations for images with following desirable properties: multiresolution, multi-

ple directional selectivity, near/complete shift-invariance, perfect reconstruction,

sparsity, anisotropic directional bases. We investigate the problem of designing

novel transforms for image representation using the following two approaches.

• By extending the directionality of traditional separable transforms namely

discrete wavelet transform (DWT) and undecimated wavelet transform (UWT)

using nonseparable filtering approaches: Plethora of literature is available

for wavelet transform (WT) based image applications. Since WT is inher-

ently fast (due to separable implementation), new designs constructed using

them will also inherit the same with proper care. These new designs can be

easily made adaptable to the various algorithms proposed using the WT.

• By obtaining bases that better approximate the directional image features

using nonseparable filtering based multiresolution and filter bank stages:

Although faster, WT and WT-based transforms offer suboptimal directional
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representation since study of HVS emphasize that directional features in the

images usually correspond to wedge-shaped partitions in the 2-D frequency

spectrum [14]. The use of nonseparable filtering based multiresolution and

filter bank stages allow such flexibility to have directional bases that are bet-

ter adapted to underlying geometric image features and hence are optimal in

this sense. They also offer better performance than separable transforms in

many applications. For some specific applications, nonseparable operations

are required such as High Definition Television HDTV [119].

We verify the efficacy of the proposed designs using two applications namely

image denoising and fusion in which perfect reconstruction property of the

image representation tool is necessary.

Proposed transform designs in this thesis are divided in two categories as:

• Real-valued Transform Designs

1. New Finer Directional Wavelet Transforms.

2. Novel Designs for Nonsubsampled Multiresolution Directional Filter

Banks.

• Complex-valued Transform Designs

1. Design of Almost Tight Frame Dual-Tree Complex Wavelet Transform.

2. Design of Extrafine Complex Directional Wavelet Transform.

3. Design of Complex Adaptive Multiresolution Directional Filter Bank.

An overview figure indicating the contributions made to the 2-D filterbank-based

multiresolution transforms is shown in Fig. 1.1.

1.2 Transform Terminology

In this section, we define the common terms used in this thesis from the view-

point of transforms in general. Figure 1.2 shows the general block diagram of the

transform used in signal processing applications. The transform design consists
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of two main stages namely analysis side and synthesis side used for signal decom-

position and reconstruction, respectively. Using analysis side, input signal X is

decomposed into subbands which are then modified accordingly as per the appli-

cation at hand. Finally, the synthesis side combines these modified subbands to

give an approximation to the input or reconstructed signal X̂. Using Figure 1.2,

we define the transform terminology used in this thesis as follows:

Perfect reconstruction: the transform has perfect reconstruction if and only if X̂

represents a delayed version of X i.e., X̂ = X within an allowable delay.

Critically sampled/maximally decimated/nonredundant representation: in this

case, number of samples of the input signal (NX) and total number of samples of
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the signal subbands (NSS) are equal i.e., NX = NSS.

Redundant/undecimated/nonsubsampled representation: here, NSS >> NX.

Multiresolution: the transform has multiresolution property if it represents the

input signal at various scales or resolutions.

Directional selectivity: let X be an input image, then the transform has direc-

tional selectivity if it represents the multiscale directional image features into sep-

arate subbands.

Sparsity: the transform has sparse representation if it represents the input signal

in terms of few significant transform coefficients.

Shift sensitivity/shift-variance: the transform is shift sensitive if shifts in the in-

put signal cause dubious changes in the transform coefficients. Another definition

in terms of energy can be given as, the transform is shift variant if subband energy

is altered for shifts in the input signal.

Shift-invariance: the transform is shift-invariant if its coefficients are able to dis-

tinguish between input signal shifts or alternatively subband energy is unaffected

for shifts in the input signal.

1.3 Thesis Outline

The thesis is organized in two parts, the first part contains two chapters in which

we discuss the proposed real-valued transform designs. In the second part, we

discuss the proposed complex-valued transforms.

In Chapter 2, we consider the problem of extending the directionality of DWT

and UWT along with improved shift-invariance properties. We propose three

real-valued redundant transform designs where we use pre/post nonseparable

filtering stages to obtain the finer directionality. We verify the transform designs

by conducting experiments on image denoising.

In order to have better approximation of the directional image features, we

consider the problem of designing anisotropic directional bases using completely

nonseparable filtering based approach in Chapter 3. We present two real-valued

novel multirate tree-structure designs for a class of nonsubsampled, perfect re-

8



construction (PR) multiresolution directional filter banks (MDFBs). The proposed

designs are simple and efficiently obtained from a combination of 2-D nonsepara-

ble filters and 2 by 2 upsampling matrices. We also discuss the design of required

2-D FIR filters. The proposed designs are finally tested for image denoising using

hard-thresholding method.

In Chapter 4, we consider the problem of designing a prominent complex-

valued alternative to replace the DWT and UWT namely dual-tree complex wavelet

transform (DTCWT) which is based on approximate Hilbert transform relation-

ship between wavelet functions of the two parallel real-valued DWT trees. We

particularly propose a tight frame DTCWT generating nearly symmetric wavelet

functions. In order to do this, we propose a set of biorthogonal wavelet filters

used in two trees of DTCWT having near orthogonal frequency response char-

acteristics. We propose two new approaches to obtain the same. We start by

reviewing the basic preliminaries to understand the DTCWT construction and

constraints required to be satisfied by the filters in both the trees. We then explain

the methodologies of both the approaches. Several design examples are provided

in the end with qualitative and quantitative evaluations. Finally, image noise re-

moval performance of one the proposed filter set is evaluated by utilizing them to

construct 2-D DTCWT and using subband thresholding approach.

In order to have better directionality than 2-D DTCWT with less redundancy

factor, we propose a new 2-D complex wavelet transform design by applying

post-filtering stages on the directional subbands of the real-valued transform in

Chapter 5. The design scheme combines mapping of finer directional wavelet

transform (FiDWT) subbands to quasi-analytic domain and partition filter bank

stages to obtain the twelve directions. Both decimated and undecimated versions

of the transform are discussed with necessary details. We also verify the shift-

invariance of the proposed designs for image denoising application.

We consider the problem of adaptive directional selectivity in Chapter 6. A

design for an adaptive transform which selects noteworthy directional features

present in the input image is presented. In other words our design is adaptive

to number of dominant directions of the input image. Unlike the transforms dis-
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cussed in Chapter 4 and 5 which use separable wavelet transforms at their core,

we use nonsubampled and nonseparable filtering stages for better flexibility in

direction selectivity. We first propose our eight directional complex-valued direc-

tional filter bank (CDFB). We then discuss the procedure to estimate the dominant

directions and number of required partitions needed to partition the CDFB sub-

bands to have the adaptive directional selectivity. We consider the pansharpening

or multispectral image fusion application to testify the efficacy of the proposed

design. With regard to the selected application the multiresolution stage is mod-

ified and the procedure for pansharpening is given. In the end, we discuss the

experimental results.

Finally, we conclude in Chapter 7 and give directions for future research.
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CHAPTER 2

New Designs of Finer Directional Wavelet Trans-

form

2.1 Introduction

Discrete wavelet transform (DWT) has proven to be successful in applications

such as image denoising under orthogonality of wavelet bases and additive white

Gaussian noise (AWGN) assumption [67]. This success can be attributed to its

multiscale sparse representation of signal along with the decorrelation property

i.e., separating noise and the signal. However, performance of the DWT-based

image denoising methods gets limited by its shift sensitivity and poor directional

selectivity. Shift sensitivity is caused by inherent aliasing due to the downsam-

pling operations in the analysis branches. Shift sensitivity causes variations in

energy distribution across the inter-scale DWT coefficients [53]. Traditional sep-

arable way of obtaining 2-D DWT makes it suitable to represent image features

in horizontal and vertical directions only. It also suffers from poor diagonal ori-

entation selectivity due to subband mixing problem i.e., image features oriented at

45◦ and 135◦ are mixed in diagonal (HH) subband at each scale. Although DWT

is a powerful tool for representing point-wise singularities in images it fails to

differentiate geometric features in images oriented at arbitrary direction.

The problem of shift sensitivity/translation variance is completely removed

by undecimated wavelet transform (UWT) which can be implemented efficiently

using “algorithme à trous" [67]. Although redundancy of the transform is increased

significantly, it minimizes pseudo-Gibbs phenomena at edges providing consider-

11



able improvement in PSNR as well as visual quality in case of image denoising

[97]. To improve the directionality, several redundant and non-redundant multi-

scale geometric transforms (MGTs) have been proposed in the literature. In [14],

authors represent directional image features using directional filter banks (DFBs)

by dividing the 2-D frequency spectra with wedge-shaped partitions. Although

DFBs do not provide multiscale representation, they have been key in widely rec-

ognized contourlet family [28] and hybrid wavelets and directional filter banks (HWD)

transform in [34]. A comprehensive coverage of previously proposed MGTs is

given in [28, 49].

Apart from the numerous families of MGTs using completely different basis

from wavelets, traditional DWT and UWT are still attractive for image processing.

Along with the fast and efficient implementations of these transforms, numerous

algorithms are proposed on their basis, so the new designs using them can benefit

from these algorithms [34].

The proposed work in this chapter has been motivated by the works in [23,

63, 69] to design new redundant finer directional wavelet transforms suitable for

image denoising application. In [63], Lu and Do proposed the critically sampled

finer directional wavelet transform (FiDWT) using an additional stage of analy-

sis checkerboard-shaped filter bank (CSFB) on the 3 highpass subbands of DWT

(LH, HL and HH) to get one lowpass and 6 highpass directional subbands (75◦,

105◦, 15◦, 165◦, 45◦ and 135◦). In [69], aliasing phenomena inherent in FiDWT is

explained and undecimated FiDWT (UFiDWT) is proposed. In [23], shift invari-

ant nonsubsampled contourlet transform (NSCT) is proposed using undecimated,

2-channel, 2-D, nonseparable filter bank structure at its core. Such a structure is

useful for constructing shift-invariant transforms providing flexibility to design

frequency selective nonseparable filters with ease.

Since, NSCT is constructed using completely nonseparable multiresolution

(MR) and DFB stages, it is computationally intensive. FiDWT and UFiDWT are

constructed by combining the 1-D and 2-D filter bank stages. Although nonre-

dundant, FiDWT suffers from significant aliasing due to the downsampling stages

and is highly shift-variant making it unsuitable for image denoising application.

12



UFiDWT is simply the undecimated version of FiDWT and is obtained by using

2-channel nonsubsampled CSFB stages on the directional subbands of the undec-

imated wavelet transform (UWT). However, higher order checkerboard-shaped

filters have to be used in this construction to reduce the inherent aliasing occur-

ring due to their non-ideal passband characteristics. UFiDWT thus has higher

computational load due to three CSFB stages with higher order filters.

In this chapter, we address these disadvantages. We propose three new trans-

form designs having better directionality than DWT and UWT by using them with

pre/post nonseparable filtering stages. The first design improves the direction-

ality of DWT and is referred as redundant finer directional wavelet transform

(RFiDWT). This design having a redundancy factor (RF) of 2 is less shift-variant

than DWT and FiDWT. The transform has two wavelet coefficient images, each

having one lowpass and three highpass directional subabands similar to DWT

representation, hence adaptive to DWT-based algorithms. The second and third

designs extend the directionality of UWT and are completely shift-invariant. The

second design, redundant undecimated finer directional wavelet transform (RU-

FiDWT) has redundancy factor of 2(3J + 1), where J is number of decomposition

levels whereas the third design referred as extra finer directional wavelet trans-

form (EFiDWT) has RF of 12J + 1. RFiDWT and RUFiDWT have two lowpass and

six directional subband representation at each scale while the EFiDWT has one

lowpass and twelve directional subband representation. Traditional transforms

DWT and UWT have one lowpass and three directional subband representation

at each scale.

The chapter is organized as follows, design procedures for RFiDWT, RUFiDWT

and EFIDWT are discussed in detail in Section 2.2. Experimental results are pre-

sented in Section 2.3 for the image denoising application, followed by conclusion

in Section 2.4.
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2.2 Proposed Designs of Finer Directional WT

In this section, we first explain in detail a 2-channel perfect reconstruction (PR)

checkerboard-shaped filter bank (CSFB), a constituent FB stage used in the pro-

posed designs. While, design procedures for RFiDWT, RUFiDWT and EFiDWT

are provided in the next subsections.

2.2.1 2-channel PR CSFB

Figure 2.1 shows undecimated (or nonsubsampled) version of 2-channel perfect

reconstruction checkerboard-shaped filter bank which is part of all three proposed

designs.

X XH0cs(z)

H1cs(z)

F0cs(z)

F1cs(z)

Figure 2.1: Checkerboard-shaped filter bank used in the proposed designs.

The analysis CSFB filters Hcs
0 (z) and Hcs

1 (z) split the complete input image

spectra X into two diagonally quadrant passbands, giving two output images

having directional features depending on passband support of the filters. By

using 2-D z-transform, the input/output relations in z-transform domain can be

given as,

X̂(z) =

[
1

∑
i=0

Hcs
i (z)Fcs

i (z)

]
X(z) = T(z)X(z) (2.1)

For perfect reconstruction, T(z) should be 1 i.e., it should satisfy the Bezout

identity [23]. Analysis and synthesis checkerboard-shaped filter responses satisfy-

ing Bezout identity are obtained from 2-D nonseparable finite impulse response

(FIR) filters designed using transformation of variables (TROV) technique given
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in [111]. It is a simple and flexible mapping technique equivalent to the gener-

alized McClellan transformation that designs filter responses of different shapes

and sampling lattices. The responses used here are designed with 1-D Cohen-

Daubechies-Feauveau CDF 9-7 filter. A 2-D transformation kernel is designed by

truncating the 2-D ideal impulse response by multiplying it with the 2-D win-

dow obtained from 1-D Kaiser window having parameters Lw = 7 and β = 4.5.

Figure 2.2 shows the analysis lowpass and highpass checkerboard-shaped filters

designed with these parameters. The 2-D ideal impulse response for obtaining

the CSFB filters is given by [111],

rcs(n) = sinc
[n1π

2

]
sinc

[n2π

2

]
cos
[
(n1 + n2)π

2

]
. (2.2)

(a) (b)

Figure 2.2: Checkerboard-shaped filter responses (a) analysis lowpass Hcs
0 (z) (b)

analysis highpass Hcs
1 (z).

The 2-D impulse response coefficients of Hcs
i (z) and Fcs

i (z) where i = 0, 1

should be divided by
√

2 to get perfect reconstruction in filter bank structure

shown in Figure 2.1.

2.2.2 Design of RFiDWT

Figure 2.3 shows, the analysis side of the proposed redundant finer directional

wavelet transform (RFiDWT) with the redundancy factor of 2.

In RFiDWT, the analysis part of the CSFB is followed by critically sampled

DWT hence the overall redundancy of the transform is 2. The transform has 2

lowpass subbands and 6 highpass directional subbands having orientation selec-

tivity of 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦.
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Figure 2.3: Proposed 2X redundant FiDWT design.

In our case, we consider 2-D DWT implemented using 2-channel biorthogo-

nal PRFB with 1-D filters H1D
i (z1) and H1D

i (z2) (i = 0, 1) used for row-wise and

column-wise filtering of the input, respectively. Hence, for the single level DWT

decomposition, 2-D z-transforms of the resulting four subbands can be written as,

LL(z) = H1D
0 (z1)H1D

0 (z2)

LH(z) = H1D
0 (z1)H1D

1 (z2)

HL(z) = H1D
1 (z1)H1D

0 (z2)

HH(z) = H1D
1 (z1)H1D

1 (z2).

(2.3)

Thus, resultant lowpass and directional subbands of the proposed RFiDWT can

be obtained as,

L1(z) = Hcs
0 (z)LL(z), L2(z) = Hcs

1 (z)LL(z),

D1(z) = Hcs
0 (z)LH(z), D2(z) = Hcs

1 (z)LH(z),

D3(z) = Hcs
0 (z)HL(z), D4(z) = Hcs

1 (z)HL(z),

D5(z) = Hcs
0 (z)HH(z), D6(z) = Hcs

1 (z)HH(z).

(2.4)

Figure 2.4(a) shows analysis side frequency responses of the resulting low-

pass and directional subbands of DWT while Figure 2.4(b) shows the same for

proposed RFiDWT. Figure 2.5 displays the single level decomposition of the cam-

eraman image using DWT and proposed RFiDWT.

RFiDWT has standard DWT representation with each wavelet coefficient im-

age having one lowpass subband and 3 directional highpass subbands such as
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(a) (b)

Figure 2.4: Frequency responses of (a) LL, LH, HL and HH subbands of DWT (b)
two lowpass and 6 directional subbands of RFiDWT.

(a) (b) (c)

Figure 2.5: Single level decomposition of cameraman image using (a) DWT (b)
RFiDWT: Xd1 (c) RFiDWT: Xd2.

shown in Figures 2.5(b) and 2.5(c). Such representation is advantageous since

many sophisticated image processing algorithms that are proposed with standard

DWT can be easily adapted for the proposed transform. One such example for im-

age denoising application using the proposed RFiDWT is given in section 2.3.2.

2.2.3 Design of RUFiDWT

Similar to the RFiDWT construction, a complete shift-invariant design can be ob-

tained by replacing DWT in Figure 2.3 by UWT. With this, we get the redundant

undecimated finer directional wavelet transform i.e., RUFiDWT. It has same direc-

tionality as in the case of RFiDWT, while each subband image size is same as that
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of original image. The redundancy of this transform can be given as 2× (3J + 1),

where J is the number of levels of decomposition.

Unlike UFiDWT, the proposed transform uses only one nonseparable 2-channel

checkerboard-shaped filter bank stage. Here, filters can be easily designed to

have better frequency selectivity without much increase in the computational cost.

Also, due to availability of the efficient implementations for the UWT, proposed

RUFiDWT has less computational requirements than UFiDWT.

2.2.4 Design of EFiDWT

Figure 2.7 shows the proposed design of an extra finer directional wavelet trans-

form (EFiDWT) which has one lowpass and 12 directional subband representation

at each scale. The 2-D frequency partition of the proposed EFiDWT is as shown

in Figure 2.8(a). Before describing the transform design, we discuss the procedure

to obtain the nonseparable filters used in its construction.

Design of required filter responses:

Proposed design only requires two types of filter responses other than checkerboard-

shaped filters. They correspond to 2-D, nonseparable FIR fan filters and rectan-

gular filters which are obtained using TROV technique [111]. The ideal impulse

response for designing fan filters can be obtained by from the ideal impulse re-

sponse of diamond-shaped filter (rds(n)) as rfan(n) = (−1)n2 × rds(n), where

rds(n) = sinc
[
(n1+n2)π

2

]
sinc

[
(n1−n2)π

2

]
. Ideal impulse responses to design the

rectangular filters are:

rR1(n) = sinc
[n1π

2

]
sinc [n2π]

rR2(n) = sinc [n1π] sinc
[n2π

2

]
.

(2.5)

The required CSFB responses can be obtained using the procedure given in section

2.2.1 or by quincunx upsampling of the fan filters [23]. Figure 3.2 shows designed

analysis lowpass fan (Hfan
0 (z)), rectangular filter 1 (HR1

0 (z)), rectangular filter 2

(HR2
0 (z)) and checkerboard-shaped (Hcs

0 (z)) filter responses obtained using CDF
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9/7 filters and 1-D Kaiser window parameters Lw = 27 and β = 4.5.
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Figure 2.6: Magnitude responses of analysis lowpass filters designed using TROV.
Starting from upper-left corner HR1

0 (z), HR2
0 (z), Hfan

0 (z) and Hcs
0 (z).

Transform design procedure:

We start by obtaining the nonsubsampled design of critically sampled FiDWT

proposed in [63]. In order to do this, we replace DWT by UWT and append a

nonubsampled 2-channel CSFB stage to the LH, HL and HH subbands to get six

directional subbands. Here, to obtain extra directionality, we add one more stage to

these directional subbands obtaining 2 extra directions from each subband. Two

directional subbands obtained from the LH subband are further decomposed into

two subbands by HR1
i (zD12), while two directions from the HL subband are fol-

lowed by HR2
i (zD21). Here, D12 = diag(1, 2) and D21 = diag(2, 1) are two upsam-

pling matrices, where diag(x, y) =

x 0

0 y

. The separated two diagonal subbands

of the UWT give two highpass directional subbands each by using 2-channel fan

filters i.e, Hfan
i (z), in all cases i = 0, 1. The synthesis stage (not shown) can be used

to get back the perfectly reconstructed 2-D signal by reverse filtering these direc-

tional subbands in all stages with synthesis filters. Figure 2.8(b) shows frequency

responses of the 12 highpass directional subbands of the proposed EFiDWT.
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Figure 2.7: Analysis filter bank of the proposed nonsubsampled design for
EFiDWT.

2.3 Application to Image Denoising

In this section, we test performance of the proposed designs for image denoising

application. Note that, in all experiments, we have used the checkerboard-shaped

filters designed with procedure and parameters given in section 2.2.1. The size of

the analysis and synthesis lowpass CSFB filters is 57× 57 and 43× 43, respectively.

Due to this high order of the filters and sharp frequency roll-off characteristics
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Figure 2.8: Proposed EFiDWT design (a) ideal 2-D frequency partition (b) fre-
quency responses of the 12 directional subbands.

the aliasing phenomena is suppressed to some extent in the transforms involving

downsamplers such as RFiDWT. Three levels of decomposition of all transforms is

used. Sym8 wavelet filter is used for all DWT and UWT decompositions. Additive

white Gaussian noise (AWGN) of standard deviation σ is added to the original

image in order to test the performance of our proposed designs on noisy images.

2.3.1 Image denoising using hard thresholding

To verify the denoising ability of the proposed design, we compare the image

denoising results using hard thresholding method [30] using the transforms DWT,

UWT, FiDWT, UFiDWT, RFiDWT, RUFiDWT and EFiDWT. A value of T = 3σ

is used for thresholding, while σ is estimated from the Donoho’s robust MAD

(median absolute deviation) estimator from the first scale HH subband of DWT.

Figure 2.9 shows hard thresholding results on the part of Barbara image con-

taining oriented texture for AWGN of standard deviation σ = 30. Figure 2.10

shows Peak Signal-to-Noise Ratio (PSNR) comparison of the mentioned trans-

forms for different noise levels.

Proposed design RFiDWT shows improvement in denoising performance over

DWT, UWT and FiDWT, while EFiDWT gives the best result. It has better PSNR

value and less visual artifacts in the denoised image while preserving the ori-

ented textural features. Table 2.1 shows comparison of Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity Index Measure (SSIM) [131] and Feature Similarity

Index Measure (FSIM) [135] values of the hard-thresholded denoised images us-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.9: Image denoising using hard-thresholding (a) Original image (b) noisy
image with σ = 30, PSNR = 18.72 dB (c) DWT, PSNR = 22.05 dB (d) UWT, PSNR =
23.51 dB (e) FiDWT, PSNR = 22.15 dB (f) UFiDWT, PSNR = 24.18 dB (g) proposed
RFiDWT, PSNR = 23.95 dB (h) proposed RUFiDWT, PSNR = 24.67 dB. (i) proposed
EFiDWT, PSNR = 25.85 dB

ing mentioned transforms on two widely used images. For both of the images,

proposed designs maintain PSNR improvement while preserving geometrical fea-

tures from the original image as evident from the better SSIM and FSIM values.

From Figures 2.9, 2.10 and Table 2.1, it is validated that, increased redundancy, di-

rectionality and frequency selectivity of the filters in the transform designs leads to
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Figure 2.10: PSNR (dB) comparison of mentioned transforms under different
noisy levels on the image shown in 2.9(a).

improvement in image denoising performance in terms of PSNR as well as visual

quality.

2.3.2 Image denoising using RFiDWT and BLS-GSM

As stated in section 2.2.2, we apply the proposed RFiDWT with sophisticated

wavelet-based image denoising algorithm namely Bayes least squares-Gaussian

scale mixture (BLS-GSM) to verify its efficacy. BLS-GSM [81] is a state-of-the-art

wavelet-based image denoising technique. MATLAB code for the same is avail-

able on authors website (decsai.ugr.es/ javier/denoise), providing functionality to use

different wavelets in orthogonal, undecimated and fully steerable pyramid mode.

Best denoising results are obtained with the fully steerable pyramid which has 8

directions with redundancy factor of 18.6. In our case, we have used this method

in orthogonal decomposition mode separately on the two RFiDWT transformed

images (e.g., Figures 2.5(b) and 2.5(c)). Figure 2.11 shows comparison between

denoised images using fully steerable pyramid and RFiDWT using BLS-GSM de-

noising method. It is clear that, the proposed RFiDWT has slightly better results

than full steerable pyramids using BLS-GSM for textural part of the image, due to

better frequency selectivity of the filters. The lines on the cloth are more clearly

visible in proposed approach when compared to the other method. The direc-
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Table 2.1: PSNR/SSIM/FSIM comparison of image denoising performance of
mentioned transforms using hard thresholding method

σ 10 30 50
Input

PSNR/SSIM/FSIM 28.13 0.72 0.96 18.59 0.35 0.81 14.15 0.21 0.70

Transform Barbara 512×512
DWT 29.83 0.86 0.96 23.97 0.65 0.89 21.81 0.54 0.85
UWT 31.96 0.90 0.98 25.47 0.71 0.92 22.92 0.58 0.88

FiDWT [63] 29.71 0.85 0.95 24.34 0.65 0.88 22.00 0.53 0.84
UFiDWT [69] 32.63 0.91 0.98 26.40 0.74 0.93 23.35 0.59 0.89

Proposed RFiDWT 32.19 0.90 0.97 26.03 0.72 0.92 23.10 0.58 0.87
Proposed RUFiDWT 33.01 0.92 0.98 26.81 0.76 0.93 23.79 0.62 0.89
Proposed EFiDWT 33.52 0.92 0.98 27.26 0.78 0.93 24.33 0.65 0.89

σ 10 30 50
Input

PSNR/SSIM/FSIM 28.13 0.61 0.95 18.59 0.22 0.79 14.15 0.12 0.67

Transform Lena 512×512
DWT 32.40 0.85 0.97 27.03 0.70 0.90 24.52 0.62 0.86
UWT 34.14 0.88 0.98 28.61 0.74 0.93 25.70 0.63 0.89

FiDWT [63] 32.00 0.84 0.96 26.79 0.67 0.89 24.33 0.57 0.85
UFiDWT [69] 34.34 0.88 0.98 28.75 0.73 0.94 25.71 0.60 0.89

Proposed RFiDWT 33.93 0.88 0.98 28.36 0.72 0.92 25.40 0.60 0.87
Proposed RUFiDWT 34.74 0.89 0.98 29.36 0.76 0.94 26.38 0.65 0.90
Proposed EFiDWT 34.93 0.90 0.98 29.68 0.80 0.94 27.05 0.73 0.90

tional texture features in denoised images are better preserved using RFiDWT. For

an N × N image, we have numerical complexity O(N2) for RFiDWT/BLS-GSM,

much less than O(N2 log2 N) as in the case of [81].

2.4 Conclusion

In this chapter, we have presented three redundant transform designs with en-

riched directionality. The proposed transforms were obtained using additional

pre/post nonseparable filter bank stages to the traditional decimated and undec-

imated wavelet transforms. We also discussed their use for the image denoising

application. All three designs have better adaptability to the oriented features in

the underlying image, since the filter bank construction enables us to design the

filters with better frequency selectivity, thereby maintaining denoising and visual
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(a) (b)

(c) (d)

Figure 2.11: Image denoising using BLS-GSM on textural image (a) original image
(b) noisy image with σ = 25, PSNR = 20.17 dB. Denoising using (c) full steerable
pyramid, PSNR = 28.18 dB, (d) RFiDWT, PSNR = 28.43 dB.

artifacts suppression trade-off. Image denoising using RFiDWT with BLS-GSM, a

sophisticated wavelet-based denoising algorithm, shows encouraging results for

oriented textural images with much less computational cost.
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CHAPTER 3

Novel Designs for Nonsubsampled Multires-

olution Directional Filter Banks

In the previous chapter, we designed three new redundant transforms by extend-

ing the directionality of the traditional wavelet transforms (WTs) using additional

nonseparable FB stages. Although these designs have better directionality than

DWT and UWT, their directional bases are not fully anisotropic in nature due to

rectangular frequency partition (e.g. Fig. 2.8(a)). Hence, they provide suboptimal

approximation of the image edges which are basically smooth contours.

In this chapter, we obtain different types of anisotropic directional bases that

better adapt the underlying image features using completely nonseparable filter-

ing based approach. We propose two nonsubsampled multiresolution directional

filter bank (MDFB) designs which provide flexibility in directional selectivity over

traditional separable filtering based transforms.

We would like to mention here that we only provide the nonsubsampled de-

signs since our work targets the proposed transforms for applications that require

better shift invariance properties such as image denoising, super-resolution etc.

In such cases, subsampled designs exhibit inferior performance due to the down-

samplers used in the analysis side which leads to aliasing phenomena in the re-

sulting directional subband outputs. Subsampled designs are useful in coding

applications where the redundancy reduction is a prime concern. In this chapter,

we opt to provide nonsubsampled designs that satisfy the desired output perfor-

mance with simple and efficient design structures.
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3.1 Introduction

In recent years, the nonsubsampled multiresolution transforms having enriched

directional representations have attained unprecedented preference in specific ap-

plications such as image denoising, enhancement due to their superior perfor-

mance [23, 47, 60]. The multiresolution directional filter banks (MDFBs) along

with the notion of nonsubsampled design allows extra flexibility for directional fea-

ture selection such as transforms having arbitrary frequency partitioning [61]. Us-

ing nonsubsampled MDFBs one can achieve increased directionality and better

frequency selectivity [23]. The efficient and fast algorithms such as “algorithme à

trous" exist for their implementation. Decimation free operations lead to a com-

pletely shift invariant representation useful in many image processing operations.

In [23] authors proposed nonsubsampled contourlet transform (NSCT) using

the decimation-free versions of Laplacian-like pyramid decomposition and DFB

scheme by Bamberger and Smith [14]. Other notable nonsubsampled transform

designs are Shearlet transform [32] which has less computational cost than the

NSCT. Both Shearlet and nonsubsampled contourlet transforms have 2-D fre-

quency partitions with uniform partition of directional subbands. However, the

directional frequency distribution of natural images require nonuniform frequency

partitions [61] for their efficient representation.

Motivated by the above works, in this chapter, we propose two nonsubampled

multiresolution directional filter bank (NSMDFB) designs having fixed nonuni-

form 2-D frequency partitions with six directional subbands. The rest of the chap-

ter is organized as follows, proposed transform designs are explained in detail

in Section 3.2 while denoising capability of them is verified in Section 3.3 using

simple subband thresholding method. Section 3.4 concludes the Chapter.

3.2 Proposed Nonsubsampled Designs

In this section, we give detailed description of our proposed MDFB designs with

the following outline. In section 3.2.1, we start by explaining the nonuniform
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2-D frequency partitions of the proposed designs and explain our approach to

achieve the same. In the next section i.e., Section 3.2.2, we discuss the design of

required filters of the filter banks used for obtaining the desired directional selec-

tivity. Multiresolution (MR) stage used in both the designs is briefly explained in

Section 3.2.3. Finally, proposed nonsubsampled directional filter banks (NSDFBs)

are discussed in detail in Section 3.2.4. Proposed NSDFBs when combined with

the MR stage finalize the proposed nonsubsampled MDFB designs.

3.2.1 2-D frequency partitions of the proposed designs

Figure 3.1 shows, the 2-D frequency partitions of the proposed nonsubsampled

designs. The DFB partitions shown in figures 3.1(a) and 3.1(b) were first proposed

in [71, 72] belonging to a class of maximally decimated directional filter banks

referred as nonuniform directional filter banks (nuDFBs). We also follow the same

naming notations referring to them as both belonging to a class of nonuniform

directional filter banks, first design as nuDFBC1 and second design as nuDFBC2.
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Figure 3.1: 2-D frequency partitions of the proposed designs (a) nuDFBC1 and (b)
nuDFBC2.

Note that nonsubsampled designs can be obtained from their subsampled

counterparts with use of suitable multirate identities. However, for the proposed

nuDFBC1 and nuDFBC2 designs we have not used the filter responses used in

the original critically sampled designs [72],[71]. For example, in [71] design for
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partition shown in Fig. 3.1(b) require 4 different filter responses (fan filters and 3

parallelogram-shaped filters), while our designs simply need 2 different filter re-

sponses (fan filters and rectangular filters). This definitely helps in obtaining effi-

cient separable implementations with lower computational requirements. While,

the 2 parallelogram-shaped filters used in [71] cannot be constructed using sim-

ple separable implementations. We would also like to mention that the design in

[71] suffers from significant aliasing due to the frequency scrambling effect. The re-

sultant directional subbands are then obtained using computationally expensive

direct optimization technique which also require the good initialization for better

convergence. Thus the transform design as well as filter design procedures are

quite involved, if we want to obtain the nonsubsampled design using the same.

While our designs are simple and have lower computational requirements.

3.2.2 Design of required filter responses

The required nonseparable filter responses used in the proposed designs are same

as in the EFiDWT design given in Section 2.2.4. For the sake of completeness,

we repeat the same procedure. Proposed designs only require two types of filter

responses. They correspond to 2-D, nonseparable FIR fan filters and rectangu-

lar filters which are obtained using TROV technique [111]. The ideal impulse

response for designing fan filters can be obtained by from the ideal impulse re-

sponse of diamond-shaped filter (rds(n)) as rfan(n) = (−1)n2 × rds(n), where

rds(n) = sinc
[
(n1+n2)π

2

]
sinc

[
(n1−n2)π

2

]
. Ideal impulse responses to design the

rectangular filters are:

rR1(n) = sinc
[n1π

2

]
sinc [n2π]

rR2(n) = sinc [n1π] sinc
[n2π

2

]
.

(3.1)

The checkerboard-shaped filters are also required and they are obtained using

quincunx upsampling of the fan filters [23]. Figure 3.2 shows designed analysis

lowpass fan (Hfan
0 (z)), rectangular filter 1 (HR1

0 (z)), rectangular filter 2 (HR2
0 (z))

and checkerboard-shaped (Hcs
0 (z)) filter responses obtained using CDF 9/7 filters
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and 1-D Kaiser window parameters Lw = 27 and β = 4.5.
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Figure 3.2: Magnitude responses of analysis lowpass filters designed using TROV.
Starting from upper-left corner HR1

0 (z), HR2
0 (z), Hfan

0 (z) and Hcs
0 (z).

3.2.3 Multiresolution stage

We use the nonsubsampled pyramid (NSP) scheme proposed in the [23] for getting

the multiresolution property in the proposed MDFB designs as shown in figure

3.3. For 2-D input image I, the NSP outputs one lowpass and J bandpass images

for J level decomposition. Each bandpass image Xin is the input to the proposed

designs i.e., nuDFBC1 and nuDFBC2 designed in the next subsection.

Proposed

Designs

Proposed

Designs

0

IHP_DIR_2

IHP_DIR_1

H0(z)

H1(z)

H0(z2I)

H1(z2I)

I

Xin

Xin

Figure 3.3: Multiresolution scheme used in the proposed MDFB designs (shown
for 2 level analysis decomposition).
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3.2.4 Design of proposed nonuniform directional filter banks

Design of nuDFBC1:

Figure 3.4 shows the analysis filter bank stages of the proposed design for nuDFBC1.

The bandpass image from multiresolution or NSP stage is input to the design

which gives six output directional subbands having the orientation selectivity as

shown in the Fig. 3.1(a). The proposed design meets the 2-D frequency partition

exactly with perfect reconstruction.

Q1

Q2

Q1

Q1

Q2

Q2

Xin
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fan(z)
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R1(zQ1)

H1
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R1(zQ2)

H0
fan(z)

H1
fan(z)

H1
fan(z)

H0
fan(z)

2

5

3

4

1

6

Figure 3.4: Analysis filter bank of the proposed nonsubsampled design for
nuDFBC1.

In z−transform domain, the analysis equations for the resultant highpass di-
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rectional subbands shown in Figure 3.4 can be written as

H3(z) = Hcs
0 (z)HR1

0 (zQ1)Hfan
0 (z)

H4(z) = Hcs
0 (z)HR1

0 (zQ1)Hfan
1 (z)

H1(z) = Hcs
1 (z)HR1

0 (zQ2)Hfan
0 (z)

H6(z) = Hcs
1 (z)HR1

0 (zQ2)Hfan
1 (z)

H2(z) = Hfan
0 (z)HR1

1 (zQ1)HR1
1 (zQ2)

H5(z) = Hfan
1 (z)HR1

1 (zQ1)HR1
1 (zQ2).

(3.2)

Here Q1 = Q =

1 −1

1 1

 and Q2 = QT are quincunx matrices. The synthesis

filter bank stage of the proposed design (not shown) is used to reconstruct input

2-D image X̂in(z) by reverse filtering all the directional subbands using synthesis

filters. The reconstructed signal X̂in(n) in z-transform domain can be obtained

using the equations given below,

F34(z) = [H3(z)Ffan
0 (z) + H4(z)Ffan

1 (z)]

F16(z) = [H1(z)Ffan
0 (z) + H6(z)Ffan

1 (z)]

FC11(z) = [F34(z)FR1
0 (zQ1)Fcs

0 (z)]

FC12(z) = [F16(z)FR1
0 (zQ1)Fcs

1 (z)]

FC1(z) = [FC11(z) + FC12(z)]

F2(z) = H2(z)FR1
1 (zQ2)FR1

1 (zQ1)F f an
0 (z)

F5(z) = H5(z)FR1
1 (zQ2)FR1

1 (zQ1)F f an
0 (z)

FC2(z) = [F2(z) + F5(z)]

X̂in(z) = [FC1(z) + FC2(z)]

(3.3)

The design of nuDFBC2:

Figure 3.5 shows the analysis filter bank stages of the proposed design for nuDFBC2.

The six highpass directional subbands of this design have directional selectivity

similar to as shown in Figure 3.1(b). The proposed design nearly meets 2-D fre-
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quency partition with perfect reconstruction.
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Figure 3.5: Analysis filter bank of the proposed nonsubsampled design for
nuDFBC2.

Similar to nuDFBC1, the analysis equations in the z−transform domain for the

six directional subbands of Figure 3.1(b) are given as

H2(z) = Hfan
0 (zD13)HR1

0 (zD12)HR1
0 (z)

H5(z) = Hfan
1 (zD31)HR2

0 (zD21)HR2
0 (z)

H3(z) = [Hfan
0 (z)− H2(z)]Hcs

0 (z)

H1(z) = [Hfan
0 (z)− H2(z)]Hcs

1 (z)

H4(z) = [Hfan
1 (z)− H5(z)]Hcs

0 (z)

H6(z) = [Hfan
1 (z)− H5(z)]Hcs

1 (z)

(3.4)

The upsampling matrices used are, D13 = diag(1, 3), D12 = diag(1, 2), D31 =

diag(3, 1) and D21 = diag(2, 1). The reconstructed signal X̂in(n) in z-transform
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domain can be obtained by using the following equations,

F2(z) = [H2(z)FR1
0 (z)FR1

0 (zD12)Ffan
0 (zD13)]

F5(z) = [H5(z)FR2
0 (z)FR2

0 (zD21)Ffan
1 (zD31)]

F31(z) = [H3(z)Fcs
0 (z) + H1(z)Fcs

1 (z)]

F46(z) = [H4(z)Fcs
0 (z) + H6(z)Fcs

1 (z)]

FC1(z) = [F31(z)Ffan
0 (z) + F46(z)Ffan

1 (z)]

FC2(z) = [F2(z) + F5(z)]

X̂in(z) = [FC1(z) + FC2(z)]

(3.5)

The frequency responses of all the analysis highpass directional subbands of the

proposed nuDFBC1 and nuDFBC2 designs are shown in Fig. 3.6(a) and 3.6(b), re-

spectively. One can see that the directional subbands of the proposed designs

have nonuniform and wedge-shaped partitions, hence their directional bases are

anisotropic in nature which better adapt the underlying image features.

(a) (b)

Figure 3.6: 2-D frequency partitions of the proposed designs (a) nuDFBC1 and (b)
nuDFBC2.

Unlike nuDFBC1, some of the directional subbands of nuDFBC2 are interde-

pendent. One can observe in Figure 3.5 that the directional subbands 3 and 1 are

dependent on subband 2 while subbands 4 and 6 are dependent on subband 5.

Here, filters of the 2-channel checkerboard-shaped filter banks used are required

to have higher order for obtaining better frequency roll-off characteristics of the
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filters. This is required to reduce the residual high frequency content which may

arise after the subtraction (see equation 3.4) considering the non-ideal passband

characteristics of the filters.

The proposed MDFBs can be designed to have lower computational cost by

using the separable implementations of the filters used in their NSDFB stages.

Both, fan-shaped as well as checkerboard-shaped filters designed using transfor-

mations of variables (TROV) technique can be implemented in separable manner

[111]. Also, from equation 3.1, one can see that the proposed rectangular filters

can be easily implemented in a separable manner.

3.3 Image Denoising Experiment

To verify the denoising ability of the proposed MDFB designs, we compare the

image denoising results using K-sigma hard thresholding method [23] with two non-

subsampled transforms namely undecimated finer directional wavelet transform

(UFiDWT) [69] and NSCT [23]. We have chosen UFiDWT since we want to an-

alyze the denoising improvements obtained over separable transform based de-

sign. Also, UFiDWT has one lowpass and six directional subband representation

similar to the proposed designs. We also compare the results with NSCT which a

widely acknowledged nonsubsampled MDFB design. We have used three levels

of decomposition for all the transforms. For NSCT, we used 4, 8 and 16 directions

in three scales (coarse to fine), while the proposed designs have 6 directions in

each scale. Sym8 wavelet filter is used in undecimated wavelet transform (UWT)

involved in UFiDWT construction. Additive white Gaussian noise of different

standard deviations σ are added to the original image in order to test the perfor-

mance of our proposed designs on noisy images.

Table 3.1 shows quantitative comparison of Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity Index Measure (SSIM) [131] and Feature Similarity Index

Measure (FSIM) [135] values of the hard-thresholded denoised images using men-

tioned transforms on two widely used images Barbara and Lena. The proposed de-

signs nuDFBC1 and nuDFBC2 perform reasonably well. They have better denois-
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Table 3.1: PSNR/SSIM/FSIM comparison of image denoising performance of pro-
posed designs using hard thresholding.

σ 10 30 50
Input

PSNR/SSIM/FSIM 28.13 0.72 0.96 18.59 0.35 0.81 14.15 0.21 0.70

Transform Barbara 512×512
UFiDWT [69] 32.63 0.91 0.98 26.40 0.74 0.93 23.35 0.59 0.89

NSCT [23] 33.74 0.92 0.98 27.43 0.79 0.92 24.68 0.67 0.89
Proposed nuDFBC1 32.45 0.90 0.98 26.46 0.74 0.93 23.73 0.62 0.89
Proposed nuDFBC2 32.33 0.90 0.98 26.38 0.72 0.93 23.65 0.60 0.89

σ 10 30 50
Input

PSNR/SSIM/FSIM 28.13 0.61 0.95 18.59 0.22 0.79 14.15 0.12 0.67

Transform Lena 512×512
UFiDWT [69] 34.34 0.88 0.98 28.75 0.73 0.94 25.71 0.60 0.89

NSCT [23] 35.15 0.90 0.98 30.00 0.80 0.93 27.32 0.72 0.89
Proposed nuDFBC1 34.40 0.89 0.98 29.42 0.80 0.94 26.80 0.70 0.90
Proposed nuDFBC2 34.29 0.88 0.98 29.36 0.77 0.94 26.72 0.67 0.90

ing performance when compared to UFiDWT for high σ values. While, they have

comparable performance when compared to NSCT which performs best due to

its inherent higher directionality at finer scales. Although the performance of pro-

posed designs do not supersede to that of NSCT, the proposed designs show com-

parable performance but with simple filter bank structure and low computational

costs. Overall performance of nuDFBC2 is slightly inferior to that of nuDFBC1

which may be attributed to the residual high frequency content as discussed in

the previous section.

Figure 3.7 shows visual denoising results for a small part of Barbara image

using the transforms compared in Table 3.1 i.e., UFiDWT, NSCT and proposed

MDFB designs i.e., nuDFBC1 and nuDFBC2. Visually, the proposed designs show

better preservation of the oriented texture than UFiDWT and perform compara-

bly with NSCT which has much higher directionality. Both the proposed designs

perform equally in terms of PSNR values, however texture preservation is evident

for visual comparison. For example, vertical lines of the texture below the hand in

the original image shown in Figure 3.7(a) are better reconstructed using nuDFBC2

(Figure 3.7(f)) than nuDFBC1 and NSCT shown in Figure 3.7(e) and Figure 3.7(d),

respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Image denoising using hard-thresholding (a) original image (b) noisy
image with σ = 30, PSNR = 18.72 dB (c) UFiDWT, PSNR = 24.18 dB (d) NSCT,
PSNR = 25.55 dB (e) nuDFBC1, PSNR = 24.16 dB (f) nuDFBC2, PSNR = 24.21 dB.

When comparing these results with those presented in the previous chapter

(Figure 2.9 and Table 2.1), one can see that the proposed EFiDWT performs better

than nuDFBC1 and nuDFBC2 due to its higher directionality while it performs

comparably with NSCT.

3.4 Conclusion

In this chapter, we have presented two nonsubsampled transform designs be-

longing to a class of multiresolution directional banks. Both the designs have

nonuniform 2-D frequency partitions with one lowpass and six directional sub-

band representation. Proposed designs have simple design structure and they can

have computationally efficient separable implementations. Qualitative as well as

quantitative results indicate their flexibility to handle the noisy image features for

image denoising application.
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CHAPTER 4

Design of Almost Tight Frame Dual-Tree Com-

plex Wavelet Transform

Many of the transforms proposed in the previous two chapters are nonsubsampled

and have real-valued transform coefficient representation. Although, they have

better directionality than the traditional wavelet transforms, higher redundancy

may hinder their use in applications which require output accuracy vs. compu-

tational complexity trade-off. Also, due to real-valued representation, phase infor-

mation is not available which may be beneficial in various applications such as

motion estimation [66][16].

In this regard, complex-valued representation gives us a promising framework

where transform redundancy as well as directionality can be improved using the

idea of approximate or near analyticity.1 Dual-tree complex wavelet transform

(DTCWT) [92] is one such important representation. 2-D DTCWT has multiscale

one lowpass and six directional image representation and has been widely used

in various image processing applications. In this chapter, we contribute to the

1-D biorthogonal filter design aspect of DTCWT in order to have improved direc-

tional selectivity and almost tight-frame characteristic. By tight-frame transform,

we mean an orthogonal transform with certain amount of redundancy [18].

1Analyticity we mean here is related to complex-valued signal representation having support
in only one side of the frequency spectrum.
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4.1 Introduction

In recent years, Dual-Tree Complex Wavelet Transform (DTCWT) has gained pop-

ularity as one of the important transform-domain processing tools in wide range

of multimedia applications such as image [39] and video denoising [83], fusion [9],

watermarking [13] to name a few. Unlike discrete wavelet transform (DWT), it of-

fers better directionality, near-shift invariance and phase information with limited

redundancy. In practice, DTCWT is implemented using two branches of DWT re-

ferred to as primal (filter bank: h) and dual (filter bank: g) tree and outputs of

these are considered as the real and imaginary parts of the complex coefficient

representation of an input signal. With the use of orthogonal/biorthogonal finite

impulse response (FIR) filters in these trees, the transform is approximately an-

alytic with a redundancy factor of just 2m for an input of m-dimensional (m-D)

signal, while the directionality is 2(m−1) × (2m − 1). The idea for constructing

dual-tree complex wavelet transform (DTCWT) was first proposed by Nick Kings-

bury [51][53] and subsequently developed by Selesnick in [90][91]. We refer to

[92] as an excellent tutorial paper on various aspects of DTCWT.

Although, DTCWT output representation is complex valued, real-valued fil-

ter coefficients are used in the construction and no complex arithmetic is required

which is very much advantageous. However, design of such filters is quite chal-

lenging [109], since the filter coefficients need to satisfy various constraints. Se-

lesnick [90] was the first researcher to arrive at certain conditions that must be

satisfied by the DTCWT filters in order to have desired analyticity property. He

showed that if the wavelet functions associated with the two trees of DTCWT are

Hilbert transform pairs, the transform is completely analytic and shift-invariant.

Since, obtaining perfect analyticity is difficult using compactly supported filters,

approximate analyticity and near shift-invariance can be achieved using FIR or-

thogonal/biorthogonal wavelet filters [91]. In order to have these properties, fil-

ters must satisfy perfect reconstruction (PR), vanishing moment (VM) and half-sample

delay (HSD) constraints as minimum requirements. HSD condition plays the role

of coupling between two trees of DTCWT to have approximate Hilbert transform
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relationship. Intuitively, the HSD requirement given by Selesnick is equivalent

to Kingsbury’s [53] idea of doubling the sampling rate at each scale thus largely

removing the aliasing caused by downsamplers and making the transform nearly

shift-invariant [92]. The concept of generalized HSD is used in [20] and [21] to

obtain M-band extensions of orthogonal and biorthogonal DTCWT, respectively.

Theoretical details about the necessary and sufficient conditions in case of orthog-

onal and biorthogonal DTCWT filters can be found in [133] and [134], respectively.

Traditional wavelet filter design techniques cannot be used directly to design

DTCWT filters since they only consider PR and VM conditions. Considering the

much needed HSD requirement, various approaches are proposed in the literature

to obtain orthogonal/biorthogonal DTCWT filters [92][109]. In this chapter, we

only consider the design of biorthogonal FIR filters. For various orthogonal filter

design approaches, one can refer to [24, 31, 52, 54, 68, 94, 103, 104, 105, 127, 128,

136, 137, 138, 139, 140].

In [51][53], Kingsbury proposed the use of odd/even filter design approach to

obtain biorthogonal wavelet filters (BWFs) based DTCWT construction. In this ap-

proach, symmetric odd-length (Type-I) and even-length (Type-II) BWFs are used

in primal (first) and dual (second) tree, respectively. Here, given the filters in pri-

mal filter bank (FB), aim is to obtain the dual FB filters. In general, well known

odd-length filters (such as CDF 9/7, LeGall 5/3) are used in the first tree whereas

filters of the second tree are designed such that their magnitude responses are

approximately equal to that of corresponding first tree filters. Here, the HSD con-

straint is perfectly satisfied and the filters have exact linear phase characteristics.

In [91], Selesnick devised common factor technique capable of designing orthog-

onal/biorthogonal filters with prescribed number of vanishing moments (VMs).

The technique uses binomial product filter factorization approach of Daubechies

[26] for including vanishing moments criteria while half-sample delay constraint

is approximated using maximally flat all pass filters. Due to HSD approxima-

tion, the designed filters have approximately linear phase characteristics. In this

technique, both primal and dual tree filters are designed simultaneously.

Most of the BWF design techniques proposed in the literature are variants of
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the above two approaches. In [36], Fernandes et. al modified the common factor

approach by designing the all-pass filter approximation of the HSD condition by

using minimax criteria instead of the maxflat approach used in [91]. Better ap-

proximation properties of the associated wavelets were obtained in this case. In

[134], authors proposed an odd/even approach where constrained optimization

is used to obtain the dual FB filters by minimizing the magnitude response error

between filters of the two trees. In [110], Tay proposed a new class of even-length

biorthogonal wavelet filters to obtain dual FB filters for the chosen primal FB fil-

ters. The filters are referred to as even triplet halfband filter bank (ETHFB) and

are obtained by modifying odd-length triplet halfband filter bank of Ansari et al

[12]. A new odd/even scheme is proposed in [95] to design BWFs of dual FB by

using constrained optimization and exploiting the relationship between the HSD

requirement and the vanishing moments difference of the biorthogonal lowpass

filters of the two trees. Techniques for designing rational coefficient BWFs are also

proposed in [3][107].

In this chapter, we propose two new approaches to design biorthogonal wavelet

filters of DTCWT. Our first approach is a variant of common factor solution whereas

the second one uses odd/even filter settings. The motivation for the proposed ap-

proaches is to design biorthogonal filters having near-orthogonal filter response

characteristics that can provide a near tight frame DTCWT which is a l2 norm

(energy) preserving transform. Such transforms have improved noise decorre-

lation and are useful in image denoising application. We also require the result-

ing wavelet functions to have exact or near-exact symmetry which improves the

directional selectivity of DTCWT [91]. This condition makes the image features

such as edges to be handled without the unwanted oscillatory behavior [68]. In

addition, we also desire filters giving Hilbert pairs of wavelets with improved an-

alyticity for better shift-invariance. In order to obtain these properties, we make

use of an optimization approach in the proposed techniques. We build our meth-

ods to mitigate the following problems associated with the common factor and

odd/even filter design methods:

• The filters designed using common factor approach [91] have poor frequency
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response since it uses maximum number of vanishing moments i.e., zeros at

z = −1 or ω = π resulting in zero degrees of freedom to shape the filter

response characteristics. Hence, it is desired to have filters with good fre-

quency response characteristics to minimize the inherent residual amplitude

distortion present in the maximally decimated filter banks used in the two

trees of DTCWT.

• In the odd/even filter setting, if the magnitudes of scaling and the wavelet

functions are not aligned at higher levels of decomposition (> 2), it may re-

sult in severe implications while using DTCWT with hierarchical algorithms

such as hidden Markov tree model etc [53]. The use of near-orthogonal

BWFs in this case curtails these effects [53].

In our first approach, we address the problem using common factor technique by

designing the filters with better frequency response characteristics (near-orthogonal).

In the second approach, we propose to use odd-length biorthogonal filters having

near-orthogonal frequency response in the first tree and accordingly design the

second tree filters to have nearly tight-frame transform. Both these approaches

provide an effective way to handle the filter response characteristics of these filters

which is obtained by using unconstrained optimization of free variables. Also, the

proposed approaches can be modified to design the orthogonal filters by design-

ing a halfband polynomial satisfying certain non-negativity constraints followed

by the spectral factorization approach.

The chapter is organized as follows. In section 4.2, we give the background

to understand the DTCWT basics and briefly describe the common factor and

odd/even techniques. In section 4.3, the proposed approaches are described while

section 4.4 details the design examples of both the proposed approaches along

with their qualitative and quantitative measures. In section 4.5, we discuss per-

formance of one of the proposed filter set for image denoising application. Section

4.6 concludes the chapter.
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4.2 Background Review

4.2.1 DTCWT basics

Fig. 4.1 shows core structure of the DTCWT. It has two trees consisting of 2-

channel filter banks that use 1-D biorthogonal wavelet filters. In Tree-1, the filters

2

2

2

2

h0(n)

h1(n)

2

2

2

2

g0(n)

g1(n)

Tree-1

Tree-2

h0(n)

h1(n)

g0(n)

g1(n)

x(n) x(n)

Figure 4.1: Two trees of 2-channel filter banks used in DTCWT construction

h̃0(n) and h̃1(n) represent the analysis lowpass and highpass filters, respectively.

Similarly, the h0(n) and h1(n) represent the same on the synthesis side referred

to as synthesis lowpass and highpass filters. They are related to each other as

follows
h̃1(n) = −(−1)nh0(n), 0 ≤ n ≤ N − 1

h1(n) = (−1)nh̃0(n), 0 ≤ n ≤ Ñ − 1.
(4.1)

Here, Ñ and N represent lengths of the filters h̃0(n) and h0(n), respectively. Simi-

lar relations hold good in the case of filters in Tree-2.

Let, φh(t) and φg(t) be the synthesis scaling functions of Tree-1 and Tree-2,

respectively and ψh(t) and ψg(t) be their corresponding wavelet functions. Then
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the two-scale equations associated with these are given as

φh(t) =
√

2 ∑
n

h0(n)φh(2t− n)

ψh(t) =
√

2 ∑
n

h1(n)φh(2t− n)

φg(t) =
√

2 ∑
n

g0(n)φg(2t− n)

ψg(t) =
√

2 ∑
n

g1(n)φg(2t− n).

(4.2)

In a similar way one can define analysis wavelet functions ψ̃h(t) and ψ̃g(t). In or-

der to have approximate analyticity of DTCWT, we require that ψg(t) ≈ H{ψh(t)}

and ψ̃g(t) ≈ H{ψ̃h(t)} [90][91] representing Hilbert transform pairs criteria. This

indicates that the synthesis and analysis wavelet functions of Tree-2 are approxi-

mately Hilbert transforms of Tree-1 wavelet functions. In Fourier domain, these

relations are given as

Ψg(ω) ≈

−jΨh(ω), ω > 0

jΨh(ω), ω < 0.
(4.3)

Similar expressions exist for Ψ̃g(ω). Here, Ψh(ω), Ψg(ω), Ψ̃h(ω) and Ψ̃g(ω) rep-

resent Fourier transforms of ψh(t), ψg(t), ψ̃h(t) and ψ̃g(t), respectively. Since,

wavelet functions depend on the scaling functions which in turn depend on the

lowpass filters associated with that scaling function, the problem of designing the

Hilbert transform pairs of wavelet bases reduces to designing the lowpass filters

that satisfy g0(n) ≈ h0(n − 0.5) which is known as half-sample delay (HSD) con-

straint [92]. In Fourier domain, this can be expressed as

G0(ω) ≈ e−j ω
2 H0(ω) (4.4)

where, G0(ω) and H0(ω) are Fourier transforms of g0(n) and h0(n), respectively.

One can design these filters by approximating the magnitude and phase responses
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as

|G0(ω)| = |H0(ω)| (4.5)

6 G0(ω) = −ω

2
+ 6 H0(ω). (4.6)

Due to the nature of the equation (4.4), one of the two conditions given in

equations (4.5) and (4.6) is satisfied exactly or both are approximated. Based on

this, design techniques proposed in the literature for DTCWT are classified into

three categories namely Half sample delay (M) (HSD(M)), HSD(P) or HSD(G)

[109]. In case of HSD(M), the condition given in equation (4.5) is exactly satis-

fied whereas the condition on phase given in equation (4.6) is approximated. For

HSD(P), the reverse is true i.e., phase condition is perfectly satisfied whereas mag-

nitudes are approximately equal. In the case of HSD(G), both the conditions are

approximately equal. The common factor and odd/even filter techniques men-

tioned earlier belong to the HSD(M) and HSD(P) categories, respectively. Since,

our proposed techniques are based on these methods, we explain them briefly in

the next subsections.

4.2.2 Common factor technique

Common factor technique [91] proposed by Selesnick uses a two stage design

process to approximate the relation given in equation (4.4) and finally obtains the

required filters of DTCWT shown in Fig. 4.1. In the first stage, half-sample de-

lay constraint is approximated using Thiran’s maximally flat allpass filters [112].

Perfect reconstruction and vanishing moment constraints are imposed in the sec-

ond stage by considering the use of maxflat halfband polynomial factorization ap-

proach. Both the stages are combined to obtain the final product filter P(z) to

design the biorthogonal wavelet filters. Here, due to the use of product filter fac-

torization, filters with prescribed vanishing moments can be easily designed. Also,

we only need to design the product filters of one of the two trees i.e., either of the
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following two equations (4.7) and (4.8) can be used.

P(z) = H̃0(z)H0(z) (4.7)

= G̃0(z)G0(z). (4.8)

Here, H̃0(z), H0(z), G̃0(z) and G0(z) are the z−transforms of h̃0(n), h0(n), g̃0(n)

and g0(n), respectively. If the lengths of the filters h̃0(n) and h0(n) are Ñ and N,

respectively, the filters of Tree-2 can be obtained using time-reversal relationship

as

g̃0(n) = h̃0(Ñ − 1− n), 0 ≤ n ≤ Ñ − 1 (4.9)

g0(n) = h0(N − 1− n), 0 ≤ n ≤ N − 1. (4.10)

The filters h̃0(n) and h0(n) are obtained using polynomial factorization of the form

H̃0(z) = F̃0(z)D(z) and H0(z) = F0(z)D(z−1)z−L, where D(z) and D(z−1)z−L are

chosen such that

A(z) =
D(z−1)z−L

D(z)
= z−1/2|z=1. (4.11)

which represents an all pass filter approximation of half-sample delay. Here,

D(z) Z←→ d(n) represents a z-transform pair and L represents order of the fil-

ter d(n) obtained using equation (4.12).

d(n + 1) = d(n).
(L− n)(L− n− 0.5)
(n + 1)(n + 1 + 0.5)

, 0 ≤ n ≤ L− 1 (4.12)

where, d(0) = 1. Factors F̃0(z) and F0(z) are maxflat or binomial filters used in

order to satisfy the perfect reconstruction and vanishing moments criteria and are of

the form Q̃(z)(1 + z−1)K̃ and Q(z)(1 + z−1)K, respectively. The polynomials Q̃(z)

and Q(z) are obtained by solving a set of linear equations by imposing halfband

constraint on P(z). Here, K̃ and K represent the number of VMs for h̃0(n) and

h0(n), respectively. Since the filters are chosen to satisfy equations (4.9) and (4.10),

the magnitude condition given in equation (4.5) is exactly satisfied, whereas the

phase condition given in equation (4.6) is approximated since the order L used is

finite. Ideally L should be ∞ to satisfy the equation (4.11) exactly.
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4.2.3 Odd-even filter design (matching) technique

Biorthogonal filters designed using common factor technique have approximately

linear-phase characteristics due to phase factor (e−j ω
2 ) approximation. Exact lin-

ear phase filters can be obtained using odd-even filter design technique. The goal

here is to design the suitable even length filters of Tree-2 for the chosen odd-length

filters of Tree-1. Note that in this case both even and odd length filters are real-

valued and symmetric and lead to completely linear phase characteristics. This

technique is in contrast to the common factor approach since the condition on

phase is inherently satisfied and the problem is to approximate the condition in

equation (4.5) by matching their magnitude responses, hence the name matching

technique. In this approach, well known symmetric odd-length filters such as

CDF 9/7 are used in the first tree. The filters in the second tree are chosen as sym-

metric even length filters which are designed such that their amplitude responses

are matched with corresponding odd length filters in Tree-1. Let the frequency

response of odd-length lowpass filters is denoted by Xh
0(ω) which can be repre-

sented in terms of amplitude response as [76]:

Xh
0(ω) = xh

0(0) + ∑
n 6=0

xh
0(n)cos(ωn) (4.13)

= Fh
0,R(ω). (4.14)

Similarly, response of even length lowpass filters denoted using Xg
0(ω) can be

written as

Xg
0(ω) = e

−jω
2 Fg

0,R(ω), where (4.15)

Fg
0,R(ω) = ∑

n
2xg

0(n) cos((n− 1
2
)ω). (4.16)

Here, Fh
0,R(ω) and Fg

0,R(ω) represent real-valued functions of ω representing am-

plitude responses of odd and even-length lowpass filters, respectively. In equation

(4.15), one may see the presence of inherent half-sample delay due to factor e
−jω

2 .

Assuming same signs for Fh
0,R(ω) and Fg

0,R(ω), we get 6 Xg
0(ω) = −ω

2 + 6 Xh
0(ω)
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i.e., phase condition in equation (4.6) is perfectly satisfied. The problem thus re-

duces to approximating the amplitude responses as

Fh
0,R(ω) ≈ Fg

0,R(ω). (4.17)

In [102], Tay uses a shape parameter optimization of an even-length triplet half-

band filter bank (ETHFB) to achieve the same. Approximation given in the equa-

tion (4.17) is realized in practise by minimizing the mean squared error function

of the form

E =

π∫
0

(Fh
0,R(ω)− Fg

0,R(ω))2dω. (4.18)

4.3 Proposed Approaches

In this section, we explain in detail our two approaches to design biorthogonal

DTCWT filters. Both the approaches make use of factorization of a halfband

polynomial, which is one of the earliest, simple and widely used approach in

the wavelets and filter banks community to design the orthogonal/biorthogonal

wavelet filters [98, 117, 118, 120]. A halfband polynomial is a finite odd-length sym-

metric polynomial with coefficients of even power as zero except for the center

term which is 1. In the proposed approaches, we use factorization of generalized

halfband polynomial (GHBP) [78]. Use of GHBP was first proposed by Le Gall et

al. in [58] to design biorthogonal wavelet filters. One set of filters (Le Gall 5/3)

proposed in [58] are being used in JPEG-2000 standard for lossless image com-

pression. Following the “free some zeros" approach given by Tay in [108], Patil

et al. [78] used higher order GHBP to obtain few independent (free) variables

to improve frequency selectivity of the designed filters. In our first approach,

we propose and design generalized halfband polynomial such that perfect recon-

struction and vanishing moment and half-sample delay constraints are satisfied

for any value of the free variables i.e., we design GHBP and obtain DTCWT filters.
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4.3.1 Proposed HSD-based approach

Using equations (4.7) or (4.8), we obtain the generalized halfband polynomial for

P(z) that satisfies perfect reconstruction (PR) and vanishing moment (VM) and

half-sample delay (HSD) constraints in order to design the DTCWT filters. Let us

choose equation (4.7) for designing DTCWT filters of Tree-1 i.e., h̃0(n) and h0(n).

There are three input parameters K̃, K and L. Here, K̃ and K represent number

of vanishing moments for h̃0(n) and h0(n), respectively while L represents order

of d(n) i.e., denominator polynomial of an allpass filter used to approximate the

HSD condition. Since, we wish to design h̃0(n) and h0(n) as real symmetric odd-

length filters of arbitrary lengths, all the input parameters must be even. Let, n f

be the number of free variables used in the optimization to shape the frequency

response characteristics. We then select the GHBP of order D given by

PD(z) = a0 + a2z−2 + · · ·+ a(D/2)−1z−(D/2)−1 + z−(D/2)

+ a(D/2)−1z−(D/2)+1 + · · ·+ a0z−D,
(4.19)

where the polynomial order D is chosen as D = 2(M− 1) + 4L + 8n f . Note that,

order D is chosen such that it includes desired number of VMs, Lth order all-pass

HSD approximation with n f degrees of freedom to shape the frequency responses

of the filters. The values for the constants used are obtained heuristically after

exhaustive experiments such that desired optimization results are obtained. Here,

M = K̃ + K represents total number of VMs required in the design. For PD(z)

of order D, there exist maximum (D
2 + 1) zeros at z = −1 and (D+2)

4 unknown

variables i.e., ai, i = 0, 2, . . . , (D
2 − 1). By imposing M number of zeros at z = −1,

the PD(z) can then be expressed as

PD(z) = (1 + z−1)MR(z) = (1 + z−1)K̃+KR(z) (4.20)

where, the term (1 + z−1) represents the condition on vanishing moments which

decides smoothness or regularity of the wavelet functions and R(z) is a remainder

polynomial expressed in terms of free variables. Here, a double zero at z = −1
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eliminates one degree of freedom from PD(z), thus M
2 unknown variables are ex-

pressed in terms of n f =
(D+2

4 −
M
2

)
free variables in the remainder polynomial

R(z). With this, our modified product filter P(z) to design the lowpass filters of

Tree-1 can be chosen as

P(z) = H̃0(z)H0(z) (4.21)

P(z) = PD(z)D(z)D(z−1)z−L (4.22)

P(z) = PD(z)DL(z). (4.23)

From equation (4.23), one can see that unlike common factor technique, we use

GHBP PD(z) to obtain the factors F̃0(z) and F0(z) whose frequency response char-

acteristics can be controlled using free variables. The polynomial factor DL(z) =

D(z)D(z−1)z−L used here represents half-sample delay constraint where D(z) can

be obtained using equation (4.12). Due to the factor DL(z), P(z) is no longer a

halfband polynomial and perfect reconstruction property of the designed filters

is lost. Therefore, we impose halfband constraints on P(z) to make it a halfband

polynomial before the factorization step. Using equation (4.20), P(z) can be then

written as

P(z) = (1 + z−1)K̃+KR(z)DL(z) (4.24)

P(z) = BM(z)R(z)DL(z) (4.25)

P(z) = B(z)R(z) = H̃0(z)H0(z), (4.26)

where BM(z) = (1 + z−1)K̃+K and B(z) = BM(z)DL(z).

Imposing halfband constraints: In equation (4.26), coefficients of the B(z) polyno-

mial are exactly known while R(z) is a symmetric polynomial having unknown

variables ai, i = 0, 2, . . . , (D/2) − 1 as coefficients. After collecting the terms of

the product B(z)R(z), we see that P(z) has both odd and even powers of z i.e., it

violates the halfband condition. Hence, coefficients of even powers of z are made

0 while the center term (or constant term) is chosen to be 1 in order to obtain the

halfband polynomial P(z). Remainder polynomial R(z) in equation (4.26) is now
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expressed in terms of desired n f number of free variables.

Let remainder polynomial R(z) given in equation (4.26) is factorized into two

symmetric polynomials R1(z) and R2(z), respectively. Then the expressions for

the factorized filters H̃0(z) and H0(z) can be written as

H̃0(z) = (1 + z−1)K̃R1(z)D(z) (4.27)

H0(z) = (1 + z−1)KR2(z)D(z−1)z−L. (4.28)

i.e.,

H̃0(ω) = (1 + z−1)K̃R1(z)D(z)|z=ejω (4.29)

H0(ω) = (1 + z−1)KR2(z)D(z−1)z−L|z=ejω . (4.30)

In order to obtain the filters H̃0(z) and H0(z) i.e., the analysis and synthesis low-

pass filters of Tree-1, we minimize the following objective function with respect

to n f number of free variables. To do this we use MATLAB optimization toolbox

routine fminunc.

Fobj =

ωp∫
0

∣∣1− H̃0(ω)
∣∣2 dω +

π∫
ωs

∣∣H̃0(ω)
∣∣2 dω

+

ωp∫
0

|1− H0(ω)|2 dω +

π∫
ωs

|H0(ω)|2 dω.

(4.31)

Here, ωp and ωs represent passband and stopband cut-off frequencies (in radian),

respectively. During the optimization, for the given values of the free variables,

polynomial R(z) is first evaluated and factorized into polynomials R1(z) and

R2(z). Since, this factorization is not unique the objective function is evaluated

for all possible combinations of real-valued symmetric polynomials R1(z) and

R2(z). We choose them to be symmetric polynomials such that h̃0(n) and h0(n)

obtained are real-valued biorthogonal filters having near-orthogonal frequency

response characteristics. Due to approximation of the HSD condition using finite

length polynomial, the designed filters have approximate linear-phase property.
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4.3.2 Proposed odd-even (matching) technique

In this approach, we use two stages in the design procedure. In the first stage, we

design Tree-2 filters by using GHBP and unconstrained optimization approach.

In the second stage referred as shape-parameter optimization, we modify the Tree-1

filters in order to improve the analytic quality of the designed filters. The first

stage has two parts: 1) selection of Tree-1 filters and 2) design of Tree-2 filters

using GHBP optimization explained as follows:

Selection of Tree-1 filters: we obtain the Tree-1 lowpass filters h̃0(n) and h0(n)

by choosing them from a class of triplet halfband filter bank (THFB) proposed in

[12]. The filter coefficients are chosen as:

H̃0(z) =
1 + p

2
+

(
1 + p

2

)
zT1(z2)

(
1− pzT0(z2)

1 + p

)
(4.32)

H0(z) =
(

1 + pzT0(z2)

1 + p

)
+

(
1− p
1 + p

)
zT2(z2)H0(−z). (4.33)

The method uses three halfband filter kernels T0(z2), T1(z2) and T2(z2) to take care

of perfect reconstruction. Here p represents shape parameter and it gives flexibil-

ity to tailor the frequency response characteristics of the designed filters. Using

different values of p ∈ [0, 1], the response value at ω = π
2 for both the filters

can be easily fixed. One may obtain biorthogonal filters having near-orthogonal

response characteristics for p =
√

2− 1 which gives us |H(ω)| at ω = π
2 , same

as in the case of orthogonal filters. Here, N0, N1 and N2 are the lengths of the

three halfband polynomials T0(z2), T1(z2) and T2(z2), respectively. The vanishing

moments for h̃0(n) and h0(n) are 2 ∗min(N0, N1) and 2 ∗min(N0, N1, N2), respec-

tively where ∗ denotes multiplication operation.

Designing Tree-2 filters using GHBP optimization: We restrict the Tree-2 lowpass

filters i.e., g̃0(n) and g0(n) to be symmetric and even-length having their magni-

tude responses matched approximately to the magnitude responses of correspond-

ing Tree-1 filters ( h̃0(n) and h0(n)). In order to do this, we use factorization of
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GHBP as given in equation (4.19) with D chosen as

D = 2 ∗ (M− 1) + 4 ∗ n f , (4.34)

Here, M = K̃ + K with K̃ and K representing the number of VMs of g̃0(n) and

g0(n), respectively. n f represents the number of free variables. K̃ and K must be

odd and they are chosen as:

K̃ = 2 ∗min(N0, N1)− 1

K = 2 ∗min(N0, N1, N2)− 1.
(4.35)

The final product filter P(z) in this case is as given in equation (4.20). Here, R(z) is

a remainder polynomial expressed in terms of n f number of free variables. After

factorizing R(z) into two symmetric polynomials R1(z) and R2(z), the lowpass

filters G̃0(z) and G0(z) can be expressed as

G̃0(z) = (1 + z−1)K̃R1(z) (4.36)

G0(z) = (1 + z−1)KR2(z). (4.37)

Now the expressions for G̃0(ω) and G0(ω) to be used in the objective function can

be written as

G̃0(ω) = (1 + z−1)K̃R1(z)|z=ejω (4.38)

G0(ω) = (1 + z−1)KR2(z)|z=ejω . (4.39)

We then use the MATLAB optimization function fminunc to minimize the follow-

ing objective function with respect to the chosen number of free variables (n f )

and obtain the filters g̃0(n) and g0(n).

Fobj =

π∫
0

(∣∣H̃0(ω)
∣∣− ∣∣G̃0(ω)

∣∣)2 dω +

π∫
0

(|H0(ω)| − |G0(ω)|)2 dω, (4.40)

Here, the remainder polynomial R(z) is factorized into symmetric factors R1(z)
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and R2(z) while performing the unconstrained minimization of the above objec-

tive function. With the optimized values of the free variables, we obtain symmet-

ric even-length linear phase biorthogonal FIR filters g̃0(n) and g0(n) to be used in

the Tree-2.

In order to have improved shift-invariance, we use second stage where we

modify the Tree-1 filters using the Tree-2 filters obtained in first stage by further

decreasing the error of magnitude approximation. Here, we modify the Tree-1

filters such that their magnitude responses better match to that of Tree-2 filters.

We make use of equations (4.32) and (4.33) where shape parameter p is subjected

to unconstrained optimization as follows.

Shape-parameter optimization: We minimize the error E given in equation (4.18)

by matching the amplitude responses of the Tree-1 filters to their corresponding

Tree-2 filters obtained at the first stage output. Here, we make use of one degree

of freedom associated with the Tree-1 filters h̃0(n) and h0(n) in the form of shape

parameter p. We use it for minimizing the magnitude error between filters of the

two trees. The optimized shape parameter p for the Tree-1 filters is obtained by

minimizing the following objective function

Fobj =

π∫
0

(∣∣G̃0(ω)
∣∣− ∣∣H̃0(ω)

∣∣)2 dω +

π∫
0

(|G0(ω)| − |H0(ω)|)2 dω, (4.41)

where G̃0(ω) and G0(ω) are the outputs of the first stage i.e., the even-length

filters g̃0(n) and g0(n). The expressions for H̃0(ω) and H0(ω) are from equations

(4.32) and (4.33), respectively where z is replaced by ejω. During the optimization,

for a specific value of p, the objective function value is evaluated and optimization

is continued until Fobj is minimized. Note that in this case G̃0(ω) and G0(ω) are

fixed. Once the optimal value of p is known output filters h̃0(n) and h0(n) can

be easily obtained using equations (4.32) and (4.33). The optimized filters of the

first and second stage are then considered as the final DTCWT filters. Due to

second stage optimization, analyticity of the associated wavelets is improved due

to better matching between the magnitude responses given in equation (4.17).
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4.4 Design Examples

In this section, we give numerous design examples for the two approaches pro-

posed in section 4.3. The designed filters are analyzed qualitatively by showing

their magnitude responses and wavelet function plots to judge the orthogonality

and analyticity, respectively. Following conventions are true while displaying the

analytic quality using wavelet function plots:

• For the first approach, wavelet functions have mirror symmetry only since it

is a variant of common factor method and follow conventions of [91].

• For the second approach, wavelet functions have both mirror as well as anti-

symmetry due to odd-even structure and follow conventions of [134][110].

The error measuring analyticity is quantified using two quantitative measures E1

and E2 given by Tay et al. in [106]. E1 and E2 as given in equations (4.42) and

(4.43) measure the peak error and energy in the negative frequency region of the

Fourier transform of complex wavelet basis, respectively.

E1 =
maxω<0

∣∣Ψh(ω) + jΨg(ω)
∣∣

maxω>0
∣∣Ψh(ω) + jΨg(ω)

∣∣ (4.42)

E2 =

0∫
−∞

∣∣Ψh(ω) + jΨg(ω)
∣∣2 dω

∞∫
0

∣∣Ψh(ω) + jΨg(ω)
∣∣2 dω

, (4.43)

where, Ψh(ω) and Ψg(ω) are Fourier transforms of Tree-1 and Tree-2 wavelets i.e.,

ψh(t) and ψg(t), respectively. Ideally, E1 and E2 must be 0. We express quantitative

measures in terms of E1_A, E2_A, E1_S, E2_S, and E1_Avg, E2_Avg, where A, S

and Avg represent analysis, synthesis and average, respectively.

Example-1: In this example, we design our first set of DTCWT filters using

proposed HSD-based approach. Design specifications used in this example are:

K̃ = K = 2, L = 2 with one free variable for optimization i.e., n f = 1. Our design

procedure is as follows: Substituting the values of K̃, K, L and n f in the expression
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for D, we get D = 22. Hence PD(z) becomes

PD(z) = a0 + a2z−2 + a4z−4 + a6z−6 + a8z−8 + a10z−10 + z−11

+ a10z−12 + a8z−14 + a6z−16 + a4z−18 + a2z−20 + a0z−22.

Maximum number of VMs possible for this order is 12. With M = K̃ + K = 4

zeros at z = −1 and D(z) obtained using closed-form formula for d(n) given in

equation (4.12), P(z) expressed in terms of equation (4.25) can be given by:

P(z) = (1 + z−1)4R(z)D(z)D(z−1)z−2. (4.44)

From this, the expressions for B4(z), R(z) and D2(z) are given as follows

B4(z) = (1 + z−1)4 = 1 + (4)z−1 + (6)z−2 + (4)z−3 + (1)z−4.

R(z) = a0 + a2z−1 + a4z−2 + a6z−3 + a8z−4 + a10z−5 + a8z−6 + a6z−7

+ a4z−8 + a2z−9 + a0z−10.

D2(z) =
(

1
5

)
+

(
12
5

)
z−1 +

(
126
25

)
z−2 +

(
12
5

)
z−3 +

(
1
5

)
z−4.

After imposing the halfband constraints, the R(z) can be expressed with one free

variable a8 as

R(z) =
(

5 a8

1642
+

3984125
37448318976

)
+

(
−40 a8

821
− 3984125

2340519936

)
z−1

+

(
401 a8

1642
+

302491075
37448318976

)
z−2 +

(
−512 a8

821
− 5660175

390086656

)
z−3

+ (a8) z−4 +

(
33075875

1170259968
− 944 a8

821

)
z−5 + (a8) z−6

+

(
−512 a8

821
− 5660175

390086656

)
z−7 +

(
401 a8

1642
+

302491075
37448318976

)
z−8

+

(
−40 a8

821
− 3984125

2340519936

)
z−9 +

(
5 a8

1642
+

3984125
37448318976

)
z−10.

The above R(z) is factorized into two symmetric polynomials in z i.e., factors

R1(z) and R2(z) during the optimization. For optimized value of a8 = −0.0101,

the lowpass filters h̃0(n) and h0(n) obtained have the lengths of 7 and 13, respec-

56



           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H̃0(ω)

H̃1(ω)

(a)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H0(ω)
H1(ω)

(b)

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

 

 

ψ̃h(t)

ψ̃g(t)

|ψ̃h(t) + jψ̃g(t)|

(c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω/π

 

 

|Ψ̃h(ω) + jΨ̃g(ω)|

(d)

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

 

 

ψh(t)
ψg(t)
|ψh(t) + jψg(t)|

(e)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω/π

 

 

|Ψh(ω) + jΨg(ω)|

(f)

Figure 4.2: Plots for Example-1 (a) magnitude responses of analysis filters of
Tree-1 i.e., |H̃0(ω)| and |H̃1(ω)| (b) magnitude responses of synthesis filters of
Tree-1 i.e., |H0(ω)| and |H1(ω)|. (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t) and
|ψ̃h(t) + jψ̃g(t)| (d) Magnitude frequency spectrum for |Ψ̃h(ω) + jΨ̃g(ω)| (e) Syn-
thesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (f) Magnitude frequency
spectrum for |Ψh(ω) + jΨg(ω)|.

57



tively having the coefficients given in Table 4.1. From these coefficients, Tree-2

filters i.e., g̃0(n) and g0(n) are obtained using equations (4.9) and (4.10), where

Ñ = 7 and N = 13, respectively. Figure 4.2 shows magnitude responses of Tree-1

filters. The plots of wavelet functions for analyzing the quality of their associated

Hilbert transform pairs of wavelet bases are also shown in the same figure. Mag-

nitude responses for Tree-2 filters are similar to Tree-1 filters due to time-reversal

relationship. From Figure 4.2, we can see that frequency response characteristics

Table 4.1: Coefficients of the Example-1 filters.

n h̃0(n) h0(n)
1 0.0455 0.0002
2 0.0128 -0.0000
3 -0.3944 -0.0156
4 -0.5882 0.0061
5 -0.1602 0.0680
6 0.0753 -0.1679
7 0.0091 -0.5394
8 - -0.3767
9 - -0.0004

10 - 0.0454
11 - -0.0136
12 - -0.0069
13 - 0.0008

of the designed filters appear closer to the orthogonal filter response characteris-

tics as well as analyticity of the wavelets is good as evident from Fig. 4.2(d) and

4.2(f). Quantitative measures for analyticity of the complex wavelets obtained

from the designed filters are tabulated in Table 4.7. One can see that the values of

analyticity measures are closer to zero indicating a better design.

Example-2: In this example, we consider number of free variables as 3 i.e.,

n f = 3, keeping all other specifications same as in the Example-1. This is done

to see the effect of number of free variables on the desired frequency response of
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Figure 4.3: Plots for Example-2 (a) magnitude responses of analysis filters of
Tree-1 i.e., |H̃0(ω)| and |H̃1(ω)| (b) magnitude responses of synthesis filters of
Tree-1 i.e., |H0(ω)| and |H1(ω)|. (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t) and
|ψ̃h(t) + jψ̃g(t)| (d) Magnitude frequency spectrum for |Ψ̃h(ω) + jΨ̃g(ω)| (e) Syn-
thesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (f) Magnitude frequency
spectrum for |Ψh(ω) + jΨg(ω)|.
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designed filters. For this set of design parameters, the length of the filters h̃0(n)

and h0(n) correspond to 11 and 17, respectively. Following the design procedure

for HSD-based technique, we obtain the filter coefficients as given in Table 4.2.

The different plots for this example are shown in Fig. 4.3 and the quantitative

measures are given in Table 4.7. It is clear from the magnitude responses given

Table 4.2: Coefficients of the Example-2 filters.

n h̃0(n) h0(n)
1 0.0007 0.0000
2 -0.0071 0.0000
3 0.0278 -0.0001
4 0.0184 -0.0011
5 -0.3775 -0.0043
6 -0.5782 0.0082
7 -0.1438 0.0677
8 0.0672 -0.1633
9 -0.0074 -0.5636

10 -0.0003 -0.3839
11 0.0001 0.0038
12 - 0.0429
13 - -0.0033
14 - -0.0028
15 - -0.0003
16 - 0.0000
17 - 0.0000

in Fig. 4.3(a) and Fig. 4.3(b) that the designed filters have frequency responses

comparable to that of quadrature mirror filters (QMFs) and the response charac-

teristics are better when compared to that of Example-1. However this is possible

at the cost of increase in filter lengths leading to increase in computational cost.

We observe that, the analyticity of the filters h̃0(n) and h0(n) is marginally inferior

both visually as well as quantitatively when compared to Example-1.
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Figure 4.4: Plots for Example-3 (a) magnitude responses of analysis filters of
Tree-1 i.e., |H̃0(ω)| and |H̃1(ω)| (b) magnitude responses of synthesis filters of
Tree-1 i.e., |H0(ω)| and |H1(ω)|. (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t) and
|ψ̃h(t) + jψ̃g(t)| (d) Magnitude frequency spectrum for |Ψ̃h(ω) + jΨ̃g(ω)| (e) Syn-
thesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (f) Magnitude frequency
spectrum for |Ψh(ω) + jΨg(ω)|.
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Example-3: We now consider another example where everything else being

same as in Example-1 only the order L is changed which is set to 4. Intuitively, this

should yield better HSD approximation and hence should improve the analytic-

ity of the resulting filters. This, however occurs at the cost of increased lengths.

For the chosen parameters, lengths of the filters h̃0(n) and h0(n) obtained are 15

and 13, respectively. The coefficients of these filters are given in Table 4.3 while

the necessary plots are shown in Fig. 4.4. Analyticity measures for the wavelets

obtained using these filters are given in Table 4.7. One can observe from the plots

Table 4.3: Coefficients of the Example-3 filters.

n h̃0(n) h0(n)
1 0.0001 0.0000
2 0.0003 -0.0000
3 -0.0037 -0.0034
4 -0.0151 0.0159
5 0.0399 0.0700
6 0.0118 -0.1682
7 -0.3821 -0.5696
8 -0.5523 -0.3996
9 -0.1537 0.0053

10 0.0658 0.0528
11 0.0001 -0.0023
12 -0.0107 -0.0009
13 -0.0005 0.0000
14 0.0002 -
15 0.0000 -

given in Fig. 4.4 that the magnitude responses of both the analysis and synthesis

filters are similar to that of Example-1. Note that the analyticity is better in this

case when compared to both Example-1 and 2. For ω < 0, we see that the magni-

tude frequency plots of |Ψ̃h(ω) + jΨ̃g(ω)| and |Ψh(ω) + jΨg(ω)| have negligible

frequency contents. This can also be verified from the quantitative measures given

in Table 4.7 where the measures corresponding to E2 have negligible values.
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Example-4: In this example, we show the improvement in the frequency re-

sponse characteristics of the designed filters using proposed HSD-based approach

over the common factor technique [91] proposed by Ivan Selesnick. The input

parameters chosen are K̃ = 2, K = 4, L = 2 and n f = 1. With this set of parame-

ters, the lengths of the designed filters h̃0(n) and h0(n) are 11 and 13, respectively

and their coefficients are given in Table 4.4. We have chosen this set of input pa-

rameters since the lengths of the filters obtained using our approach are same as

the biorthogonal filters given in Table III of [91]. These filters were obtained us-

ing maxflat factorization approach of Daubechies [26] with input parameters as

K̃ = K = 4 and L = 2 and we refer to them as Selesnick’s 11/13 filters. Since free

variables are not used in common factor technique [91], there is no control over

frequency response characteristics of the designed filters. We see from Table 4.4

Table 4.4: Coefficients of the Example-4 filters.

n h̃0(n) h0(n)
1 0.0015 0.0002
2 0.0007 -0.0001
3 0.0381 -0.0195
4 0.0080 0.0113
5 -0.3869 0.0772
6 -0.5781 -0.1724
7 -0.1584 -0.5473
8 0.0670 -0.3851
9 0.0055 0.0031

10 0.0025 0.0551
11 0.0003 -0.0149
12 - -0.0088
13 - 0.0010

that the filter coefficients obtained in our case are entirely different from [91]. Fig-

ure 4.5 shows magnitude response characteristics of the proposed and Selesnick’s

11/13 filters. It is clear that the frequency responses of the proposed filters are

much better and they are close to response characteristics of near-orthogonal fil-
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ters when compared to those designed using maxflat approach. Wavelet plots

for the proposed filters are not shown since they are similar to that of Example-1,

however analytic quality measures for the same are given in Table 4.7.
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Figure 4.5: Magnitude response comparison between Tree-1 analysis filters of pro-
posed 11/13 filters of Example-4 and Selesnick’s 11/13 filters.

Improving linear-phase approximation and analyticity: In the proposed HSD-based

approach, the HSD constraint given in equation (4.4) is satisfied using an allpass

filter approximation A(z) of the form given in equation (4.11). Hence for a finite L,

we can write A(ejω) ≈ ejθ(ω), where θ(ω) = −ω
2 which represents the phase delay

between the scaling filters of the two trees of DTCWT. Figures 4.6(a) and 4.6(b)

show the phase response characteristics obtained using the proposed approach

for orders L = 2 and L = 4, respectively. Note that they are only dependent on

the phase response characteristics of the numerator and denominator polynomi-

als of the HSD condition given in equation (4.11). As stated in section 2.2, ide-

ally L should be infinite to have the exact linear phase over the entire frequency

range of 0 to 1. Since it should be finite in practice, the biorthogonal DTCWT
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filters designed using the proposed HSD-based approach exhibit approximate lin-

ear phase characteristics. Obtaining the exact linear phase is desirable to make

the wavelet functions completely symmetric which results in better directional

selectivity. This gives improved performance in applications such as denoising,

superresolution etc. [91]. Note that, it is not possible to obtain the exact linear

phase using the A(z) as in equation (4.11) using finite L. Although increase in L

improves the linearity, this also increases the resulting filter lengths. For design

examples 1-4, we used the maximally flat approximation of the A(z) while de-

signing the filters. But the use of such an approximation increases the error in

linear phase as |ω| increases which is clearly seen in the Figures 4.6(a) and 4.6(b).

One can observe that significant deviation from linearity occurs for ω
π > 0.5 and

ω
π > 0.7 for L = 2 and L = 4, respectively. Such a phase approximation leads

to poor analyticity of the DTCWT [126]. Hence, a practical approach is to use the

minimax or L∞ approximation rather than maximally flat all-pass filter approxima-

tion [36][103][139][126]. Hence, we also propose to use minimax approximation

to improve the analyticity there by obtaining better linear-phase approximation

of designed filters with the use of comparatively smaller filter lengths. Also, by

using minimax approximation one can design filters with better frequency selec-

tivity. In our case we focus mainly on improving the analyticity by using min-

imax HSD approximation. The approach proposed in [56] is used to design the

filter d(n) of desired order L. Improvements over maximally flat approach are

shown by designing the filters with same input parameters as in Example-2 and

Example-3. We first discuss their analyticity followed by improvements in the

linear phase characteristics.

Example-5: Design parameters used here are the same as in the Example-2.

Table 4.5 shows the filter coefficients of the designed filters, while in Fig. 4.7 we

display the various plots. Although these plots appear similar to those given in

Fig. 4.3, analyticity measures for the magnitude spectrum plots shown in Figs.

4.7(d) and 4.7(f) indicate significant improvement in terms of reduced ripples in

the negative frequency region.
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Figure 4.6: Phase response ω
π vs. − θ(ω)

π for (a) L = 2. (b) L = 4 obtained using the
maximally flat all-pass filter approximation of half-sample delay condition in the
proposed HSD-based method.

Table 4.5: Coefficients of the Example-5 filters.

n h̃0(n) h0(n)
1 0.0053 0.0000
2 -0.0439 0.0000
3 -0.0094 0.0000
4 0.3901 0.0001
5 0.5636 0.0008
6 0.1604 0.0057
7 -0.0610 -0.0006
8 -0.0067 -0.0648
9 0.0016 0.1523

10 - 0.5652
11 - 0.3869
12 - -0.0178
13 - -0.0416
14 - 0.0115
15 - 0.0021
16 - 0.0002
17 - 0.0000
18 - 0.0000
19 - 0.0000

66



           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H̃0(ω)

H̃1(ω)

(a)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H0(ω)
H1(ω)

(b)

0 2 4 6 8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

 

 

ψ̃h(t)

ψ̃g(t)

|ψ̃h(t) + jψ̃g(t)|

(c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω/π

 

 

|Ψ̃h(ω) + jΨ̃g(ω)|

(d)

0 2 4 6 8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

 

 

ψh(t)
ψg(t)
|ψh(t) + jψg(t)|

(e)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω/π

 

 

|Ψh(ω) + jΨg(ω)|

(f)

Figure 4.7: Plots for Example-5 (a) magnitude responses of analysis filters of
Tree-1 i.e., |H̃0(ω)| and |H̃1(ω)| (b) magnitude responses of synthesis filters of
Tree-1 i.e., |H0(ω)| and |H1(ω)|. (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t) and
|ψ̃h(t) + jψ̃g(t)| (d) Magnitude frequency spectrum for |Ψ̃h(ω) + jΨ̃g(ω)| (e) Syn-
thesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (f) Magnitude frequency
spectrum for |Ψh(ω) + jΨg(ω)|.
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Example-6: Design parameters for this example are same as in the Example-3.

In this case also, similar to Example-5, analyticity improvements can be visually

seen by comparing the magnitude spectrum plots shown in Figs. 4.9(d) and 4.9(f)

to those given in Figs. 4.4(d) and 4.4(f), respectively. The filter coefficients are

shown in Table 4.6.

Table 4.6: Coefficients of the Example-6 filters.

n h̃0(n) h0(n)
1 0.0002 0.0000
2 0.0006 -0.0000
3 -0.0065 -0.0004
4 -0.0174 0.0012
5 0.0466 -0.0026
6 0.0094 0.0169
7 -0.3841 0.0696
8 -0.5461 -0.1703
9 -0.1595 -0.5694

10 0.0689 -0.4021
11 0.0042 0.0048
12 -0.0158 0.0534
13 -0.0008 -0.0020
14 0.0005 0.0009
15 0.0000 -0.0000
16 - -0.0002
17 - 0.0000

Improvement in the analyticity measures for Example-5 and 6 can also be veri-

fied by looking at Table 4.7, where both E1 and E2 measures have near ideal values.

Both the examples signify importance of using minimax approach for obtaining

improved analyticity of wavelet functions when approximation to half-sample

delay constraint is used during DTCWT filter design.
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Figure 4.9: Plots for Example-6 (a) magnitude responses of analysis filters of
Tree-1 i.e., |H̃0(ω)| and |H̃1(ω)| (b) magnitude responses of synthesis filters of
Tree-1 i.e., |H0(ω)| and |H1(ω)|. (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t) and
|ψ̃h(t) + jψ̃g(t)| (d) Magnitude frequency spectrum for |Ψ̃h(ω) + jΨ̃g(ω)| (e) Syn-
thesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (f) Magnitude frequency
spectrum for |Ψh(ω) + jΨg(ω)|.
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Figure 4.8 shows improvements in linear-phase characteristics for minimax all-

pass HSD approximation used in our approach over the maximally flat approach

shown in Fig. 4.6. To show the improvements, we have selected normalized angu-

lar frequency points at ω
π = 0.6 and ω

π = 0.8 in Figs. 4.6(a), 4.8(a) and Figs. 4.6(b),

4.8(b), respectively. One can see that approximate linear phase characteristics are

improved for the minimax approach.
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Figure 4.8: Phase response ω
π vs. − θ(ω)

π for (a) L = 2. (b) L = 4 obtained using
minimax all-pass filter approximation used in our approach.

Figures 4.10(a) and 4.10(b) are shown to compare phase approximation char-

acteristics of maximally flat and minimax approaches along with their respective

error plots. It is clear from these plots that minimax approximation with L = 2

is nearly similar to that of maximally flat approximation with L = 4. Similarly

minimax approximation with L = 4 shows much better linear-phase characteris-

tics than the maximally flat approximation with L = 4. From error plots given in

Fig. 4.10(b), it is clear that by using minimax all-pass HSD approximation, smaller

phase error is obtained as |ω| increases when compared to the maximally flat ap-

proximation. Due to better linear phase approximation, analyticity of wavelets is

also improved both visually as well as quantitatively as verified from Figs. (4.7),

(4.9) and Table 4.7, respectively.

Orthogonality measures: For qualitative evaluation of the frequency response

characteristics of the proposed filters, we use two orthogonality measures given

in [62] and [84]. They indicate how good the response characteristics match to the
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Figure 4.10: (a)Phase response ω
π vs. − θ(ω)

π comparison for maximally flat and
minimax approximations with L = 2, 4. (b) Error plots for the phase approxima-
tions shown in Fig. 4.10(a).

Table 4.7: Analyticity measures for the different wavelet bases.

E1_A E2_A E1_S E2_S E1_Avg E2_Avg
Example-1 0.0256 0.0006 0.0213 0.0010 0.0235 0.0008
Example-2 0.0308 0.0009 0.0239 0.0015 0.0274 0.0012
Example-3 0.0048 4.4E-5 0.0047 4.6E-5 0.0047 4.5E-5
Example-4 0.0260 0.0005 0.0218 0.0010 0.0239 0.0008
Example-5 0.0276 0.0006 0.0272 0.0005 0.0274 0.0005
Example-6 0.0011 5.7E-6 0.0010 2.8E-6 0.0010 4.2E-6

Selesnick 11/13 [91] 0.0180 3.2E-04 0.0161 3.7E-04 0.0171 3.4E-04

orthogonal filters which have ideal value of 0. Expression for the first measure

used is:

ON1 =
1
π

∫ π

0
(2−O(ω))2dω, (4.45)

where O(ω) = O(z)|z=ejω with O(z) = H0(z)H0(z−1) + H1(z)H1(z−1). Expres-

sion for the second measure is:

ON2 =
∣∣∣∣∣∣H0

(π

2

)∣∣∣− ∣∣∣H1

(π

2

)∣∣∣∣∣∣ . (4.46)

Here, H0(z) and H1(z) denote analysis lowpass and highpass filters, respectively.

Table 4.8 shows comparison of orthogonality measures for different filters de-

signed using the proposed HSD-based approach and common factor technique.
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Table 4.8: Orthogonality measures for the different filters.

ON1 [62] ON2 [84]
Example-1 0.0025 0.0421
Example-2 8.8E-04 0.0310
Example-3 0.0030 0.0061
Example-4 0.0010 0.0145
Example-5 2.5E-04 0.0259
Example-6 0.0031 0.0114

Selesnick 11/13 [91] 0.0372 0.3510

From Table 4.8, one can see that values of orthogonality measures for the fil-

ters obtained using proposed HSD-based approach are near to ideal value i.e.,

zero. For Selesnick’s 11/13 filters obtained using common factor approach [91]

these values are significantly high indicating their poor frequency response char-

acteristicss.

Example-7: Here, we give a design example for our second approach i.e., pro-

posed odd-even (matching) technique. For better understanding, we analyze the

outputs of the two stages. In the first stage, Tree-1 filters h̃0(n) and h0(n) are ob-

tained using equations (4.32) and (4.33), respectively with chosen parameters as

N0 = N1 = N2 = 2 and p =
√

2− 1 for the design specifications K̃ = K = 4.

The lengths of resulting filters are 13 and 19, respectively the coefficients of which

are given in Table 4.9. To design the Tree-2 filters g̃0(n) and g0(n) using GHBP

optimization we choose n f = 1 i.e., one free variable. GHBP order D and number

of vanishing moments are set automatically using equations (4.34) and (4.35), re-

spectively. Coefficients of the remainder polynomial R(z) are then obtained using

equations (4.19) and (4.20) as given below

[
(a0) , (−6 a0) ,

(
513 a0

32 + 3
256

)
,
(
−419 a0

16 −
9

128

)
,
(

489 a0
16 + 19

128

)
(
−419 a0

16 −
9

128

)
,
(

513 a0
32 + 3

256

)
, (−6 a0) , (a0)

] .

During the unconstrained optimization, remainder polynomial R(z) is factorized

into R1(z) and R2(z). For the optimized value of the free variable a0 = −9.2448×

10−04, Fobj in equation (4.40) is minimum and Tree-2 filters g̃0(n) and g0(n) of

length 10 and 6, respectively are obtained. The coefficients for the same are as
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Table 4.9: Coefficients of the filters h̃0(n) and h0(n) used for GHBP optimization
stage.

n h̃0(n) h0(n)
1 -0.0008 0.0000
2 0.0000 0.0000
3 0.0146 -0.0006
4 -0.0313 -0.0008
5 -0.0510 0.0045
6 0.2813 0.0146
7 0.5744 -0.0416
8 0.2813 -0.0510
9 -0.0510 0.2877

10 -0.0313 0.5744
11 0.0146 0.2877
12 0.0000 -0.0510
13 -0.0008 -0.0416
14 - 0.0146
15 - 0.0045
16 - -0.0008
17 - -0.0006
18 - 0.0000
19 - 0.0000

given in Table 4.10.

Table 4.10: Coefficients of the filters g̃0(n) and g0(n) using the proposed odd-even
technique

n 1 2 3 4 5 6 7 8 9 10
g̃0(n) 0.0076 0.0080 -0.0641 0.0602 0.4883 0.4883 0.0602 -0.0641 0.0080 0.0076
g0(n) 0.0610 -0.0640 -0.4970 -0.4970 -0.0640 0.0610 - - - -

Figures 4.12 and 4.11 show frequency response characteristics of the Example-

7 (stage-1) filters and their associated Hilbert pairs of wavelet bases, respectively.

It is quite clear from Fig. 4.12 that the both Tree-1 and Tree-2 filters have near-

orthogonal or almost-QMF frequency response characteristics. Fig. 4.12(e) and

73



           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H̃0(ω)

H̃1(ω)

(a)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H0(ω)
H1(ω)

(b)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

G0(ω)
G1(ω)

(c)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

G̃0(ω)

G̃1(ω)

(d)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H̃0(ω)

G̃0(ω)

(e)

           
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Radian frequency (ω)

A
m

p
lit

u
d

e

 

 

H0(ω)
G0(ω)

(f)

Figure 4.12: Magnitude responses for Example-7 (stage-1) (a) Tree-1: analysis low-
pass and highpass filters i.e., |H̃0(ω)| and |H̃1(ω)| (b)Tree-1: synthesis lowpass
and highpass filters i.e., |H0(ω)| and |H1(ω)| (c) Tree-2: analysis lowpass and
highpass filters i.e., |G̃0(ω)| and |G̃1(ω)| (d)Tree-2: synthesis lowpass and high-
pass filters i.e., |G0(ω)| and |G1(ω)| (e) comparison between analysis lowpass
filters of Tree-1 and Tree-2 i.e., |H̃0(ω)| and |G̃0(ω)| (f)comparison between syn-
thesis lowpass filters of Tree-1 and Tree-2 i.e., |H0(ω)| and |G0(ω)|.
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Fig. 4.12(f) compare the magnitude responses of the analysis and synthesis low-

pass filters of Tree-1 and Tree-2, respectively. It is clear that although responses

match fairly well there is still scope for improvement, which motivated us to have

second shape-parameter optimization stage. Fig. 4.11 shows plots of analysis

and synthesis wavelet functions for first stage filters obtained in Example-7. It
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Figure 4.11: Plots for Example-7 (stage-1) (a) Analysis wavelet functions ψ̃h(t),
ψ̃g(t) and |ψ̃h(t) + jψ̃g(t)| (b) Magnitude frequency spectrum for |Ψ̃h(ω) +
jΨ̃g(ω)| (c) Synthesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (d) Mag-
nitude frequency spectrum for |Ψh(ω) + jΨg(ω)|.

is clear from the frequency spectrum plots given in Figs. 4.11(b) and 4.11(d) that

they are approximately zero for ω < 0 and ω > 0, respectively. Thus, their cor-

responding analysis/synthesis wavelet functions of both the trees shown in Figs.

4.11(a) and 4.11(c) are approximately Hilbert transform pairs of each other.
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To improve the analyticity of the wavelet functions of desired filters, we use

second stage by using shape-parameter optimization of the Tree-1 filters. That is

we obtain optimized Tree-1 filters for better analyticity. During the optimization,

different combinations of lengths of halfband filters are considered to obtain the

optimum filter coefficients. For N0 = N1 = 2, N2 = 1 and p = 0.4327 combina-

tion, objective function in equation (4.41) was minimum. Optimized Tree-1 filters

h̃0(n) and h0(n) are of lengths 13 and 15, receptively. Their filter coefficients are

given in Table 4.11. Figure 4.13 shows magnitude response comparison between

lowpass filters of the newly optimized Tree-1 and the proposed Tree-2 filters. It

is clear that magnitude response approximation is much better in this case. Also,

the visual quality of the analyticity of wavelet bases looks much better than the

first stage filters. Analytic quality of wavelets obtained using stage-1 and stage-2

filters is tabulated in Table 4.13 and it is clear that stage-2 optimization improves

analytic quality quantitatively as well. In Table 4.13, we have also compared re-

sults of this example with the design examples given in state-of-the-art odd-even

matching techniques [134][95]. One can see that, wavelets obtained for filters of

Example-7 have analyticity comparable to these methods which use constrained

optimization and are computationally expensive.

Finally, we compare the results obtained using this approach to our first ap-

proach based on vanishing moments criteria where we consider same number of

vanishing moments for the scaling filters of Tree-1. As the wavelet functions for

Example-7 (stage-2) are obtained using K̃ = 4 and K = 2, the filters of HSD-

based approach are obtained using K̃ = 4, K = 2, L = 2 and n f = 1 referred

as Example-8 filters. The lengths of the filters obtained are 17 and 11, respec-

tively with their coefficients tabulated in Table 4.12. Analyticity measures for the

wavelets obtained using these filters are given Table 4.13. One can see that an-

alyticity measures for the wavelets obtained using both Example-7 (stage 2) and

Example-8 filters are similar. However, using the proposed HSD-based method

we only need to design the either of the tree filters which is beneficial when con-

sidering the multiplier-less implementation of DTCWT [3][107]. The disadvan-

tage is that these filters have approximate linear phase characteristics. Whereas,
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Table 4.11: Optimized coefficients of h̃0(n) and h0(n) after shape-parameter opti-
mization stage.

n h̃0(n) h0(n)
1 -0.0008 -0.0002
2 0.0000 0.0000
3 0.0152 0.0028
4 -0.0312 0.0062
5 -0.0532 -0.0264
6 0.2812 -0.0495
7 0.5777 0.2737
8 0.2812 0.5866
9 -0.0532 0.2737

10 -0.0312 -0.0495
11 0.0152 -0.0264
12 0.0000 0.0062
13 -0.0008 0.0028
14 - 0.0000
15 - -0.0002
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Table 4.12: Coefficients of the Example-8 filters.

n h̃0(n) h0(n)
1 0.0000 0.0001
2 -0.0001 0.0007
3 -0.0018 -0.0139
4 0.0087 -0.0671
5 0.0180 0.1698
6 -0.0541 0.5676
7 -0.0081 0.3898
8 0.3854 0.0007
9 0.5516 -0.0465

10 0.1688 -0.0020
11 -0.0802 0.0007
12 -0.0079 0.0000
13 0.0210 0.0000
14 -0.0009 0.0000
15 -0.0006 0.0000
16 0.0000 0.0000
17 0.0000 0.0000

Table 4.13: Analytic quality comparison of the 1st and 2nd stage filters obtained
using the proposed matching technique

E1_A E2_A E1_S E2_S E1_Avg E2_Avg
Example-7 (Stage-1) 0.0372 0.0010 0.0360 0.0017 0.0366 0.0014
Example-7 (Stage-2) 0.0198 0.0004 0.0184 0.0004 0.0191 0.0004

Table I of [134] 0.0222 0.0007 0.0328 0.0008 0.0275 0.0007
Table III of [95] 0.0202 0.0008 0.0242 0.0004 0.0222 0.0006

Example-8 0.0186 0.0007 0.0207 0.0005 0.0196 0.0006
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Figure 4.13: Plots for Example-7 (stage-2) (a) magnitude response comparison
between analysis lowpass filters of Tree-1 and Tree-2 i.e., |H̃0(ω)| and |G̃0(ω)|
(b)magnitude response comparison between synthesis lowpass filters of Tree-1
and Tree-2 i.e., |H0(ω)| and |G0(ω)|. (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t)
and |ψ̃h(t) + jψ̃g(t)| (d) Magnitude frequency spectrum for |Ψ̃h(ω) + jΨ̃g(ω)| (e)
Synthesis wavelet functions ψh(t), ψg(t) and |ψh(t) + jψg(t)| (f) Magnitude fre-
quency spectrum for |Ψh(ω) + jΨg(ω)|.
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proposed odd-even approach is quite useful if exact linear-phase of filters and

exact symmetry of wavelets is desirable.

4.5 Image Denoising Application

In this section, we show the performance of one of the DTCWT biorthogonal

wavelet filter set for the image denoising application. For this purpose, we have

chosen output stage-2 filters of the Example-7 designed in the previous section.

Coefficients of the analysis and synthesis lowpass filters of the chosen set for Tree-

1 and Tree-2 are given in Tables 4.11 and 4.10, respectively. We use these filters to

obtain the 2-D DTCWT by using the construction given [92]. Six 2-D oriented six

wavelets obtained for the chosen filter set are shown in Figure 4.14. Here, the

first and second rows correspond to the real and imaginary parts of each complex

wavelet while third row corresponds to the magnitude parts of the same.

Figure 4.14: 2D Dual-Tree Complex Wavelets for the proposed biorthogonal
wavelet filters of the chosen filter set.

For comparing the image denoising performance we have used the MATLAB

software provided by Ivan W. Selesnick on his website [89]. We have compared

our results with their 2-D DTCWT given for the best performing filters namely

6-tap orthogonal Q-shift filters of [52]. Additive white Gaussian noise (AWGN)

of standard deviation σ is added to the original image in order to test the perfor-

mance of our proposed designs on noisy images. We have used hard thresholding
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method [30] with a threshold value of T = 2σ as used in the DTCWT software

mentioned above. Figure 4.15 shows hard thresholding results on a part of Bar-

bara image containing oriented texture for AWGN of standard deviation σ = 30.

(a) (b)

(c) (d)

Figure 4.15: Image denoising using 2-D DTCWT (a) original image (b) noisy image
with σ = 30, PSNR = 18.72 dB. Denoising using (c) 6-tap orthogonal Q-shift filters
of [52], PSNR = 23.35 dB. (d) for the proposed biorthogonal wavelet filters of the
chosen filter set, PSNR = 23.23 dB.

It can be observed that the 2-D DTCWT obtained using proposed BWFs of the

chosen set performs comparably to that of best known orthogonal 6-tap Q-shift

filters of [52] in terms of PSNR value. Denoising output shown in Figure 4.15(c)
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for Q-shift filters have slightly better visual performance when compared to the

output for proposed BWFs of the chosen filter set shown in Figure 4.15(d). How-

ever, directional features are better captured using the proposed filters (see the

textural features visible in the bottom right hand corner) due to better directional

selectivity of their 2-D dual-tree directional wavelets. Better visual performance of

Q-shift filters may be reasoned for their short lengths which helps in suppressing

the ringing artifacts near the image edges.

4.6 Conclusion

In this chapter, we have proposed two new approaches to design a set of biorthog-

onal wavelet filters of DTCWT having near-orthogonal filter response character-

istics which are useful to get tight-frame transform. The proposed approaches are

based on optimization of free variables obtained through factorization of gener-

alized halfband polynomial. Use of unconstrained optimization makes both ap-

proaches simple and computationally effective. Associated wavelets of the filters

obtained using the proposed approaches have better analytic properties leading

to improved shift-invariance. Image denoising performance using simple thresh-

olding applied on the multiscale six directional suubands of the 2-D DTCWT con-

structed using one of the proposed filter set shows better directional selectivity

and comparable performance as compared to one of the best performing orthog-

onal DTCWT filter set.
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CHAPTER 5

Design of Extrafine Complex Directional Wavelet

Transform

In chapter 4, we discussed the 1-D filter design aspect of dual-tree complex wavelet

transform (DTCWT). Multidimensional (m-D) extensions of DTCWT are easy to

follow and 2-D DTCWT used in image processing applications has six directional

representation with redundancy factor 4 [92]. Due to its specific construction,

the directionality of 2-D DTCWT cannot be improved without increase in the re-

dundancy factor. In this chapter, we propose a new 2-D complex wavelet trans-

form having higher directionality and lower redundancy factor than 2-D DTCWT.

The proposed transform referred as extrafine complex directional wavelet transform

(EFiCDWT) is obtained using separable and nonseparable filtering stages and has

twelve directional representation with a redundancy factor of just 2.

5.1 Introduction

In recent years, complex wavelet transforms (CWTs) have attained a status of use-

ful transform domain processing tool in wide range of multimedia applications

such as image [85][39] and video [83] denoising, super-resolution [132][48], image

fusion [125], image quality assessment [87] to name a few. For numerous other

applications one can refer to [92]. The reason for their success is ascribed to their

improvements in the signal representation over discrete wavelet transform (DWT)

with reasonable redundancy. CWTs offer less oscillatory behaviour at edges and

have robust edge information. Along with better directionality they exhibit near
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shift-invariance and phase information is also available.

We refer [92] as an excellent comprehensive tutorial on CWTs. The most popu-

lar CWTs are those obtained using dual-tree (DT) structure of DWTs [92] which is

discussed in detail in Section 4.2. As per the discussion, any DWT structure can-

not be used here since the wavelets of the two trees must be approximate Hilbert

transform pairs of each other and hence the scaling filters of the two DWT trees are

related to each other. In 2-D DTCWT, the subband outputs of the two branches

i.e., primal and dual trees are considered as the real and imaginary parts of the

complex coefficient representation of an input image. These complex coefficients

are approximately analytic and represent single sided directional subbands in the

2-D frequency plane. Various transforms proposed using DTCWT concept can be

found in [43], [20], [15]. The 2-D CWTs can also be obtained using post/pre filter-

ing stages to the DWT [92]. In [37], Fernandes et. al proposed a new projection-

based framework for CWTs with controllable redundancy factor using a two stage

approach. In the first stage, projection of input image onto complex function space

is obtained using 1-D quasi-analytic projection filters followed by any DWT stage.

Multidimensional extensions of this framework are discussed in detail in [38]. Its

2-D extended CWT has a redundancy factor of 2.67. Although, the 2-D CWTs dis-

cussed above (dual-tree and projection-based) have different redundancy factors,

they can only have one lowpass and six directional subbands oriented at 15◦, 45◦,

75◦, −75◦ (or 105◦), −45◦ (or 135◦) and −15◦ (or 165◦).

In this chapter, we propose decimated and undecimated designs of extrafine

complex directional wavelet transform (EFiCDWT) having 12 directional sub-

bands at each scale. In order to do this, we first propose a new 2-D mapping-

based CWT which forms core of the proposed transform. It has the advantage of

extensible directionality. An additional stage of 2-D complex FIR filters referred

simply as partition filters, is used to obtain the extrafine directionality. This stage

partitions the directional subbands of the proposed CWT to obtain the decimated

EFiCDWT. This design has one lowpass and 12 complex-valued directional sub-

bands with near shift-invariance. Decimated EFiCDWT has a redundancy factor

of 2 because of complex nature of the coefficients (2 ∗N real coefficients where, N:
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number of image pixels). We also propose undecimated EFiCDWT which is com-

pletely shift-invariant. Both designs are useful in image processing applications

such as image denoising, super-resolution etc. that require improved directional-

ity and shift-invariance properties. The rest of the paper is organized as follows:

In Section 5.2, we explain in detail the design procedures of the proposed dec-

imated and undecimated EFiCDWT including the designs of the necessary 2-D

FIR filters. In Section 5.3, we test the image denoising capability of the proposed

designs using the hard thresholding method. Section 5.4 concludes the chapter.

5.2 Proposed EFiCDWT designs

Figure 5.1(b) shows, the 2-D frequency partition for the proposed EFiCDWT that

has 12 complex-valued directional subbands. Coloured parts of the frequency

plane are for complex-valued directional subbands and taking the real-part of

these will cover both sides of the 2-D frequency plane. EFiCDWT partition is ob-

tained by extrafine partitioning of the CWT-like partition shown in Figure 5.1(a).

Our new approach to obtain the CWT-like partition uses real-valued highpass

subbands of the finer directional wavelet transform (FiDWT) [63], which are mapped

to approximately analytic domain by filtering them with appropriate 2-D map-

ping filters. Finally, extrafine directional subbands are obtained by filtering the

analytic subbands using additional filter bank stage of partition filters.

5.2.1 Design of required 2-D FIR filters

The filter responses used in the proposed EFiCDWT are obtained using trans-

formations of variables (TROV) [111] technique, with Cohen-Daubechies-Feauveau

CDF 9-7 as 1-D wavelet filter and using 2-D transformation kernel obtained by

truncating the 2-D ideal impulse response of each filter by a 2-D window obtained

from 1-D Kaiser window having parameters Lw = 7 and β = 4.5.

Checkerboard-shaped filters design (Hcs
i (z), i = 0, 1): These are obtained using

the procedure given in [111].

Mapping filters design for analytic representation: To obtain the complex 2-D
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Figure 5.1: 2-D frequency partitions of (a) new mapping-based CWT (b) proposed
EFiCDWT Here, Pi in the figure represents π.

frequency partition shown in figure 5.1(a), we need to design the analytic map-

ping filters which will filter the real-valued directional subbands of the FiDWT to

obtain CWT-like representation. Ideal magnitude responses of the desired map-

ping filters are

Hm
0 (ω) = 0, for ω1 ∈ [−π, 0], ω2 ∈ [−π, π]

Hm
1 (ω) = 0, for ω1 ∈ [0, π], ω2 ∈ [−π, π]

(5.1)

However, this is not possible in practise. Hence a quasi (approximate) analytic

mapping filter is obtained using TROV, with ideal impulse response as,

rm(n) = jsinc
(n1π

2

)
sinc (n2π) sin

(n1π

2

)
. (5.2)

Design of partition filters: We propose a class of special 2-D complex FIR filters

which are obtained by shifting the 2-D nonseparable rectangular-shaped filters

in the frequency domain. The rectangular shaped filters have passband support

in [−0.5π, 0.5π]. In the proposed filters, the positive passband edge (at 0.5π) is

shifted arbitrarily at any cut-off between [−π, π] along ω1 or ω2 axes with same

passband support size. The generalized ideal impulse response equations for de-
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signing filters having passband edge along ω2 axis are,

rc2(n) = sinc
(n1π

2

)
sinc (n2π) exp(−jπ(0.5− C f )n1) (5.3)

rc2(n) = sinc
(n1π

2

)
sinc (n2π) exp(jπ(0.5 + C f )n1). (5.4)

Here C f is any cut-off frequency number between [−1, 1]. For C f ≥ 0 equation

(5.3) is used else equation (5.4) is used. Similarly, generalized ideal impulse re-

sponse equations for designing filters having passband edge along ω1 axis are,

rc1(n) = sinc
(n2π

2

)
sinc (n1π) exp(−jπ(0.5− C f )n2)

rc1(n) = sinc
(n2π

2

)
sinc (n1π) exp(jπ(0.5 + C f )n2).

(5.5)

Figure 5.2 shows the typical analysis lowpass frequency responses of the designed

filters.
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Figure 5.2: Magnitude responses of analysis lowpass filters designed using TROV
with Lw = 7 and β = 4.5. Starting from upper-left corner Hcs

0 (z), Hc2
0 (z) (C f =

0.25), Hc1
0 (z) (C f = 0.25) and Hm

0 (z).
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5.2.2 Proposed decimated EFiCDWT design

Figure 5.3 shows the analysis section of the proposed decimated EFiCDWT design

for one level decomposition. The 2-D DWT is shown as a 4-channel filter bank
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Figure 5.3: Analysis side of the proposed decimated EFiCDWT.

88



with 2-D filters obtained using the 1-D filters along the horizontal and vertical

directions. Using z-transform, they can be represented as

LL(z) = H1D
0 (z1)H1D

0 (z2); LH(z) = H1D
0 (z1)H1D

1 (z2);

HL(z) = H1D
1 (z1)H1D

0 (z2); HH(z) = H1D
1 (z1)H1D

1 (z2)
(5.6)

where, H1D
i (z1) and H1D

i (z2) (i = 0, 1) are the 1-D filter responses used for filtering

the input image I along horizontal (row-wise) and vertical (column-wise) direc-

tions, respectively. Vertical (LH), horizontal (HL) and diagonal (HH) subbands of

the 2-D discrete wavelet transform (DWT) are followed by decimated 2-channel

checkerboard shaped filter bank (CSFB) to get the finer directional wavelet trans-

form (FiDWT) [63]. The six highpass directional subbands of the FiDWT have the

orientation selectivity of 75◦, 105◦, 15◦, 165◦, 45◦ and 135◦, respectively and have

the z-transform representation as,

H3(z) = LH(z)Hcs
0 (zD22); H2(z) = LH(z)Hcs

1 (zD22);

H5(z) = HL(z)Hcs
0 (zD22); H6(z) = HL(z)Hcs

1 (zD22);

H1(z) = HH(z)Hcs
0 (zD22); H4(z) = HH(z)Hcs

1 (zD22).

(5.7)

Here D22 = diag(2, 2) is downsampling matrix for DWT and D21 = diag(2, 1) is

downsampling matrix for 2-channel checkerboard-shaped filter bank. Note that

being critically sampled, number of directional subbands and directional selec-

tivity of the FiDWT is similar to that of CWT. However it suffers from aliasing

effects [69] due to nonideal passbands of the CSFB filters. On the other hand the

CWT having phase information, posses near-shift invariance property and the co-

efficients are less oscillatory at edges. Since real-part 2-D frequency partition of

CWT is same as that of FiDWT, we can easily obtain it from FiDWT subbands with

proper filtering stages. We filter each of the real-valued directional subbands of

FiDWT by an appropriate quasi-analytic filter to obtain the CWT-like directional

subbands i.e., frequency response of any directional subband exists on positive

side of the origin of ω2 axis as shown in Figure 5.1(a).

Our approach for obtaining the CWT-like 2-D frequency partition is motivated
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by the works [16] [37]. In [16], Bernard used the post-filtering stage on the real-

valued highpass subbands of the DWT using almost analytic 1-D wavelets to obtain

analytic DWT and applied the same for optical flow estimation. In [37], Fernan-

des used the prefiltering by 1-D quasi-analytic projection filters to get the 2-D

CWT. Our approach uses the 2-D quasi-analytic mapping filters designed in sec-

tion 5.2.1 to filter the real-valued subbands of the FiDWT to get 2-D CWT-like

representation shown in Figure 5.1(a). The mapping filters designed using TROV

[111], Hm
j (z), j = 0, 1 are used appropriately as shown in Figure 5.3 to get the six

complex directional subbands Hi(z), where i = 3, 2, 5, 6, 1, 4.

Considering the flexibility of additional directionality offered by our new mapping-

based CWT, we use a decimated 2-channel filter bank with new generalized par-

tition filters (H
cj
i , i = 0, 1 and j = 1, 2) with specific normalized cut-off frequency

(C f ) to add extra directionality to the complex directional subbands of the pro-

posed CWT. The complex directional subband 3 (H3(z)) is decomposed using 2-

channel filter bank with partition filters Hc2
i (z) with C f = −0.25. Similarly, the

remaining subbands are decomposed as:

subband 2 using Hc2
i (z) with C f = 0.25,

subband 5 using Hc1
i (z) with C f = −0.25,

subband 6 using Hc1
i (z) with C f = −0.25,

subband 1 using Hc2
i (z) with C f = 0.75,

subband 4 using Hc2
i (z) with C f = −0.75.

These designed partition filters used here as mentioned in section 5.2.1 are obtained

by appropriately shifting the 2-D rectangular-shaped filters in the frequency do-

main along ω1 or ω2 axis. The passband support of the rectangular filters have

alias-free decimation for the quincunx downsampling matrix Q [115]. This is be-

cause of the nonuniqueness of the possible passband supports generated by the

quincunx decimation matrix which can have alias-free decimation as elaborated

in Figure 12.5-4 of [115]. Hence the designed class of partition filters obtained

merely by frequency shifting of the rectangular-shaped filters in the frequency do-
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main have alias-free decimation for matrix Q. We obtain the 12 directional sub-

bands from the 6 complex directional subbands of the proposed CWT-like trans-

form by filtering each of this subband by a 2-channel decimated filter bank with

partition filters and downsampling matrix QR used in [33] to have square output

subbands. Here, QR = Q ∗ R =

1 −1

1 1

 ∗
 1 0

−1 1

 where, Q is a quincunx

downsampling matrix and R is the vertical resampling matrix. R used to get the

square output subbands from the horizontally rectangular subbands of the pro-

posed CWT resulted by decimation matrix D21 used in FiDWT stage. Similarly,

synthesis side of the proposed decimated EFiCDWT design (not shown) can be

obtained by using all the filter bank stages present on the analysis side. These

are arranged in the reverse order where analysis filters and downsamplers are

replaced by appropriate synthesis filters and upsamplers, respectively. Filtered

outputs of the 2-channel filter banks are combined using adders appropriately to

obtain the reconstructed image Î as the final output.

The proposed decimated EFiCDWT have perfect reconstruction property with

one lowpass and 12 directional subbands. Due to complex coefficients it has re-

dundancy factor of only 2. To the authors best knowledge, no complex wavelet

transform has these properties with such a low redundancy factor. Figure 5.4

shows one level decomposition of the Cameraman image using DWT and deci-

mated EFiCDWT (real-part).

5.2.3 Undecimated EFiCDWT design

Since the proposed decimated EFiCDWT has near shift-invariance property it can

be useful in applications such as image denoising, super-resolution etc. However,

complete shift-invariance guarantees an improved performance in case of image

denoising [23]. Undecimated EFiCDWT can be easily obtained from the deci-

mated counterpart by removing all the downsamplers. Undecimated wavelet

transform (UWT) is used instead of DWT followed by undecimated CSFB and

mapping stage to get undecimated version of the proposed CWT. Then the 2-

channel undecimated filter bank with specially designed partition filters are used
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(a) (b)

Figure 5.4: One level decomposition of Cameraman image using (a) DWT (b) pro-
posed decimated EFiCDWT (real-part).

to get the completely shift-invariant directional representation with 12 directions.

The 2-D nonseparable filter responses used must satisfy the Bezout identity [23]

in order to get the perfect reconstruction. To satisfy this identity, we divide the

impulse responses of the designed filters by
√

2. The complex extensions to un-

decimated transforms offers many advantages such as extra directional flexibility

due to single sided frequency partition, less constraints on filter design, phase

information etc. at the expense of high redundancy. Such transforms can be ben-

eficial for applications where transform redundancy is secondary.

5.3 Image Denoising Application

In this section, we test the image denoising capability of the proposed decimated

and undecimated EFiCDWT (DEFiCDWT and UEFiCDWT) designs using hard

thresholding method [30]. We compare decimated EFiCDWT denoising perfor-

mance with that of DWT, FiDWT [63], DTCWT [92]. For DTCWT denoising, we

have used the MATLAB software provided by Ivan W. Selesnick on his website

[89]. While undecimated EFiDWT is compared with UWT, undecimated finer di-

rectional wavelet transform (UFiDWT) [69]. Three levels of decomposition of all
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transforms is used. Sym8 wavelet filter is used for all DWT and UWT decompo-

sitions. Additive white Gaussian noise (AWGN) of standard deviation σ is added

to the original image in order to test the performance of our proposed designs on

noisy images. A value of T = 3σ is used for thresholding DWT, FiDWT, UFiDWT

transforms. Threshold T = 2σ is used in DTCWT software mentioned above, we

use the same threshold for thresholding proposed DEFiCDWT and UEFiCDWT.

In case of EFiCDWT, UEFiCDWT and DTCWT, both real and imaginary parts are

thresholded to obtain final denoised image.

Figure 5.5 shows hard thresholding results on a part of Barbara image contain-

ing oriented texture for AWGN of standard deviation σ = 30. Figure 5.6(a) and

5.6(b) shows PSNR comparisons of the decimated and undecimated transforms,

respectively under different noise levels.

Proposed DEFiCDWT design shows improvement in denoising performance

over DWT, FiDWT and DTCWT, while UEFiCDWT design performs better in

terms of peak signal-to-noise ratio (PSNR) value and has less visual artifacts in the

denoised image while preserving the oriented textural features. Table 5.1 shows

comparison in terms of PSNR, structural similarity index measure (SSIM) [131] and

feature similarity index measure (FSIM) [135] values of the hard-thresholded de-

noised images using the mentioned transforms on two widely used images Bar-

bara and Lena. For both these images, the proposed designs shows PSNR im-

provement while preserving geometrical features of the original image (evident

from better SSIM and FSIM values). Although the denoising results of the pro-

posed DEFiCDWT don’t supersede to that of DTCWT, however it has comparable

performance with UWT which is 3 ∗ J + 1 (J:number of levels of decomposition)

redundant transform. While proposed DEFiCDWT achieve this performance at

redundancy factor (RF) of only 2. It is clear that UWT being a completely shift-

invariant transform, its denoising performance is undermined by limited direc-

tionality. We reason the under-performance of DEFiCDWT compared to DTCWT

(RF:4) because of the aliasing effect inherent in FiDWT explained in detail by Mu-

rugesan et al. in [69]. Due to nonideal passbands of the CSFB filters, the over-

lapped region at the edges between DWT highpass subbands and CSFB filters
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Image denoising using hard-thresholding (a) Original image (b) noisy
image with σ = 30, PSNR = 18.72 dB (c) DWT, PSNR = 22.05 dB (d) FiDWT,
PSNR = 22.15 dB (e) DTCWT, PSNR = 23.35 dB (f) proposed DEFiCDWT, PSNR =
23.63 dB (g) UWT, PSNR = 23.51 dB (h) UFiDWT, PSNR = 24.18 dB (i) proposed
UEFiCDWT, PSNR = 24.75 dB.

cause energy leakage, also presence of two downsamplers lead to aliasing as well

as consequential shift-variance than DWT. However it is clear from the Table 5.1

that complex and directional extension to FiDWT shows significant improvement

in denoising performance i.e., better shift invariance property than FiDWT, DWT.

It is clear from Figure 5.5(f) that underlying oriented textural features are better
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Figure 5.6: PSNR (dB) comparison of mentioned transforms under different noisy
levels on the image shown in Figure 5.5(a) (a) decimated transforms (DWT,
FiDWT, DTCWT and proposed DEFiCDWT) (b) undecimated transforms (UWT,
UFiDWT and UEFiCDWT).

preserved by DEFiCDWT due to its extrafine directionality. Proposed UEFiCDWT

design having extrafine directionality and completely shift-invariance shows con-

sistent improvements in the denoising performance.

The main advantage of the proposed designs is that their directionality can

be enhanced and can have computationally efficient generalized separable imple-

mentations. We refer to [118] as an excellent guide for computational complex-

ities of the wavelet and filter bank designs. The DWT and UWT used in the

transform have efficient separable implementations, the CSFB filter stages that

use checkerboard-shaped filter responses designed using TROV method can also

have efficient separable implementations as explained in [111]. All the parti-

tion filters used in the proposed designs use simple frequency shifting property

on rectangular-shaped filters which further reduces the computational complex-

ity since we just need here to design prototype filters (rectangular-shaped filters)

which can have efficient separable implementations. One can note that the ideal

impulse response equations of prototype filters are multiplications of two 1-D sinc

functions. In comparison to DTCWT, the proposed decimated EFiCDWT has the

advantage of higher directionality at lower redundancy factor. Unlike DTCWT,

the proposed design structure has the advantage of extensible directionality.
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Table 5.1: PSNR/SSIM/FSIM comparison of image denoising performance of
mentioned transforms using hard thresholding method

σ 10 30 50
Input

PSNR/SSIM/FSIM 28.13 0.72 0.96 18.59 0.35 0.81 14.15 0.21 0.70

Transform Barbara 512×512
DWT 29.83 0.86 0.96 23.97 0.65 0.89 21.81 0.54 0.85

FiDWT [63] 29.71 0.85 0.95 24.34 0.65 0.88 22.00 0.53 0.84
DTCWT [92] 32.50 0.90 0.97 25.63 0.72 0.91 23.03 0.61 0.87

Proposed DEFiCDWT 31.29 0.87 0.97 25.25 0.68 0.90 22.82 0.57 0.86
UWT 31.96 0.90 0.98 25.47 0.71 0.92 22.92 0.58 0.88

Proposed UEFiCDWT 33.27 0.92 0.98 26.99 0.76 0.93 24.16 0.66 0.89

σ 10 30 50
Input

PSNR/SSIM/FSIM 28.13 0.61 0.95 18.59 0.22 0.79 14.15 0.12 0.67

Transform Lena 512×512
DWT 32.40 0.85 0.97 27.03 0.70 0.90 24.52 0.62 0.86

FiDWT [63] 32.00 0.84 0.96 26.79 0.67 0.89 24.33 0.57 0.85
DTCWT [92] 34.32 0.88 0.97 29.17 0.79 0.92 26.55 0.72 0.88

Proposed DEFiCDWT 32.91 0.87 0.97 27.61 0.73 0.91 25.40 0.67 0.87
UWT 34.14 0.88 0.98 28.61 0.74 0.93 25.70 0.63 0.89

Proposed UEFiCDWT 34.71 0.90 0.98 29.33 0.79 0.93 26.78 0.73 0.89

5.4 Conclusion

This chapter presented a new way of obtaining complex wavelet transform hav-

ing extrafine directionality and perfect reconstruction property. This directional

extensibility is achieved by filtering the real-valued subbands of the finer direc-

tional wavelet transform using novel complex-valued filter bank stages. Pro-

posed complex wavelet transform designs having twelve directional subbands

possess improved shift-invariance property. The efficacy of the transform designs

are tested for image denoising application using simple subband thresholding

scheme obtaining better denoising performances. The denoising results signify

the advantages of the proposed direction-extensible complex wavelet transforms.

The possible generalized separable implementations of the proposed designs make

them practically tractable.
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CHAPTER 6

Design of Complex Adaptive Multiresolution

Directional Filter Bank (CAMDFB)

All the transforms designed in the previous chapters, either by extending the di-

rectionality of DWT/UWT or by using a completely nonseparable filtering ap-

proach, have fixed directional image representation. Although, such transforms

have been successful for most of the applications, one may desire adaptive direc-

tional representation for deeper analysis of the input image features. Since the

transform suitability and its effectiveness depends on the application under con-

sideration, fixed directionality may be suitable in some applications while adap-

tive directionality of the transform may be a sensible choice for some applications.

Based on the motivations and works reviewed in Chapter 1 and the flexibility in

direction selectivity evidenced by the use of analyticity and partition FB stage as

discussed in the previous chapter, we propose in this chapter a complex-valued

MDFB having image adaptive directional representation. The proposed trans-

form effectively represents the dominant directions present in the input image

adaptively and is obtained using nonseparable filtering based multiresolution and

directional filter bank stages. We demonstrate the proposed transform efficacy

using the panshaperpening application.

For the sake of completeness, we again introduce the problem and review of

related filter banks in the next section.
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6.1 Introduction

Natural images most often have directional information captured at various spa-

tial resolutions and efficient representation of the same is a major problem in var-

ious image processing tasks such as denoising, compression, feature extraction,

fusion etc. The key features in these images are oriented geometrical structures and

the representation tool used should capture the orientation information. Research

in the field of wavelets and filter banks has provided many useful multiscale and

multidirectional transform representations for the same.

Initially, separable multidimensional extensions of the 1-D wavelet transform

were applied successfully however they suffered from limited directionality. For

example, 2-D discrete wavelet transform (DWT) is good at isolating the image dis-

continuities or edges in fixed directions. However, edges are often present along

the smooth contours which are created by smooth boundaries of the image ob-

jects and have arbitrary orientations. Hence DWT fails to efficiently capture the

smoothness along the contour and this has encouraged researchers to propose vari-

ous 2-D nonseparable multiresolution directional filter bank (MDFB) designs. These

MDFB designs provide multiple directional and anisotropic basis representation for

image discontinuities at various resolutions. Contourlet transform proposed by

Do and Vetterli [29] is one such MDFB design that captures the 2-D geometrical

features of the images effectively and has been used in various image processing

applications. Countourlet transform is constructed by using Laplacian pyramid

stage cascaded with the directional filter bank (DFB) stage to have multiscale and

multiresolution representation of input images. DFBs were first introduced by

Bamberger and Smith in [14] and they have been used to develop several multi-

scale directional transforms [28, 34, 64]. However, Bamberger’s DFBs have lim-

ited directional flexibility of 2l in their l-level tree-structure realization. A class

of nonredundant multiresolution directional filter banks (MDFBs) proposed in

[71, 72] offers flexible number of directional subbands, however in this case the

design of required filters is quite involved [71]. Maximal decimation in these DFB

families limits their directionality and also leads to shift-variant representation

98



unsuitable for many specific image processing applications such as denoising and

enhancement [23].

Attempts have been made to achieve near shift-invariance and improved di-

rectionality using the idea of near-analytic transform designs such as complex wavelet

transforms (CWTs) [37, 38, 92] with small redundancy. Salient features of these

complex transform designs are shiftability i.e., near shift-invariance, increased di-

rectionality and the availability of phase information. In [73], Nguyen and Orain-

tara proposed a shiftable complex directional transform by combining Laplacian

pyramid and complex directional filter bank. Here in order to obtain the analyt-

icity, dual-tree structure of real DFBs is constructed where the fan filters used in

the trees are constrained to satisfy the Hilbert pair criteria and certain conditions

on phase responses. In [74] the same authors addressed the implementation is-

sues such as border artifacts and the constraints on the designed finite impulse

response (FIR) filters. However these FIR filters correspond to truncated versions

of infinite impulse response (IIR) filters and the transform is approximately shift-

invariant. In [80], authors proposed complex-valued steerable filterbank for tex-

ture synthesis application and utilize the same for finding features based on local

phase and energy. Although these transform designs need lower computational

requirements, downsampling stages used in these designs lead to suboptimal per-

formance in many image processing applications and hence limits their applica-

bility. Downsampling stages in these transforms causes aliasing effect which leads

to large reconstruction error, reduced directional flexibility, difficulty in filter de-

sign etc. Also it is not possible to build a subsampled (or downsampled) transform

having arbitrary frequency partitions [61], which is a key requirement for design-

ing an adaptive transform.

In the recent years, the nonsubsampled multiresolution transforms have at-

tained preference in many applications such as image denoising [23][47], enhance-

ment [60], image fusion [25],[17], etc. due to their superior performance. The mul-

tiresolution directional filter banks (MDFBs) along with the notion of nonsubsam-

pledness allow flexibility in directional feature selection [61] and one can achieve

increased directionality and better frequency selectivity [23]. Efficient and fast al-

99



gorithms such as “algorithme à trous" exist for implementing nonsubsampled de-

signs. Decimation free operations lead to a completely shift invariant representa-

tion useful for many image processing operations. In [23] authors proposed non-

subsampled contourlet transform using the DFBs and Laplacian pyramid without

decimation. They discuss the frame theoretic designs of the nonsubsampled pyra-

mid and fan-shaped filters used in the implementation of the transform. Other

notable nonsubsampled transform designs can be found in [32, 61, 65]. All the

transforms discussed until now are built without considering the input image

characteristics and hence nonadaptive in nature.

Over the past one decade, different adaptive directional lifting-based wavelet

transforms have been proposed for image coding with the initial contribution

from Taubman [101]. Lifting scheme was proposed by Wim Sweldens in [99]

for implementing the standard DWT. Its profound success can be attributed to

its in place computations, structural perfect reconstruction and nearly half of the

computational requirements than the Mallat’s scheme. In [27] Ding et. al. pro-

posed adaptive directional lifting (ADL) based wavelet transform for image cod-

ing. Here, the subband decomposition is similar to the standard-lifting based

wavelet implementation but the prediction step is performed in the direction of

strongest pixel correlation in contrast to the horizontal and vertical directions in

the latter. Few other related lifting-based adaptive wavelet transforms in this con-

text can be found in [19, 42, 100, 129]. In [96], the translation invariant direc-

tional framelet transform is proposed where the local orientation information is

obtained using Gabor filters. For various other adaptive image representations

one can refer to [79] as an excellent review paper. Also, comprehensive coverage

of numerous other transforms can be found in [28, 49].

Motivated by the aforementioned works on nonsubsampled MDFBs and CWTs,

in this paper we present a simple transform design which selects noteworthy di-

rectional features present in the input image. In other words our design is adap-

tive to number of dominant directions of the input image. The design is nonsub-

sampled and desired flexibility in directional selectivity is achieved using real and

complex-valued filters in simple filter bank stages.

100



The rest of the paper is organized as follows. In Section 6.2, we explain in

detail the design of the proposed adaptive transform with all the necessary steps

explained in the subsections. In Section 6.3, we discuss our CAMDFB based pan-

sharpening approach. Experimental results are provided in Section 6.4, where

we compare the performance of the proposed method with state-of-the-art ap-

proaches including transform-based methods. Finally, we conclude the work in

Section 6.5.

6.2 Design of the Proposed CAMDFB

In this section, we start with the description of our fix partitioned CDFB design

which constitutes the core of the proposed CAMDFB. In next subsection, we ex-

plain our design of Laplacian pyramid stage used to implement the multiresolu-

tion CDFB. We then discuss the procedure for obtaining the N number of spatially

dominant directions present in the input image. Finally, partition filter bank stage

following the CDFB stage is explained which completes the CAMDFB design.

6.2.1 Complex-valued directional filter bank (CDFB)

Complex-valued directional filter bank (CDFB) is at the core of the proposed

CAMDFB which simplifies its design procedure. The directional selectivity of

the CDFB is shown using 2-D frequency partition diagram given in Fig. 6.1. It has

fix 8 directional complex-valued representation and serves to provide half-plane

coarse frequency partition of the input image as shown in Fig. 6.1(a). Partition for

conventional 8 directional DFB is shown in Fig. 6.1(b). Note that partition for pro-

posed CDFB considering real-part only is same as in Fig. 6.1(b). Main advantages

of the proposed CDFB representation are:

1. Since directional subbands only exist in either half-plane of the 2-D fre-

quency partition, effects of aliasing (due to subband mixing problem caused

by periodic nature of the Fourier transform) are reduced.

2. High flexibility in filter design is obtained since finer partitioning of the di-

rectional subbands is much easier due to their half-plane existence.
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Figure 6.1: 2-D frequency partition for (a) proposed 8 directional complex-valued
CDFB (b) conventional 8 directional DFB as well as for proposed CDFB with real-
part only. Here ω1 and ω2 are frequency axes and Pi represents π.
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Figure 6.2: Explanation for proposed partition filters design. (a) conventional 4
directional DFB (b) Subband 2 (c) desired partition filter passband for subband 2
(denoted with blue color)

Proposed CDFB partition shown in Fig. 6.1(a) with 8 subbands is obtained

by appropriately partitioning the real-valued subbands of the conventional 4 di-

rectional DFB (also known as Bamberger’s 4-channel DFB) shown in Fig. 6.2(a)

using two proposed filter responses. For explaining our idea, let us consider the

subband 2 of Fig. 6.2(a) separately which is shown in Fig. 6.2(b) having cut-
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off frequencies marked with arrows. Now to have two different directions out of

subband 2 in the opposing half-planes, we need to design a filter having passband

response shown with blue color given in Fig. 6.2(c). i.e., we need a group of 4 spe-

cial 2-D directional filters having appropriate passband responses for subbands

1-4 with cut-off frequencies as given below

[(−0.5π, π), (0.5π,−π)] , [(0.5π, π), (−0.5π,−π)] ,

[(−π, 0.5π), (π,−0.5π)] , [(−π,−0.5π), (π, 0.5π)] .
(6.1)

We refer these directional filters as fixed partition filters and propose the design

for these. Note that they have complex impulse response coefficients and hence

the overall filter bank has complex coefficients. In order to have CDFB the analyt-

icity property which has several advantages over the real-valued transforms [92],

we design a filter bank stage with 2-D filters having passband responses in one

half of the 2-D frequency axes. These filters are referred as mapping filters since

they map the outputs of the complex-valued partition filters into CDFB subbands

having analyticity property. In order to obtain the analyticity, one needs infinite

impulse response (IIR) mapping filters. However, IIR filters lead to non-linear

phase response making them unsuitable for image processing tasks. This makes

us to propose a pair of 2-D finite impulse response (FIR) mapping filters to obtain

approximately analytic directional subbands of the proposed CDFB.

Figure 6.3 shows complete design diagram of the proposed 8 directional filter

bank (CDFB). It consists of analysis and synthesis sides used to decompose and

reconstruct the input image. The analysis side consists of two stages in which the

first stage is a Bamberger’s 4-channel DFB having fan (Hfan
i (z)) and checkerboard-

shaped (Hcs
i (z)) filters arranged in a tree-structure as shown in Fig. 6.3. Here

subscript i = 0, 1 indicates lowpass and highpass responses, respectively. The

output of this stage has 4 real-valued directional subbands having 2-D frequency

partition as shown in Fig. 6.2(a). These subbands are given as input to the second

stage involving the proposed complex-valued filter responses of fixed partition

and mapping filters. In this stage, each input subband is filtered using one of the

4 lowpass partition filters denoted as Hpk
0 (z), k = 1, . . . , 4 having passband cut-
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Figure 6.3: Analysis and synthesis sides of the proposed complex-valued direc-
tional filter bank (CDFB). Here the input INb is a bandpass filtered input image.
Superscripts fan, cs, p and m represent fan-shaped, checkerboard-shaped, parti-
tion and mapping filter, respectively.

off frequencies as specified in equation (6.1). For better understanding, we have

shown the resulting input and output of the partition filter Hp2
0 (z) in Fig. 6.3. The

output of a partition filter is then passed through a two-channel mapping filter

bank having appropriate half-plane frequency selectivity i.e., by using responses

Hm1
i (z) or Hm2

i (z), i = 0, 1. Finally, at the output of second stage we obtain 8

analytic directional subbands of the proposed CDFB design. Considering the real-

part coefficients of these directional subbands, we get the 2-D frequency partition

as shown in Fig. 6.1(b). Synthesis side for the proposed CDFB is also shown in Fig.

6.3 and it is similar to the analysis side arranged in reversed order using synthesis

filter responses. ÎNb is the final reconstructed output image.

All filters used in the CDFB design represent 2-D nonseparable FIR filters

designed using Transformations of variables (TROV) technique proposed in [111].

TROV is a simple and flexible 1-D to 2-D mapping technique equivalent to the

generalized McClellan transformation that designs filter responses of different
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shapes and sampling lattices. This technique requires two inputs: linear phase

filter coefficients of the 1-D wavelet and 2-D nonseparable transformation ker-

nel which decides the passband shape of the resulting filter. Here, we have used

Cohen-Daubechies-Feauveau CDF 9-7 as 1-D wavelet filter. 2-D transformation

kernel is obtained by truncating the 2-D ideal impulse response (denoted using r)

of the desired filter using a 2-D window obtained from 1-D Kaiser window hav-

ing length Lw = 27 and shape parameter β = 4.5. Higher value of Lw is used to

achieve the sharp roll-off characteristics.

Fan and checkerboard-shaped filters are required to obtain Bamberger’s 4-

channel DFB partition as shown in Fig. 6.1(a). The ideal impulse response of the

fan-shaped filter rfan(n) is obtained by modifying the ideal impulse response of

diamond-shaped filter rdiam(n) [111] as rfan(n) = (−1)n2rdiam(n). Checkerboard-

shaped filters can be obtained using the design procedure given in [111] or by

quincunx upsampling of the fan filters [23].

In order to obtain the partition filters, we propose the following ideal impulse

responses to design a group of 4 partition filters having desired passband sup-

ports and cut-off frequencies as mentioned in equation (6.1).

rp1(n) = jsinc
(n1π

2

)
sinc (n2π − 0.5n1π) sin

(n1π

2

)
rp2(n) = jsinc

(n1π

2

)
sinc (n2π + 0.5n1π) sin

(n1π

2

)
rp3(n) = jsinc

(n2π

2

)
sinc (n1π − 0.5n2π) sin

(n2π

2

)
rp4(n) = jsinc

(n2π

2

)
sinc (n1π + 0.5n2π) sin

(n2π

2

)
.

Our design of 2-D mapping filters which are used to obtain 8 analytic direc-

tional subbands is motivated by the 1-D mapping filter approach presented in

[38]. Here, we design a pair of 2-D mapping filters which are used to select the

entire positive/negative Fourier half-planes along the ω1 and ω2 axes. We pro-

pose their complex-valued ideal impulse responses as,

rm1(n) = jsinc
(n1π

2

)
sinc (n2π) sin

(n1π

2

)
rm2(n) = jsinc

(n2π

2

)
sinc (n1π) sin

(n2π

2

)
.
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Figures 6.4(a) and 6.4(b) show typical analysis side lowpass frequency responses

of the required filters using 3-D and 2-D plots, respectively. Impulse responses of

all the designed filters are divided by
√

2 so that they satisfy the Bezout identity

[23] required for nonsubsampled FB designs.

(a) (b)

Figure 6.4: Typical analysis lowpass frequency responses of the 2-D FIR filters
used in the CDFB design. These filters are obtained using TROV [111] with trans-
formation kernel parameters Lw = 27, β = 4.5 and the CDF 9/7 wavelet filter
coefficients. Here, Fig. 6.4(a) shows: 3-D plots with frequency responses for (a)
fan-shaped filter (H f an

0 (z)), (b) checkerboard shaped filter (Hcs
0 (z)), (c)-(f) a group

of 4 fixed partition filters (Hpk
0 (z), k = 1, . . . , 4) (g) mapping filter (Hm1

0 (z)) and
(h) mapping filter (Hm2

0 (z)). While, Fig. 6.4(b) shows: 2-D plots of the responses
shown in Fig. 6.4(a).

6.2.2 Multiresolution CDFB

Figure 6.5 shows how the multiresolution (MR) stage is implemented to obtain the

multiresolution CDFB and hence multiresolution in the proposed CAMDFB. For

the input image IN, the MR scheme outputs one lowpass and J bandpass images

for J level decomposition. Each of the jth-scale (j = 1, . . . , J) bandpass image INb

is used as input to the CDFB design shown in Fig. 6.3. Hence, multiresolution

CDFB outputs one lowpass and 8 directional subbands at each scale.

We use nonsubsampled pyramid (NSP) scheme of [23] to obtain the multiresolu-

tion. However, we modify the NSP stage in order to have better sparsity prop-
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Figure 6.5: Analysis part of the multiresolution scheme used in the proposed
CAMDFB design. Here 2-level decomposition scheme is shown with Hi(z),
i = 0, 1 representing the 2-D lowpass and highpass filter responses, respectively.
Hi(z2I), i = 0, 1 represent the 2-D upsampled lowpass and highpass filter re-
sponses, where I is the 2× 2 identity matrix. Here, the input image is represented
by the term IN while the terms INb and INb_DIR_j represent the bandpass input
and 8 directional subband outputs of the proposed CDFB at jth level decomposi-
tion.

erties in the transform representation. It is widely known in wavelets and fil-

ter banks research community that approximation power of wavelets depends on

their vanishing moments [114]. Higher the number of vaninshing moments better is

the lowpass approximation resulting in significantly sparse directional subbands.

This concept of vanishing moments is also known as the regularity constraints and

it is realized in practice using the digital multirate filter banks, by imposing zeros

at z = −1 or ω = π [78]. In our design also we use regularity constraints on H0(z)

in order to have high approximation power to obtain better lowpass approxima-

tion and directional subbands having better sparsity. In order to do this, we use

1-D biorthogonal wavelet filters (BWFs) having high vanishing moments along

with the properties such as linear phase, near-orthogonality, better frequency se-

lectivity and time-frequency localization due to their superior performance. We

use the approach presented in [84] for designing such filters. The lengths of the

analysis and synthesis lowpass filters obtained are 13 and 19, respectively. Fi-

nally, in order to impose sufficiently high line zeros for obtaining better frequency
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response characteristics of the 2-D filters, we use the 2-D zero-phase mapping

function of the form [23]:

F(x1, x2) = −1 + 2PK1,L1(x1)PK2,L2(x2). (6.2)

Here, x1 = cos(ω1), x2 = cos(ω2) and PKi,Li(xi), i = 1, 2 is a maximally-flat

halfband polynomial where values of Ki and Li show the degree of flatness at

xi = −1 and xi = 1, respectively. We have used K1 = K2 = 3 and L1 = L2 = 6 so

as to ensure 6th order zero at ω1 = ±π and ω2 = ±π. The zero-phase mapping

function used is then given by

F(x1, x2) =
(x1+1)3(x2+1)3

(
3x2

1
2 −

9x1
2 +4

)(
3x2

2
2 −

9x2
2 +4

)
32 − 1. (6.3)

A 2-D mapping kernel of size 11× 11 is obtained by substituting x1 =
z1+z−1

1
2 and

x2 =
z2+z−1

2
2 in equation (6.3). Now, using this mapping kernel and 1-D wavelet

filter coefficients, we obtain the coefficients of 2-D non-separable FIR filters Hi(z)

and Fi(z), i = 0, 1 using McClellan transformation. Frequency responses of these

filters are shown in Fig. 6.6.

(a) (b)

Figure 6.6: Frequency responses of the 2-D nonseparable analysis and synthesis
filters designed to use in the multiresolution stages. Fig. 6.6(a) shows 3-D plots of
the designed filters and Fig. 6.6(b) shows 2-D plots for the same.

We now compare the sparsity properties of the NSCT MR stage [23] and pro-
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(a) (b)

Figure 6.7: Sparsity comparison of the multiresolution stages. (a) NSCT (b) pro-
posed

posed MR stage. In case of NSCT, CDF 9/7 wavelet filters are used with mapping

kernel as given in [23]. Fig. 6.7 shows the 1-level decomposed highpass subband

images for Barbara image using NSCT and proposed MR stage. For better com-

parison, we have avoided to show the original image here which can be found in

Fig. 6.9(a). It is clear from Fig. 6.7 that proposed MR stage gives better sparseness

when compared to NSCT. The highpass subband for the proposed MR stage has

comparatively lesser image features than NSCT which can be observed especially

in the facial area (lips, eyes, nose), table cloth and books in the shelf. This indi-

cates that higher number coefficients have near zero values in case of proposed

MR stage than in case of NSCT. Since highpass subband have better sparseness,

lowpass information of the input image is better preserved in the lowpass sub-

band of the proposed MR stage.

Using the modified multiresolution stage and CDFB as given in Fig. 6.5, we

obtain one lowpass IN_LP and 8 high frequency directional subbands represented

collectively using INb_DIR_j for jth level decomposition. Frequency responses of

the resultant filters used to obtain the INb_DIR_1 are given below and their real-
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part frequency responses i.e., real(Hi(z), i = 1, . . . , 8) are shown in Fig. 6.8.

H3(z) = Hfan
0 (z)Hcs

0 (z)H
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Figure 6.8: Frequency responses of the resultant analysis directional subbands of
the proposed multiresolution CDFB for one level decomposition.

6.2.3 Finding N dominant directions of the input image

In order to decide the number of dominant directions N as required in our CAMDFB

design, we make use of orientation map of an image obtained using local orientation
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(a) (b) (c)

Figure 6.9: Orientation map of Barbara image using a block size of 8 × 8. (a)
Original Barbara image (size: 512 × 512) (b) orientation map [35] (c) corrected
orientation map.

estimation approach presented in [35]. Here, the orientation map of a given im-

age is obtained by using the approach of multiscale principle component analysis

(PCA). To do this, input image is divided into non-overlapping blocks of fixed

size and local orientation of each block is computed to obtain orientation map for

the entire image. We use this orientation map as an initial estimate of the domi-

nant directions in the input image. Consider Barbara image shown in Fig. 6.9(a)

which has the orientation map as shown in Fig. 6.9(b). One can observe in Fig.

6.9(b) that there are erroneous orientations for objects at constant depths and in

the background. We correct this error simply by neglecting those orientations

where block variance is below 100 thereby rejecting the insignificant geometrical

features. Block variance threshold value of 100 used here is found to be suitable

choice after experimenting with variety of images (natural, remote sensing etc.).

The corrected orientation map is shown in Fig. 6.9(c).

The range of angles in the orientation map is between [−90◦, 90◦]. We convert

this range to lie between 0◦ to 180◦ and obtain the histogram of this orientation

map to decide the dominant directions present in the input image. Fig. 6.10(a)

shows the histogram of the orientation map shown in Fig. 6.9(c) using an interval

of 1◦ i.e., 180 bins. Fig. 6.10(b) shows the same with the 8 bins i.e., splitting the

entire range into 8 intervals. The 8 bin histogram have range of orientation angles

similar to range of CDFB subband angle selectivity and it roughly shows the di-

rectional significance of CDFB subbands for the input image under consideration.
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Histogram with 180 bins is used to estimate the number of dominant directions

for each CDFB suuband. Now, based on the histograms shown in Fig. 6.10, we

find the partition vector of length 8 which represents the number of fine partitions

required for 8 subbands of the CDFB to obtain the N dominant directions.
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Figure 6.10: Histogram of orientation map (between [0◦, 180◦]) of Barbara image
using (a) 180 bins (b) 8 bins.

Let, k and ka be the vectors of number of local orientations using 8 and 180

bins, respectively. Let na and nb be the total number of local orientations and

number of orientations set to zero because of block variance less than 100. Then

the vector p = pi, i = 1, . . . , 8 indicating the probabilities for orientations with 8

bins can be written as

p = pi =
ki

(na − nb)
, i = 1, . . . , 8. (6.5)

Using p, we define a weight vector w = 1− p which is used in finding the num-

ber of significant angles (directions) in each of the 8 bins which is done as follows.

We consider the significance of each angle between 0◦ to 180◦ with respect to 8

bins and define an average vector as av = max(kai)+min(kai)
2 . Here, the vectors kai,

i = 1, . . . , 8 are obtained by splitting 0◦ to 180◦ into 8 intervals i.e., we have 22 an-

gles in each kai. For example, ka1 is vector consisting of number of orientations

in first 22 angles between 0◦ to 22◦. While, max(kai) and min(kai) indicate max-

imum and minimum values of number of orientations for ith interval. We then

have 8 such max and min values for the entire 0◦ to 180◦ range. In order to arrive at
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dominant directions for each of the eight bins, we select threshold γ = γi obtained

as γ = w� av which represents average number of occurrences of local orienta-

tions in each bin. Here, � denotes the element-wise multiplication. Now for each

kai, i = 1, . . . , 8 which has 22 angles, we find the number of local orientation an-

gles exceeding γi and the same is represented as αi. Here, αi denotes the number

of angles in each of the ith bin above threshold and they are considered as dom-

inant directions. Finally, partition vector is obtained as np = npi = round( αi
4 ),

i = 1, . . . , 8 and N as
8
∑

i=1
npi + 1. Now, using np and kai, we select cut-off fre-

quencies to partition the corresponding CDFB subband. We explain this using an

example. For the Barbara image shown in the Fig. 6.9(a), number of partitions

obtained for the eight subbands are np = [0, 0, 6, 5, 1, 1, 0, 0]. Now, CDFB subband

having orientation selectivity of 45 degrees to 67.5 degrees need 6 partitions. From

vector ka3, 6 directions having higher frequency of occurrences i.e., dominant di-

rections are chosen. These directions are considered to be center frequencies of

the finer subbands to be partitioned. Then cut-off frequencies are calculated to

design the partition filters for finer partitioning of the appropriate CDFB subbands

to incorporate adaptive direction selectivity. The filter bank design involving such

partition filters is explained in the next subsection.

6.2.4 Adaptive partition filter bank stage

In order to have adaptive directional selectivity in the proposed CAMDFB, a par-

tition filter bank stage is used as the final stage. Here, 8 directional subbands

of the multiresolution CDFB are partitioned into the N finer subbands using the

partition vector np. To do this, we require nonuniform partitioning of the CDFB

subbands using generalized set of 2-D directional filters having cut-off frequen-

cies of the form

[(−Cπ, π), (Cπ,−π)] , [(Cπ, π), (−Cπ,−π)] ,

[(−π, Cπ), (π,−Cπ)] , [(−π,−Cπ), (π, Cπ)] .
(6.6)

Here, C is the cut-off frequency which is different for each directional filter. Note

that equation (6.1) can be obtained with C = 0.5. To obtain filters having arbitrary
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cut-off frequencies as specified in equation (6.6), we propose a generalized group

of 4 complex 2-D ideal impulse responses which when used in conjunction with

transformation of variables (TROV) [111] technique, generate filters that have de-

sired 2-D passband responses. These ideal impulse responses are given as

rp1(n) = jsinc
(n1π

2

)
sinc (n2π − Cn1π) sin

(n1π

2

)
rp2(n) = jsinc

(n1π

2

)
sinc (n2π + Cn1π) sin

(n1π

2

)
rp3(n) = jsinc

(n2π

2

)
sinc (n1π − Cn2π) sin

(n2π

2

)
rp4(n) = jsinc

(n2π

2

)
sinc (n1π + Cn2π) sin

(n2π

2

)
.

We call these 2-D directional filters simply as partition filters since the fixed parti-

tion filters used in the CDFB design can be obtained by using C = 0.5.

These designed filters are then used in the partition filter bank stage follow-

ing the 8 directional CDFB stage to obtain one lowpass and N highpass direc-

tional representation of the proposed CAMDFB. This completes the analysis or

decomposition side of the proposed CAMDFB. Similarly, the synthesis side of

the CAMDFB is designed using all the filter bank stages present on the analysis

side. These are arranged in the reverse order where analysis filters are replaced

by appropriate synthesis filters thus obtaining the reconstructed image as the final

output.

6.3 Pansharpening Using the Proposed CAMDFB

Pansharpening is one of the important preprocessing remote sensing tasks that

makes use of spatial features of panchromatic image to obtain high spatial reso-

lution multispectral images. To elaborate, many satellites like SPOT, QuickBird,

IKONOS, etc., provide the earth information by capturing two different types of

images, namely panchromatic (Pan) and multispectral (MS). Pan is a grayscale

image that provides detailed spatial information of objects/features on the earth’s

surface i.e., it has high spatial resolution whereas MS images provide spectral in-

formation in multiple bands i.e., they have better spectral resolution. MS images
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have low spatial resolution since building a sensor with high resolutions for both

spatial and spectral, at the same time is hardly feasible [57]. Having better spatial

information of MS images is beneficial in many remote sensing applications [88].

The goal of pansharpening is to achieve this high spatial resolution of MS images

with minimum spectral distortion by using the Pan details.

Since Pan image may have arbitrary orientations of spatial features, we aim to

use our adaptive transform to capture these orientations more effectively to pan-

sharpen the MS images. For detailed classification and literature overview on

transform-based pansharpening approaches we refer to [8] as an excellent survey

paper.

6.3.1 Proposed pansharpening approach

The proposed approach for pansharpening is described by considering one of the

MS bands. As a preprocessing step, Pan image is histogram matched to the each

of the MS bands.

Figure 6.11 shows the block diagram of the proposed pansharpening approach

using CAMDFB. First, the input MS band is upsampled to the size of the Pan

image by using by using 23-tap interpolation filter [4].

We perform 2 level CAMDFB decomposition and obtain N dominant direc-

tions in each scale. This gives us one lowpass and N directional subbands rep-

resented by PAN_LP and PAN_HPi,j (i = 1, 2; j = 1, . . . , N), respectively where i

represents scale number and j corresponds to one of the N dominant directions.

The upsampled MS band is also subjected to 2-level decomposition obtaining

MS_LP and MS_HPi,j. These are used as inputs to adaptive detail injection module

(ADIM) which is based on “Amèlioration de la Rèsolution Spatialle par Injection

de Structures" meaning spatial resolution enhancement by injection of structures (AR-

SIS) concept [86]. The ARSIS concept provides a reliable multiscale framework for

pansharpening that carefully considers the remote sensing physics and also paves

the way for introducing new concepts within the same framework [113]. The AR-

SIS concept is used here as an interband structure model (IBSM) [40] to model the

relationship between approximation/detail coefficients of the MS band and Pan
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Figure 6.11: Proposed pansharpening approach using the designed CAMDFB.
Here, MS_LP and PAN_LP represent the lowpass approximations of upsampled
MS band i.e., MS and PAN image, respectively, while MS_HPi,j and PAN_HPi,j
represent high frequency detail subbands of MS and PAN image when decom-
posed using proposed CAMDFB. O_LP and O_HPi,j are lowpass and high fre-
quency subband outputs of the ARSIS concept-based adaptive detail injection
module (ADIM).
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image at the same resolution. Here, the model parameters are calculated using

the coarser resolution of both these images to infer the suitable injection gains

(weights). In order to compute these, we use Model 2 of [86] in which IBSM

is based on the relationship between detail coefficients of MS and Pan images.

Since, locally adaptive injection models such as context based decision (CBD) [5]

give superior results we used a local approach where weights are calculated for

overlapping blocks of PAN and MS highpass details. Model parameters are es-

timated from 3rd scale detail coefficients of the PAN and MS images i.e., from

PAN_HP3,j and MS_HP3,j which are obtained by taking one more level CAMDFB

decomposition on already obtained PAN_LP and MS_LP subbands. Note that,

only detail coefficients of 3rd scale are used to estimate the adaptive weights and

bias values which are then used for obtaining the detail coefficients of the fused

image. The outputs of the ADIM are O_LP and O_HPi,j, respectively which are

obtained using following two equations:

O_LP = MS_LP (6.7)

O_HPi,j = aj × PAN_HPi,j + bj (6.8)

where, i = 1, 2 and j = 1, . . . , N. While, aj and bj are N adaptive weights and bias

values for every overlapping block of size 8× 8 having block overlap size of 4.

Overlapping blocks are used to avoid any spurious artifacts in the pansharpened

band. The adaptive weights and bias values are obtained as:

aj =
std2(MS_HP3,j)

std2(PAN_HP3,j)
and,

bj = mean2(MS_HP3,j)− aj ×mean2(PAN_HP3,j).

(6.9)

Taking real-part of the synthesis CAMDFB output gives us the pansharpened

image for the considered MS band. The same method is applied for each of the

MS bands to obtain the pansharpening of all the MS bands.

Finally, we discuss the reason for using 2 levels of CAMDFB decomposition

in our approach. Due to high vanishing moments used in designing the H0(z),

lesser number of decomposition levels are required for approximating a smooth
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2-D function within certain error tolerance (similar to the 1-D wavelet approxi-

mation case proven by Unser in [114]). Also, most of the spectral information

present in the original low-resolution MS band is retained in its decomposed low-

pass subband [93]. One may argue that for multiresolution analysis (MRA) based

pansharpening approaches, lower decomposition levels result in better spectral

quality but in poor spatial quality [82]. However, due to better lowpass approxi-

mation and directional selectivity used in our approach, we obtain better spectral

as well as spatial details in the pansharpened outputs.

6.4 Experimental Results

In this section, we present the pansharpening results of our proposed CAMDFB-

based approach and its comparison with current state-of-the-art approaches and

NSCT-based approach. Experiments are conducted on imagery captured using

QuickBird and IKONOS-2 satellites. QuickBird dataset images [2] used here were

acquired on 4th July, 2005 capturing the sub-urban area of Boulder city, USA,

while the IKONOS-2 images [1] were acquired on 22nd February, 2003 over Mount

Wellington area around Hobart Tasmania. Both these datasets include co-registered

raw images of 1 PAN and 4 MS bands (Blue (band 1) - Green (band 2) - Red (band

3) - Near Infrared (band 4)) captured over the mentioned areas having radiometric

resolution of 11 bits. For QuickBird, PAN spatial resolution is 0.6m× 0.6m while

it is 2.4m× 2.4m for MS images. For IKONOS-2, they are 1m× 1m and 4m× 4m.

Due to large sizes of the raw images in both these datasets, the experiments were

performed by cropping suitable region of interest (ROI) having original PAN and

MS images of size 1024× 1024 and 256× 256, respectively. Before pansharpening,

these 11-bit/pixel dataset images are normalized by dividing each pixel intensity

by the maximum value i.e., 2047. We display the output images using general

8-bit/pixel convention. In order to test the results quantitatively, pansharpening

is done on the spatially degraded PAN and MS images obtained from their origi-

nal counterparts keeping the resolution ratio and radiometric resolution same as

in the originals. The pansharpened MS bands are then compared with the orig-
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inal MS images which are considered as the ground truth (GT) images. In our

experiments, the spatially degraded datasets are obtained by using the filtering

operation on original dataset images considering the sensor modulation transfer

function (MTF) responses followed by a downsampling operation with a factor of

4 (resolution ratio between PAN and MS images) along the rows and columns [5].

Hence the sizes for PAN and MS images in both the spatially degraded datasets

are 256× 256 and 64× 64, respectively. All the pansharpening visual results pro-

vided in this section are displayed using true-color composites (bands 3-2-1) of

size 256× 256.

We have compared the performance of our approach with different state-of-

the-art pansharpening approaches. For comparison, we have chosen three com-

ponent substitution (CS) based approaches namely Gram Schmid adaptive (GSA)

[6], band-dependent spatial detail algorithm (BDSD) [41] and partial replacement

adaptive component substitution (PRACS) [22]. We also compare with three MRA-

based (or transform-based) approaches, adaptive wavelet luminance proportional

(AWLP) [77], generalized Laplacian pyramid-context based decision (GLP-CBD)

[5] and nonsubsampled contourlet transform (NSCT) [23]. For NSCT, we have

used the same detail injection scheme applied in our approach to validate the ef-

ficacy of proposed CAMDFB. For analyzing the improvements gained by these

methods, we have also used in comparison a simple interpolated MS output ob-

tained by using 23-tap interpolation filter [4] without spatial detail injection re-

ferred as EXP. For accurate and fair comparison, we have used the pansharpening

toolbox made available by the authors of [121] for implementation of the above

methods. For proposed and other MRA-based approaches, 2 levels of decompo-

sition were used in all experiments. In case of proposed approach, block size of

4× 4 is used to estimate the dominant directions in the degraded PAN. With this

block size, the estimated dominant directions are similar to those obtained using

original PAN. In case of NSCT, we have used 4 and 16 directions for the two levels,

respectively.

The quantitative measures used for performance evaluation are correlation co-

efficient (CC), spectral angle mapper (SAM) [55], Erreur Relative Globale Adimen-
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sionnelle de synthèse (ERGAS) [124], Q4 index [7], universal image quality index

(Qavg) [130], spatial correlation coefficient (SCC) [77] and feature similarity index

measure (FSIM) [135]. CC provides band-wise evaluation of spectral information

difference between pansharpened and GT MS images. Ideally CC value should be

1. SAM determines the spectral similarity between two spectra by calculating the

"angle" between the two spectra, treating them as vectors in a space with dimen-

sionality equal to the number of bands [55]. SAM is a global measure for spectral

distortion with ideal value 0 indicating absence of spectral distortion however ra-

diometric distortion may be present [70]. ERGAS is a global quality index used for

measuring the radiometric distortion with ideal value of 0. Q4 index proposed in

[7] is a global measure for 4 band MS data as in the case of QuickBird and IKONOS

datasets and accounts for local mean bias, changes in the contrast, loss of correlation

in individual bands along with the spectral distortion. Q4 index is as an extension

of Universal Image Quality Index (UIQI) proposed by Wang and Bovik [130]. Prior

to Q4, an average quality measure based on UIQI known as Qavg was commonly

used as a global quality index measure. It models the difference between pan-

sharpened and GT multispectral image as a combination of three factors: loss of

correlation, luminance distortion and contrast distortion [77] and it is still actively

used by the pansharpening research community. Both Q4 and Qavg indexes are

generally calculated using non-overlapping windows of fixed size such as 8× 8,

16× 16 etc. In our experiments, fixed window size of 32× 32 is used in all cal-

culations. Ideal value for both Q4 and Qavg is 1. SCC measure accounts for the

spatial quality of the pansharpened outputs. Higher value of SCC (ideal : 1) de-

notes spatial quality of the outputs closer to that of PAN. Feature Similarity Index

Measure (FSIM) [135] is used here as an another measure for spatial quality assess-

ment. We calculate the FSIM value for each pansharpened MS band as measure

of spatial fidelity. Higher value (ideal:1) shows better match between the spatial

features of pansharpened and GT MS band following the similar reasoning used

in [77] for calculating the SCC index.
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6.4.1 Pansharpening results on QuickBird dataset images

In this subsection, we consider pansharpening of MS images of simulated (spa-

tially degraded) dataset of QuickBird satellite imagery. Fig. 6.12 and Fig. 6.13

show visual comparison of results between different pansharpening approaches

tested on two regions of interest. Figs. 6.12(a) and 6.13(a) show, the interpolated

MS images shown as a RGB true-color composition with bands 3, 2 and 1 and are

referred as EXP. Pansharpening outputs of CS-based methods BDSD, GSA and

PRACS are shown in Figs. 6.12(b)-6.12(d) and 6.13(b)-6.13(d), respectively. Sim-

ilarly, outputs of MRA-based methods AWLP, GLP-CBD and NSCT are shown

in Figs. 6.12(e)-6.12(g) and 6.13(e)-6.13(g), respectively. Outputs of proposed ap-

proach are shown in Figs. 6.12(h) and 6.13(h), while the available ground truth MS

images are shown in Figs. 6.12(i) and 6.13(i), respectively. The magnified regions

corresponding to a small square area shown with a red border in Figs. 6.12(i) and

6.13(i) are displayed at the bottom left corner of all the images.

One can observe from Fig. 6.12, Fig. 6.13 and their magnified regions, that

the pansharpened outputs of proposed approach shown in Fig. 6.12(h) and Fig.

6.13(h) look visually similar to the ground truth images shown in Fig. 6.12(i) and

Fig. 6.13(i), respectively when compared to other approaches. The colors of the

objects in the ground truth images are better preserved in the results of proposed

approach due to improved spectral content preservation. For example, different

colors of the rectangular-shaped objects seen in magnified region of the ground

truth MS image shown in Fig. 6.12(i) are better preserved using our approach

shown in Fig. 6.12(h) which is clearly evident from the magnified region shown

in the bottom left corner. Similar improvements can also be observed in the result

shown in Fig. 6.13(h) where colors of the circular objects resemble more closely to

that in true MS image shown in Fig. 6.13(i). One can observe from the magnified

regions that the proposed approach provides better spectral content preservation

than the NSCT as well as other approaches which is due to better approximation

power of the lowpass filter used in our multiresolution stage. Spatial quality of

the images is also better and can be confirmed by observing the amount of finer

details and sharpness added in the pansharpened images. In our approach, High
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.12: RGB true-color composition 3, 2 and 1 of pansharpening results ob-
tained from degraded QuickBird dataset images. (a) EXP (b) BDSD (c) GSA (d)
PRACS (e) AWLP (f) GLP-CBD (g) NSCT (h) Proposed (i) GT.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.13: RGB true-color composition 3, 2 and 1 of pansharpening results ob-
tained from degraded QuickBird dataset images. (a) EXP (b) BDSD (c) GSA (d)
PRACS (e) AWLP (f) GLP-CBD (g) NSCT (h) Proposed (i) GT.
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vanishing moments preserve the spectral properties of the input MS band, while

adptive directional selectivity gives improved spatial quality. One may see color

distortion in the CS-based approaches i.e., BDSD, GSA and PRACS due to local

inhomogeneity of pixel values between PAN and MS images. Although, PAN and

MS bands are histogram matched and adaptive weights are considered to model

their relations, local dissimilarities are due to their global nature of operations.

Quality of pansharpening in these methods is heavily dependent on the accuracy

of the weights used to model the PAN as a linear combination MS bands. For

MRA-based methods i.e., in case of AWLP, GLP-CBD and NSCT-based approach,

color distortion is less when compared to CS based approaches since the lowpass

filters used in these methods are designed to maximally preserve the spectral in-

formation of the MS images. AWLP perform reasonably well in terms of spectral

quality considering its simple detail injection model. Apart from proposed ap-

proach, GLP-CBD also perform better in terms of spectral content preservation

in which lowpass filter response matches the MS sensor MTF. Visually, spatial

quality of NSCT outputs is similar to that of proposed approach whereas their

spectral quality is less than our approach. Spatial quality of AWLP method is in-

ferior when compared to GLP-CBD, NSCT and proposed approach that use AR-

SIS concept as an interband structure model which effectively tackles the local

dissimilarites between PAN and MS images such as object occultation, contrast

inversion etc. [113].

Table 6.1 compares the quantitative measures for the results shown in Fig. 6.12

and Fig. 6.13. Quantitative measures for EXP output are given to analyze the im-

provements of different methods over the resampled MS band outputs. Clearly,

proposed approach outperforms the compared methods consistently. For all the

4 MS bands, CC values are closer to the ideal showing maximum spectral similar-

ity between pansharpened and GT MS bands. SAM and ERGAS values are also

closer to zero meaning that average spectral and radiometric distortion is mini-

mum for our approach. Values for spectral quality indexes i.e., SCC and FSIM

are closer to ideal showing better details and preservation of local spatial struc-

tures. Higher values of Q4 and Qavg shows better spectral and spatial fidelity of
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Table 6.1: Quantitative measures for the pansharpening results shown on Quick-
Bird dataset.

FIGURE METHOD CC SAM ERGAS Q4 Qavg SCC FSIM
B G R NIR B G R NIR

Fig. 6.12

IDEAL 1 1 1 1 0 0 1 1 1 1 1 1 1
EXP 0.8412 0.8270 0.8423 0.8191 5.1072 5.6562 0.6857 0.6693 0.5657 0.7043 0.6779 0.6723 0.6086

BDSD [41] 0.9033 0.9245 0.9251 0.9714 4.7268 3.4723 0.8815 0.8804 0.8649 0.8354 0.8677 0.8406 0.9425
GSA [6] 0.9020 0.9240 0.9264 0.9680 4.5201 3.4721 0.8759 0.8678 0.8603 0.8321 0.8645 0.8404 0.9405

PRACS [22] 0.8985 0.9161 0.9147 0.9767 4.2001 3.7041 0.8580 0.8480 0.8580 0.8050 0.8281 0.7885 0.9363
AWLP [77] 0.8893 0.9223 0.9256 0.9694 4.6428 3.5131 0.8631 0.8572 0.8725 0.8341 0.8694 0.8590 0.9312

GLP-CBD [5] 0.9053 0.9270 0.9287 0.9686 4.4884 3.4365 0.8795 0.8700 0.8603 0.8332 0.8656 0.8414 0.9405
NSCT [23] 0.8945 0.9309 0.9386 0.9733 4.6284 3.3453 0.8763 0.8722 0.8698 0.8311 0.8726 0.8635 0.9270
Proposed 0.9187 0.9430 0.9443 0.9785 4.1260 3.0353 0.8964 0.8968 0.8897 0.8532 0.8881 0.8682 0.9476

Fig. 6.13

IDEAL 1 1 1 1 0 0 1 1 1 1 1 1 1
EXP 0.8657 0.8514 0.8544 0.8531 4.9284 5.4374 0.6843 0.6669 0.5541 0.6999 0.6789 0.6626 0.6306

BDSD [41] 0.9157 0.9350 0.9265 0.9722 4.3065 3.3322 0.8621 0.8604 0.8560 0.8407 0.8688 0.8363 0.9350
GSA [6] 0.9106 0.9324 0.9247 0.9692 4.2719 3.3968 0.8512 0.8474 0.8515 0.8383 0.8659 0.8354 0.9330

PRACS [22] 0.9168 0.9376 0.9296 0.9779 3.9191 3.2787 0.8566 0.8518 0.8655 0.8323 0.8618 0.8176 0.9402
AWLP [77] 0.8981 0.9301 0.9224 0.9711 4.2537 3.4370 0.8421 0.8331 0.8631 0.8362 0.8686 0.8466 0.9296

GLP-CBD [5] 0.9140 0.9354 0.9273 0.9699 4.2372 3.3484 0.8582 0.8504 0.8523 0.8397 0.8679 0.8371 0.9331
NSCT [23] 0.9017 0.9389 0.9359 0.9736 4.3638 3.2847 0.8584 0.8519 0.8604 0.8328 0.8735 0.8527 0.9200
Proposed 0.9270 0.9502 0.9450 0.9786 3.7890 2.9363 0.8830 0.8818 0.8833 0.8585 0.8897 0.8645 0.9438

the pansharpened outputs using proposed approach. CS based methods perform

competitively to the MRA-based approaches in terms of quantitative measures,

whereas GLP-CBD and proposed approach provide consistent performance for

both the results due to their lowpass filters and effective IBSM schemes.

6.4.2 Pansharpening results on IKONOS-2 dataset images

In order to show the performance of our approach for different images, we con-

sider one more experiment on simulated dataset of IKONOS-2 satellite imagery.

Similar to QuickBird dataset case, Fig. 6.14 and Fig. 6.15 show visual results for

two different regions of interest. Figs. 6.14(a) and 6.15(a) show, the resampled

MS image EXP. Outputs of CS-based methods i.e., BDSD, GSA and PRACS are

shown in Figs. 6.14(b)-6.14(d) and 6.15(b)-6.15(d), respectively. Similarly, outputs

of MRA-based methods AWLP, GLP-CBD and NSCT are shown in Figs. 6.14(e)-

6.14(g) and 6.15(e)-6.15(g), respectively. Outputs of proposed approach are shown

in Figs. 6.14(h) and 6.15(h), while the available GT MS images are shown in Figs.

6.14(i) and 6.15(i), respectively.

Close look at the outputs shown in Fig. 6.14 and Fig. 6.15, one can say that

spectral distortion is minimum for the proposed approach and the pansharpened

images closely match the ground truth images. Colors of the objects are better

preserved using the proposed approach. One can see that green color of the cir-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.14: RGB true-color composition 3, 2 and 1 of pansharpening results ob-
tained from degraded IKONOS dataset images. (a) EXP (b) BDSD (c) GSA (d)
PRACS (e) AWLP (f) GLP-CBD (g) NSCT (h) Proposed (i) GT.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15: RGB true-color composition 3, 2 and 1 of pansharpening results ob-
tained from degraded IKONOS dataset images. (a) EXP (b) BDSD (c) GSA (d)
PRACS (e) AWLP (f) GLP-CBD (g) NSCT (h) Proposed (i) GT.
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Table 6.2: Quantitative measures for the pansharpening results shown on
IKONOS-2 dataset.

FIGURE METHOD CC SAM ERGAS Q4 Qavg SCC FSIM
B G R NIR B G R NIR

Fig. 6.14

IDEAL 1 1 1 1 0 0 1 1 1 1 1 1 1
EXP 0.8017 0.7917 0.7822 0.7668 5.4836 6.4824 0.5769 0.5769 0.5254 0.7515 0.7014 0.6850 0.6072

BDSD [41] 0.9276 0.9415 0.9479 0.9226 5.3543 3.6349 0.8934 0.8920 0.8702 0.9136 0.9173 0.9285 0.8885
GSA [6] 0.9281 0.9411 0.9479 0.9259 5.0261 3.5638 0.8892 0.8884 0.8725 0.9130 0.9170 0.9278 0.8981

PRACS [22] 0.9113 0.9390 0.9359 0.9077 5.1680 4.2447 0.8267 0.8258 0.8614 0.8699 0.8962 0.8788 0.8239
AWLP [77] 0.9200 0.9318 0.9345 0.9097 5.4766 3.9475 0.8546 0.8541 0.8648 0.9064 0.9019 0.9019 0.8542

GLP-CBD [5] 0.9292 0.9424 0.9493 0.9274 5.0283 3.5277 0.8907 0.8898 0.8741 0.9135 0.9177 0.9286 0.8996
NSCT [23] 0.9276 0.9427 0.9414 0.9260 5.0851 3.7672 0.8702 0.8693 0.8730 0.9055 0.9127 0.8989 0.8825
Proposed 0.9443 0.9524 0.9552 0.9380 4.4938 3.3917 0.8970 0.8970 0.8965 0.9258 0.9232 0.9254 0.9018

Fig. 6.15

IDEAL 1 1 1 1 0 0 1 1 1 1 1 1 1
EXP 0.8861 0.8805 0.8739 0.8466 4.3962 6.9879 0.6644 0.6754 0.5622 0.7830 0.7331 0.7207 0.6786

BDSD [41] 0.9737 0.9800 0.9819 0.9683 3.7951 3.0550 0.8830 0.9123 0.9258 0.9421 0.9473 0.9573 0.9340
GSA [6] 0.9736 0.9798 0.9819 0.9693 3.5746 2.9963 0.8790 0.9116 0.9274 0.9439 0.9479 0.9571 0.9376

PRACS [22] 0.9726 0.9792 0.9831 0.9684 4.0004 3.1703 0.8746 0.9092 0.9258 0.9394 0.9476 0.9564 0.9249
AWLP [77] 0.9716 0.9757 0.9754 0.9588 3.8567 3.3884 0.8665 0.9018 0.9249 0.9440 0.9420 0.9429 0.9133

GLP-CBD [5] 0.9745 0.9807 0.9828 0.9704 3.5660 2.9336 0.8916 0.9154 0.9290 0.9447 0.9493 0.9585 0.9390
NSCT [23] 0.9726 0.9810 0.9792 0.9650 3.9097 3.2387 0.8875 0.9091 0.9260 0.9407 0.9493 0.9425 0.9156
Proposed 0.9793 0.9830 0.9838 0.9727 3.2950 2.9071 0.9030 0.9254 0.9407 0.9537 0.9534 0.9576 0.9388

cular structures visible in the magnified region of GT MS image shown in Fig.

6.14(i) is better preserved using proposed approach shown in Fig. 6.14(h) when

compared to other approaches. Similarly red color of the tiny rectangular objects

in Fig. 6.15(i) appear visually better in Fig. 6.15(h) than those in other meth-

ods which is clearly visible by observing the magnified regions. Though the CS-

based approaches BDSD and GSA provide visually pleasant results with better

spatial quality, spectral distortion can be seen in these approaches. MRA-based

approaches perform reasonably well in terms of spatial as well as spectral qual-

ity than CS-based approaches. Using proposed approach, pansharpened images

have spatial quality of the Pan image as well as spectrally they are more closer to

the ground truth images.

Table 6.2 shows the quantitative comparisons for the results shown in Fig.

6.14 and Fig. 6.15. In this case also, proposed approach shows improvements

in terms of band-wise and global quality measures. Values of spectral measures

CC and SAM are closer to the ideal justifying better visual quality of the pro-

posed approach. Improvements in spatial quality measures SCC and FSIM can

also be observed which indicate that the spatial content of various regions is bet-

ter preserved in the pansharpened output using the proposed approach. As far

as the other quality measures Q4 and Qavg are considered, the performance of

our method is comparable to BDSD, GSA, GLP-CBD showing better spectral and
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spatial quality of the pansharpened outputs.

6.4.3 Computational time

Finally, we discuss the computational time required for each method. Component

substitution based methods namely BDSD, GSA, PRACS have faster execution

and require less time than MRA-based approaches i.e., AWLP, GLP-CBD, NSCT

and proposed approach. Among the MRA-based approaches, AWLP requires less

computational time followed by GLP-CBD method. NSCT and the proposed ap-

proach require slightly high computational time because of their locally adaptive

detail injection schemes processing higher number of directional subbands. Pro-

posed approach however takes extra time than NSCT due dominant direction es-

timation stage which is common for any adaptive transform. However, this time

is not very high and is in terms of few seconds.

6.5 Conclusion

In this chapter, we have proposed a simple yet effective multiresolution DFB de-

sign that represents the dominant directions present in the input image adap-

tively. Efficacy of the proposed design is tested for the pansharpening application

where directional details of the PAN image are injected into the resampled MS

bands using adaptive detail injection scheme. Due to better approximation power

of the lowpass filter in our approach, multispectral information in the original MS

bands is better preserved in the pansharpened outputs while adaptive process-

ing of directional information adds meaningful sharpness in the spatial details.

The experiments validate the use of proposed transform-based approach for pan-

sharpening. Proposed approach maintains good trade-off between spatial and

spectral quality of the pansharpened images. It can be concluded that the high

approximation power and dominant directional selectivity of the proposed trans-

form provides better fusion of Pan and MS images.
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CHAPTER 7

Conclusions and Future Research Directions

7.1 Summary

In this thesis, we have proposed the designs and applications of new real and

complex-valued transforms having multiple directional selectivity. The main con-

tributions of the thesis are summarized below.

• We presented designs for three real-valued transforms having higher direc-

tionality by using additional filter bank stages in conjunction with the tra-

ditional decimated and undecimated wavelet transforms. All three designs

showed better adaptability to the oriented features in the input image for

noise removal application based on simple thresholding approach. Appli-

cation of the proposed transform having smaller redundancy with an es-

tablished wavelet-based image denoising algorithm showed better perfor-

mance for textural images with much less computational cost.

• Two nonsubsampled transforms belonging to a class of multiresolution di-

rectional filter banks were proposed using completely nonseparable filtering

based approach. The proposed designs having simple structure and nonuni-

form frequency partitions offered reduced computational requirements than

the nonsubsampled counterparts obtained using their original subsampled

approaches. Proposed designs showed usefulness for the image denoising

application due to their complete shift-invariant nature and better approxi-

mation of the directional features provided by their anisotropic directional

bases.
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• A well known complex-valued image representation namely dual-tree com-

plex wavelet transform (DTCWT) was discussed with the contribution to

its 1-D filter design aspect. We proposed two new approaches to design

a set of biorthogonal wavelet filters of DTCWT having near-orthogonal fil-

ter response characteristics. These newly found sets of 1-D filters having

symmetric wavelet bases are useful to get almost tight-frame DTCWT. The

proposed approaches are based on optimization of free variables obtained

through factorization of generalized halfband polynomial. Use of uncon-

strained optimization make these approaches simple and computationally

less taxing. Associated wavelets of the filters obtained using the proposed

approaches showed better analytic properties leading to improved shift in-

variance. We also verified improvements in the directional feature selection

offered by near-symmetry of the designed wavelets using image denoising.

• We presented a 2-D complex wavelet transform having better directional-

ity and less redundancy than the 2-D DTCWT. The extrafine directionality

of the proposed transform is achieved by filtering the real-valued subbands

of the finer directional wavelet transform using novel complex-valued fil-

ter bank stages. Proposed complex wavelet transform design has one low-

pass and twelve directional subband representation with improved shift-

invariance property. Its undecimated counterpart was also discussed. We

indicated tractability of the proposed transforms for their possible separable

implementations. We also showed their efficacy for image denoising using

simple subband thresholding scheme.

• We proposed a simple yet effective multiresolution DFB design that repre-

sents the dominant directions present in the input image adaptively. Per-

formance of the proposed design in this case was tested for pansharpening.

Due to better approximation power of the lowpass filter in our approach,

spectral information in the original MS bands is better preserved in the pan-

sharpened output while adaptive processing of directional information adds

sharpness in the spatial details. The experiments validated the use of pro-

posed transform-based approach for pansharpening.
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7.2 Future Work

In this thesis, we have proposed the transform designs using the concepts of

wavelets and filter banks with the aim of having improved directional image rep-

resentation. The presented works pave some new ways for further improvements

and future directions such as:

• Multidimensional extensions of the proposed transforms such as RFiDWT,

EFiCDWT having smaller redundancy can provide effective representation

to handle the multidimensional data such as color images in a better way.

• Efficient realizations of the nonseparable filters such as ladder/lifting can

help to reduce the computational complexity of the proposed transforms.

• Most of the techniques used to design DTCWT filters give irrational coef-

ficients due to various constraints. However, having rational coefficients

helps in reducing computational cost. Hence, a new optimization approach

for factorization with rational coefficients is an interesting issue. Also, study-

ing the effect of rational coefficients on the analyticity and performance of

applications can be of great importance.

• Finding the accurate statistical models for the coefficients of the proposed

real and complex-valued transforms can be useful for image denoising.

• Performance of the proposed transforms can be tested for various applica-

tions such as texture analysis, super-resolution, image restoration etc.
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