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Abstract

Given a set of nonempty subsets of some universal set, their intersection graph

is defined as the graph with one vertex for each set and two vertices are adjacent

precisely when their representing sets have non-empty intersection. Sometimes

these sets are finite, but in many well known examples like geometric graphs (in-

cluding interval graphs) they are infinite. One can also study the reverse problem

of expressing the vertices of a given graph as distinct sets in such a way that ad-

jacency coincides with intersection of the corresponding sets. The sets are usually

required to conform to some template, depending on the problem, to be either a

finite set, or some geometric set like intervals, circles, discs, cubes etc. The prob-

lem of representing a graph as an intersection graph of sets was first introduced

by Erdos et al. and they looked at minimising the underlying universal set nec-

essary to represent any given graph. In that paper it was shown that the prob-

lem is NP complete. In this thesis, we study a natural variant of this problem

which is to consider graphs where vertices represent distinct sets and adjacency

coincides with disjointness. Although this is nearly the same problem on the

complement graph, for specific families of graphs this is a more natural way of

viewing it. The parameters we take into account are the minimum universe size

possible (USN), the minimum individual label size possible (ILN) and their uni-

form versions (UUSN and UILN respectively).

We propose two applications related to information visualization which use

the same underlying idea: assignment of unique labels to each vertex of a graph

(or tree) and removal of all edges. A pair of nodes is adjacent if and only if their

corresponding labels are disjoint. The proposed labelling scheme can be used to

establish isomorphism and study of ontologies.
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Information visualization is a class of techniques which is used to present data

in a graphical or pictorial format. Identification of new patterns as well as an un-

derstanding of difficult concepts is possible with the proper use of visualization.

Using interactive visualization, various other details related to the information

can be obtained. We consider trees in which each node is related to a leaf node (ob-

ject) of taxonomy. We propose a new technique of visualization namely Labeled

Object Treemap for the visualization of multiple hierarchies. The comparison of

our proposed technique with already known techniques is also made. The total

number of distinct elements used in the underlying labelling is asymptotically

minimised in the case of k-ary object trees.

The motivation for selecting set labelling is to use cardinalities of labels to iden-

tify level numbers of the underlying binary tree using which it will be easier to

discover adjacency as well as non-adjacency for all vertices. Our main contribu-

tion is the development of a new visualization technique which solves the issues

of edge crossing and continuity of the ’Trees in a treemap’ visualization technique,

while maintaining all the good characteristics of existing methods for visualizing

multiple hierarchies. We have also implemented an interactive version of the pro-

posed visualization technique with various features and studied various aspects

of treemapping.

Graph Visualization is one of the sub-fields of information visualization. It

is used for the visualization of structured data. i.e. for inherently related data

elements. In the traditional graph visualization techniques, nodes are used to

represent data elements whereas edges are used to represent relations. Accord-

ing to us, the key challenges for any graph based visualization technique are re-

lated to the edges. Some of the challenges are planar representation, minimisation

of edge crossing, minimising the number of bends, distinguish between the ver-

tices and the edges. The biggest advantage of our proposed representations is

that they don’t have edges so we don’t need to consider the challenges related to

edges. An algorithm for obtaining a valid labelling as well as procedures related

to dynamic changes (addition/removal of edges and/or vertices) are explained in

detail. Space complexities of the proposed methods are O(n2) and O(n3) where n

ix



denotes the number of nodes. Application of our proposed methods in the analy-

sis of a social network site is also demonstrated. Characteristics of these methods

are highlighted along with future possible modifications.

Graphs constructed to translate some graph problem into another graph prob-

lem are usually called auxiliary graphs. Specifically, total graphs of simple graphs

are used to translate the total coloring problem of the original graph into a vertex

coloring problem of the transformed graph. We obtain a new characterisation of

total graphs of simple graphs. We also design algorithms to compute the inverse

total graph when the input graph is a total graph. These results improve upon

the work of Behzad (in terms of simplicity of the algorithm, not running time),

by using novel observations on the properties of the local structure in the neigh-

bourhood of each vertex. We obtain direct constructive results for total graph of

complete graphs.

The second class of auxiliary graphs which we consider is based on the set of

spanning trees of the given graph and the edges constituting those spanning trees.

We call this class spanning tree auxiliary graphs of simple graphs. Since the class

of spanning tree auxiliary graphs of graphs do not have unique preimages (the

forward function is not injective), we derive precisely the classes of graphs which

have the same auxiliary graph. We design algorithmic ideas for computing a basic

preimage and define rules to get other solutions for the same auxiliary graph. We

also obtain several results expressing parameters of the auxiliary graph in terms

of (not necessarily the same) parameters of the original graph.

Keywords:

Set labelling; intersection number; intersection graphs; vertex labelling; knesser

graphs; information visualization; treemapping; graph drawing; taxonomy; visu-

alizing multiple hierarchies; graph visualization; graph labelling; social network

analysis; total graph; line graph; auxiliary graph; spanning trees; spanning tree

auxiliary graph; blocks; 2-connected graphs; cartesian product.
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CHAPTER 1

Introduction

Using graph theoretic framework, it is possible to solve as well study various

problems having practical significance. Graph theory has applications in various

fields including computer science (algorithms and computation), electrical engi-

neering (coding theory and communication networks), biochemistry (genomics)

and operational research (scheduling). The combinatorial methods of graph the-

ory are also useful in proving fundamental results in other areas of pure mathe-

matics. For an introduction to the basic concepts of graph theory and its applica-

tions refer [61] [24] [52].

A graph labelling refers to an assignment of labels to the vertices and/or edges

of a graph subject to certain conditions. Formally, given a graph G = (V, E), a

vertex labelling is a function of V to a set of labels. A graph with such a func-

tion defined is called a vertex-labeled graph. Graph coloring is a special case of

graph labelling which is one of the most important problems in graph theory as

well as combinatorics. The origin of this problem is the four colour theorem [18]

according to which it is possible to colour the regions of a map using four colours

and the underlying constraint is regions sharing a boundary in the map must get

distinct colours.

In a proper coloring of a graph, assignment of colours is done in such a way

that no pair of adjacent vertices get the same colour. Vertices receiving the same

colour form an independent set according to this colour assignment scheme. In

other words, in a proper coloring, the vertex set is partitioned into independent

sets depending on colour classes (vertices having the same colour form one colour

class). In general terms, graph coloring refers to the partition of graph elements
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(vertices and/or edges) subject to certain constraints.

In this thesis, we consider set labels instead of colours and similar to proper

coloring, in our proposed labelling scheme, no pair of adjacent vertices get same

(common) element(s) in their corresponding set labels. i.e. set labels of adjacent

vertices are disjoint.

Graph labelling techniques were first introduced in mid 1960s. In the inter-

vening 50 years approximately 200 graph labelling techniques have been studied

in more than 2000 research papers [20].

1.1 Definitions and notations

In this section, we present some definitions and notations which we use through-

out the thesis. The scope of our work is limited to only simple, finite, undirected

graphs G = (V, E), where V denotes the set of vertices and E (E ⊆ V×V) denotes

the set of edges. We use n to represent |V|. We use (a, b) to denote {a, b} ∈ E. If

v ∈ e, then v is called an endpoint of e (here, e ∈ E). If (v1, v2) ∈ E then we say

that vertices v1 and v2 are adjacent (or neighbours). If v ∈ e then the vertex v and

the edge e are said to be incident to each other. If an endpoint is shared by edges,

then those edges are said to be incident to one other.

Definition 1. Given G = (V, E) and a vertex v ∈ V , we define the neighbourhood

N(v) of v to be the set of neighbours of v. Let the degree d(v) of v be |N(v)|, the number

of neighbours of v. A vertex v is isolated if d(v) = 0.

Definition 2. A graph G is d-regular if and only if all vertices have degree d.

Definition 3. A graph H = (U, F) is a subgraph of a graph G = (V, E) if U ⊆ Vand

F ⊆ E. If U = V then H is called spanning.

Definition 4. Given G = (V, E) and U ⊆ V (U 6= φ), let G[U] denote the graph with

vertex set U and edge set E(G[U]) = {e ∈ E(G) : e ⊆ U}. (We include all the edges of

G which have both endpoints in U). Then G[U] is called the subgraph of G induced by U.

Definition 5. A k-coloring of G is a labelling f : V(G) → {1, . . . , k}. It is a proper

k-coloring if (x, y) ∈ E(G) implies f (x) 6= f (y). A graph G is k-colourable if it has
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a proper k-coloring. The chromatic number (G) is the minimum k such that G is k-

colourable and is denoted by χ(G).

Definition 6. An edge of a connected graph is a cut-edge if its deletion disconnects the

graph.

Definition 7. Given a connected graph G, a spanning tree T is a subgraph of G which

is a tree and contains every vertex of G.

Definition 8. A vertex cut in a connected graph G = (V, E) is a set S ⊆ V such that

G \ S := G[V \ S] has more than one connected component. A cut vertex of a connected

graph is a vertex v such that {v} is a cut.

Definition 9. G is called k-connected if |V(G)| > k and if G \ X is connected for every

set X ⊆ V with |X| < k. In other words, no two vertices of G are separated by removal of

fewer than k other vertices. Every (non-empty) graph is 0-connected and the 1-connected

graphs are precisely the non-trivial connected graphs.

Definition 10. A block of a graph G is a maximal connected subgraph of G that has no

cut-vertex. If G itself is connected and has no cut-vertex, then G is a block. If a block B

has at least three vertices, then B is 2-connected. If an edge is a block of G then it is a

cut-edge of G.

Definition 11. A disconnecting set of edges is a set F ⊆ E(G) such that G \ F has more

than one component. Given S, T ⊂ V(G), the notation [S, T] specifies the set of edges

having one endpoint in S and the other in T. An edge cut is an edge set of the form [S, S],

where S is a non-empty proper subset of V and S = V − S.

1.1.1 Graph classes

In this subsection, we define the graph classes we study.

Definition 12. Kn is the complete graph, or a clique. Take n vertices and all possible

edges connecting them.

Definition 13. G = (V, E) is bipartite if there is a partition V = V1 ∪ V2 into two

disjoint sets such that each e ∈ E(G) intersects both V1 and V2.
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Definition 14. Kn,m is the complete bipartite graph. Take n + m vertices partitioned

into a set A of size n and a set B of size m, and include every possible edge between A and

B.

Definition 15. Given G = (V, E), the complement G of G has the same vertex set V

and (u, v) ∈ E((G)) if and only if (u, v) /∈ E(G).

Definition 16. A clique in G is a complete subgraph in G. An independent set is an

edgeless induced subgraph in G.

Definition 17. A graph having no cycle is acyclic. A forest is an acyclic graph; a tree is

a connected acyclic graph. A leaf (or pendant vertex) is a vertex of degree 1.

Definition 18. A set of edges M ⊆ E(G) in a graph G is called a matching if e∩ e
′
= φ

for any distinct pair of edges e, e
′ ∈ M.

Definition 19. A path graph has vertices v1, v2 . . . , vn and edges e1, e2, . . . , en−1, such

that each edge ek joins vertices vk and vk+1. The path graph on n vertices is denoted by

Pn.

Definition 20. A cycle graph has vertices v1, v2 . . . , vn and edges e1, e2, . . . , en, such

that each edge ek joins vertices vk and vk+1, for 1 ≤ k ≤ n− 1 and en joins vn and v0.

The cycle graph on n vertices is denoted Cn.

Definition 21. A wheel graph has a hub vertex joined to every other vertex and a cycle

through all the other vertices. The wheel graph whose rim is an n-cycle is denoted Wn.

Some classes of graphs we study are defined on the basis of an operator called

the cartesian product. Cartesian product is used to generate complicated graphs

from simpler ones. We define this operation below and also define graph classes

we consider based on this operator.

Definition 22. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the cartesian

product H = G1�G2 has vertex set V = V1 × V2 where × represents the cartesian

product of the two vertex sets and an edge connects (u1, u2) to (v1, v2) if and only if

u1 = v1 and (u2, v2) ∈ E2 or (u1, v1) ∈ E1 and u2 = v2.
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This operator defined for two graphs can be extended iteratively to any num-

ber of graphs. The operation is commutative and associative in the sense that

the graphs obtained by commuting or bracketing a series of graphs in any order

gives rise to the same product graph upto isomorphism. The graph K1 serves as

the identity for the cartesian product operator on graphs.

Definition 23. A hypercube (Qn) is any graph obtained as the cartesian product of a

number of P2’s. Its dimension is the number of P2’s in the product.

Definition 24. A grid or mesh is any graph obtained as the product of graphs from

paths. Its dimension is the number of paths in the product.

Definition 25. The line graph L(G) of a graph G = (V, E) is defined as the graph with

vertex set having one vertex corresponding to each edge in G and an edge between two

vertices of L(G) precisely when the edges of G that those vertices correspond to, have a

common endpoint.

Definition 26. The total graph T(G) of a graph G = (V, E) has as vertex set one vertex

for each edge as well as each vertex in G. Two vertices in T(G) are adjacent precisely when

the elements (vertex or edge) of G they represent are adjacent/incident to each other in G.

Definition 27. Given a simple graph G, we define its spanning tree auxiliary graph

Aux(G) as the graph which has a vertex corresponding to each spanning tree of G, and

two vertices of Aux(G) are adjacent if and only if the corresponding spanning trees in G

can be obtained by a single unit transformation.

1.2 Statements of problem variants

Universe Size Number (USN) of a graph is the number of elements in a small-

est universal set S such that one can label the vertices of the graph with unique

subsets of S such that if vertices are adjacent then their intersection of labels are

disjoint and if the vertices are non-adjacent then their intersection of labels have

at least one common element.

Uniform Universe Size Number (UUSN) of a graph is the number of elements
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in a smallest universal set S such that one can label the vertices of the graph with

unique subsets of S with same cardinality such that if vertices are adjacent then

their intersection of labels are disjoint and if the vertices are non-adjacent then

their intersection of labels have at least one common element.

Individual Label Number (ILN) of a graph is the smallest size of the largest label

over all labellings of the vertices with unique sets such that adjacency coincides

with disjointness.

Uniform Individual Label Number (UILN) of a graph is the smallest possible

size k for which vertices can be labeled with distinct sets of size k each such that

adjacency coincides with disjointness.

1.2.1 Objectives

• To minimize the universe of label used, independent of the individual label

sizes.

• To minimize the universe of label used with uniform individual label sizes.

• To minimize the size of individual label size independent of overall universe

size.

• To minimize the size of each label in a uniform sized labelling independent

of overall universe size.

• Derive relationships (both exact values and upper and/or lower bounds)

between these four parameters either universal or specific to some graph

classes.

• Derive mathematical results stating bounds or exact values of the size of

these labels and the universe set size or constructive methods by providing

algorithms for them.

• Characterising total graphs and spanning tree auxiliary graphs.

6



1.3 Set theoretic definitions of total graphs and span-

ning tree auxiliary graphs

1.3.1 Total graphs and set labelliing

Figure 1.1: Input graph G

Set labelling method to construct the total graph of the given graph:

1. Using |V| elements assign unique singleton label to each vertex of the input

graph G.

2. Consider |E| additional vertices. These vertices represent edges of G. For

each new vertex, label it using a unique 2-element set, whose elements cor-

respond to the endpoints of the edge which is represented by the newly

added vertex.

3. Draw additional edges between pairs of vertices having non-empty single-

ton intersection between their corresponding labels.

4. The generated graph is the total graph of the given input graph.

An input graph is shown in Figure 1.1 and the corresponding generated total

graph is shown in Figure 1.2.
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Figure 1.2: Total graph of G (T(G))

1.3.2 Spanning tree auxiliary graph and set labelling

Figure 1.3: Construction of Aux(G) from G

Diagrammatically, one can label the vertices of a simple graph and also its edges

with distinct labels. Given such a labelling of a graph G, one can label the vertices

of the spanning tree auxiliary graph Aux(G), each with the list of (n− 1) edges

of the spanning tree it represents. We put an edge between two vertices in the
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spanning tree auxiliary graph if and only if the labels of the two vertices share

(n− 2) of their (n− 1) elements in common. See Figure 1.3 for a graph G and its

spanning tree auxiliary graph Aux(G).

1.4 Related work

1.4.1 Set labelling and its applications

Knesser graphs KGn,k are graphs whose vertices correspond to the k element sub-

sets of an n element set and two vertices are adjacent precisely when their corre-

sponding subsets are disjoint. Clearly if n < 2k then the graph is an independent

set of vertices. If n = 2k then the graph is a matching. When n = 2k + 1 we get the

special family of odd graphs. Knesser graphs are well studied. Many problems

on them can be solved clearly and efficiently using this set-theoretic definition. A

natural question, therefore, is to try and model an arbitrary graph in this fashion.

That is, come up with an underlying universal set and a choice of unique subsets

to associate with each vertex such that adjacency is characterised by disjointness

of the corresponding subsets. Clearly for an arbitrary graph the above choice of

all identical sized subsets of a certain set will not work, because a graph defined

in that manner is necessarily vertex transitive.

Our motivation to look at disjointness instead of intersection is that several

well known graphs like the Petersen graph and Knesser graphs are expressed in

the latter method, and the complements of these families are not well studied.

Thus our choice is justified and not merely an attempt to artificially deviate from

existing work.

For all the vertices of a graph, it is possible to identify all the neighbours and

non-neighbours uniquely using the underlying set labelling. For the given two

structurally identical graphs, value of USN/UUSN is same with identical set-labels

being used to label vertices. This particular feature is useful to establish isomor-

phism between two graphs. It is also possible to study ontologies by careful anal-

ysis of USN/UUSN and set labels being used for labelling of the graphs.

The closely related concept is intersection graphs for finite sets in which non-
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adjacency is characterised by disjointness of the corresponding subsets of the un-

derlying universal set. This was studied by Erdos et. al. [14]. In that paper, they

also obtain a tight upper bound of n2/4 on the intersection number where the

sets are not required to be distinct. In Section 6 of that paper, the authors point

out that the problem in general becomes more difficult when the constraint of the

distinctness is added. They, however, observe that the universal upper bound ap-

plies to that variant as well. We, thus, make inroads into an open problem posed

by them obtaining some general results as well as results for some special classes

of graphs. We use the slightly different framework of disjointness graphs as many

well known families of graphs are defined in this way, as mentioned earlier. So

for a given graph, these two labelling approaches are entirely different (except for

self-complementary graphs).

For a graph with m edges and n vertices, a trivial upper bound for intersection

number is m (see [5]). Alon Noga et. al. [1] derived an upper bound of any n-

vertex graph as a function of maximum degree of a graph: 2e2(d + 1)2lnn where

d=maximum degree of the complement graph of G and e=base of the natural log-

arithm.

Since the problems of intersection and disjointness on graph representation are

equivalent, the disjointness version is also NP Complete. The problem of finding

a vertex labelling for an arbitrary graph using distinct sets for different vertices

and all its standard variants we have listed are NP Complete. This follows from

the fact that the equivalent problem of determining the intersection number of an

arbitrary graph is NP Complete [14] [22]. Intersection graphs have many applica-

tions in the fields of scheduling, biology, VLSI design and they are also used for

development of faster algorithms for optimisation problems.

Tree-Maps are used to present hierarchical information on 2-D [58] (or 3-D

[11]) displays. Tree-maps offer many features: based on attribute values, users

can specify various categories and visualize as well as manipulate categorized

information. The traditional approach to represent hierarchical data is to use a

directed tree. However, it is impractical to display large (in terms of size as well

complexity) trees in limited amount of space. In order to render large trees con-
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sisting of millions of nodes efficiently, the Tree-Map algorithm was developed.

Even the file system of UNIX can be represented using Tree-Map. The definition

of Tree-Maps is recursive: allocate one box for a parent node and the children of

that node are drawn as boxes within it. Practically, it is possible to render any tree

within a predefined space using this technique. It has applications in many fields

including bioinformatics, visualization of stock portfolio.

For many applications it is necessary to consider two aspects: the relationship

between different objects and identification of the object type. One can show these

aspects using two different trees: 1) taxonomy tree 2) the other tree where each

node is related to leaf nodes (object) of a taxonomy. The problem is to design a

visualization technique which effectively conveys both the desirable features i.e.

relationships between different objects (object tree) along with the mapping of

each object with taxonomy. To the best of our knowledge, the best-known visu-

alization technique for representing multiple hierarchies is: Trees in a Treemap

technique [12].

Graph based information visualization techniques are very well studied in

the literature [26] [47] [41] [36]. Applications of Graph Visualization are in many

areas. Some of them are: Representation of hierarchical structures using trees,

website maps, history of internet browsing data, biology and chemistry (for the

representation of phylogenetic trees, genetic maps, molecular maps etc). Other

applications include data flow diagrams, entity relationship diagrams, logic pro-

gramming.

1.4.2 Auxiliary graphs

A total coloring of a simple graph is a simultaneous assignment of colours to its

vertices and edges such that adjacent vertices get distinct colours, adjacent edges

get distinct colours and the colour of each edge is distinct from the colours of its

endpoint vertices (or equivalently the colour of each vertex is distinct from the

colours of its incident edges). It is thus a combination of a proper vertex coloring,

a proper edge coloring and a further restriction on the interplay between these

colorings. The notion of total coloring was introduced by Behzad [9] and Vizing
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[60] and those papers also conjectured that χT(G) ≤ ∆(G) + 2. It is immediate

that χT(G) ≥ ∆(G) + 1, since a vertex of maximum degree and its incident edges

must all get distinct colours. A lot of work has been done on total coloring [28]

[8], based on frugal coloring [27], the list coloring conjecture [51] etc.

The generic concept of auxiliary graphs is an important one in graph theory.

In its most general form it refers to constructing graphs based on some rules ap-

plied to any given graph. In other words it is a function from the set of graphs

to the set of graphs. The definition is usually based on some natural and impor-

tant properties of graphs and the computation of the function is easy in princi-

ple, even if the algorithm involved could be expensive in terms of computational

complexity. What is usually less clear is the range of this function. It is rare for

the range of these auxiliary functions to be the entire codomain (in this case the

class of all graphs). Thus the challenging and important problems associated with

these auxiliary graph families is to characterise mathematical properties of graphs

which belong to the range, algorithms for deciding whether a graph belongs to

the range or not and also algorithms for computing the inverse image of a given

auxiliary graph if it is unique. If the preimage is not unique, then one interest-

ing challenge is to decide what constitutes a minimal/canonical solution and also

ways to generate the entire set of solutions by extending the basic solutions.

A well known example of auxiliary graphs is the class of line graphs. The char-

acterisation as well as algorithms for recognising this class of graphs and comput-

ing their inverse images has been established in a wide variety of research articles

[7] [43] [54].

1.5 Thesis outline

In Chapter 2, we present upper bounds/optimal values on USN for some special

families of graphs including paths, cycles, k-ary trees, complete bipartite graphs,

matching, complement of complete graphs. Chapter 3 explains treemaps as well

as our proposed visualization technique for multiple hierarchies namely ’Labeled

Object Treemap’. The implemented interactive version of the proposed method is
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also explained in the same chapter. Our other proposed graph visualization tech-

nique (’Edgeless graph’) is explained in Chapter 4. In Chapter 5, we present upper

bounds/optimal values on UUSN and ILN for some special families of graphs. The

next two chapters, Chapter 6 and Chapter 7 give new characterisations of total

graphs and spanning tree auxiliary graphs respectively. Chapter 8 contains some

concluding remarks and outlines possible future directions for research.
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CHAPTER 2

Results on Universe Size Number (USN)

In Section 2.1, the problem statement is discussed along with some basic results.

Results related to USN are discussed in detail for some specific classes of graphs

(including complement of complete graph, matching, paths, cycles, complete bi-

partite graph ) in Section 2.2. Cartesian product based method is discussed in

Section 2.3. In Section 2.4, results related to USN of complete binary trees and k-

ary trees are presented. A modified algorithm to quickly identify non-neighbours

as well as neighbours of a particular node of the complete binary tree is also ex-

plained in the same section. The final section summarises the results obtained in

this chapter.

2.1 Introduction

A set labelling of a graph G(V, E) is a function f : V → P({1, 2, . . . , k}) where

k ∈ Z+ such that

• f is one one.

• ∀u, v ∈ V, (u, v) ∈ E⇔ f (u) ∩ f (v) = φ.

Universe size number (USN) of a graph is the least positive integer k such that a

set labelling of G exists. (For example, see Figure 2.1)
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Figure 2.1: Input graph H and USN(H) = 2

2.1.1 General results on USN

Here, we present general bounds on USN.

Theorem 2.1.1. USN(G) ≥ dlog2ne where G has n vertices.

Proof. Case 1: n = 2i where i ∈ N. Using dlog2 ne elements, at most n subsets can

be generated which, due to the requirement of label distinctness, can be used to

label at most n vertices. This proves the claim.

Case 2: n 6= 2i where i ∈ N. Using blog2 nc elements, at most n− 1 subsets can

be generated which, due to the requirement of label distinctness, can be used to

label at most n− 1 vertices. Here total number of vertices is n. In order to assign

a non-empty as well as unique label to nth vertex 1 additional element is required

in the underlying universe.

Therefore value of USN is at least dlog2 ne for any given graph.

Theorem 2.1.2. USN(G + v) ≤ USN(G) + 1, if d(v) = n(G).

Proof. Since the vertex v is adjacent to all other vertices, no element used in its

label can be used in the labels of any other vertex. Disregarding v, the graph

G requires USN(G) elements for labelling its vertices even as a subgraph of G′.

If φ is not used in the labelling of vertices of G then we can assign φ as a valid

label to the newly added vertex v. In this case, USN(G + v) = USN(G). In all

other cases, one additional element is required to label the vertex v. There is no

purpose served in having more than one element in the label of v because v has

no non-neighbours.
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Theorem 2.1.3. USN(Kn) = n− 1

Proof. Label the n vertices of Kn with sets {φ,{1}, {2}, {3}, . . . , {n− 1}}. This as-

signment respects adjacency as well as non-adjacency among all pairs of vertices.

The underlying labelling is valid and it uses n− 1 elements. Hence USN(Kn) ≤

n− 1. In the case of Kn, each vertex is adjacent to all the remaining vertices and

hence it is not possible to reuse any of the existing individual vertex label ele-

ment(s). Using n − 1 elements, it is possible to generate at most n distinct sets

having empty intersection between any two sets. Hence USN(Kn) ≥ n− 1 which

proves the result.

2.2 Results on USN for some special families of graphs

In this section, we derive results on USN (either exact or asymptotic) on the follow-

ing classes of graphs: Paths, Cycles, Wheel Graph, Hypercube, Complete Graph,

Complement of Complete Graph (Kn), Matching (M2n)).

Theorem 2.2.1. For matching, USN = O(log2 2n)

Proof. Consider matching graph on 2n vertices (number of edges=n). In a match-

ing each vertex of the graph is adjacent to exactly one other vertex. Hence, the

label of each vertex must have non-empty intersection with the labels of all the

remaining 2n− 2 vertices. Assume that the underlying universal set U has k ele-

ments. Our aim is to calculate the value of k. We can summarize our requirements:

1. k should be large enough to generate at least 2n non-empty subsets.

2. Each subset must have non-empty intersection with all subsets except its

unique neighbor.

If we consider only subsets of cardinality k/2 then each subset will have exactly

one disjoint subset and it will have non-empty intersection with all the remaining

subsets (pigeonhole principle). In order to fulfill the first requirement, ( k
k/2) ≥ 2n.

By Stirling’s approximation, USN=k=O(log2 2n)
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Figure 2.2: USN (M6) = 4

For example, USN (M6) = 4 (See Figure 2.2).

Theorem 2.2.2. USN(Kn) = 1 + dlog2 ne

Proof. Consider an underlying universal set A with cardinality k.

Disjoint sets are not allowed for labelling distinct vertices of an independent set.

For all S (where S ⊂ A), at most one subset can be used for labelling from each

pair (S, A − S). So the total available sets for labelling are reduced by factor of

half. Select the subset having higher cardinality in each pair and if cardinalities

are same then make an arbitary selection. By doing this, each subset will have

cardinality at least
k
2

. All these selected subsets will have non-empty intersection

(pigenhole principle) and hence they can be used to assign labels to vertices.

So, in summary, at most 2k−1 vertices of the graph can be labelled using A. Sim-

ilarly, at most 2k−2 vertices of the graph can be labelled using k − 1 labels. So

using k labels, it is possible to get a valid and optimal labelling of (Kn) where

n ∈ {2k−2 + 1, 2k−2 + 2, . . . , 2k−1} which proves the result.
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Figure 2.3: USN (K8) = 4

For example, USN (K8) = 4 (see Figure 2.3).

Theorem 2.2.3. USN Ks,t = 2 + dlog2 se+ dlog2 te

Proof. Complete bipartite graphs consist of two independent sets. From the valid

and optimal labelling of one independent set nothing can be used in the second

independent set. So labelling of these two independent sets must be entirely dis-

joint which proves the result.

Theorem 2.2.4. USN(Pn) = O(log n).

Add-edge Procedure:

Input: A valid labelling of any given path (Pn) using exactly k labels. i.e. USN(Pn) ≤

k.

Output: A valid labelling of Pn+2 using exactly k + 3 labels. i.e. USN(Pn) ≤ k + 3.

Figure 2.4: Summary of add-edge procedure

Step 1: Identify a P4 in the given Pn. Let the vertices of this P4 be vr, vr+1, vr+2 and

vr+3 and corresponding labels be lr, lr+1, lr+2 and lr+3 respectively.
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Step 2: Add 2 new vertices vn+1 and vn+2. In order to construct Pn+2, add 3 new

edges (vr+2, vn+1), (vn+1, vn+2), (vn+2, vr+3).

Step 3: l(vn+1) = lr+1

l(vn+2) = lr+2

Step 4: Three pairs (vr, vn+1), (vr+1, vn+2) and (vr+2, vr+3) are non-adjacent. In

order to reflect the non-adjacency in the labelling, add 3 distinct new elements

say a, b and c to the labels of these 3 pairs respectively. The final labelling is valid.

It respects adjacency as well as non-adjacency for all pairs of vertices.

A summary of the Add-edge procedure is shown in Figure 2.4.

Lemma 2.2.1. For the given Pn, the add-edge procedure can be applied for at most
n− 1

3
.

Proof. The Add-edge procedure can only be applied to each edge-disjoint P4-

subgraph of the given Pn. The maximum number of edge-disjoint P4 in a Pn is
n− 1

3
. Thus the result follows.

Proof of Theorem 2.2.4:

We now give an algorithmic proof.

Algorithm: ValidPathLabelling:

Input: A valid labelling of Pn using exactly k labels.

Output: A valid labelling of Pn+2i using exactly k + 3 labels where 0 < i ≤ n− 1
3

and i ∈ N+

Step 1: Apply the Add-edge procedure on the given Pn for the first 4 vertices i.e.

r = 1.

Step 2: For j ≥ 1, (where j ∈ N+)

If 3j + 1 < n and 3j + 4 ≤ n then apply the Add-edge procedure for r = 3j + 1

with the following modifications in step 4 of the procedure:

(Observation: v3j+1 participates in exactly two Add-edge procedures; in iteration

j− 1 as well as iteration j. Therefore, before starting of iteration j, the label of v3j+1

already has an additional element p due to iteration j− 1 where p ∈ {a, b, c} For

j = 1, p = {c} from step 1. The label of v3j+1 won’t change during the jth iteration

and p ∈ l3j+1.)

1. Add p in the label of newly added vertex v which is a neighbour of v3j+3.
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2. Use the remaining two elements {a, b, c} − {p} in any order, for the remain-

ing two pairs.

The final labelling of Pn+2i is valid after applying valid-path-labelling algo-

rithm.

Upper bound calculation:

So at most
⌊

n−1
3

⌋
edges can be used and they will generate at most

2n− 2
3

new

vertices.

Recurrence: T(5n/3) = T(n) + 3

USN : O(log n)

Note: We can generate paths for all values of n by applying the Add-edge proce-

dure repeatedly. One can generate all P2x+1 by repeatedly applying the add-edge

procedure on a valid labelling of P7, similarly all P2x can be generated by applica-

tion of the add-edge procedure on a valid and optimal labelling of P6. Here x > 3

and x ∈ N .

Figure 2.5: Add-edge procedure : P7 to P11

Construction of P11 from P7 is shown in Figure 2.5.

20



As a corollary we have the following theorem.

Theorem 2.2.5. USN(Cn) = O(log n) and USN(Wn) = O(log n).

Proof. With the use of the ValidPathLabelling algorithm, it is possible to generate

a valid labelling of Cn using O(log n) labels. Notice that the edge (V1, Vn) does not

participate in any of the Add-edge procedure iterations. Wheel graph consists of

Cn and one additional vertex with degree n. Therefore, USN(Wn) = USN(Cn)

(from Theorem 2.1.2).

Theorem 2.2.6. USN(Qn) < 3n + O(logn)

For hypercube, the valid labelling problem can be viewed as two independent

subproblems:

1. Valid labelling of levels in order to reflect non-adjacency between them (ex-

cept adjacent levels- if at least one edge is present between two levels then

those two levels are adjacent), non-adjacent levels should have at least one

element in common to reflect non-adjacency.

2. Valid labelling to reflect adjacency and non-adjacency between specific pairs

of vertices in adjacent levels.

Traditional hasse diagrams type labellings for Q4 are shown in Figures 2.6 and 2.7.

Proof. We will give an algorithmic proof for the claim.

Algorithm:

Input: Qn

Output: A valid labelling of Qn with at most 3n + O(log n) labels.
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Figure 2.6: Hasse diagram type labelling of Q4 using the set {5,6,7,8}

Figure 2.7: Hasse diagram type labelling of Q4 using 3 disjoint sets with the same
cardinality (4)

Step 1:

Consider Pn+1 (path of length n) for given Qn. Apply ValidPathLabelling algo-

rithm to get a valid labelling of Pn+1 with O(log n) labels. Now, for all i, labels of

all vertices at level i= label of vertex Pi+1.

For example, for Q6 consider a valid and optimal labelling of P7 and assign 245,

13, 25, 14, 23, 15, 234 to the labels of the vertices of the corresponding 7 levels

of Q6. Valid labelling of P5 and the corresponding 5 levels of Q4 are shown in

Figure 2.8.
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Figure 2.8: Step 1

So far, O(log n) element have been used for the labelling and after this step all the

vertices of non-adjacent levels reflect non-adjacency.

Additionally all vertices within one level have at least one common element. So

non-adjacency within one level is respected too.

Step 2 (a)

Consider three disjoint (disjoint with elements used in Step 1 of labelling) sets

each of size n: S1, S2 and S3.

S1 is used for labelling of levels: 3, 6, 9, . . .

Similarly S2 is used for labelling of levels: 1, 4, 7, 10, . . .

and S3 is used for labelling of levels: 2, 5, 8, 11, . . .

Qn contains (n
i ) vertices at level i. Assign (n

i ) different labels to all vertices of

level i using the (n
i ) subsets of the underlying set S mentioned above. (Using con-

ventional subset assignment method to hypercube i.e. level i should contain all

subsets of length i).

So after this step 2(a), all labels are unique.
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Note: For the 0th level use valid labelling of 1st vertex of Pn obtained from step 1.

After step 2(a), adjacency is preserved fully because all adjacent vertices have dis-

joint labels because they use disjoint underlying sets for labelling (see Figure 2.9).

Note: The labelling shown in Figure 2.9 is the union of labellings shown in Figures

2.7 and 2.8.

Figure 2.9: Step 2(a)

A total of 3n + O(log n) labels are used so far.

Step 2(b):

Now non-adjacency between two adjacent levels remains to be addressed. For

each vertex of level i, add extra elements from level i− 1 to preserve non-adjacency

with level i− 1.

Procedure to add extra elements to the label of a vertex v of level i :

1. Consider all vertices which are adjacent to vertex v and at level i− 1. Take

the union of all labels of these vertices, say P.

2. Let Q = S \ P where S : S1/S2/S3 which is used to label vertices of level

i− 1.

3. New label of v= {old label of v}∪Q.

24



Now the ith level will contain elements from both sets: set used for level i and

i− 1.

Add extra elements only from the originally assigned underlying set in 2(a). i.e.

for level i + 1 add extra elements to preserve non-adjacency from the underlying

set of level i not i− 1.

No new labels are added in this step and hence total number of labels used after

all steps is 3n + O(log n). Final labelling after step 2(b) preserves adjacency as

well as non-adjacency for all pairs of vertices.

Figure 2.10: Final labelling after Step 2b

Final labelling for Q4 is shown in Figure 5.4.

2.2.1 Grid graph and ladder graph

For the given Gm,n grid, assume the valid labelling for m = 1 to m = i is done.

How to construct valid labelling for m = i + 1 is explained in the Figures 2.11 and

2.12.

Valid-Grid-Labelling:

Step 1: As shown in the Figure 2.11, Vi,k and Vi+1,k−1 are structurally highly simi-

lar. For k ≥ 2, L(Vi+1,k−1) = L(Vi,k).

Note: The last vertex namely Vi+1,n remains unlabelled after this step.
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Figure 2.11: Structrual similarity of Vi,k and Vi+1,k−1

Step 2: For i ≥ 2, 2 vertices, Vi,k+1 and Vi−1,k are non-adjacent to Vi+1,k−1 but

adjacent to Vi,k. Hence, add a common element a in the labels of Vi,k+1, Vi−1,k and

Vi−1,k−1.

The need for 3 new elements is explained in the Figure 2.12. In general, for

m = i + 1, for all Vm,k, use a iff k mod 3 = 1, use b iff k mod 3 = 2 and use c iff k

mod 3 = 0 in order to satisfy non-adjacency with respect to two vertices of m = i

and m = i− 1.

Figure 2.12: Justification of 3rd new element

Remaining steps are for the labelling of Vi+1,n.

Step 3: Identify all vertices V which are at distance 2 from Vi+1,n.
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Say A= Intersection of the labels of all vertices at distance 2 from Vi+2,n. Assign

L(Vi+1,n) = A.

Step 4: Let B= All vertices V which are at distance 3 from Vi+1,n.

Assign L(Vi+1,n) = A ∪ {d}.

Add {d} to all labels of B.

Theorem 2.2.7. For the Ladder Graph, USN(Ln) = O(logn)

Proof. Base case is shown in the Figure 2.13 and final valid labelling can be ob-

tained by applying Valid-Grid-Labelling algorithm with appropriate modifica-

tions. Construction steps are shown in the Figures 2.14- 2.16.

Figure 2.13: Base case

Figure 2.14: Step 1

Figure 2.15: Step 2
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Figure 2.16: Final labelling

Theorem 2.2.8. USN(Gm,n) = O(
√

p) where p = m ∗ n

Proof. Using Valid-Path-Labelling algorithm, it is possible to label n vertices for

m = 1. Remaining vertices can be labelled using Valid-Grid-Labelling algorithm.

For each value of m, at most 4 extra elements are required and hence USN(Gm,n) =

4m + O(logn).

Construction of valid labelling of G3,9 as well as G4,9 are shown below.

Figure 2.17: G3,9 after step 1

Figure 2.18: Final labelling G3,9
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Figure 2.19: G4,9 after steps 1 and 2

Figure 2.20: Final labelling G4,9

2.3 Cartesian product based method

Key Observation: Let A, B, C, D be sets. Then (A× B)∩ (C×D) 6= ∅ if and only

if A ∩ C 6= ∅ and B ∩ D 6= ∅.

Theorem 2.3.1. Let G and H be two graphs on the same vertex set V. Further, suppose

E(G) ∩ E(H) = ∅. Then USN(G + H) ≤ USN(G)×USN(H).

Proof. Take optimal labellings of the vertex set using disjoint universes for the

graphs G and H. Now consider the graph G + H. The vertex sets of G and H
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are identical. For each vertex v in G + H give it the label lG(v)× lH(v). Clearly

two vertices are nonadjacent only if they are nonadjacent in both G and H. In that

case their labels under the two labellings will each be intersecting. From the key

observation, it follows that their cartesian product new label will also intersect.

Similarly for the case of non-intersection (adjacent vertices).

As a corollary we have the following theorem.

Theorem 2.3.2. USN(Pn) ≤ (1 + log n
2 )

2.

Proof. The path is the union of two disjoint matchings. Each matching has USN

O(log n). From Theorem 2.3.1, we see that the graph has USN O(log n)2. We state

this here just as an application since we have a better bound for paths (Theo-

rem 2.2.4).

By appling Theorem 2.3.2, valid labelling of P6 is shown in Figure 2.21.

Figure 2.21: Cartesian Product Based Method

2.4 Results on USN for complete k-ary trees

In this section, we derive results on USN (asymptotic) on the following classes

of graphs: complete binary trees and complete k-ary trees. Structural similarities

between level LN+1 and LN−1 of complete binary tree is highlighted in Figure 2.22.
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Figure 2.22: Summary of adjacency and non-adjacency for LN+1 and LN−1

Theorem 2.4.1. USN(BTn) = O(logn). Where BT=Complete binary tree and n denotes

the total number of vertices of the BT.

We prove this result by an iterative algorithm: Valid-BinaryTree-Labelling. The

algorithm is explained below:

Input: A valid labelling of the complete binary tree of height h using exactly K

labels.

Base case: USN(BT7) = 5. Base case is shown in Fig. 2.23 with underlying labelling

set: {1, 2, 3, 4, 5}.

Figure 2.23: Input
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Output: A valid labelling of complete binary tree of height h + 1 using exactly

K + 4 labels. The four new labels are a,b,c and d.

Note: During the phase of the algorithm when the number of levels increases

from L to L + 1, labels of vertices which are present at level L− 2, L and L + 1 are

changed. Labels of all other vertices remain as it is.

Step 1: For all newly added vertices in level L + 1, find their corresponding an-

cestors in level L− 1.

For all v (where v is a level L + 1 vertex) ,

Label(v)= Label(ancestor(v) in level L− 1).

Note: The levels L+1 and L-1 are highly similar with respect to adjacency with the

remaining levels. Both of these levels are adjacent to level L and non-adjacent to

1, 2, 3, . . . , L− 3.

Figure 2.24: After Step 1 and 2

Observations after step 1:

1. All the vertex-labels which are present in level L + 1 have non-empty intersec-

tion with each other because corresponding ancestors are either same or having

non-empty intersection. All vertices present at level L− 2 form an independent

set and since the underlying labelling is valid, all the vertex-labels pairs have

non-empty intersection. So the vertex-labels which are present in level L + 1 have
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non-empty intersection with each other because they are generated from the ver-

tex labels present at L− 2. This is desirable because all vertices of level L + 1 are

non adjacent.

2. Layer L + 1 and L− 1 are non adjacent and they have non-empty intersection

after this step.

Old-Label(v) in step i represents a label of v obtained after steps 1 to i− 1.

New-Label(v) in step i represents a new(modified) label of v after step i.

Step 2: The level L− 2 is adjacent to L− 1 but not to L + 1.

For all vi, (where v′ is a level L− 2 vertex)

New-Label(v′) = Old-Label(v′) ∪ {a, b, c, d} (See Figure 2.24)

Step 3: Consider the sequential ordering (left to right) of vertices which are present

in level L + 1.

Figure 2.25: After Step 3

For each vertex vi, New-Label(vi) = Old-Label(vi) ∪ {a} if i mod 4 = 1

= Old- Label(vi) ∪ {b} if i mod 4 = 2

= Old- Label(vi) ∪ {c} if i mod 4 = 3
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= Old-Label(vi) ∪ {d} if i mod 4 = 0

Vertices of level L − 2 and L + 1 will preserve non-adjacency because the corre-

sponding labels have non-empty intersection after this step (see Figure 2.25). The

reason for using 4 distinct elements is to ensure uniqueness at Level L + 1.

Step 4: Consider the sequential ordering (left to right) of vertices which are present

in level L : v1, v2, . . . , vq

For each vertex vi,

New-Label(vi) = Old-Label(vi) ∪ {c, d} if i mod 2 = 1

= Old- Label(vi) ∪ {a, b} if i mod 2 = 0

Observation after step 4:

Level L + 1 and L preserves adjacency as well as non-adjacency.

Figure 2.26: Output

The final labelling is valid and respects adjacency as well as non-adjacency.

The final output after the 1st iteration is shown in Figure 2.26. Figure 2.27, shows

the output after the 2nd iteration.

For the complete binary tree, n = 1 + 2 + 4 + 2h = 2h+1 − 1 i.e. h = O(logn).

For a valid labelling of each layer exactly 4 additional elements are required. Total

number of layers are O(log n). Therefore total number of elements required are
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4 ∗O(log n) which is O(log n).

Figure 2.27: After 2nd iteration

Theorem 2.4.2. USN of any complete k-ary tree is O(log n) where the number of vertices

present in the T is n.

Proof. Using a similar algorithm which is described for complete binary tree, it is

possible to obtain a valid labelling of each layer of a k-ary tree using exactly k2

additional elements. k2 is a constant which is not dependent on n and the total

number of layers is O(log n). Therefore the total number of elements required is

k2 ∗O(log n) which is O(log n).

It is possible to generate a valid labelling for any tree with the use of following

algorithm.

Algorithm 1: Valid-Tree-Labelling

Step 1: For the given tree, calculate its maximum degree a.

Step 2: Consider a complete (a− 1)-ary tree, with the same number of levels as

the given tree with a valid labelling (use Theorem 2.4.2 to obtain a valid labelling).

Step 3: Embed the given tree into this complete tree.

Step 4: For all the vertices which are present in the tree, copy the corresponding

labels from the underlying (a− 1) ary tree.

The resultant labelling is valid but total number of elements used is not asymp-

totically minimal.
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2.4.1 Discussion on additional features

It is possible to obtain the following additional features by some modifications

to our basic labelling algorithm that allow quicker identification of neighbours

and non-neighbours. These additional features which are interesting in their own

right, prove crucial for some applications of labellings which we present in Chap-

ter 3.

Feature 1: Identification of non-neighbours quickly

Vertices having same label cardinalities are in the same level except for the last 3

levels. So no edge between them.

Feature 2: Identification of neighbours quickly by reducing the search space.

In trees, edges are present only between adjacent layers. After applying the mod-

ified labelling algorithm, it is possible to determine the level number correctly of

each vertex. This will make searching easier and the user can easily identify object

connections.

Explanation of the modified labelling algorithm

The objective of the modified algorithm is to generate labels of unique cardinal-

ities in increasing order for all levels (except the last 3 levels) and assign same

cardinality labels to all vertices which belong to the same level. i.e. level 1 must

have the minimum cardinality label whereas level i must have labels with the

maximum cardinality. In order to obtain the desired features, the following two

modifications are required.

1. Input tree. The modified input tree with the valid labelling is shown in

Figure 2.28.
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Figure 2.28: Input for the modified algorithm

2. After applying the ValidTreeLabelling algorithm, add {e} to all vertex-labels

which are present at level L + 1. So overall use of 5 new elements instead of

4.

Let Ci denote cardinalities of all vertex labels which belong to level i. The algo-

rithm adds exactly 1 level after each iteration. The input complete binary tree has

3 levels. Therefore after i iterations, total i + 3 levels will be generated. Before

applying the modified algorithm, the cardinalities of labels are 1, 2, 3 (i.e. C1 = 1,

C2 = 2 and C3 = 3 )

After first iteration, new cardinalities: 5, 2, 5, 4. After second iteration: 5, 6, 5, 6, 7.

After third iteration: 5, 6, 9, 6, 9, 8. In general after ith iteration first i entries will

be sorted in the increasing order and Ci = Ci−2 + 4 (true for all values of j such

that 1 ≤ j ≤ i), Ci+1 = Ci−1, Ci+2 = Ci and Ci+3 = Ci+1 + 2. Using these details,

it is possible to quickly identify the location of each vertex in the underlying tree

hierarchy.

2.5 Conclusions

The work presented in this chapter has been accepted for the publication. The ref-

erence is [45]. The work presented in the Section 2.4 has been published. The ref-

erences are [31] and [32]. In this chapter, we obtained optimal values of USN for

the complement of complete graphs, complete graphs, complete bipartite graphs.
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We also obtained asymptotically optimal results for paths, cycles, matching, hy-

percube, wheel graph, complete binary trees, complete k-ary trees and ladders.

These are asymptotically optimal because we obtain O(logn) upper bound which

matches the universe lower bound established in Theorem 2.1.1. We also obtained

an upper bound on USN on 2-dimensional grid which is square-root of its number

of vertices.

In the future we plan to derive optimal and/or lower bound results for hy-

percubes which is a specially interesting class of graphs because it represents the

hasse diagram of the powerset. We would if possible like to obtain an optimal

labelling which follows directly from the subsets corresponding to the hasse dia-

grams. In future, we plan to obtain optimal labelling for harary graph and general

bipartitte graph.
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CHAPTER 3

Labeled Object Treemap: A New Technique

For Visualizing Multiple Hierarchies

In Section 3.1, the relevant key terms are explained. In Section 3.2 key contribu-

tions of our work related to treemapping [34] are discussed including:

• Support for data integration in treemaps (social customer relationship man-

agement (CRM) tree-map example)

• Key features of Tree-map are discussed briefly including expressive power

of tree-map and types of queries supported by it.

• Social network visualization: twitter tree-maps and how they can be used to

answer dynamic queries interactively.

Section 3.3 discusses basics of multiple hierarchies including the already known

technique for visualization of multiple hierarchies, namely ’Trees in a Treemap’.

Other related work is also shown in the same section. Section 3.4 gives a descrip-

tion of our proposed method and its advantages and in Section 3.5, our proposed

method is compared with the existing methods with respect to various parame-

ters. Section 3.6 explains details of an implementation interactive version of our

proposed method including key features of our implementation. We have devel-

oped an interactive version of our proposed method using javascript. The actual

code is placed in the Appendix section of the thesis. The final section summarises

the results obtained in this chapter.
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3.1 Introduction

Key terms which are related to multiple hierarchies are explained in this section.

Hierarchy: A hierarchy refers to an arrangement of items in which items are high-

lighted as being "below" or "above" or "at the same level as" one another.

Structure: Structure refers to an arrangement and organization of interrelated el-

ements of the system.

Tree structure: Hierarchical nature of the given structure can be represented us-

ing tree structure or tree diagram in a graphical form.

Tree: Simulation of tree structure is possible using trees which are widely used

data structures for the implementation of abstract data types.

Taxonomy: Taxonomy refers to the practice and science of classification of con-

cepts/things and it also includes the principles that underlie such type of classifi-

cation. An example of a taxonomy is shown in Figure 3.1.

Figure 3.1: Taxonomy
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Taxonomy Trees: They are special trees in which objects are represented by leaf

nodes only, and classification is represented by all other nodes.

3.1.1 Treemap

The treemap algorithm offers a practical way of displaying large trees (with mil-

lions of nodes) in limited space. The approach of treemapping is recursive. One

box is allocated for the parent node and children of the node are represented as

boxes within it. Practically, using this approach it is possible to render any tree

within a standard size display. Treemaps and its variants are studied in detail in

the literature.

Figure 3.2: Hierarchical data and corresponding tree representation

Tiling is the process of dividing large rectangles into smaller sub-rectangles.

Ideally, a treemap tiling algorithm creates rectangles with an aspect ration that

is close to one, with ordering based on the underlying data/information tree.

Various tiling algorithms are known for tree-maps namely: Binary tree, mixed

treemaps, ordered, slice & dice, squarified and strip. Transition from traditional
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representation methods to Tree-Maps are shown in Figures 3.2-3.4. In Figure 3.2

some hierarchical data and its equivalent tree representation are shown. One can

consider nodes as sets, children of nodes as subsets and therefore it is fairly easy to

convert a tree diagram into Venn diagram. Figure 3.3 represents a Venn diagram

and its equivalent representation as a nested tree-map. A nested tree-map repre-

sents the nesting of rectangles. Finally in Figure 3.4, tree-map representation of a

given hierarchical data is shown. Tree-map is a comprehensive design in which

a border is used to show nesting and it is more space efficient compared to the

nested version. Key advantages of tree-maps are easy identification of patterns

and efficient usage of space.

Figure 3.3: Venn diagram and nested tree-Map

Figure 3.4: Tree-Map
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Queries can be answered easily with the use of tree-map visualization. Con-

sider tree-map representation of an operating system, say UNIX. With the help

of this representation, one can easily answer following queries: Identification of

the directory which is taking up the most space, how much space is taken up by

specific directories, types of files present in hierarchy etc. Tree-maps offer dy-

namic visualization. Key features of dynamic visualization are: immediate feed-

back mechanism, support for dynamic queries (queries which are incremental and

reversible).

Figure 3.5: www.peets.com

Intuitively, tree-map representation is better than simple manual list represen-
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tation. Peet is a San Francisco Bay Area based famous coffee roaster as well as

retailer since 1966. A marketing survey showed following result: For 92 out of

100 customers of peet, (who used the tree-map interface) online shopping was

easy. Whereas for the manual lists users, this percentage was only 12. Tree-map

interface of peet is shown in Figure 3.5. Most of the other techniques of data visu-

alization were invented in the absence of widely-available computational (com-

puter) resources. Tree-maps were conceived as a result of computerization and

therefore they have crucial benefits from this more modern scenario.

3.2 Tree-map: a visualization tool for large data

Tree-Maps are used to present hierarchical information on 2-D [58] (or 3-D [11])

displays. Tree-maps offer many features: based upon attribute values users can

specify various categories, users can visualize as well as manipulate categorized

information.

The traditional approach to represent hierarchical data is to use a directed tree.

But it is impractical to display large (in terms of size as well complexity) trees in

limited amount of space. In order to render large trees consisting of millions of

nodes efficiently, the Tree-Map algorithm was developed. Even the file system of

UNIX can be represented using Tree-Map. The definition of Tree-Maps is recur-

sive: allocate one box for a parent node and the children of that node are drawn

as boxes within it. Practically, it is possible to render any tree within a prede-

fined space using this technique. It has applications in many fields including

bio-informatics, visualization of stock portfolio.

3.2.1 Guidelines for tree map design

1. Every box of the tree-map can display two different measures namely size

and color. Size should reflect quantity measure whereas color is used to dis-

play measure of performance and/or change. i.e. satisfaction of customer,

growth rate etc.

2. In selection of tree-map layouts, extreme aspect ratios should be avoided [38].
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3. Tree-maps are more suitable for high density data; for low density one can

use bar charts.

4. Comparing non-leaf nodes is easier in tree-maps compared to bar charts.

5. Appropriate labels should be given and labels should be meaningful.

6. It is advisable to show labels only when the user rolls over a tree-map box.

7. Labels must be visible in the multicolored background of tree-map.

8. Depending on the nature of the color measure, one sided/two sided color

range should be used.

9. In order to show correlation, highlighting should be used.

10. One can use animation in tree-maps to show change in the data.

11. Simple presentation method (Tooltip window/sidebar) can be used to show

node detail.

3.2.2 Expressive power of tree-map

Tree-Maps are used to express a variety of nested as well as hierarchical data and

data structures. In general, the type of tree-map representation to be used should

depend on the application and the type of data hierarchy.

“Tree-map visualization generators” are used to display tree-maps for arbi-

trary hierarchical data. Tree-Maps can be provided as images in static form or

they can be used to provide interactive features (like zooming into a small area of

the hierarchy) in applications. Tree-maps support browser as well as rich client

applications. In one of the applications, tree-maps are incorporated with Win-

dows Forms- Microsoft Corporation.

Tree-Maps are also famous amongst news designers. Examples are listed be-

low.

1. NewsMap [48] (Newsmap.jp is developed by Marcos Weskamp and it rep-

resents current items of Google News using an interactive Tree-map, which

is shown in Figure 3.6.)
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2. London 2012 Olympics and Tree- maps [16].

3. BBC News- SuperPower: Visualising the internet

4. The New York Times- Obama’s budget proposal (Year 2011)

5. CNN Twitter buzz of South Africa (Year 2010)

Figure 3.6: www.newsmap.jp

3.2.3 Social network data and tree-map

For the promotion of brand, the role of a marketer is not significant in the mod-

ern era of social media. In the past, information was produced by marketers and

consumed by customers. Currently more information is generated by customers

about brands on social media including blogs, social media networks, online fo-

rums. Currently, marketing teams are struggling with analysis of this online infor-

mation, which is required for prediction of acceptance rates of products, patterns
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of purchase and levels of satisfaction in customers. Marketers can use these new

channels for promotion by developing customers as brand advocates.

For travel as well as hospitality industry, decisions related to purchase are

mainly determined by online reviews as well as recommendations. Online cus-

tomer data along with business functions information forms an integrated database.

In order to study levels of customer loyalty, study of this integrated database is

necessary.

It is possible to use customer tree-map for segmenting customers and genera-

tion of ‘brand score’ for customers. Brand score depends on 1) Brand engagement

of customer (behavioral aspect) and 2) Attitudes of customers.

Two different types of score namely spend value score and advocacy score are

calculated using integrated database (traditional CRM and unstructured data).

Social CRM tree-map can be created by plotting these scores (by integrating two

data-sets) on a 2-D axis. An example of social CRM tree-map is given in Figure 3.7.

Members without any spend value are defined as noncustomers. This tree-map is

useful for calculation of overall “customer brand score”.

Figure 3.7: Social CRM tree-Map
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Advocates have the following qualities: They have high values for spend value

as advocacy score. They are brand evangelists and their behavior as well as atti-

tude is very loyal to a brand.

After successful development of Tree-map, organizations can take actions in

order to cultivate advocates of brands.

3.2.4 Types of queries supported by tree-maps

Tree-Maps provide two important features by supporting dynamic queries:

1. Querying a large set of data.

2. To find patterns in large data sets [56].

In tree-maps, dynamic queries are implemented using radio buttons, buttons and

sliders. Tree-map follows the principle of direct manipulation for searching a large

database.

Key features of query processing of Tree-Map are listed below:

• Supports visual representation (for components of query).

• Supports visual representation of query results.

• Provides rapid, reversible and incremental control of query.

• Selection is done by just pointing, not by typing.

• Tree-map provides immediate as well as continuous mechanism of feed-

back.

3.2.5 Tree-map for Twitter data visualization

Key requirements for visualization of any social network are listed below:

• Identification of the actors -members of the social network.

• Visualization should represent relationships of various types.
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• Visualization should support aggregated as well as structured views of the

complex social network.

Consider the example of Twitter network with four sample actors namely Steve,

John, Luke and Adam. Figure 3.8 represents this network as a Tree-map. Tree-map

offers all the crucial features which are desirable for a visualization tool. Here ac-

tors are represented by rectangles and the size of each rectangle is proportional to

the total number of tweets sent by that particular actor. The friendship relation-

ship is represented by a common edge between two rectangles. In our example,

the rectangle corresponding to Luke has highest area which implies the highest

number of tweets amongst the four users. No common edge is present between

Steve and Luke which implies that they are not friends on Twitter.

Figure 3.8: Basic Twitter treemap

Other variants of Twitter tree-map are also shown in Figure 3.9 and 3.10. Tree

mapping is not as popular as other visualization techniques, still recent survey

results are encouraging for twitter tree-maps [55]. Better results are possible by

improving current design of tree-maps as well as integration of tree-map with

other visualization techniques.
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Figure 3.9: Twitter treemap with additional information (actor’s interests)

Figure 3.10: Twitter treemap integrated with network diagram

3.2.6 Discussion on interactivity of tree-maps

Tree-maps offers interactive features which are distinctive. The main objective of

this visualization tool is to provide an interactive display on a computer screen.

Because of this unique feature, one can explore the data hierarchy effortlessly and

simultaneously decent level of estimation is also possible for quantitative aspects

of the information. In order to provide element specific information in detail, var-

ious tree-map software offer computer screen mouseovers using which the user

can get specific information just by placing the computer mouse over the specific

box. Because of these crucial interactive features, tree-map is an emerging pow-

erful visualization technique; for large social data-sets because real time feedback

is essential in the case of a complex social network. The analyst can use this in-

teractive feature to traverse the tree and can also present categorical data view at

every level.

Generally, queries on social network data focus more on relationships between
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different groups and sizes of particular categories is a very common type of query.

For example, which country has the highest number of twitter users? Now con-

sider the following complex query: Do white males in North America use twitter

more than white females in South America? In order to answer this question one

has to consider sub-questions for all data points. i.e. whether a particular person

is black/white and has a twitter account or not and so on.

In order to answer these queries interactively for categorized social data, we

propose the use of CatTrees (an enhancement of tree-maps) [37]. It is possible

to answer these types of question easily if the data has hierarchy because then,

for each possible answer pattern, one can allocate a leaf node with counter and

to get the final answer, the analyst can follow two different paths (depending

upon query) from root to leaf nodes and give the final result depending upon

the comparison of counters. So depending upon query, a new hierarchy may

be required every time. In short, dynamic hierarchies are required to support

dynamic queries! Dynamic hierarchies are implemented by CatTrees.

All social data is not hierarchical in nature. Surprisingly tree-maps can be

used to visualize non-hierarchical data too. In this case, an imaginary hierarchy is

provided as an input by the analyst [59].

3.3 Visualizing multiple hierarchies

Multiple Hierarchies: A hierarchy refers to an arrangement of items in which

items are highlighted as being "below" or "above" or "at the same level as" one

another. In trees, edges are present between adjacent levels (just above and just

below the given level) only and no edges are present between nodes which are

present at the same level. Therefore, trees are an appropriate data structure to

represent hierarchies and for any two nodes (objects) of a tree, it is easy to establish

relationships including being ’below’ or ’above’ or ’at the same level’. Therefore

visualization of multiple hierarchies is equivalent to visualization of two distinct

trees namely 1) taxonomy tree 2) the other object tree where object connections

are shown and each object is related to the leaf nodes (objects) of a taxonomy tree.
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The simplest solution is shown in Figure 3.11 in which both the trees are drawn

side by side. Here, it is not possible to identify frequencies as well as locations of

different object types quickly in the underlying object tree.

For many applications it is necessary to consider two aspects: the relationship

between different objects and identification of the object type. One can show these

aspects using two different trees: 1) taxonomy tree 2) the other tree where each

node is related to leaf nodes (objects) of a taxonomy. The problem is to design

a visualization technique which effectively conveys both the desirable features

i.e. relationships between different objects (object tree) along with the mapping of

each object with taxonomy.

Figure 3.11: a) Two separate tree diagrams and b) Linked tree diagram

To the best of our knowledge, the best-known visualization technique for rep-

resenting multiple hierarchies is: Trees in a Treemap technique [12]. The simplest

solutions are shown in Figure 3.11 in which a) both the trees are drawn side by

side. Here, it is not possible to identify frequencies as well as locations of different

object types quickly in the underlying object tree. b) connections between the two

trees are shown using additional edges. Neither of these solutions is efficient for

big data.
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3.3.1 Related work

Trees in a treemap technique belongs to the Agglomeration class of visualising

multiple trees [23]. Agglomeration: Here a single representation is used in order

to display multiple parents of a node. One possible option is to replicate nodes

with at least 2 parent links across the trees in order to maintain similarity of the

overall structure to a tree. Node link representations are also used in which mul-

tiple tree structure is shown as a graph structure (structure with cycles). For ex-

ample, GLAD system [17]. Directed placement of various overlapping treemaps

is used in CristalView [46] in which shared nodes are used to communicate across

multiple hierarchies. The success of the selected visualization technique depends

upon various factors including target audience and user interface [2]. Other re-

lated visualizations are ZTree [6] , Multitrees [19] and animation [53].

3.4 Description of our proposed method and its ad-

vantages

Labeled object treemap technique is very similar to trees in a treemap technique.

In the trees in a treemap technique, nodes are represented by small circles which

are placed in the boxes that represent the objects associated with the nodes. Edges

are represented by lines which connect these small circles.

According to us, Trees in a treemap method (see Figure 3.12) has the following

problems:

1. Edge crossing is present in both the variants of the technique.

2. Continuity: For very large data sets, it is very difficult to follow the edge in

order to identify whether those two objects are connected or not.
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Figure 3.12: Trees in a treemap visualization technique (from [12])

Figure 3.13: Our proposed method: Labeled Object Treemap

Our proposed method solves these problems by constructing an equivalent la-

beled representation which does not contain edges and in the case of complete

k-ary tree, the total number of labels which are used in the representation are

asymptotically minimal. i.e. O(log n) (see Theorem 2.4.2).

If the labels of two objects are disjoint then they are adjacent. i.e. edge is present

between them.
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Visualizing a complete k-ary object tree with the given taxonomy:

The size of each label is at most O(log n). Hence, it is possible to represent the

information about edges using an O(n) ∗O(log n) matrix. Each row in the matrix

corresponds to the label of a node. If element j is present in the label of the ith node

then entry (i, j) = 1, else 0. In the worst case O(log n) comparisons are required in

order to determine whether two nodes are adjacent or not. In the best case, only

constant time is required for the same query because it may possible that the 1st

element is present in both the labels.

Advantages: It offers a single representation in order to visualize object tree as

well as taxonomy. Crossings are not present in the representation. Continuity is

not visible but one can still obtain the required information by a careful obser-

vation of labels. It is possible to detect clusters and outliers using our proposed

method. The visualization technique is highly compact because it requires just

O(n) ∗O(logn) space (for complete k-ary object trees) in order to store informa-

tion about edges. Taxonomy is represented using treemap.

From Chapter 2 (see Valid-Tree-Labelling algorithm), it is clear that it is possi-

ble to obtain a valid labelling of any given tree. The final visualization is shown

in the Figure 3.13.

3.5 Comparison with existing methods

Calculation of leaf word of the taxonomy:

lw(t) = t if t is a leaf node

= concatenation of lw(t1), lw(t2), . . . , lw(tk) otherwise

Here t1, . . . , tk are subtrees of t.

For the given taxonomy, valid leaf words are BDEF, FEDB and DEBF.

In the space filling visulization technique, adjacency matrices can be used. In

Figure 3.14, adjacency matrix representations are shown for sorted as well as un-

sorted dimensions. For sorting, a leaf word is used.

In colored tree diagrams, colors are assigned to leaf nodes. This assignment

is based on the order of occurance of a leaf node in the leaf word. Similar colors
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are assigned to objects which are close to one another in the underlying taxonomy

(see Figure 3.15). Leaf word is also used for sorting objects in Parallel coordinate

views technique (see Figure 3.15).

Figure 3.14: Adjacency matrices (from [12])

Figure 3.15: Colored tree diagrams and Sorted parallel coordinates (from [12])

We are going to consider following criteria for different visualization tech-

niques (for multiple hierarchies) in order to compare them with our proposed

technique.

Single representation: We are supposed to display relationships between two dis-

tinct structures: object tree and taxonomy. Therefore it is desirable to have a single

representation for the provided multiple hierarchies.

Crossing: There is no restriction on the size of the data (object tree). So edge

crossing in the drawing must be reduced in order to see the connections between
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objects more clearly.

Continuity: This parameter reflects the difficulty level in following the lines which

represent edges in the underlying visualization technique.

Compactness: The visualization technique should be as compact as possible.

Table 3.1: Comparison with existing techniques

Visualization
Technique

Single
Model Crossing Continuity Clusters

Outliers Compact Taxonomy

Separate Tree
Diagrams No No Straight No No Tree

Diagram
Linked Tree
Diagrams No Yes Straight Difficult No Tree

Diagram
Colored Tree
Diagrams No No Straight Yes Medium Color

Unsorted
Matrix Yes No Not

Visible No High Not
Visible

Sorted
Matrix Yes No Not

Visible Yes High Order

Sorted Parallel
Coordinates Yes Yes Straight Yes Medium Order

Trees in TM
(straight lines) Yes Yes Straight Yes High Treemap

Trees in TM
(orthogonal
lines)

Yes Reduced Orthogonal Yes High Treemap

Labled Object
Treemap
(our proposed
method)

Yes No Not visible Yes High Treemap

In order to compare different techniques, representation of the same given

trees (shown in Figure 3.11) are displayed using various methods.

3.6 Interactive labeled object treemap

We have designed an interactive version of this technique. In our interactive so-

lution, for the given set of object types, the user can provide any size of input tree

in the given textbox. A unique set label is generated for each node and nodes are

distributed and displayed (as small red circles) according to their object types in

the rectangle areas of the treemap. Four check-boxes are provided to offer various
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features. With internal edges and external edges options selected, whenever a

user clicks on a node, all the neighbors of that particular node (including the node

itself) will be highlighted in black colour along with edge connections and IDs.

For the object of interest, users can also exclusively identify its neighbors of sim-

ilar object type or different object type(s) by selecting internal or external edges

check-box respectively and clicking on the object. IDs only option is important

to identify object names and hence object of special interest and its location in the

visualization so that the user can explore it more by selecting an appropriate op-

tion and clicking on it. All edges option shows all the connections (edges). Our

proposed interactive visualization technique has the following desirable features:

single representation, high compactness, cluster identification and solves the is-

sues of edge crossings and continuity.

Figure 3.16: Input for our proposed technique: object tree and taxonomy tree

In order to make the existing visutalization technique user-independent and

interactive, we have implemented a dynamic interactive version of our proposed

visualization technique ’Labeled Object Treemap’. The same taxonomy tree (which

is given in Figure 3.16) is considered for our implementation. Treemap is used in

the background in order to highlight taxonomy. Object classes having same par-

ents in the taxonomy tree are highlighted using the same colour. For the given

input (shown in Fig. 3.16), the overall layout of our proposed system is, as shown

in Fig. 3.17.
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Figure 3.17: The overall layout of our proposed interactive visualization

Figure 3.18: All edges option

3.6.1 Key features of our implementation

Visualization for any given input tree: The visualization technique uses label

construction methods explained in the Section 2.4. It is possible to identify object

types and object relations using our proposed work. Users are expected to pro-

vide input in the textbox in (Parent node ID, Object type) format. For example,

(2, C) refers to the node with object type C and parent node 2. Here, the parent
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ID is with respect to the object relationship tree. The root node doesn’t have any

parent so for the root node, we use −1 as a parent node ID. After giving a valid

input tree, the Generate button should be clicked and the user can see the visual-

ization where nodes are positioned depending upon their object types along with

their unique labels. Objects are connected if and only if their corresponding labels

are disjoint.

Identification of object names: By clicking on the IDs only button (see Fig. 3.19),

labels will be replaced by IDs (object names). Using this feature, a user can iden-

tify specific object(s) in which he/she is interested.

Figure 3.19: IDs only option

Visualizing connections: Two different checkboxes namely Internal edges and

External edges are provided to identify neighbours of a node. In the Internal

edges option (see Fig 3.20): After clicking on any particular node (say v), v is

highlighted in black along with its ID. All the neighbours of the node v which

belong to the same object type are also highlighted (with their IDs) in black colour

along with black edges to show connections. Colours of all other nodes (which are

non-adjacent to v/nodes having different object types than v) will remain red. In

the External edges option (see Fig 3.21): After clicking on any particular node (say

w), w is highlighted in black along with its ID. All the neighbours of node w which

belong to other object types are also highlighted (with their IDs) in black colour
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along with black edges to show connections. Colours of all other nodes (which

are non-adjacent to w /nodes having the same object type as w) will remain red.

In order to see all the neighbors of a particular node, both of the above mentioned

options must be selected before clicking on any particular object (see Fig. 3.22).

It is also possible to visualize the whole tree by selecting ’All edges’ option (see

Fig. 3.18).

Figure 3.20: Visualizing neighbours of similar object type for the object node 10

Figure 3.21: Visualizing neighbours of different object types for the object node 7
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Figure 3.22: Visualizing all the neighbours of object node 3

3.7 Conclusions and future work

The work presented in this chapter has been published by us. The references are

[34] [32] [31].

Our proposed data visualization technique shows all the data (multiple hierar-

chies) without any information loss. Using our technique, it is possible to display

large data sets coherently. The method encourages the human eye to compare dif-

ferent objects because each object is represented by a unique label. It is possible to

identify objects which obey certain rules with the use of the underlying treemap

structure. As shown in Table 3.1, our proposed method offers all the good char-

acteristics of existing methods including single representation, identification of

clusters, compactness as well as visible taxonomy using treemap.

The interactive technique of our proposed technique generates labelling of all

objects automatically. It also offers various features using which it is easy to iden-

tify specific types of neighbors of a node just by clicking on it. Taxonomy is visible

using treemap.

In future, one can think of an arrangement of nodes that is more compact so

that a larger number of nodes can be clearly shown (along with the labels) in the

same available space. Perhaps, arranging the nodes on a zigzag pattern is one

such solution.
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In future, to improve efficiency in computation, we plan to assign an extra

label to each node which represents the level number. Edges are present only be-

tween adjacent layers so this idea may reduce the search space. Within one rectan-

gle region of treeemap, we will put disjoint labels i.e. adjacent vertices within the

alpha-neighborhood of them. This will help users to identify connections rapidly.

To provide more information related to adjacency among the nodes, we will align

adjacent nodes across different rectangles of treemaps in the same horizontal/ver-

tical line. In order to provide more information about the underlying hierarchi-

cal structure, we may plan to use other variants of treemap: ordered/cushion

treemap.
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CHAPTER 4

Edgeless Graph: A New Graph Based Infor-

mation Visualization Technique

In Section 4.1, we list some applications of graph visualization and present some

of the challenges involved. Effects of dynamic changes (adding and/or removal

of vertices and/or edges) on USN are discussed in Section 4.2. The section explains

an algorithm using which it is possible to generate a valid labelling of any given

input graph. A brief description of our proposed methods is given in Section 4.3.

Section 4.4 explains how our proposed technique can be used for the analysis of

a social network and dynamic changes in the underlying social network are also

considered. The final section summaries the work done in this chapter.

4.1 Introduction

Applications of Graph Visualization are in many areas. Some of them are listed

below:

• Representation of hierarchical structures using trees

• Website maps

• History of internet browsing data

• Biology and chemistry (for the representation of phylogenetic trees, genetic

maps, molecular maps etc)

• Other applications include data flow diagrams, entity relationship diagrams,

logic programming.

64



Major challenges in Graph Visualization :

Major challenges in graph visualization are related to graph drawing. It is diffi-

cult to display a dense graph (with a large number of vertices and edges) within

the available 2-D display interface. It is necessary to reduce edge crossings [49]

and avoid long edges with bends. If the graph is very dense, it is even hard to

distinguish vertices from edges. A good representation technique should have

effective interactive solutions for the above mentioned challenges.

4.2 Effects of dynamic changes (adding and/or removal

of vertices and/or edges) on USN

Results related to effects of dynamic changes (adding and/or removal of vertices

and/or edges) on USN are given below.

We first deal with addition of a vertex.

Theorem 4.2.1. G′ = G + v where order of G is n.

USN(G)≤ USN(G′) ≤ USN(G)+(n− 1)

Proof. Consider a graph G(n, m) with USN k. After adding a new vertex v and m′

edges between v and some m′ distinct vertices of G, consider G′(n + 1, m + m′).

Observation: USN(G′) is at least k.

This can be rephrased as a lower bound on increment in USN, upon adding a ver-

tex is 0.

Proof by contradiction:

Suppose USN(G′) ≤ k− 1

Now after removing vertex v (and all edges incident on it), the remaining graph=

G has a valid labelling with USN(G′) = k− 1 which is not possible because opti-

mal labelling has USN(G) = k. (Initial assumption)

Upper bound on increment: n− d(v)

Idea:

A label of v should have some elements from the labels of all the vertices which

are non-adjacent to it. Number of non-neighbours are n− d(v) for v and hence in

the worst case n− d(v) new elements are required.
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Figure 4.1: Increase(decrease) in USN after adding(removing) a vertex

The tightness of the upper bound result is shown using following example. In

the worst case, the existing graph G may have clique of size n− 1 and one isolated

vertex, say vi with |l(vi)| =USN. Consider the case where the newly added vertex

v is adjacent to only vi. v is non-adjacent to the clique of size n− 1 and in order to

preserve non-adjacency with the clique, n− 1 extra elements are required.

The next Theorem is essentially a rewording of previous result as deletion of a

vertex is a reversal of addition of a vertex. The minor results also follows.

Theorem 4.2.2. G′ = G− v where order of G is n.

USN(G)−(n− 1) ≤ USN(G′) ≤ USN(G)

Theorem 4.2.3. G′ = G \ e,

USN(G) −min(x, y) ≤ usn(G′) ≤ usn(G) + 1, where e = (va, vb) ∈ E(G) and

x = |l(va)| and y = |l(vb)|

Theorem 4.2.4. G′ = G + e,

USN(G) − 1 ≤ usn(G′) ≤ USN(G) + min(x, y), where e = (va, vb) /∈ E(G) and

x = |l(va)| and y = |l(vb)|

Proof. Theorem 4.2.4 is effectively just a rewording of Theorem 4.2.3 because the

operations they deal with are addition and deletion of an edge respectively which

are reversal of each other. The first inequality of the Theorem 4.2.3 is the same

as the second inequality of the Theorem 4.2.4. Similarly, the second inequality of

the Theorem 4.2.3 is the same as the first inequality of the Theorem 4.2.4. Hence

we provide a combined prove of both theorems. It is easier to prove the first

inequality of Theorem 4.2.3 in the framework of edge addition while the second
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Figure 4.2: Lower bound on increase (decrease) in USN after removing (adding)
an edge

inequality of Theorem 4.2.3 in the framework of edge deletion. Thus we follow

this scheme.

Assume k elements are common between labels of va and vb where 1 ≤ k ≤

min(|l(va)|, |l(vb|)

Procedure 1: Obtaining a valid labelling using k additional labels:

1. Compare the cardinalities of the labels of the two endpoints of the newly

added edge. The label with higher cardinality is retained as it is.

2. Replace C={1, 2, . . . , k}, the common elements with C′={1′, 2′, . . . , k′} in the

label of the vertex which has lower cardinality.

3. For all other labels, if they contain any non-empty subset of C then add the

corresponding non-empty subset from C′ to their labels in order to preserve

non-adjacency with the lower cardinality edge-endpoint.

After removal of an edge, USN may increase by at most one. This is because in

the worst case, only one new element need be added in the labels of the endpoints

in order to respect non-adjacency.

It is possible to construct any given graph by considering the underlying com-

plete graph on the same vertex set and removing the extra edges. Using this idea
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Figure 4.3: Upper bound on increase (decrease) in USN after adding (removing)
an edge

in conjunction with Theorem 4.2.3, we derive universal upper bound on USN.

This proof readily translates to an algorithm leading to generate a valid labelling

respecting this upper bound.

Theorem 4.2.5. USN(G) ≤ (n− 1)+ (n
2).

Proof. We give an algorithmic proof for the claim.

Algorithm 1: To find a valid labelling for any given graph

Step 1: For any graph on n vertices start with the optimal valid labelling of the

corresponding complete graph Kn with USN = (n− 1).

Total number of distinct elements used after this step is exactly n− 1.

Step 2: Delete the necessary set of edges one by one from this Kn to transform

complete graph into the given graph. After deleting each edge, add a new ele-

ment to the labels of both endpoints of that particular edge.

Total number of additional elements used after step 2 is at most (n
2) because the

complete graph has exactly (n
2) edges and in the worst case, all the edges are re-

quired to be deleted in order to construct the given graph.

Therefore, this algorithm gives a valid labelling of any graph with at most ∑ n− 1

elements.

Theorem 4.2.6. USN (Kn ∪ Kn)= n2

Proof. Here, Kn ∪ Kn represent two disjoint copies of cliques. Each vertex of the

first clique is non-adjacent to all the vertices of the second clique. In order to

respect this non-adjacency, each vertex-label of the first clique must have at least

one element common from each of the vertex-labels of the second clique. It is not

possible to reuse elements in the second clique since all the vertices are adjacent
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to one another. Hence, for each vertex present in the first clique, at least n distinct

elements (one element from each vertex-label) are required from the second clique

in order to respect adjacency in the first clique. Total number of vertices in the first

clique are n. It is not possible to reuse elements in the first clique either. Hence,

for a valid labelling at least n2 elements are required (USN is at least n2).

Figure 4.4: A valid and optimal labelling of two disjoint copies of Kn using n2

elements

It is possible to assign valid labels using exactly n2 elements by using following

label assignment scheme.

For 1 ≤ i ≤ n,

L(Vi) = {(i− 1)n + 1, (i− 1)n + 2, (i− 1)n + 3, . . . , in}

For n + 1 ≤ i ≤ 2n,

L(Vi) = {(i− n), n + (i− n), 2n + (i− n), . . . , (n− 1)n + (i− n)}

We have shown a valid labelling for two disjoint copies of clique using exactly n2

elements and lower bound is also n2. Hence USN is n2.

The final labelling is shown in Figure 4.4 which is valid and optimal.

As a corollary we have the following theorem.

Theorem 4.2.7. USN ((Kn ∪ Kn) + e) =
N2

4
− 1 where N = 2n and e is the newly

added edge.

A tight upper bound on the intersection number (and hence on USN) is
N2

4
[14]. From Theorem 4.2.7, we can infer that limiting to connected graph does not

give an asymptotic improvement on USN in general in the worst case.
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4.3 Our proposed methods for graph visualization

We present a core ideas of two graph based methods to represent social networks.

Both our proposed methods for graph visualization use the valid labelling ob-

tained by algorithm described in the previous section as a starting point. Their

actual application in social network is described in detail in the next section. In

both these methods the vertices of the graph arising from the social application

are placed on distinct grid points of the respective grids.

Method-1:

This method requires an n by n grid to represent the input graph on n vertices in

which all labels are partitioned based on their cardinalities. (see Figure 4.9)

• Vertices of the graph are placed at distinct grid points of the aboved de-

scribed grid.

• All nodes with label size i are placed in any order along distinct grid points

of the line x = i beginning from y = 1 and with no gaps.

• The largest y value used to represent a vertex along the line x = i is the

number of vertices whose labels have cardinality exactly i.

• Largest possible cardinality for any individual label is n (see Algorithm 1) .

Therefore, the upper limit on the value of x-axis is n.

• At most n elements can be present in one group. Therefore, the upper limit

on the value of y-axis is also n.

Method-2:

This method requires an n by O(n2) grid in which all labels are partitioned based

on their individual label structures. (see Figure 4.12)

• Vertex-labels which are present in the xth column will have xth element com-

mon in them. All the elements which are less than x are missing in these

labels. i.e. {1, 2, . . . , x− 1}.

• All vertex labels whose least index element is i are placed in any order along

distinct grid points of the line x = i beginning from y = 1 and with no gaps.
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• Value of y-axis represents the number of elements which are present in that

group.

• Largest label generated by our method is USN is O(n2) (see Algorithm 1) .

Therefore, the upper limit on the value of x-axis is O(n2).

• At most n elements can be present in one group. Therefore, the upper limit

on the value of y-axis is n.

4.4 Application: Social network analysis

In this section, we describe how our proposed technique can be used for the anal-

ysis of a social network.

One sample graph which represents the friendship relationship between 6 peo-

ple is shown in Figure 4.5 i.e. if edge (u, v) is present then person u and v are

friends on social network sites like Facebook/Twitter. Corresponding complete

graph is shown in Figure 4.6.

Figure 4.5: A) Social Network Graph
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Figure 4.6: B) Corresponding complete graph

A few iterations of the Algorithm 1, for the construction of the valid labelling

of the given graph are shown in the Figures 4.7 and 4.8.

Figure 4.7: Steps for obtaining valid labelling of the Social Network Graph

Figure 4.8: Steps for obtaining valid labelling of the Social Network Graph
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Our proposed visualization method is shown in figure 4.9.

Key characteristics of our proposed method are listed below:

1. Space complexity: n by n grid is required for the visualization technique.

This is because each vertex can be non adjacent to at most remaining n− 1

vertices and therefore size of individual label can not exceed n (see Algo-

rithm 1). Total number of vertices and hence total number of distinct labels

are exaclty n. Therefore, total number of labels with the same cardinality can

be at most n.

2. x-axis represents the cardinality of the individual label. i.e. classification is

done based upon the size of the label. y-axis represents the number count

corresponding to the each group.

3. It is easy to identify whether two nodes are related or not by comparing their

corresponding labels. Nodes are related if and only if their corresponding

labels are disjoint.

4. In the visualization, number of friends of a node tends to be inversely pro-

portional to its individual label size. Here, label 3 has the minimum cardi-

nality and therefore it is very likely that the corresponding person (Diana)

has the most number of friends in the network which is actually true (see

fig 4.5). Diana is a friend of all others.

5. Here, value of |l|− 1 for any node denotes minimum number of non-neighbors

for that particular node. For example, for l = {2, 9} value of |l| − 1 is

2− 1 = 1 from which we can infer that John has at least one non-neighbour

in the graph which is true. See Figure 4.5, John and Winson are not related.

6. Vertices which are present in the same vertical line have at least k non neigh-

bors where k = x− 1 where x denotes the value of x coordinate.

7. People who are present in first column tend to be the most popular whereas

those who are present in the last column tend to be the least popular.
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8. Identification of the clusters with same popularity in the underlying social

network graph is possible using this visualization.

9. Further details can be obtained by assinging colors to the node. Here in our

example, for female gender nodes, pink color is assigned whereas for males

blue color is assigned. This will help to analyze gender specific patterns in

the underlying social network graph.

Figure 4.9: Edgeless Graph: Our proposed method

Using our proposed visualization method (edgeless graph), we will be able to

analyse following crucial questions related to the given social network.

1. Identification of users who are most active as well as those who are most

inactive. This is important for promotional activities.

2. It can help the social networking site to improve their "People you may

know" feature.

3. With the use of labels it is easier to verify whether any given two persons

are connected or not.

4. It is easy to identify all people with a specific number of friends.
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4.4.1 Study of dynamic changes

Social networks are highly dynamic in the nature. Applying Theorems mentioned

in Section 4.2, we can efficiently and effectively add (remove) new vertices and/or

edges in our existing visualization.

In the Figure 4.10, modified graph is shown after adding 2 new vertices and 4

edges. The modified visualization is shown in Figure 4.11 which has following

Figure 4.10: Valid labelling of the graph after addition of 2 new vertices and 4
edges

interesting features:

1. In this particular case, no additional space is required. Number of nodes is

n + 2 but still the n by n grid is sufficient because no new elements were

added during the procedure.

2. It is easy to identify the correct location for the newly added vertex based

on its label size. Here both the newly added vertices have individual label

size 4 and therefore they are placed in the 4th column.

3. One can also highlight the newly added vertices with some different color in

order to compare their initial popularity in the underlying social network.

The visualization of the same graph (shown in Figure 4.10) using our proposed

method-2 is shown in Figure 4.12.
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Figure 4.11: Representation of the graph after addition of 2 new vertices and 4
edges

The properties of this method are explained below:

• Elements which are vertically aligned have at least one element in common

and therefore they are mutually non-adjacent.

• In order to identify, collection of mutually adajcent vertices (cliques), one

can plot the valid labelling of the complement graph using this method.

• Space complexity: An n by O(n2) grid is required because size of individ-

ual label is at most n and the size of underlying labelling set is O(n2) (see

Algorithm 1)

• Here, newly added vertices are represented using orange color and they are

vertically aligned which says that the newly added vertices are non-adjacent

to each other.

4.5 Conclusions and future Work

Our proposed data visualization techniques have almost all the necessary charac-

teristics. It shows all the data without any information loss. Using our technique,
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Figure 4.12: Proposed method-2 for identify collection of nodes who are mutually
non-adjacent

it is possible to display large data sets coherently. The method encourages the

human eye to compare different objects because each object is represented by a

unique label.

In future, we plan to design a more efficient interactive version of the pro-

posed techniques in which we would incorporate the following features: In the

interactive version, we want to highlight edges which are present within certain

vertical regions of the representation whenever the user clicks on it. Using this

feature, users can understand whether those nodes which belong to the same

cardinality group are related to each other or not. Within one vertical region of

the representation, we will put disjoint labels i.e. adjacent neighbors within the

alpha-neighborhood of them. This will help users to identify connections rapidly.

Whenever the user clicks on a particular node, we will highlight all the neighbors

of the node by doing real time computation on labels and we will also highlight

the corresponding edges so that users can find out the neighbors.
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CHAPTER 5

Results on UUSN, ILN and UILN

In Section 5.1 the problem statement is discussed along with some basic results.

Results related to UUSN and ILN are discussed in detail for some specific classes of

graphs (including complement of complete graph, matching, paths, cycles, com-

plete bipartite graph, complete binary trees) in Section 5.2. Cartesian product

based method is discussed in the same section. The final section summarises the

results obtained in this chapter.

5.1 Introduction

A set labelling of a graph G(V, E) is a function f : V → P({1, 2, . . . , k}) where

k ∈ Z+ such that

• f is one one.

• ∀u, v ∈ V, (u, v) ∈ E⇔ f (u) ∩ f (v) = φ.

For a uniform set labelling following additional condition is required.

• ∀u ∈ V, | f (u)| = c where c ∈ Z+. c is the size of the sets in the optimal set

labeling.

Uniform Universe Size Number (UUSN) of a graph is the least positive integer k

such that a uniform set labelling of G exists (see Figure 5.1 for example) .
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Figure 5.1: UUSN(H) = 6

Individual label number(ILN) of a graph is the smallest size of the largest label

over all set labellings (not necessarily uniform) of the vertices with uniques sets

such that adjacency coincides with disjointness (see Figure 5.2 for example).

Figure 5.2: ILN(H) = min{2, 5, · · · } = 2

5.1.1 General results on UUSN and ILN

Here, we present general bounds on UUSN and ILN .

Theorem 5.1.1. ILN(G) <UUSN(G), where G has at least 2 vertices.
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Proof. Consider a valid and uniform set labelling of any graph G, optimal in terms

of the universe size. Clearly, the number of elements used in total is UUSN(G). If

the underlying set is used as label then exactly 1 label can be generated since

it is impossible to use any of the subsets of the underlying set as a label of any

other vertex (due to uniform cardinality constraint in this particular case). In this

particular labelling, no vertex has more than UUSN(G) − 1 elements in its label.

This proves the result.

Theorem 5.1.2. UUSN(G) ≥ blog2nc+ 1 and ILN(G) ≥ 1, where G has n vertices.

Proof. With the use of blog2 nc elements, it is possible to generate at most n − 1

non-empty subsets. Using these subsets, at most n − 1 vertices can be labeled

since repetitions of labels is not allowed. Here, |V(G)| = n and therefore at least

1 additional element is required in order to assign non-empty as well as unique

label to the nth vertex. Therefore value of UUSN is at least blog2 nc + 1 for any

given graph.

Note: ILN (K1) = 0.

The largest individual label size will be at least 1 in all possible set labellings of

the given graph G where n is at least 2.

Theorem 5.1.3. UUSN(G + v) =UUSN(G) + c, if d(v) = n(G). Here, ∀u ∈ V(G),

| f (u)| = c and c ∈ Z+ Here, c is the size of the sets in the optimal set labeling.

Proof. Here the vertex v is adjacent to all other vertices and hence it is not possible

to reuse any of the UUSN(G) elements for the labelling of vertex v. In order to

obtain uniform labelling for G+ v, | f (v)|must be c. Therefore, exactly c additional

elements are required for obtaining uniform labelling of G+ v (see Figure 5.3).
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Figure 5.3: UUSN(M6) = 4 and UUSN(M6 + v) = 6

Theorem 5.1.4. UUSN(Kn) = n

Proof. UUSN(K1) = 1 and from the application of Theorem 5.1.3 exactly (n − 1)

times iteratively starting with K1.

Theorem 5.1.5. ILN(G + v) =ILN(G), if d(v) = n(G).

Proof. Here the vertex v is adjacent to all other vertices and hence it is not possible

to reuse any of the k elements used for valid set labelling for the labelling of vertex

v. In order to obtain a valid set labelling for G + v, it is sufficient to assign a

singleton set {k+1} as a label for vertex v. ILN(G) is at least 1 (from Theorem

5.1.2) and hence value of ILN won’t change for G + v.

Theorem 5.1.6. ILN(Kn) = 1
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Proof. ILN(K2) = 1 and from the application of Theorem 5.1.5 exactly (n − 2)

times iteratively starting with K2.

Theorem 5.1.7. UILN(G)=ILN(G)

Proof. Let ILN(G) = k. i.e. there exists at least one labelling of G where the car-

dinality of the highest individual label is k and cardinalities of all other labels are

less than or equal to k. Let l(vi) denote the label of vertex Vi. By adding k− |l(vi|

additional elements in each individual vertex label, it is possible to obtain a uni-

form labelling where cardinality of each individual label is still k which proves

the result.

The following Theorem gives the universal upper bounds on UUSN and ILN.

Theorem 5.1.8. UUSN(G) ≤ n+ (n
2) (n− 1) and ILN(G) ≤ n.

Proof. We give an algorithmic proof for the claim.

Algorithm 1: To find a valid uniform labelling for any given graph

Step 1: For any graph on n vertices start with the optimal valid labelling of the

corresponding complete graph Kn with UUSN = n.

Step 2: Delete the necessary set of edges one by one from this Kn to transform

complete graph into the given graph.

After deleting each edge, the following operations are performed:

Step 2(a): Add an extra element to labels of both endpoints of that particular edge

(to establish non-adjacency between endpoints).

Step 2(b): In order to obtain uniform labelling, add exactly 1 extra element in the

labels of all (n − 2) vertices excluding the endpoint vertices considered in Step

2(a). So during the deletion of each edge a total of (n− 1) new elements are re-

quired including the element which is added in the labels of the two endpoints of

the deleted edge.

Total number of distinct elements used after step 1 is exactly n.

Total number of additional elements used after steps 2(a) and 2(b) is at most

(n
2)(n − 1) because complete graph has exactly (n

2) edges and in the worst case,

all the edges are required to be deleted in order to construct the given graph.

Therefore, UUSN(G) ≤ n+ (n
2) (n− 1).
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For the upper bound calculation of ILN, consider the step 1 and 2(a) only of

Algorithm 1. Here, after step 1 ILN(G) is 1 (Theorem 5.1.6). Step 2(a) can be

applied at most n − 1 times for each vertex and each iteration of step 2a) will

increase the ILN(G) by at most 1. Therefore, ILN(G) ≤ n.

Theorem 5.1.9. UUSN(G) ≤ T + n∗ILN(G)−USN(G)

Proof. Consider a valid set labelling of G. Let the cardinality of the underlying

labelling set be T and ILN(G) be the cardinality of the largest label size in the

labelling. Note that T is not necessarily equal to USN(G).

In order to form a uniform as well as valid labelling of G, cardinalities of each

vertex label must be same. Total number of elements required for obtaining a

valid and uniform labelling can never be more than n∗ILN(G).

Let us say, cardinality of vertex label vi is ci. So, in addition to T, we need

at most n∗ILN(G)−∑n
j=1 cj elements for obtaining a valid and uniform labelling.

One can observe that ∑n
j=1 cj ≥USN(G) since each element of the underlying uni-

Figure 5.4: ILN(G) = 1, USN(G) = 3, and UUSN(G) = 3 + 4 ∗ 1− 3 = 4

verse set is used at least one time in vertex-labels.

So we need in total T + n∗ILN(G)−USN(G) elements for obtaining a valid and

uniform labelling in the worst case.
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5.2 Results on UUSN and ILN for some special families

of graphs

In this section, we derive results (either exact or asymptotic) on UUSN and ILN

on the following classes of graphs: Paths, Cycles, Wheel Graph, Complement of

Complete Graph (Kn), Matching (M2n), Complete binary trees, Complete bipar-

tite graphs.

Theorem 5.2.1. For matching, UUSN = O(log2 2n) and ILN = O(log2 2n)

Proof. These results are direct consequences of Theorem 2.2.1.

Theorem 5.2.2. UUSN(Kn) ≤ 1.5(1 + dlog2 ne) and ILN(Kn) = 2

Proof. Consider A as the underlying universal set with cardinality k. Here disjoint

subsets are not allowed for labelling of independent set. For all S (where S ⊂ A),

at most 1 subset can be used for labelling from each pair (S, A− S). So the total

available sets for labelling are reduced by factor of half. Select the subset having

higher cardinality in each pair and if cardinalities are same then make an arbitary

selection. By doing this, each subset will have cardinality at least
k
2

. All these

selected subsets will have non-empty intersection (pigenhole principle) and hence

they can be used to assign labels to vertices.

Note: Empty set won’t be used in labelling since in the pair (φ, A), A has higher

cardinality.

So, in summary total at most 2k−1 vertices of the graph can be labelled using A.

In order to obtain uniform labelling, at most
k
2

additional elements are required

since the least possible cardinality is
k
2

and greatest cardinality is k (since A is

used as label and |A| = k). So after adding at most
k
2

elements in each label,

all the labels will have uniform cardinality of k. Therefore, the total number of

elements required is 1.5k in order to obtain a uniform labelling of 2k−1 vertices.

So using 1.5k elements, it is possible to do obtain a valid and uniform labelling

of (Kn) where n ∈ {2k−2 + 1, 2k−2 + 2, · · · , 2k−1}which proves the result for UUSN.
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ILN is at least 2 for Kn. This is because at least 1 element must be common in

the labels of every vertex pair and in order to avoid repetition of labels, at least

one more element is required to be added in each of the individual labels.

Valid-ILN-labelling-Kn

1. For each vi ∈ Kn assign {i} as its label.

2. Add {i + 1} in the labels of all vi ∈ Kn.

After the 2nd step, the cardinality of each individual label is 2 which proves the

result for ILN.

Theorem 5.2.3. UUSN (Ks,t) ≤ 1.5(2 + dlog2 se+ dlog2 te) + |dlog2 se − dlog2 te|

ILN (Ks,t) = 2

Proof. Complete bipartite graph consists of two independent sets. From the valid

and uniform labelling of one independent set nothing can be used in the second

independent set. So labelling of these two independent sets must be entirely dis-

joint. Now cardinality of each vertex label in first partite set is 1+ dlog2 sewhereas

cardinality of each vertex label in second partite set is 1 + dlog2 te. In order to

make cardinality of each label same, |dlog2 se − dlog2 te| must be added to all the

vertex labels to one of the smaller partite set (the partite set which has smaller

individual label size for all vertices). This proves the result for UUSN. From Theo-

rem 5.2.2, it is possible to label both partite sets with ILN = 2 and ILN will remain

2 for the whole graph if disjoint sets are used for the labelling of both the partite

sets. This proves the result for ILN.

Theorem 5.2.4. UUSN(Pn) = O(logn).

Add-edge Procedure:

Input: A valid labelling of any given path (Pn) using exactly k labels.

Output: A valid labelling of Pn+2 using exactly k + 3 labels.

Step 1: Identify a P4 in the given Pn. Let the vertices of P4 be vr, vr+1, vr+2 and

vr+3 and corresponding labels be lr, lr+1, lr+2 and lr+3 respectively.

Step 2: Add 2 new vertices vn+1 and vn+2. In order to construct Pn+2, add 3 new
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edges (vr+2, vn+1), (vn+1, vn+2), (vn+2, vr+3).

Step 3: l(vn+1) = lr+1

l(vn+2) = lr+2

Step 4: Three pairs (vr, vn+1), (vr+1, vn+2) and (vr+2, vr+3) are non-adjacent. In

order to reflect non-adjacency in the labelling, add 3 distinct new elements say a,

b and c to the labels of these 3 pairs respectively. The final labelling is valid. It

respects adjacency as well as non-adjacency for all pairs of vertices.

Lemma 5.2.5. For the given Pn, the Add-edge procedure can be applied for at most
n− 1

3
.

Proof. Add-edge procedure can only be applied to each edge-disjoint P4-subgraph

of the given Pn. The maximum number of edge-disjoint P4 in a Pn is
n− 1

3
. Thus

the result follows.

Proof of Theorem 5.2.4: We now give an algorithmic proof.

Algorithm-Valid-Uniform-Pathlabelling:

Input: A valid and uniform labelling of Pn using exactly k labels.

Output: A valid and uniform labelling of Pn+2i using exactly k + 3 labels where

0 < i ≤ n− 1
3

and i ∈ N+

Step 1: Apply the Add-edge procedure on the given Pn for the first 4 vertices

i.e. r = 1.

Step 2: For j ≥ 1, (where j ∈ N+)

If 3j + 1 < n and 3j + 4 ≤ n then apply the Add-edge procedure for r = 3j + 1

with the following modifications in step 4 of the procedure:

(Observation: v3j+1 participates in exactly two Add-edge procedures, in iteration

j− 1 as well as iteration j. Therefore, before starting of iteration j, the label of v3j+1

already has an additional element p due to iteration j− 1 where p ∈ {a, b, c}. For

j = 1, p = {c} from step 1. The label of v3j+1 won’t change during the jth iteration

and p ∈ l3j+1.)

1. Add p in the label of newly added vertex v which is a neighbour of v3j+3.

2. Use remaining two elements {a, b, c} − {p} in any order, for the remaining

two pairs.
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Figure 5.5: UUSN labelling- P7 to P9

Step 3: After jth iteration of the Addedge procedure, the cardinality of the labels

of the first 3j + 1 vertices will be increased by exactly 1. So the first 3j + 1 vertices

of the path has a uniform labelling. The label of the (3j + 1)th vertex will certainly

contain exactly one of the 3 elements namely a, b, c. WLOG a is used in the label

of the (3j + 1)th vertex.

Step 4: Partition the remaining vertices V \ {V1, V2, . . . , V3j+1} into two sets:

A: Even numbered vertices and

B: Odd numbered vertices.

Add b to all labels of A and add c to labels of B. After this step, the cardinality of

the remaining vertices are also increased by 1. In general, the cardinality of each

vertex is increased by exactly 1. So the final labelling is uniform and valid. No

additional elements are required in this procedure.
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Figure 5.6: UUSN labelling- P7 to P11

Examples of constructions are shown in Figures 5.5 and 5.6.

Upper bound calculation:

So at most
⌊

n−1
3

⌋
edges can be used and they will generate at most

2n− 2
3

new

vertices.

Recurrence: T(5n/3) = T(n) + 3

UUSN : O(log n)

Note: We can generate paths for all values of n by applying the Add-edge proce-

dure repeatedly. One can generate all P2x+1 by repeatedly applying the Add-edge

procedure on a valid and uniform labelling of P7, similarly all P2x can be gener-

ated by application of the Add-edge procedure on a valid and uniform labelling

of P6. Here x > 3 and x ∈ N .

Theorem 5.2.6. UUSN(Cn) = O(log n). and UUSN(Wn) = O(log n).

Proof. With the use of the Valid-Uniform-Pathlabelling algorithm, it is possible to

generate valid and uniform labelling of Cn using O(log n) labels. Notice that the

edge (V1, Vn) does not participate in any of the Add-edge procedure iterations.
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Wheel graph consists of Cn and one additional vertex with degree n. Therefore,

UUSN(Wn) = UUSN(Cn) + c. (from Theorem 5.1.3)

Theorem 5.2.7. ILN(Pn) = O(logn).

Proof. Old-ILN: Value of ILN before applying procedure Add-edge.

Procedure Add-edge may increase the cardinality of individual labels by at most

one. Hence New-ILN= Old-ILN+ 1. If we obtain Pn using the Add-edge procedure,

then ILN(Pn) = UUSN(Pn)/3. So ILN(Pn)= O(log n).

The same idea is also applicable on cycles as well as wheel graph.

Theorem 5.2.8. ILN(Cn) = O(logn) and ILN(Wn) = O(logn).

Theorem 5.2.9. UUSN(BTn) = O(logn) and ILN(BTn) = O(logn). Where BT=Complete

binary tree and n denotes the total number of vertices of the BT.

Figure 5.7: Input

Proof. We prove this result by an iterative algorithm: Valid-Uniform-TreeLabelling.

The algorithm is explained below:

Input: A valid as well as uniform labelling of the complete binary tree of height h

using exactly K labels.

Base case: UUSN(BT7) = 7. Base case is shown in Fig. 5.7 with underlying la-

belling set: {1, 2, 3, 4, 5, 6, 7}.
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Output: A valid and uniform labelling of complete binary tree of height h + 1 us-

ing exactly K + 10 labels. The ten new labels are a,b,c,d,e, f ,g,h,i,j.

Step 1: For all newly added vertices in level L + 1, find their corresponding an-

cestors in level L− 1.

For all v (where v is a level L + 1 vertex) ,

Label(v)= Label(ancestor(v) in level L− 1).

Note: The levels L + 1 and L− 1 are highly similar with respect to adjacency with

the remaining levels. Both of these levels are adjacent to level L and non-adjacent

to 1, 2, 3, . . . , L− 3.

Figure 5.8: After Step 1 and 2

Observation after step 1:

• All the vertex-labels which are present in level L+ 1 will have non-empty in-

tersection with each other because corresponding ancestors are either same

or having non-empty intersection. All vertices present at level L− 2 forms

an independent set and since the underlying labelling is valid, all the vertex-

labels pairs have non-empty intersection. So the vertex-labels which are

present in level L + 1 have non-empty intersection with each other because

they are generated from the vertex labels present at L− 2. This is desirable

because all vertices of level L + 1 are non adjacent.
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• Layer L+ 1 and L− 1 are non adjacent and they have non-empty intersection

after this step.

Step 2: The level L− 2 is adjacent to L− 1 but not to L + 1.

For all v′, (where v′ is a level L− 2 vertex)

New-Label(v′) = Old-Label(v′) ∪ {a, b, c, d} (See Figure 5.8)

Step 3: Consider the sequential ordering (left to right) of vertices which are present

in level L + 1.

For each vertex vi,

New-Label(vi) = Old-Label(vi) ∪ {a} if i mod 4 = 1

= Old- Label(vi) ∪ {b} if i mod 4 = 2

= Old- Label(vi) ∪ {c} if i mod 4 = 3

= Old-Label(vi) ∪ {d} if i mod 4 = 0

Vertices of level L − 2 and L + 1 will preserve non-adjacency because the corre-

sponding labels have non-empty intersection after this step.

Step 4: Consider the sequential ordering (left to right) of vertices which are present

in level L : v1, v2, . . . , vq

For each vertex vi,

New-Label(vi) = Old-Label(vi) ∪ {c, d} if i mod 2 = 1

= Old- Label(vi) ∪ {a, b} if i mod 2 = 0

Figure 5.9: After Step 4
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Observation after step 4:

Level L + 1 and L preserves adjacency as well as non-adjacency.

The labelling after this step is valid and preserve adjacency as well as non-adjacency

(see Figure 5.9)

Step 5: The following changes are required in order to obtain a uniform labelling:

1. Add {e, f , g, h} to the labels of all the vertices of levels (L− 1), (L− 3), (L−

5), . . ., 1. (if L is even).

2. Add {a, b, c, d} to the labels of all the vertices of levels (L− 4), (L− 6), (L−

8), . . ., 2. (if L is even).

3. Add {i, j} to the labels of all the vertices of level L.

4. Add {e, f , g} to the labels of all the vertices of level L + 1.

Note: If L is odd then consider levels (L− 1), (L− 3), (L− 5), . . ., 2 for step 5.1

and (L− 4), (L− 6), (L− 8), . . ., 1 for step 5.2.

Figure 5.10: Output

The final output is shown in Figure 5.10.

For the complete binary tree, n = 1 + 2 + 4 + 2h = 2h+1 − 1 i.e. h = O(logn).

For valid and uniform labelling of each layer exactly 10 additional elements are
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required. Total number of layers are O(logn). Therefore total number of elements

required are 10 ∗O(logn) which is O(logn).

Size of individual label is increased by exactly 4 after each iteration and total

number of iterations are O(logn). Therefore, ILN is 4 ∗O(logn) which is O(logn).

Theorem 5.2.10. UUSN(Qn) < 3n + O(logn)

Proof. The hypercube labelling algorithm, adds exactly n elements in each label

(except for labels of the first two layers of the hypercube). If the underlying path

on (n + 1) vertices has a valid uniform labelling with O(log n) elements then it

is possible to obtain a final uniform labelling using 3n + O(log n) labels using

following the modified algorithm.

1. Apply hypercube algorithm (see Theorem 2.2.6) to get a valid non-uniform

labelling (non uniform just because of the first two layers). Here use valid

and uniform labelling of the underlying path graph to generate a valid la-

belling of the hypercube (see Figure 5.11).

Figure 5.11: Labelling after step 1

2. The first layer contains only a single vertex say v. New label of v = old label of v ∪

Sk, where Sk is underlying set for labelling which is used in the 3rd layer of

the hypercube.
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3. Labels of the second layer contains only one additional element apart from

the elements of the 2nd vertex of the corresponding path. Consider the (n−

1)th layer of the hypercube which contains all (n − 1) sized subsets of the

underlying labelling set. Layer 2 and (n− 1) both contains the same number

of elements. Add all (n− 1) element subsets generated at layer (n− 1) into

their corresponding copy in the 2nd layer.

The final labelling is valid and uniform (see Figure 5.12).

Figure 5.12: Uniform labelling of Q4

Theorem 5.2.11. ILN(Qn) < n + O(logn)

Proof. After applying hypercube labelling algorithm, cardinality of each label will

be at most n+O(logn). Hence individual label number is at most n +O(logn).

5.2.1 Cartesian product based method

Key Observation: Let A, B, C, D be sets. Then (A× B)∩ (C×D) 6= ∅ if and only

if A ∩ C 6= ∅ and B ∩ D 6= ∅.

Theorem 5.2.12. Let G and H be two graphs on the same vertex set V. Further, suppose

E(G)∩ E(H) = ∅. Then UUSN(G + H) ≤ UUSN(G)×UUSN(H) and ILN(G + H) ≤

ILN(G)×ILN(H).
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Proof. Take optimal labellings of the vertex set using disjoint universes for the

graphs G and H. Now consider the graph G + H. The vertex sets of G and H

are identical. For each vertex v in G + H give it the label lG(v)× lH(v). Clearly

two vertices are nonadjacent only if they are nonadjacent in both G and H. In that

case their labels under the two labellings will each be intersecting. From the key

observation, it follows that their cartesian product new label will also intersect.

Similarly for the case of non-intersection (adjacent vertices).

Figure 5.13: Cartesian Product Based Method

As a corollary we have the following theorem.

Theorem 5.2.13. UUSN(Pn) ≤ (1 + log n
2 )

2.

Proof. The path is the union of two disjoint matchings. Each matching has UUSN

O(log n). From Theorem 5.2.12, we see that the graph has UUSN O(log n)2. We

state this here just as an application since we have a better bound for paths (The-

orem 5.2.4).

Generation of valid and uniform labelling of P6 using Theorem 5.2.13 is shown

in Figure 5.13.

5.3 Conclusions and future Work

The work presented in this chapter has been published by us. The reference is [33].
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We have obtained upper bound of UUSN and ILN for the complement of com-

plete graphs, complete graphs, complete bipartite graphs, paths, cycles, matching,

wheel graph, hypercube. In the future we plan to derive optimal and/or lower

bound results for hypercube, harary graph etc.
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CHAPTER 6

Total Graphs

The chapter is organised as follows. Background details related to total graphs are

presented in Section 6.1. The detailed definitions of structures as well as notation

is presented in Section 6.2. Basic properties and theorems on total graphs are

presented in Section 6.3. Section 6.4 presents our results for complete graphs.

In Section 6.5 we present our theorems characterising the two classes of vertices

and develop our theorem into an algorithm for reconstructing the inverse total

graph of a given total graph. We summarise our work and indicate possible future

directions for research in Section 6.6.

6.1 Introduction

We obtain a new characterisation of total graphs based on the induced subgraphs

on the neighbourhood of maximum degree vertices. These characterisations allow

us to distinguish vertex-vertices (the vertices of the original graph) from edge-

vertices (the vertices of the line graph) among the vertices of maximum degree.

We also rely on the preponderance of maximal triangles (maximal cliques on ex-

actly three vertices) between the vertex graph and the line graph consisting of two

vertices from the vertex part and one vertex from the line graph part. Using this

characterisation, we develop an efficient algorithm which iteratively creates the

partition of the vertex set of the candidate total graph into its inverse total graph

and line graph.

97



6.1.1 Related work

The notion of total coloring was introduced by Behzad [9] and Vizing [60] and

those papers also conjectured that χT(G) ≤ ∆(G)+ 2. It is immediate that χT(G) ≥

∆(G) + 1, since a vertex of maximum degree and its incident edges must all get

distinct colours. A lot of work has been done on total coloring [28] [8], based on

frugal coloring [27], the list coloring conjecture [51] etc.

Examples of work on characterising graph classes include planar graphs [44],

line graphs [39], interval graphs [21], bipartite graphs [3], graph factoring under

the cartesian product operation [29].

6.1.2 Total graphs and set labelliing

Figure 6.1: Input graph G

Set labelling method to construct the total graph of the given graph:

1. Using |V| elements assign unique singleton label to each vertex of the input

graph G.

2. Consider |E| additional vertices. These vertices represent edges of G. For

each new vertex, label it using a unique 2-element set, whose elements cor-

respond to the endpoints of the edge which is represented by the newly

added vertex.

3. Draw additional edges between pairs of vertices having non-empty single-

ton intersection between their corresponding labels.
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4. The generated graph is the total graph of the given input graph.

An input graph is shown in Figure 6.1 and the corresponding generated total

graph is shown in Figure 6.2.

Figure 6.2: Total graph of G (T(G))

6.2 Definitions and notation

In this section we present some of the basic definitions and notation we use in

this chapter. All graphs we consider are finite, simple, undirected and connected.

Disconnected graphs do not add any new dimension to the problem.

Definition 28. The line graph L(G) of a graph G = (V, E) is defined as the graph with

vertex set having one vertex corresponding to each edge in G and an edge between two

vertices of L(G) precisely when the edges of G that those vertices correspond to, have a

common endpoint.

Our main focus in this section is on total graphs. The vertex set of the total

graph of a graph can be partitioned (uniquely upto isomorphism) into two parts

such that the subgraph induced on one part is the original graph (inverse total

graph) and the subgraph induced on the other is the line graph of the original
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graph. The bipartite subgraph induced by this partition joins a vertex in the orig-

inal graph to a vertex (representing an edge) in the line graph if and only if the

vertex is an endpoint of the edge. Our interest in line graphs is limited to their role

in total graphs, and their role in the partitioning procedure to obtain the inverse

total graph.

Not all graphs are line graphs of a simple graph (or for that matter even of a

multigraph). Similarly not all graphs are total graphs. Viewing the total graph

concept as a function from the class of graphs to the class of graphs analogous

to line graphs, the function is non-surjective. A natural problem, therefore, is to

determine the range of this function. In addition, it is also interesting to design an

algorithm that either reports that an input graph is not a total graph of any simple

graph or returns the inverse total graph of the given total graph.

It has been established that the total graphs viewed as a function from the class

of graphs to the class of graphs is injective [10].

Definition 29. The total graph T(G) of a graph G = (V, E) has as vertex set one vertex

for each edge as well as each vertex in G. Two vertices in T(G) are adjacent precisely

when the elements (vertex or edge) of G they represent are adjacent/incident to each other

in G.

With reference to a total graph T(G) we have a partition of its vertex set into

two parts, inducing G and L(G) as explained in the previous paragraph. For a

total graph such a partition is unique upto isomorphism and is called a valid

partition. The individual vertices belonging to these two parts in a valid partition

are introduced in the following definition.

Definition 30. The vertex set of the total graph of a graph can be partitioned into:

1. The vertices of the original graph (we call such a vertex a vertex-vertex)

2. The vertices of the line graph (we call such a vertex an edge-vertex).

Definition 31. A mixed clique in a total graph is a clique which has at least one vertex

from the set of vertex-vertices and at least one vertex from the set of edge-vertices in a

valid partition of the total graph.
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Definition 32. A pure clique in a total graph is a clique consisting exclusively of vertex-

vertices or exclusively of edge-vertices.

6.3 Total graphs: Basic properties

Theorem 6.3.1. The largest mixed clique consisting of at least two vertex-vertices in a

total graph is of size 3.

Proof. Consider a clique consisting of three vertex-vertices. Clearly there is no

edge in any graph incident to three distinct vertices. Hence this clique cannot be

augmented to include any edge-vertices, and thus is not the subset of any mixed

clique.

It follows that a mixed clique can consist of at most two adjacent vertex-vertices.

In this case this can be augmented by only one vertex, the edge-vertex represent-

ing the link between these two adjacent vertex-vertices.

Thus a maximal mixed clique is either:

• A vertex-vertex and all its adjacent edge-vertices; or

• Two adjacent vertex-vertices and the connecting edge-vertex.

In summary, a maximal mixed clique is either of size 3 or of size k + 1 where 2k

is the degree of its only vertex-vertex in the total graph. In fact, every edge of the

original graph (inverse total graph) gives rise to a unique maximal mixed clique

of size 3 involving one edge-vertex and two vertex-vertices. This is together with

its two end points in the original graph. Such a triangle has two of its edges in the

bipartite subgraph of the total graph induced by a valid partition and the third

edge is between the two vertices in the vertex part.

Unique partitioning: To visualise this, view any graph as a union of stars

centred at each of its vertices. These translate into complete graphs with number

of vertices equal to the degree of the central vertex of the corresponding star, and

lie in the line graph. Connect the central vertex of each star to each vertex of its

corresponding clique in the line graph. Since we used a decomposition rather
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than a partition, some pairs of vertices from these cliques in the line graph will

have non-empty intersetion with respect to their neighbours in the original graph.

Collapse them into identical vertices.

Figure 6.3: Line graph construction from the given graph

Figure 6.4: Line graph
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Figure 6.5: Total graph

6.3.1 Vertex degrees of H = T(G) in terms of vertex degrees of G.

In this subsection, we derive results expressing the degrees of vertices of a total

graph in terms of the degrees of vertices of its inverse total graph.

Theorem 6.3.2. The degree of a vertex-vertex in a total graph is 2 times the degree of the

original vertex in the inverse total graph.

Proof. In the total graph a vertex-vertex is adjacent to vertices corresponding to

its original neighbours as well as its incident edges in the original graph. See

Figure 6.6.

Theorem 6.3.3. The degree of an edge-vertex in a total graph is equal to the sum of the

degrees of the endpoint vertices of the original edge in the inverse total graph.

Proof. In the total graph an edge-vertex is adjacent to its two endpoints (which are

both vertex-vertices), and the other edges incident to these endpoints (which are

all edge-vertices). Thus if its endpoints are u and v, its degree is 2 + (du − 1) +

(dv − 1) = du + dv. See Figure 6.7.
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Figure 6.6: Degree characteristics of vertex-vertex

Figure 6.7: Degree characteristics of edge-vertex

The following theorem is an immediate consequence of Theorems 6.3.2 and

6.3.3.

Theorem 6.3.4. The total graph of a graph is regular if and only if the original graph is

regular.

The next result follows from Definition 31 and Theorem 6.3.1.

Theorem 6.3.5. Consider a maximal mixed clique of size 3 in a total graph. Let the two
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vertex-vertices be of degrees a and b, with a > b. Then the degree of the edge-vertex of

this clique is c = a+b
2 . Clearly a > c > b.

One can also immediately infer the following theorem.

Theorem 6.3.6. In the inverse total graph there are two adjacent vertices of maximum

degree if and only if there is a maximal mixed clique of exactly three maximum degree

vertices two from the vertex part and one from the line graph part in the total graph.

We will use this property extensively in our algorithm. If there is no trian-

gle of vertices of maximum degree, a maximum degree vertex along with two of

its neighbours with degree in arithmetic progression constitutes a mixed triangle

with the highest and lowest degree vertices among them being from the vertex

part and the mean value degree vertex from the edge part. This fact significantly

reduces the work involved in finding a partition of the vertex set of the total graph

into the vertex part and the line graph part iteratively.

Theorem 6.3.7. Given a vertex-vertex va of degree 2k in a total graph, its neighbours can

be divided into k pairs representing:

• Its distinct incident edges (v1, . . . , vk) in the inverse total graph and

• the other endpoints of those edges (v′1, . . . , v′k) respectively.

The k pairs are {(v1, v′1), . . . , (vk, v′k)}.

Proof. See Figure 6.10. The degrees of each pair is related to the degree of the

selected vertex-vertex according to Theorem 6.3.5.

6.3.2 Relationship between the number of vertices and edges of

the original graph and its total graph

Here we extend the work of the previous subsection in a natural way obtaining

results expressing the number of vertices and edges of a total graph in terms of

the corresponding parameters of the inverse total graph.

Theorem 6.3.8. Let T(G) = (V′, E′) for the given G = (V, E).

105



1. |V′| = |V|+ |E|

2. |E′| ≤ |E|(|V|+ 1)

Proof. The total graph of a given graph contains the original graph and the line

graph of the original graph as disjoint induced subgraphs spanning all its vertices.

The line graph of the original graph G has |E| vertices. Therefore, |V′| = |V|+ |E|

The edge set of the total graph can be partitioned into 3 disjoint sets:

A: Edge set of the original graph containg |E| edges.

B: Edges which are present between the original graph and its line graph.

There are 2|E| such edges.

Note: The line graph of the given G has |E| vertices and each vertex of the

line graph is connected to exactly 2 vertices of the original graph.

C: Edges which are present within the line graph. The number of such edges

is

Σv∈V(G)

(
dG(v)

2

)
= Σv∈V(G)

dG(v)(dG(v)− 1)
2

=

(
Σv∈V(G)

(dG(v))2

2

)
− |E|

≤
(

Σv∈V(G)
(|V| − 1)(dG(v))

2

)
− |E|

≤ (|V| − 1)|E| − |E|

Adding the two equations and the inequality for the number of edges in groups

A, B, C we get the claimed result.

6.4 Results on complete graphs

We present an elegant direct construction method for the total graphs of complete

graphs.
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The following theorems give the structure and other parameters of the total

graphs of complete graphs. Theorem 6.4.1 is an immediate consequence of Theo-

rem 6.3.8.

Theorem 6.4.1. Let T(G) = (V′, E′) for the given K|V|.

1. |V′| = |V||(|V|+1)
2

2. |E′| = |V|(|V|−1)(|V|+1)
2

3. ∀v ∈ T(G), dT(G)(v) = 2(|V| − 1).

We now establish isomorphism between the line graph of a complete graph

and the total graph of a complete graph with one fewer vertex.

Theorem 6.4.2. L(Kn) = T(Kn−1) where L(Kn) denotes the line graph of Kn.

Proof. • The line graph of Kn has exactly n cliques each of size n− 1. These are

formed by the stars induced by the edges incident to each of the n vertices of

Kn. Each pair of these cliques share a unique common vertex. For instance

the first clique has a distinct vertex common with each of the remaining n− 1

cliques. The same holds for each of these cliques.

• T(Kn−1) contains L(Kn−1). It follows that there are exactly n − 1 maximal

cliques each of size n− 2 in its induced line graph.

• T(Kn−1) also contains a copy of Kn−1, ignoring the vertices of the line graph

portion. This is basically the inverse total graph.

• Thus, in total n cliques are present, n− 1 of which are of size n− 2 and the

remaining 1 of size n− 1. This follows from the previous two points.

• Each clique of size n − 2 present in the line graph is adjacent to exactly 1

vertex of the original graph because the clique is formed by the vertices cor-

responding to edges incident on the single vertex of the original graph.

• Hence it is possible to include exactly 1 more vertex in each of the n − 1

cliques of size n− 2 present in the line graph.
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• We conclude that a total of n cliques each of size n− 1 are present in T(Kn−1).

This is the same as in L(Kn) including the overlapping pattern among these

cliques.

Algorithm 2: Is a given graph the total graph of Kn

1. From Theorem 6.4.2, T(Kn) = L(Kn+1) . For the given input graph, obtain

its inverse line graph in O(E′) [42].

2. If the obtained inverse line graph is Kn+1 then the G′ is T(Kn) (complexity

of this step O(E′)).

6.4.1 Direct method for construction of total graph of a complete

graph (T(Kn))

1. Consider n + 1 disjoint groups each consisting of exactly n vertices. (These

correspond to the n + 1 cliques of size n of the total graph of the Kn).

2. The vertices in ith group Gi are labelled {1, . . . , n+ 1} \ {i}. Therefore, |Gi| =

n

3. For each Gi, construct Kn by connecting all its n vertices pairwise.

4. Combine the jth vertex of group i and the ith vertex of group j into a single

vertex. The neighbourhood of the new vertex is the union of the individual

neighbourhoods. The degree of each new vertex is exactly 2(n− 1) because

degree of each original vertex is n− 1.

5. The resultant graph is the total graph of the complete graph Kn.

Notes:

• No edge is destroyed during the entire procedure.

• Each clique has (n
2) edges and initially n + 1 distinct cliques are considered.
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• Thus, (n
2)(n + 1) edges are present in the graph which remains constant

through the course of this construction.

Construction of the total graph of K3 using this direct method is shown in Fig-

ures 6.8 and 6.9. In the figure the group number is written as subscript for each

vertex and the vertex number within the group is written in normal font.

Figure 6.8: Initial steps of direct construction of the total graph of K3

Figure 6.9: Resultant Total Graph of K3 after step 4
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6.5 Characterisation of total graphs and computing the

inverse total graph

In this section, we prove two theorems which give conditions for a maximum

degree vertex in a candidate total graph to be a vertex-vertex or an edge-vertex.

These theorems are used to iteratively find a maximum degree vertex-vertex (one

is guaranteed to exist by theorem 6.3.5) and partition its neighbours into vertex-

vertices and edge-vertices. At each round a maximum degree vertex-vertex is

selected as a part of the inverse total graph and it along with its edge-vertex

neighbours are eliminated to get a smaller graph to recurse on. A partition of

the vertex set of the given graph into the inverse total graph and the line graph

of the inverse total graph is created iteratively, if one exists; or we infer that no

such partition exists if there is a violation of the combinatorial conditions at any

iteration. Our theorems in this section work only for total graphs of non-complete

graphs. Thus the algorithm developed in this section also uses the algorithm of

Section 6.4, when appropriate, to handle the case of complete graphs.

Theorem 6.5.1. Given an arbitrary maximum degree vertex v, of degree 2k, in a total

graph H = T(G), (G is not a complete graph) it is a vertex-vertex, if and only if the

following properties hold in the subgraph induced on its open neighbourhood.

1. Its neighbours can be divided into two disjoint and exhaustive groups of k vertices

each, one corresponding to its vertex neighbours NV (v) in the inverse total graph

and the other corresponding to its incident edges NE (v) in the inverse total graph.

2. The maximum degree of G[NV (v) ∪ NE (v)] is k. This number is achieved by each

vertex in NE (v) and at least one vertex of NV (v) falls short of this degree.

Proof. The statements follow from an inspection of Figure 6.10.
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Figure 6.10: Characteristics of Vertex-Vertex and Edge-Vertex

Theorem 6.5.2. Given an arbitrary maximum degree vertex v, of degree 2k, in a total

graph H = T(G), (G is not a complete graph) it is an edge-vertex, if and only if the

following property holds in the subgraph induced on its open neighbourhood.

1. Its neighbours can be partitioned into 2 maximal cliques of exactly k vertices each.

Each of these cliques consist of one vertex-vertex and k− 1 edge-vertices.

Proof. The statement follows from an inspection of Figure 6.10.

In 4-regular candidate total graphs (total graphs of cycles), each vertex satisfies

the conditions of both the above theorems. That is because the two parts of any

valid partition are isomorphic to each other.

Theorem 6.5.3. Given any input (candidate) total graph H = T(G), where G is not a

complete graph, it is indeed a total graph if and only if the graph H′ = T(G′) is a total

graph where H′ is obtained from G by eliminating a vertex-vertex of maximum degree

along with all its edge neighbours in H.

If the given graph is indeed a total graph, then it has a partition of its vertex set

into vertex-vertices and edge-vertices. We find a maximal triangle of maximum

degree vertices if one exists (Theorem 6.3.6). From this triangle, we obtain one

vertex-vertex using the algorithmic version of Theorem 6.5.1.
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If there is no triangle of maximum degree vertices, then it is guaranteed that

any vertex of maximum degree, say va, is a vertex-vertex by Theorem 6.3.6. In

this case each vertex of highest degree among its neighbours is an edge-vertex.

Take one say vc. By Theorem 6.3.5 there must be a common neighbour of va and

vc, say vb such that the degree of vc is the arithmetic mean of the degrees of va

and vb. Find one among these common neighbours and verify that it is indeed a

vertex-vertex using Theorem 6.5.1.

Having found a candidate maximum degree vertex-vertex through one of the

above two cases, verify if it is indeed a vertex-vertex using the algorithmic version

of Theorem 6.5.1. If it is not a vertex-vertex then conclude that the input graph H

is not a total graph. If it satisfies the conditions of Theorem 6.5.1 then partition its

neighbours into vertex-vertices and edge-vertices. Deleting the vertex along with

its edge neighbours, effectively eliminates the vertex and the incident edges from

the inverse total graph (if it turns out to be a total graph). We are left with the

(candidate) total graph of the graph with one vertex deleted. Hence by recursing

on the smaller graph, we can obtain the partition or conclude that one does not

exist if at some iteration there is a maximum degree vertex violating both The-

orem 6.5.1 and Theorem 6.5.2. We thus have an algorithm which starts with a

candidate total graph of a non-complete graph and decides whether it is indeed a

total graph by recursing on the smaller graph or recourse to the complete graph

theorem.

Algorithm 3: Inverse Total Graph.

1. Check if the given graph is the total graph of a complete graph using Al-

gorithm 2. If so augument the vertices of that complete subgraph to the

vertices obtained in earlier iterations and return.

2. Else consider maximal triangles containing three vertices of maximum de-

gree using Theorem 6.3.6. If a such a triangle exists then one of its vertices

must be a maximum degree vertex-vertex. Identify such a vertex x using

Theorem 6.5.1. In the process of examining these 3 vertices, if any of them

violates both Theorems 6.5.1 and 6.5.2 or no such x exists, conclude that the

112



input graph is not a total graph.

3. If no triangle of maximum degree vertices were found in step 2 then find

a vertex x of maximum degree involved in a triangle as per Theorem 6.3.5.

Check that x satisfies Theorem 6.5.1 and if not, conclude that the input graph

is not a total graph.

4. If such an x was found in step 2 or 3, then partition its neighbours into

vertex-vertices and edge-vertices by the algorithmic version of Theorem 6.5.1.

5. Add x to the vertex set of the inverse total graph and repeat the steps with

the graph obtained by deleting x and its edge neighbours.

6. Return the set of vertices (and the induced subgraph on them) accumulated

in Step 5 over all the iterations.

Runtime analysis of Algorithm 2:

Assume input graph is G′(V′, E′) and the representation of G′ is adjacency list

representation.

Pre-processing:

Sort all the vertices in decreasing order of their degrees in O(|V′|log|V′|).

1. Step 1: Equivalent to complexity of Algorithm 1: O(|E′|)

2. Step 2: Check for Theorem 6.3.6, O(1). Theorem 6.5.1, O(2k) for identifica-

tion of neighbours and O(|E′|) for checking condition 2 of Theorem 6.5.1.

Same amount of time is required for checking conditions of Theorem 6.5.2.

At most 3 times check for Theorems 6.5.1 and 6.5.2. Total complexity of this

step : O(|E′|).

3. Step 3: Check for Theorem 6.3.5, O(|V′|). Theorem 6.5.1: O(2k) for identifi-

cation of neighbours and O(|E′|) for checking condition 2.

4. Step 4: Partition: O(|E′|)

5. Step 5: Repeat steps 2, 3, 4 and 5 for O(|V′|) times. i.e. O(|V′| ∗ |E′|)

6. Step 6: O(|V′|) time.
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The complexity of Algorithm 3 is: O(|V′| ∗ |E′|) since O(|V′| ∗ |E′|) is the domi-

nating term in O(|V′|log|V′|)+ O(|E′|)+ O(|E′|) + O(1)+O(|E′|)+O(|V′|)+O(|E′|)

+ O(|V′| ∗ |E′|)+ O(|V′|).

6.6 Conclusions & future directions

The work presented in this chapter has been published by us. The reference is [50].

We have proved properties of the vertex degrees of total graphs. We have

developed a precise characterisation of the structure of the neighbourhoods of

maximum degree vertices of the total graph of any graph. Combining these re-

sults we have designed an efficient iterative algorithm to compute the inverse

total graph of a candidate total graph, or report that the graph is not a total graph.

We also present a direct construction for the total graphs of complete graphs. One

interesting direction of future research is to see if a given n and m pair admits a

connected unique total graph if any. One can also look at minimum number of

dynamic graph operations (adding/deleting vertices and edges or moving edges

around the graph) to transform a non-total graph into a total graph.
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CHAPTER 7

Spanning Tree Auxiliary Graph

In this chapter, we define a class of auxiliary graphs associated with simple undi-

rected graphs. This class of auxiliary graphs is based on the set of spanning trees

of the original graph and the edges constituting those spanning trees. A class

of auxiliary graphs can be viewed as a function from the class of graphs to the

class of graphs. We provide mathematical characterisation of graphs which are

the spanning tree auxiliary graphs of some simple graph. Since the class of span-

ning tree auxiliary graphs of graphs do not have unique preimages (the forward

function is not injective), we derive precisely the classes of graphs which have

the same auxiliary graph. We design algorithms for computing a basic preimage

and define rules to get other solutions for the same auxiliary graph. We also ob-

tain several results expressing parameters of the auxiliary graph in terms of (not

necessarily the same) parameters of the original graph.

Background details related to spanning tree auxiliary graphs are presented in

Section 7.1. In Section 7.2 we present definitions and concepts used. We derive

results on a few elementary standard graph parameters for the family of span-

ning tree auxiliary graphs in Section 7.3. In Section 7.4, we provide a classification

of all maximal cliques that occur in the class of spanning tree auxiliary graphs.

Section 7.5 discusses the role of prime graphs under the cartesian product oper-

ator as the building blocks of all spanning tree auxiliary graphs. The spanning

tree auxiliary graphs of all 2-connected graphs are shown to belong to the family

of prime graphs under the cartesian product operator. In Section 7.6 we provide

an algorithm that recognises a graph that is a spanning tree auxiliary graph of a

simple graph and computes a basic preimage, from which all preimages may be
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generated. We summarise the results and possible future directions of research in

Section 7.7.

7.1 Introduction

We study a class of auxiliary graphs where the vertices of the auxiliary graph rep-

resent the spanning trees of a given graph. There is an edge connecting two ver-

tices of the auxiliary graph precisely when the symmetric difference of the edge

sets of the corresponding spanning trees has exactly two edges. That is equivalent

to saying that the two spanning trees have (n− 2) of their (n− 1) edges common.

Diagrammatically, one can label the vertices of a simple graph and also its

edges with distinct labels. Given such a labelling of a graph G, one can label the

vertices of the spanning tree auxiliary graph Aux(G), each with the list of (n− 1)

edges of the spanning tree it represents. From the description above it should

be clear that we put an edge between two vertices in the spanning tree auxiliary

graph if and only if the labels of the two vertices share (n − 2) of their (n − 1)

elements in common. See the figure below for a graph G and its spanning tree

auxiliary graph Aux(G).

Figure 7.1: Construction of Aux(G) from G

This way of migrating from one spanning tree of a graph to another has al-

ready been studied in various places and a similar notion forms the basis of the
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proofs of correctness of algorithms such as Prim’s and Kruskal’s [40] for comput-

ing minimum spanning trees in weighted graphs. Counting or enumerating the

spanning trees of graphs has been extensively studied in the literature [13] [35]

[57]. This underlines the importance of this class of graphs. Apart from applica-

tions of this class of graphs in various problems as described here, it is also chal-

lenging combinatorially and algorithmically to characterise this family of graphs.

Here, we formalise the notion of spanning tree auxiliary graphs of graphs and

characterise them in terms of their mathematical properties. We develop algo-

rithms for recognising such graphs and computing an inverse solution. We pro-

vide a complete description of all graphs which constitute preimages on the basis

of one basic preimage (the spanning tree auxiliary graph of graphs is not an in-

jective function and each point in the range has infinitely many preimages). We

derive relations between parameters of a given graph and (not necessarily the

same) parameters of the corresponding auxiliary graph.

Throughout, we assume the original graph for which we are considering span-

ning tree auxiliary graphs is a simple undirected graph. We deal only with con-

nected graphs because the set of disconnected graphs have no spanning trees and

hence the corresponding spanning tree auxiliary graphs are trivial, with zero ver-

tices.

7.2 Definitions

A tree is a simple undirected connected acyclic graph. A connected unicyclic

graph is any graph obtained by augumenting a tree with an edge between a non-

adjacent pair of vertices.

Given any spanning tree T of a simple connected undirected graph G, adding

any edge e ∈ E(G) \ E(T) results in a unicyclic graph U. Since, G is a simple

graph, the unique cycle in U must necessarily be of length at least 3. Suppose it

is of length k, then there are exactly (k − 1) non-cut edges in U different from e.

Deleting any one of them results in a spanning tree T′ of G, different from T. We

call this process of adding an edge to a spanning tree of a connected graph and
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deleting some other edge from the unique cycle thus introduced, a unit transfor-

mation of type 1. Any two spanning trees can be constructed from one another

by a series of unit transformations of type 1, and in fact in at most (n − 1) unit

transformations where n is the number of vertices of G.

Given any spanning tree T of a graph G, deleting any edge e from T results in

a spanning forest of G consisting of exactly two trees T1 and T2. Adding any edge

of the original graph different from e and linking a vertex of T1 to a vertex of T2

results in a spanning tree T′ different from T. The number of such edges is equal

to the number of edges in G between the vertex partition defined by the vertices of

T1 and T2. We call this process of deleting an edge of a spanning tree and relinking

the two resulting subtrees by a different edge a unit transformation of type 2.

Any two spanning trees can also be constructed from one another by a series of

unit transformations of type 2, and in fact in at most (n− 1) unit transformations

where n is the number of vertices of G. It should also be evident that any two

spanning trees can be constructed from one another by a mixed series of type 1

and type 2 unit transformations, again requiring no more than (n− 1) steps in the

most efficient way.

Definition 33. Given a simple graph G, we define its spanning tree auxiliary graph

Aux(G) as the graph which has a vertex corresponding to each spanning tree of G, and

two vertices of Aux(G) are adjacent if and only if the corresponding spanning trees in G

can be obtained by a single unit transformation.

Definition 34. A graph G is 2-connected if it cannot be disconnected by deleting fewer

than two vertices. In particular, the graph itself must be connected, because otherwise, it

is rendered disconnected by removing zero vertices, which is fewer than two.

Definition 35. The circumference of a graph is the length of any longest cycle in a

graph.

Definition 36. An edge cut is an edge set of the form [S, S], where S is a non-empty

proper subset of V(G) and S denotes V(G)− S.

Definition 37. A minimal edge cut is an edge cut such that if any edge is put back in

the graph, the graph will be reconnected.
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Definition 38. A maximum-minimal-edgecut is a minimal edge cut of maximum

size.

Definition 39. A block in a graph is defined as any maximal 2-connected subgraph of a

graph.

It is an elementary result that any two blocks in a graph can share at most

one common vertex. A useful auxiliary graph to study the block structure of a

connected graph is the standard block-cutpoint tree [25] of a graph. The block-

cutpoint tree of a graph is computed by a standard algorithm which is an adapta-

tion of depth first search (DFS).

We would like to state at the very outset that there are infinitely many graphs

which all map to the same Aux graph, and hence we need to develop a notion of

a canonical/minimal preimage.

Definition 40. A minimal preimage of a spanning tree auxiliary graph is a connected

graph none of whose blocks is K2. The blocks in such a listing maybe linked together in

any form allowed by the standard block-cutpoint tree concept.

The motivation behind the above definition is that the only changes to a graph

that do not alter the spanning tree auxiliary graph are addition of blocks which

are all K2.

We now define the notion of ear addition as used by us. The concept is not a

new one, but our definition is slightly different and hence we present it here.

Definition 41. We define an ear addition as an extension of a graph by adding a path

through zero or more new vertices with two distinct existing vertices of the graph as the

endpoints of the path.

If the endpoints of the path are already adjacent then the ear must contain

at least one intermediate vertex since we consider only simple graphs. An ear

decomposition of a graph is the reconstruction of the graph from scratch by first

drawing one of its cycles and then repeatedly adding an ear.

We now state Whitney’s Theorem [62] on 2-connected graphs..
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Theorem 7.2.1 (Whitney’s Theorem). A graph is 2-connected (apart from K2) if and

only if it can be obtained by starting with a cycle and performing zero or more operations

of ear addition.

Observation 1. In 2-connected graphs, every pair of edges has at least one cycle contain-

ing both.

As a subsidiary goal this section develops relations between graph parameters

of Aux(G) and (not necessarily the same) parameters of G. This intermediate step

helps towards the main goal and is also interesting in its own right.

Definition 42. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the cartesian

product H = G1�G2 has vertex set V = V1 × V2 where × represents the cartesian

product of the two vertex sets and an edge connects (u1, u2) to (v1, v2) if and only if

u1 = v1 and (u2, v2) ∈ E2 or (u1, v1) ∈ E1 and u2 = v2.

This operator defined for two graphs can be extended iteratively to any num-

ber of graphs. The operation is commutative and associative in the sense that

the graphs obtained by commuting or bracketing a series of graphs in any order

gives rise to the same product graph upto isomorphism. The graph K1 serves as

the identity for the cartesian product operator on graphs. It is well known that

the nontrivial factors of a graph under the cartesian product operator are unique

upto reordering.

Definition 43. A graph which has no nontrivial factors under the cartesian product op-

erator is called prime.

A graph obtained as the cartesian product of k nontrivial factors [29] [30] is

a graph of dimension k under the cartesian product operation. Each vertex in

the product graph involving k nontrivial factors is a k dimensional vector where

the ith coordinate is a vertex from the ith factor in the product. The degree of a

vertex in a graph obtained as the cartesian product of several graphs is the sum

of the degrees of the vertices in each of its coordinates in the corresponding factor

graphs.
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Observation 2. Since nontrivial factors involve a minimum degree of at least 1, the

presence of every edge of a vertex in the same factor implies the graph is prime.

The dimension of each vertex is identical and is the same as the dimension

of the graph under cartesian product. Thus, in order to establish that a graph is

prime under the cartesian product operator, it is enough to establish that all edges

incident to some vertex belong to the same factor. It is also known that all edges

of a clique of size three or more in a cartesian product of graphs must all come

from the same factor.

7.3 Parameters

In this section we give some elementary results on some standard graph parame-

ters of spanning tree auxiliary graphs of graphs.

Lemma 7.3.1. Max. degree:

∆(Aux(G)) ≤ (n(G)− 1) ∗ (m(G)− n(G) + 1)

Proof. For a vertex of Aux(G) there is an associated spanning tree, the number of

edges of G not belonging to it is m(g)− n(G) + 1. For each of those edges, adding

them to the tree results in a cycle. The length of this cycle is at most n(G), and

thus the number of edges on the cycle, different from the one that was added is

at most n(G) − 1. Removing any of these edges generates a new spanning tree

of G and thus a neighbour of the vertex considered in Aux(G). Combining these

observations gives the upper bound on the maximum degree.

Lemma 7.3.2. Min Degree:

δ(Aux(G)) ≥ 2 ∗ ((m(G)− n(G) + 1)

Proof. The proof is almost identical to the previous lemma, the only difference is

that we use the lower bound on the length of the cycle created, rather than the

upper bound. The lower bound is 3, since we are dealing with simple graphs.

The rest of the arguments are identical.
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Lemma 7.3.3. The diameter diam(Aux(G)) ≤ n(G)− 1.

Proof. The minimum number of operations to transform one spanning tree to the

other is the size of the set difference of the edge sets of the two spanning trees.

This can never be more than the number of edges in the tree, this bound being

achieved in case of edge disjoint spaning trrees. Thus the result follows.

Lemma 7.3.4. The Clique Number:

ω(Aux(G)) = Max{Circumference(G),|maximum_minimal_edgecut(G)|}

Proof. Every maximal clique in Aux(G) corresponds to either a cycle in G or a

minimal edge cut in G as explained along with the definitions of the two types of

unit transformations. Thus the maximum clique size in Aux(G), which is neces-

sarily a maximal clique is a largest among these. Thus the result follows.

7.4 Classification of maximal cliques in Aux(G) in terms

of structures in G

Here we describe cliques on three or more vertices in Aux(G). Each spanning

tree of a graph G has exactly (n − 1) edges where n is the number of vertices

in G. Consider a clique of size three in Aux(G). This clique represents three

spanning trees of G each pair among which there is exactly (n− 2) common edges.

There are two possibilities for the common intersection of the edge sets of all three

spanning trees. Either it is (n− 3) or it is (n− 2). If we consider any fourth vertex

to augment the three clique to a four clique, then in the first case, the common

intersecton of the edge sets of the four spanning trees will go down to (n − 4),

while in the second case it will remain (n− 2). The same logic extends to larger

cliques. If it is a clique of type 1, then the common intersection decreases for each

added vertex, while if it is of type 2, the common intersection remains (n − 2).

Structurally cliques of type 1 arise from cycles in G and cliques of type 2 arise

from minimal edge cuts in G.

The neighbourhood of each vertex in Aux(G) can be partitioned into maximal

cliques in these two different ways. In the first case the number of cliques in the
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partition is m − n + 1 one corresponding to each edge of G not in the spanning

tree T. In the second case the number of cliques in the partition is n− 1, one for

each edge in the spanning tree T.

Each maximal clique in Aux(G) is a direct and exclusive consequence of either

a cycle in G or a minimal edge-cut in G. The size of the cliques resulting in these

two cases are respectively the length of the cycle and the number of edges in the

edge-cut respectively. To summarise:

Due to cycles:

Take any cycle C of length k in G. Consider a spanning tree T which uses some

(k− 1) of the edges of this cycle. Let F be the forest resulting by deletion of these

(k − 1) edges from T. Clearly appending any path of (k − 1) edges of the cycle

C to the edges of F result in a spanning tree of G and differ from any other such

tree in exactly one edge. Thus these are all pairwise adjacent and form a maximal

clique of size k in Aux(G).

Due to minimal edge-cuts:

We assume G is connected and let E constitute a minimal edge cut of G containing

k edges. The deletion of the edges of E results in a two component graph. Take

any fixed spanning forest of this two component graph containing spanning trees

T1 and T2 of the two components respectively. Cross connecting T1 and T2 with

any of the k edges of E results in a spanning tree of G. Clearly each of these

spanning trees differ from each other in exactly one edge. Thus, they constitute a

maximal clique of size k in Aux(G).

There are two basic ways of creating a new spanning tree of a graph starting

from a given spanning tree of the same graph. These are very similar to each

other as single operations go but when we consider a series of these operations

(or more precisely a large number of possibilities of completing the second phase

of these operations) the difference between them becomes important and hence

we consider both.
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Figure 7.2: Idea of Type I and Type I I cliques for edge (A.B)

The first is to add an edge of the original graph not present in the spanning

tree creating a unicyclic graph and then deleting some edge different from the

one that was added that belongs to the unique cycle in the unicyclic graph. This

is what we called a unit transformation of Type I in our earlier definition.

The other method which is almost a dual of the previously mentioned one is

to first delete an edge of the spanning tree and interconnecting the two subtrees

thus formed using some different edge of the original graph that links a vertex

from one subtree to a vertex of the other subtree. This is what we called a unit

transformation of Type I I in our earlier definition.

7.5 Minimal preimage and multiple preimages

Here we describe the properties which make two or more graphs map to the same

Aux graph.

Theorem 7.5.1. The auxiliary graph of G consisting of blocks B1, . . . , Bk is the cartesian

product of the individual auxiliary graphs. That is:

Aux(G) = Aux(B1)� · · ·�Aux(Bk)

Proof. Consider any graph G and any spanning tree T of G. Let B be some block
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of G and let T[B] be the subgraph of T induced by the vertices of B. Clearly T[B]

is a tree. If it were a forest with more than one component, it means there exists a

path leaving the vertices of B and coming back linking distinct vertices of B via a

path with vertices outside B. This contradicts the assumption that B is a block.

Thus, the spanning trees of any connected graph can all be be obtained by

patching together in any way individual spanning trees of each block of G. In

fact any spanning tree of G can be obtained by this procedure and and any tree

resulting from this patching together of spanning trees of blocks is also a spanning

tree of G.

It follows from the above that any spanning tree of a graph can be viewed

as an (ordered) list of spanning trees of its individual blocks. Different spanning

trees of the graph can be obtained by starting with some spanning tree and then

varying independently the spanning trees of each block. In other words the set of

all spanning trees of the graph can be obtained as vectors of dimension k where k

is the number of blocks of G.

We may also recall that in Aux(G), two vertices (representing two distinct

spanning trees in G) are adjacent if and only if they can be obtained from each

other via a unit transformation. Also the edges involved in this unit transforma-

tion must both come from the same block of G since they form a part of a cycle

in G and there can be no cycle crossing more than one block. Thus we can say

that the two "adjacent" spanning trees agree in their restriction in all blocks except

one, and on the one where they disagree, they differ by a unit transformation. If

we were to treat these spanning trees a k dimension vectors one for each block of

G, then it is like the cartesian product of the individual graphs.

Theorem 7.5.2. If G′ is obtained from a graph G by iteratively appending new blocks to

G each of which is a K2 results in no change in Aux(G′) from Aux(G).

This is because Aux(K2) = K1 and Aux(G)�K1 = Aux(G).

Theorem 7.5.3. Let G be a connected graph with no cut edges, and let H = Aux(G).

Then H is a prime graph under the cartesian product operation if and only if G is a 2-

connected graph.
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As already argued above, the spanning tree auxiliary graph of an arbitrary

graph is the cartesian product of the spanning tree auxiliary graphs of each of

its blocks. Thus it only remains to demonstrate the converse. Here we focus

on an arbitrary vertex x in Aux(G) and argue that all the edges incident to x in

Aux(G) come from the same factor. This will imply that Aux(G) is prime under

the cartesian product operator. We will, of course, have to use the fact that G is

2-connected in the course of our proof.

Figure 7.3: Deletion of the edge e is corresponding to the cycle clique in the
Aux(G)

Consider the spanning tree Tx of G corresponding to the vertex x in Aux(G).

The edges incident to x in Aux(G) connect it to its neighbours. Hence, these cor-

respond to spanning trees of G obtained from Tx by a single unit transformation.

Consider an edge e in Tx. Deleting e from Tx results in a spanning forest of G with

exactly two trees T1 and T2. Since G is 2-connected, there is at least one edge in

G apart from e linking the vertices of T1 to the vertices of T2. If there is exactly

one such edge then it corresponds to a cycle clique in Aux(G) and if there is more
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than one then they together form a minimal edge cut clique in Aux(G). Hence in

both these cases all these edges incident to x are from the same factor.

Figure 7.4: Deletion of the edge e is corresponding to the minimal edge cut clique
in the Aux(G)

Now consider two incident edges e1 and e2 in Tx. One can consider construct-

ing Tx from G by repeatedly deleting edges that lie on a cycle until the graph is

acyclic. Fix all cycles of the graph containing both e1 and e2 (by observation 1

there is at least one such cycle). Remove an edge from every cycle except the cy-

cles which contain both e1 and e2. now all remaining cycles have both these edges

left, and hence the last edge deleted will destroy a cycle containing both e1 and e2.

Let this deleted edge be e′. Thus there is a cycle clique in Aux(G) corresponding

to trees obtained by selecting all but one edge on this cycle and all other edges

from Tx. This includes the node x and hence all these edges incident to x and

involving unit transformation deleting incident edges in Tx also come from the

same factor.
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Figure 7.5: All edges incident to x are from the same factor

Now extending this idea for successive edges incident to each other on a path

in Tx we have established that all edges incident to x are from the same factor.

From observation 2, Aux(G) is prime under cartesian product.

Thus Aux(G) is prime if G is 2-connected and has no cut-edges.

Observation 3. Aux(T) = K1 for any tree T.

This follows because a tree has exactly one spanning tree. Note that the span-

ning tree auxiliary graph of a tree- the complete graph on one vertex, K1 - is also

the identity for the cartesian product operator. Thus, from the previous two the-

orems, we conclude, that appending any number of blocks which are trees to a

given graph, does not alter the spanning tree auxiliary graph of that graph. Thus

minimal preimages contain no cut-edges.
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7.6 Characterisation of Aux

Here we describe some properties of spanning tree auxiliary graphs and show

how they can be applied to developing ideas for an algorithm to compute the

inverse.

Type I clique: After the addition of the edge, deleting any edge of the cycle

created constitutes a clique in the neighbourhood of the vertex corresponding to

the original tree in the auxiliary graph. Thus corresponding to a cycle of length

k in the original graph any spanning tree consisting of (k− 1) of these edges has

in its neighbourhood a clique of size k associated with this cycle. The number of

such cliques in the neighbourhood is equal to the number of edges in the graph

not part of the spanning tree. This number is clearly equal to m(G)− n(G) + 1.

This is therefore the number of such cliques into which the neighbourhood of each

vertex can be partitioned.

Type I I clique: After the deletion of the edge, adding eny edge bridging the

resulting two subtrees results in a clique. The number of vertices in the neigh-

bourhood of the vertex associated with this spanning tree in the auxiliary graph

is equal to the number of other edges crossing this minimal edge cut. Thus it re-

sults in a clique of size (k− 1) in the neighbourhood of this vertex in the auxiliary

graph. This kind of operation can be performed with any of the (n− 1) edges of

the tree and hence the neighbourhood of a vertex in Aux(G) can be partitioned in

a different way into exactly (n− 1) maximal cliques.

Observation 4. Every clique of size 3 or more in Aux(G) uniquely extends to a maximal

clique. Therefore these cliques can be computed in polynomial time.

7.6.1 Algorithm for computing a basic preimage

Thus, one can perform the operation of partitioning the neighbourhod of each ver-

tex in the auxiliary graph into cliques in two ways and obtain simultaneous linear

equations in the two variables n and m. This results (surprisingly) in two pos-

sible solutions, because the right hand side numbers in these two equations can

be exchanged. Any graph which has a nontrivial spanning tree auxiliary graph
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must be connected since it has spanning trees. We use these along with properties

developed in Section 7.3 to get values of m and n.

The simultaneous equations described above must be consistent across all ver-

tices of a potential Aux(G), in order for the graph to be a spanning tree auxiliary

graph. If it fails for at least one vertex then the graph is not a spanning tree auxil-

iary graph of any graph.

Having obtained values of m(G) and n(G), we now focus on the subgraph of

Aux(G) induced by some arbitary vertex x and its neighbourhood N(x). Call this

subgraph H. H essentially reprents one spanning tree of G namely x and all other

spanning trees obtainable from x by applying a single unit transformation. We do

not have the actual structure of T or any of the other trees represented by vertices

in H. We had earlier computed two partitions of the neighbourhood of each vertex

of Aux(G) into maximal cliques. One of the partitions represents cycle cliques

and the other represents minimal edge-cut cliques. Having obtained the values of

m(G) and n(G), we know which of the two partitions reprents cycle cliques and

which represents minimal edge-cut cliques. Hence, with respect to the spanning

tree of G associated with x, we can use sizes of the maximal cliques in the cycle

clique partition to list the lengths of all fundamental cycles of G. Similarly, we

use the edge-cut clique partition to list the number of edges of G connecting the

vertex sets of the two subtrees obtained by deleting any edge of the spanning tree

associated with x.

Theorem 7.6.1. We have reduced the problem of computing 2-connected G from Aux(G)

to reconstructing a graph from the following information.

• Number of vertices n(G)

• Number of edges m(G)

• The lengths of all fundamental cycles with respect to a specific spanning tree, (say

T).

• The number of edges of G crossing between the vertex sets of the two subtrees ob-

tained by deleting any edge of T.
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• Other results mentioned in Section 7.3.

Given an arbitrary graph we first compute its prime factors under the cartesian

product operation using well known algorithms [4]. The above result applies only

to 2-connected instance of G (and consequently Aux(G) is prime under cartesian

product). For graphs which are not 2-connected the algorithm uses Theorem 7.5.3

to reduce into several subproblems and then apply the above result.

7.6.2 Analysis

We give here a brief informal analysis of running time of the algorithm provided

by us.

• Prime factors of the input graph can be computed in polynomial time [15].

• From Observation 4, it is possible to compute all the maximal cliques in

polynomial time (assuming the graph is the spanning tree auxiliary graph

of some graph). This can be done in O(n4) time because there are O(n3)

triangles and each extends greedily to unique maximal clique.

• If the decomposition of the previous step is consistent across all the vertices

then n(G) and m(G) can be computed in polynomial time.

• The reduction indicated by Theorem 7.6.1 can be done in polynomial time.

We are currently working on constructing graphs from the information that

results after applying the reduction of Theorem 7.6.1.

7.7 Conclusions

We have looked at the important class of spanning tree auxiliary graphs and given

a mathematical characterisation of such graphs. We have also translated the math-

ematical result into efficient algorithmic ideas for recognising graphs of this class.

This idea can often help in computing the inverse graph, but there is scope to

improve the algorithmic idea into a concrete and precise algorithm.
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Further studies of properties of this class of graphs and improved algorithms

for recognition are possible future directions of related research particularly for

an algorithmic version of Theorem 7.6.1.
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CHAPTER 8

Conclusions

We have obtained optimal value of USN for the complement of complete graphs,

complete graphs, complete bipartite graphs and upper bound for paths, cycles,

matching, hypercube, wheel graph etc. Results on path, cycle, matching and

wheel graphs are asymptotically tight for all three problem variants. In the fu-

ture we plan to derive optimal and/or lower bound results for hypercube, harary

graph etc and solve possible variants.

Table 8.1: Summary of results

USN UUSN ILN

Lower Bound dlog2ne blog2nc+ 1 1

Upper Bound (n− 1)+ (n
2) n+ (n

2) (n− 1) n

Kn n− 1 n 1

Kn 1 + dlog2 ne 1.5(1 + dlog2 ne) 2

M2n O(log2 2n) O(log2 2n) O(log2 2n)

Ks,t 2 + dlog2 se+ dlog2 te
1.5(2 + dlog2 se+ dlog2 te)+

|dlog2 se − dlog2 te|
2

Pn O(logn) O(logn) O(logn)

Cn O(logn) O(logn) O(logn)

Wn O(logn) O(logn) O(logn)

Qn 3n + O(logn) 3n + O(logn) n + O(logn)

BTn O(logn) O(logn) O(logn)

Our proposed interactive data visualization technique (Labeled Object Treemap)
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displays multiple hierarchies without any information loss and it can display

larges data sets coherently. Our proposed technique generates labelling of all ob-

jects automatically. The interactive version offers various features using which

it is easy to identify specific types of neighbors of a node just by clicking on it.

Taxonomy is visible using treemap. The proposed interactive version has all the

characteristics (single representation, compactness, clusters identification etc) to

be a good visualization technique for visualizing multiple hierarchies.In future,

one can think of an arrangement of nodes that is more compact so that a larger

number of nodes can be clearly shown (along with the labels) in the same avail-

able space. Perhaps, arranging the nodes in a zigzag pattern is one such solution.

We have shown how our proposed graph based information visualization

technique (Edgeless Graph) can be used for the analysis of a social network and

dynamic changes in the underlying social network are also considered.

We have proved properties of the vertex degrees of total graphs. We have

developed a precise characterisation of the structure of the neighbourhoods of

maximum degree vertices of the total graph of any graph. Combining these re-

sults we have designed an efficient iterative algorithm to compute the inverse

total graph of a candidate total graph, or report that the graph is not a total graph.

We also present a direct construction for the total graphs of complete graphs. One

interesting direction of future research is to see if a given n and m pair admits a

connected unique total graph if any. One can also look at minimum number of

dynamic graph operations (adding/deleting vertices and edges or moving edges

around the graph) to transform a non-total graph into a total graph.

We have looked at the important class of spanning tree auxiliary graphs and

developed structural and mathematical properties of such graphs. We have also

translated the mathematical result into efficient algorithmic ideas for recognising

graphs of this class. This idea can often help in computing the inverse graph,

but there is scope to improve the algorithmic idea into a concrete and precise

algorithm. Further studies of properties of this class of graphs and improved

algorithms for recognition are possible future directions of related research par-

ticularly for an algorithmic version of Theorem 7.6.1.
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Appendix

This is joint work together with Hitarth Kanakia.

Interactive Labeled Object Treemap (Javascript Code)

<html>

<!-- <script src="https://code.highcharts.com/highcharts.js"></script>

<script src="https://code.highcharts.com/modules/treemap.js"></script> -->

<script src="Queue.js"></script>

<script src="lib/jquery/dist/jquery.js"></script>

<script src="lib/bootstrap/dist/js/bootstrap.js"></script>

<link href="lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />

<!-- <script

src="lib/bootstrap-toggle-master/js/bootstrap-toggle.js"></script>

<link href="lib/bootstrap-toggle-master/css/bootstrap-toggle.css" rel =

"styleshet" /> -->

<link rel="stylesheet" href="styles.css">

<body>

<canvas align="center" style="background-image:url('treemap.png'); "

id="container" height="320" width="1080"></canvas>

<div style"width:800px;">

<div style="width 300px; float:left;">

<textarea id="input" rows = "5" cols="25"></textarea>

<div><button onclick = "generate()" class="btn

btn-primary">Generate</button></div>

</div>

<div style="width 300px; float:center;">

<label><input type="checkbox" data-toggle="toggle" id="internal"

onchange="internalChanged(this)">Internal edges </input></label>

<label><input type="checkbox" data-toggle="toggle" id="external"

onchange="externalChanged(this)">External edges </input></label>

<label><input type="checkbox" data-toggle="toggle" id="all"
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onchange="allChanged(this)">All edges </input></label>

<label><input type="checkbox" data-toggle="toggle" id="ids"

onchange="onlyIdsChanged(this)">IDs only</input></label>

</div>

</div>

<script>

function Node(id, type, isDummy){

this.id = id;

this.type = type;

this.isDummy = isDummy;

this.children = [];

this.IsClicked = false;

this.x = 0;

this.y = 0;

this.parent = null;

this.label = new Set();

this.color = "#FF0000";

this.setParentNode = function(node) {

this.parent = node;

}

this.getParentNode = function() {

return this.parent;

}

this.addChild = function(node) {

node.setParentNode(this);

this.children[this.children.length] = node;

}
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this.getChildren = function() {

return this.children;

}

this.removeChildren = function() {

this.children = [];

}

}

var tree = [];

var group = {};

function clear(){

console.log("Clear called");

var c=document.getElementById("container");

var ctx=c.getContext("2d");

// alert('Gonna clear!');

ctx.clearRect(0,0,c.width,c.height);

}

function generate(){

var str=document.getElementById("input").value.split("\n");

clear();

console.log('Input string: '+str)

tree = [];

group = {};

tree[0] = new Node(0, str[0].split(" ")[1], false);

for(var i = 1;i<str.length;i++){

var des = str[i].split(" ");

if(des.length<2)

break;

var newNode = new Node(i,des[1],false);
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tree[i] = newNode;

console.log(des);

console.log(parseInt(des[0]));

tree[parseInt(des[0])].addChild(newNode);

}

var n = tree.length;

var root = tree[0];

var obj = findMaxDegree(root);

console.log('maxDegree: '+obj.maxDegree);

console.log('levels: '+obj.levels);

fillTree(obj.maxDegree, obj.levels, n, root);

giveLabels(root,obj.maxDegree);

printLabels(root);

var q = new Queue();

q.enqueue(root);

while(!q.isEmpty()){

var cur = q.dequeue();

if(!cur.isDummy){

if(group[cur.type]==null)

group[cur.type] = [];

group[cur.type].push(cur);

}

for(var i = 0;i<cur.children.length;i++){

q.enqueue(cur.children[i]);

}

}
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draw({});

}

function draw(config){

clear();

var root = tree[0];

var fromId = config.fromId;

var c=document.getElementById("container");

var ctx=c.getContext("2d");

//Color all nodes red

for(var key in tree){

tree[key].color = "#FF0000";

}

//All black

if(config.all){

for(var key in tree){

tree[key].color = "#000000";

}

}

else{

if(config.fromId != null){

tree[fromId].color = "#000000";

if(config.all){

tree[fromId].parent.color = "#000000";

}

if(config.internal){

if(tree[fromId].parent && tree[fromId].parent.type == tree[fromId].type){

tree[fromId].parent.color = "#000000";

}

}

if(config.external){
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if(tree[fromId].parent && tree[fromId].parent.type != tree[fromId].type){

tree[fromId].parent.color = "#000000";

}

}

for(var i = 0;i<tree[fromId].children.length;i++){

if(config.internal && tree[fromId].children[i].type==tree[fromId].type){

console.log('black!!');

tree[fromId].children[i].color = "#000000";

}

if(config.external && tree[fromId].children[i].type!=tree[fromId].type){

tree[fromId].children[i].color = "#000000";

}

}

}

}

//Draw for B

var x = 65;

var y = 20;

for(var i = 0;group['B'] && i<group['B'].length;i++){

group['B'][i].x = x;

group['B'][i].y = y;

var next = getNextPoint('B', x,y);

x = next.x;

y = next.y;

}

//Draw for D

x = 340;

y = 30;

for(var i = 0;group['D'] && i<group['D'].length;i++){
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group['D'][i].x = x;

group['D'][i].y = y;

var next = getNextPoint('D', x,y);

x = next.x;

y = next.y;

}

//Draw for E

x = 370;

y =205;

for(var i = 0; group['E'] && i<group['E'].length;i++){

group['E'][i].x = x;

group['E'][i].y = y;

var next = getNextPoint('E', x,y);

x = next.x;

y = next.y;

}

//Draw for F

x = 900;

y = 20;

for(var i = 0; group['F'] && i<group['F'].length;i++){

group['F'][i].x = x;

group['F'][i].y = y;

var next = getNextPoint('F', x,y);

x = next.x;

y = next.y;

}

for(var type in group){

for(var i = 0;i<group[type].length;i++){

ctx.fillStyle = group[type][i].color;

ctx.beginPath();
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ctx.arc(group[type][i].x,group[type][i].y,5,0,2*Math.PI);

ctx.fill()

ctx.closePath();

ctx.fillStyle = "#000000";

ctx.textAlign = "center";

ctx.font = "8px Arial";

ctx.fillText(getStringFromSet(group[type][i].label),group[type][i].x,group[type][i].y+15);

}

}

ctx.fillStyle = "#000000";

if(config.all){

for(var k1 in tree){

for(var i = 0;i<tree[k1].children.length;i++){

if(!tree[k1].children[i].isDummy){

ctx.beginPath();

ctx.moveTo(tree[k1].x,tree[k1].y);

ctx.lineTo(tree[k1].children[i].x, tree[k1].children[i].y);

ctx.stroke();

ctx.closePath();

}

}

}

}

else{

for(var key in tree){

if(key!=fromId){

if(tree[key].color==="#000000"){

ctx.beginPath();

ctx.moveTo(tree[fromId].x,tree[fromId].y);

ctx.lineTo(tree[key].x,tree[key].y);
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ctx.stroke()

ctx.closePath();

ctx.fillText(tree[key].id,tree[key].x-5,tree[key].y+25);

}

}

else{

ctx.fillText(tree[key].id,tree[key].x-5,tree[key].y+25);

}

}

}

}

function drawWithOnlyIds(){

clear();

var root = tree[0];

var c=document.getElementById("container");

var ctx=c.getContext("2d");

//Color all nodes red

for(var key in tree){

tree[key].color = "#FF0000";

}

//Draw for B

var x = 40;

var y = 20;

for(var i = 0;group['B'] && i<group['B'].length;i++){

group['B'][i].x = x;

group['B'][i].y = y;

var next = getNextPoint('B', x,y);

x = next.x;
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y = next.y;

}

//Draw for D

x = 340;

y = 30;

for(var i = 0;group['D'] && i<group['D'].length;i++){

group['D'][i].x = x;

group['D'][i].y = y;

var next = getNextPoint('D', x,y);

x = next.x;

y = next.y;

}

//Draw for E

x = 340;

y =190;

for(var i = 0; group['E'] && i<group['E'].length;i++){

group['E'][i].x = x;

group['E'][i].y = y;

var next = getNextPoint('E', x,y);

x = next.x;

y = next.y;

}

//Draw for F

x = 900;

y = 20;

for(var i = 0; group['F'] && i<group['F'].length;i++){

group['F'][i].x = x;

group['F'][i].y = y;

var next = getNextPoint('F', x,y);

x = next.x;
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y = next.y;

}

for(var type in group){

for(var i = 0;i<group[type].length;i++){

ctx.fillStyle = group[type][i].color;

ctx.beginPath();

ctx.arc(group[type][i].x,group[type][i].y,5,0,2*Math.PI);

ctx.fill()

ctx.closePath();

ctx.fillStyle = "#000000";

ctx.textAlign = "center";

ctx.font = "10px Arial";

console.log('setcheck');

console.log(group[type][i].label);

//ctx.fillText(group[type][i].id+"

"+getStringFromSet(group[type][i].label),group[type][i].x,group[type][i].y+15);

//ctx.fillText(group[type][i].id,group[type][i].x,group[type][i].y+15);

ctx.fillText(group[type][i].id,group[type][i].x,group[type][i].y+15);

}

}

}

function findMaxDegree(root){

var maxDegree = -1;

var q = [];

q[0] = new Queue();

q[1] = new Queue();

q[0].enqueue(root);

var p = 0;

var level = 0;

146



while(!q[p].isEmpty()){

var next = (p+1)%2;

level++;

while(!q[p].isEmpty()){

var cur = q[p].dequeue();

maxDegree = Math.max(maxDegree, cur.children.length);

for(var i = 0;i<cur.children.length;i++){

q[next].enqueue(cur.children[i]);

}

}

p = next;

}

return {maxDegree:maxDegree, levels:level};

}

function fillTree(maxDegree, maxLevel, n, root){

var q = [];

q[0] = new Queue();

q[1] = new Queue();

q[0].enqueue(root);

var p = 0;

var nextId = n;

var count = 0;

var max = 1000;

var level = 0;

while(!q[p].isEmpty() && count++<max){

level++;

var next = (p+1)%2;

while(!q[p].isEmpty()){

var cur = q[p].dequeue();

// console.log('id: '+cur.id);

// console.log(cur.children.length);
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for(var i = 0;i<cur.children.length;i++){

q[next].enqueue(cur.children[i]);

}

while(level < maxLevel && cur.children.length < maxDegree && count++<max){

var newNode = new Node(nextId, null, true)

cur.addChild(newNode);

// console.log(cur.id+' '+cur.children.length);

q[next].enqueue(newNode);

nextId++;

}

}

p = next;

}

}

function giveLabels(root,k){

var lminus2 = [];

var lminus1 = [];

var l = [];

var lplus1 = [];

var usn = 1;

lminus2.push(root);

root.label.add(usn);

usn++;

for(var i = 0;i<root.children.length;i++){

root.children[i].label.add(k+2);

root.children[i].label.add(usn);

usn++;

console.log('check');

for (var it = root.children[i].label.values(), val= null;
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val=it.next().value; ) {

console.log(val);

}

lminus1.push(root.children[i]);

}

usn++;

for(var i = 0;i<root.children.length;i++){

for(var j = 0;j<root.children[i].children.length;j++){

var cur = root.children[i].children[j];

l.push(cur);

cur.label.add(usn);

for(var z = 1;z<=k+1;z++){

if(!cur.parent.label.has(z)){

cur.label.add(z);

}

}

usn++;

}

}

while(l.length>0){

for(var i= 0;i<l.length;i++){

for(var j = 0;j<l[i].children.length;j++){

lplus1.push(l[i].children[j]);

}

}

if(lplus1.length==0)

break;
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//Step 1

for(var i = 0;i<lplus1.length;i++){

var ancestorIndex = Math.floor(i/(k*k));

var cur = lplus1[i];

for (var it = lminus1[ancestorIndex].label.values(), val= null;

val=it.next().value; ) {

cur.label.add(val);

}

}

var pool = [];

for(var i = 0;i<k*k;i++){

pool.push(usn+i);

}

usn+=k*k;

//Step 2

for(var i = 0;i<lminus2.length;i++){

for(var j = 0;j<pool.length;j++){

lminus2[i].label.add(pool[j]);

}

}

//Step 3

for(var i = 0;i<lplus1.length;i++){

lplus1[i].label.add(pool[i%(k*k)]);

}

//Step 4

for(var i = 0;i<l.length;i++){

var cindex = i%k;
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var minRejectIndex = cindex*k;

var maxRejectIndex = cindex*k + k - 1;

for(var j = 0;j<pool.length;j++){

if(!(j>=minRejectIndex && j<=maxRejectIndex))

{

l[i].label.add(pool[j]);

}

}

}

//Change the queues

lminus2 = lminus1;

lminus1 = l;

l = lplus1;

lplus1 = [];

}

}

function printLabels(root){

var q = new Queue();

q.enqueue(root);

console.log('queue: ');

for(var i= 0;i<q.getLength();i++){

var temp = q.dequeue();

console.log(temp.id);

q.enqueue(temp);

}

while(!q.isEmpty()){

var cur = q.dequeue();

console.log("id: "+cur.id);

console.log(cur.label);

// console.log(cur.children.length);

151



for(var i = 0;i<cur.children.length;i++){

q.enqueue(cur.children[i]);

}

}

}

var elem = document.getElementById("container")

var elemLeft=elem.offsetLeft;

var elemTop = elem.offsetTop;

elem.addEventListener('click', function(event){

var x = event.pageX

var y = event.pageY

x = Math.floor(mapX(x));

y = Math.floor(mapY(y));

console.log('x: '+x+" , y: "+y);

var internal = document.getElementById('internal');

var external = document.getElementById('external');

var all = document.getElementById('all');

var config = {all: all.checked, internal: internal.checked, external:

external.checked, fromId: null};

var internal = document.getElementById('internal');

var external = document.getElementById('external');

var all = document.getElementById('all');

if(internal.checked || external.checked){

for(var key in tree){

var d = distance(x,y,tree[key].x,tree[key].y);
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console.log('distance: '+d)

if(d<30){

config.fromId = parseInt(key);

console.log('before calling draw');

console.log(config);

draw(config);

break;

}

}

}

})

function distance(x1, y1, x2, y2){

return Math.sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));

}

function internalChanged(){

var internal = document.getElementById('internal');

var external = document.getElementById('external');

var all = document.getElementById('all');

var ids = document.getElementById('ids');

var config = {all: all.checked, internal: internal.checked, external:

external.checked, fromId: null};

if(internal.checked){

all.checked = false;

config.all = false;

ids.checked = false;

}

draw(config);

}

function externalChanged(){
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var internal = document.getElementById('internal');

var external = document.getElementById('external');

var all = document.getElementById('all');

var ids = document.getElementById('ids');

var config = {all: all.checked, internal: internal.checked, external:

external.checked, fromId: null};

if(external.checked){

all.checked = false;

config.all = false;

ids.checked = false;

}

draw(config);

}

function allChanged(){

var internal = document.getElementById('internal');

var external = document.getElementById('external');

var all = document.getElementById('all');

var ids = document.getElementById('ids');

var config = {all: all.checked, internal: internal.checked, external:

external.checked, fromId: null};

if(all.checked){

internal.checked = false;

config.internal.checked = false;

external.checked = false;

config.external = false;

ids.checked = false;

}

draw(config);

}
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function onlyIdsChanged(){

var internal = document.getElementById('internal');

var external = document.getElementById('external');

var all = document.getElementById('all');

var ids = document.getElementById('ids');

var config = {all: all.checked, internal: internal.checked, external:

external.checked, fromId: null};

if(ids.checked){

internal.checked = false;

config.internal.checked = false;

external.checked = false;

config.external = false;

all.checked = false;

config.all = false;

drawWithOnlyIds();

}

else{

draw(config);

}

}

function mapX(x){

var x1 = 49;

var y1 = 40;

var x2 = 425;

var y2 = 340;

var y = y1 + ((y2-y1)/(x2-x1))*(x-x1);

return y;
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}

function mapY(x){

var x1=28;

var y1 = 20;

var x2 = 105;

var y2 = 70;

var y = y1 + ((y2-y1)/(x2-x1))*(x-x1);

return y;

}

function getStringFromSet(set){

var arr = Array.from(set);

arr.sort(function(a,b){

return a-b;

});

var str = "{";

console.log(set);

for (var i = 0;i<arr.length;i++) {

str += arr[i]+" ";

}

str+="}"

return str;

}

function getNextPoint(type, x,y){

var next = {x: 0, y:0};

if(type=='B'){

if(y+50 <= 270){

next.x = x;

next.y = y+50;
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}

else{

next.x = 230;

next.y = 30;

}

}

else if(type=='D'){

if(y+40 <= 120){

next.x = x;

next.y = y+40;

}

else{

next.x = x+140;

next.y = 20;

}

}

else if(type=='E'){

if(y+40 <= 290){

next.x =x;

next.y = y+40;

}

else{

next.x = x+140;

next.y = 175;

}

}

else if(type=='F'){

if(y+50 <= 300){

next.y = y+50;

next.x = x;

}

else {

next.x = 1040;
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next.y = 20;

}

}

return next;

}

</script>

</body>

</html>
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