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Abstract

Representation learning (RL) or feature learning has a huge impact in the field
of signal processing applications. The goal of the RL approaches is to learn the
meaningful representation directly from the data that can be helpful to the pattern
classifier. Specifically, the unsupervised RL has gained a significant interest in
the feature learning in various signal processing areas including the speech and
audio processing. Recently, various RL methods are used to learn the auditory-
like representations from the speech signals or its spectral representations.

In this thesis, we propose a novel auditory representation learning model based
on the Convolutional Restricted Boltzmann Machine (ConvRBM). The auditory-
like subband filters are learned when the model is trained directly on the raw
speech and audio signals with arbitrary lengths. The learned auditory frequency
scale is also nonlinear similar to the standard auditory frequency scales. However,
the ConvRBM frequency scale is adapted to the sound statistics. The primary mo-
tivation for the development of our model is to apply in the Automatic Speech
Recognition (ASR) task. Experiments on the standard ASR databases show that
the ConvRBM filterbank performs better than the Mel filterbank. The stability
analysis of the model is presented using Lipschitz continuity condition. The pro-
posed model is improved by using annealing dropout and Adam optimization.
Noise-robust representation is achieved by combining ConvRBM filterbank with
an energy estimation using the Teager Energy Operator (TEO). As a part of the
research work for the MeitY, Govt. of India sponsored consortium project, the
ConvRBM is used as a front-end for the ASR system in the speech-based access
for the agricultural commodities in the Gujarati language. Inspired by the success
in the ASR task, we applied our model in three audio classification tasks, namely,
Environmental Sound Classification (ESC), synthetic and replay Spoof Speech De-
tection (SSD) in the context of the Automatic Speaker Verification (ASV), and In-
fant Cry Classification (ICC). We further propose the two layer auditory model by
stacking two ConvRBMs. We refer it as an Unsupervised Deep Auditory Model
(UDAM) and it performed well compared to the single layer ConvRBM in the
ASR task.
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CHAPTER 1

Introduction

1.1 Motivation

“Artificial Intelligence (AI) is the new electricity" according to Andrew Ng, a pro-
fessor at Stanford University. Today AI is transforming every sector of indus-
try, academics, and business. From smartphones to supercomputers, the main
medium of operating and communicating with humans is through AI. Specifi-
cally, voice-based access in digital devices, such as smartphones, is equipped with
an AI-enabled personal assistant, e.g., OK Google, Apple Siri, Microsoft Cortana,
Amazon Echo, etc. Along with AI, there are rapid advancements in the Internet of
Things (IoT) where many electronic devices are connected through the Internet.
Since an AI-enabled IoT framework is used in real-life noise scenarios, we need a
knowledge of both signal processing and machine learning to propose a feasible
solution to develop a noise robust voice-based access system in the IoT. Hence,
there is a great demand for speech and audio technology in the near future since
voice is the most important form of human communication and possibly human-
machine interactions.

One of the important aspects of speech and audio processing applications is
to come up with a better representation of the sounds so that variabilities in the
signals are largely reduced. For example, in the speech recognition task, we need
a feature representation that reduces the variability in speakers, dialects, micro-
phones, and provide robustness to the background noise [37]. It is shown in re-
search studies that the representative features obtained using human auditory-
based models are more successful in speech recognition, sound classification and
synthesis [38]. The traditional approaches (as shown in Figure 1.1) to extract the
auditory features are either based on computational models that are based on
perceptual or physiological experiments or mathematical models that are based
on the mathematical representation of underlying transformations in the auditory
system [39].
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Figure 1.1: Traditional approach for speech signal processing.

Figure 1.2: Representation learning for speech signal processing.

Recently, representation learning (RL) has gained a significant interest for fea-
ture learning in various signal processing areas including speech processing [40].
In the speech processing literature, it is also called Automatic Speech Analysis
(ASA) that involves the extraction of meaningful information using computers
from the speech signals [41]. The goal of the RL is to extract meaningful auditory
representations directly from the raw signals as shown in Figure 1.2. As discussed
in [42], features for human speech perception, vision, and other cognition tasks are
learned from experience, simulating the human learning mechanism (to a certain
extent) as we grow. Unsupervised learning is one of the important forms of rep-
resentation learning since many human learning tasks are unsupervised [43]. For
example, we listen to many sounds as we grow and we are usually not told ev-
ery time about the type of sound, speech and their sources (e.g., speaker-specific
aspects, such as gender, age, etc.). Another example is language acquisition by
infants during initial stages of their growth, which is also a type of unsupervised
learning [44].

Motivation for this thesis is the first notable study conducted by Lewicki to
show that the human auditory system (HAS) is adapted to sound statistics in
[12]. The data-driven model based on the information-theoretic criteria is trained
with three sound categories, namely, environmental sounds, animal vocalizations,
and speech signals. The subband filters obtained from these three categories are
shown in Figure 1.3. The experimental results show that the optimal auditory
codes are different according to the statistics of the sounds, such as the wavelet-
like basis for the environmental sounds, a Fourier-like basis for animal vocaliza-
tions and a mixture of the wavelet and Fourier-like basis for the speech signals.
It is also shown that most of the learned subband filters are similar to the physi-
ological auditory filters estimated through the experiments on animals as shown
in Figure 1.4.

The objective of this thesis is to propose a novel auditory representation learn-
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Figure 1.3: Summary of the remarkable study conducted by Lewicki using effi-
cient auditory coding. After [12].

ing model that can be used in various speech and audio processing applications.
In this thesis, we have developed unsupervised auditory filterbank learning using
a Convolutional Restricted Boltzmann Machine (ConvRBM) directly from the raw
speech and audio signals of arbitrary lengths. Our proposed ConvRBM model has
been successfully applied in automatic speech recognition (ASR) [2–4, 10, 11], En-
vironmental Sound Classification (ESC) [5], spoof speech detection (SSD) [6], [45],
and infant cry classification (ICC) [46]. Next, we discuss the key research chal-
lenges in the development of auditory-based models followed by the contribu-
tions in this research area from this thesis.

1.2 Key Research Challenges

The HAS is one of the engineering masterpieces of the human body that is unique
and distinct from other animals. The auditory processing on the incoming sound
is based on various physiological aspects of the human ear. The key research
challenges in developing the human auditory model are as follows:

• The HAS is highly complex containing several layers of nonlinear transfor-
mations and physiological effects, many of which are still not clearly under-
stood. Many auditory models still use linear approximations and a simpli-
fied mathematical formulation to mimic the HAS. The main research chal-
lenge is how to best approximate the functioning of the HAS. To answer this
question, many researchers from different fields, such as auditory neuro-
science, speech processing, applied mathematics, psychoacoustics, machine
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Figure 1.4: (a) Experimental setup for the physiological auditory filter estima-
tion, and (b) comparison with the data-driven auditory filters (shown in the
boxes). After [13], [12].

learning, etc. are working and proposed various models/methods to repre-
sent the HAS. Recently, the research in this direction is growing significantly
due to availability of data, techniques and demand for the development of
an area called the machine perception or machine hearing [47].

• There is a significant importance of the temporal structures in sounds. Most
of the auditory models in speech and audio applications have used win-
dowing for the quasi-stationary assumptions. The windowing of the speech
and audio in the auditory feature representation introduces artifacts, and
also we are ignoring the nonstationary nature of the sounds [48]. One of the
ways to get high temporal resolution is to use subband processing using the
auditory filterbanks. However, due to high dimensionality of the subband
responses windowing is performed at a later stage. Hence, how to preserve
the temporal structures in the sounds is another open research issue.

• The standard auditory representations use a fixed auditory frequency scale
and filter shapes for a variety of applications. However, the auditory system
is continuously adapting to the natural sound statistics [12]. Hence, machine
learning methods have emerged to learn the subband filters and STRFs in
the auditory processing. However, still there are linear time-invariant (LTI)
system assumptions (e.g., convolution model of the filterbank) and hence,
many complex adaptations (e.g., automatic gain control (AGC) and synaptic
plasticity) are ignored.

• It is observed that the type of auditory representations used are selective for
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the particular applications. For example, the speech processing applications
use the Mel filterbank while audio classification generally uses gammatone
and wavelet filterbanks. In many audio processing applications, the STFT
is also used. Hence, there is a need of a generalized auditory representation
that is common across the tasks.

• Understanding the cortical representation of sounds is currently an active
research area in auditory neuroscience. Due to highly complex nature of
the auditory cortex, many computational and machine learning models are
still at an elementary-level. Moreover, the existing models produce the cor-
tical representation that is very high-dimensional (e.g., 4-D responses in
the STRF-based models [49]). Hence, understanding cortical processing of
sounds and how to represent it in a concise form is a further research issue.

1.3 Contributions from the Thesis

The main contribution of the thesis is to propose a novel model of the auditory
representation learning that tries to address few of the research challenges men-
tioned above. The model is based on ConvRBM, an unsupervised probabilistic
graphical model (PGM). Following are the key contributions in this thesis using
our proposed ConvRBM model:

1.3.1 Proposed Model for Auditory Representation Learning

Compared to the earlier work of using ConvRBM applied to model the spectro-
grams with sigmoid units [50], we proposed to model the raw speech signals of
an arbitrary lengths and thus, avoiding the need of windowing. We also propose
to use noisy rectified linear units (NReLU) for inference in ConvRBM. The math-
ematical derivations for the ConvRBM architecture, and an algorithm to train the
model are developed. We further improved our proposed ConvRBM using an an-
nealing dropout and the Adam optimization technique in ConvRBM training. For
noise-robust ASR task, a novel auditory-based feature representation is proposed
using ConvRBM and the energy estimation using the Teager Energy Operator
(TEO). A unsupervised deep auditory model (UDAM) is proposed by stacking
the two ConvRBMs using a greedy layer-wise training. The first ConvRBM learns
auditory filterbank from the raw speech and audio signals. The second ConvRBM
learns the temporal modulation information. Hence, the proposed UDAM can be
seen as a simplified model of the deep auditory processing in humans.
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1.3.2 Analysis of the Model and Representation

The subband filters, frequency scale, and the hidden unit representations of the
ConvRBM are analyzed in this thesis. The analysis of the learned frequency scales
of ConvRBM are compared with the standard auditory frequency scales. The
shapes of the subband filters are analyzed and compared with the physiologi-
cal auditory filters estimated from the human auditory nerve fibers (ANF) and
standard auditory filters, such as a Gammatone filterbank. The comparative anal-
ysis of the subband filters and the frequency scales obtained using various sound
categories are also provided. The cross-domain experiments are performed on
the ASR task to justify that ConvRBM can learn general representation across var-
ious databases of the speech signals. The mathematical justification of improved
performance in the noise-robust ASR task is given using the Lipschitz continuity
conditions derived for the ConvRBM. The modulation information extracted by
the temporal receptive fields (TRF) in the UDAM is also analyzed.

1.3.3 Applications

The first motivation to develop the ConvRBM is to use it as a front-end in the au-
tomatic speech recognition (ASR). The experimental results on the standard ASR
datasets shows that our proposed ConvRBM-based features perform better than
the Mel filterbank. As a part of the Ministry of Electronics and Information Tech-
nology (MeitY), Govt. of India sponsored consortium project at DA-IICT, Con-
vRBM is also applied in the development of a speech-based access system for the
agricultural commodities in the Gujarati language. Later, the ConvRBM is applied
in a variety of speech and audio processing applications, namely, Environmental
Sound Classification (ESC), Spoof Speech Detection (SSD), and Infant Cry Clas-
sification (ICC). In all these applications, our proposed model gave consistently
better performance compared to the respective baselines. The auditory frequency
scales and subband filters are adapted automatically throughout the learning of
ConvRBM on a particular database.

The overall contributions of this thesis are summarized in Figure 1.5.

1.4 Organization of the Thesis

The organization of the chapters in the thesis is shown in Figure 1.6.
The required background studies and literature is discussed in Chapter 2.

We discussed the fundamentals of human auditory processing and probabilistic
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Figure 1.5: Pictorial representation of proposed model applied in different appli-
cations along with the subband filters learned for particular sound categories.

graphical models. Since the major application is the ASR task, we briefly de-
scribed the background of the ASR task. The literature survey of the auditory
representation learning is also discussed in this chapter.

The detailed description of the architecture of our proposed ConvRBM model,
the learning algorithm, and the feature extraction technique are presented in Chap-
ter 3. The analysis of filterbank and stability of a convolution operation and the
rectified non-linearity are also discussed. The experiments on the ASR task using
the standard datasets are presented to evaluate the proposed model.

Chapter 4 discusses the approaches to improve the proposed model using ad-
vanced optimization and regularization techniques. Specifically, the noise-robust
auditory representations are obtained using the Teager Energy Operator and Con-
vRBM feature representation. The improved model is evaluated on the noisy ASR
task.

As a special case study in the ASR, the speech-based access system for the
agricultural commodities in the Gujarati language is presented in Chapter 5. The
data collection and transcription for the ASR in the Gujarati language presented.
The experimental results with the proposed feature representation is discussed.

Three audio classification tasks are presented in Chapter 6. The ConvRBM
is applied to the diverse complex sounds other than speech in the environmen-
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Chapter 1
Introduction

Chapter 2
Background and Literature Survey

Chapter 3
Auditory Filterbank Learning 

and Application in ASR

Chapter 7
Unsupervised Deep Auditory Model (UDAM)

Chapter 5
Application to Agricultural 

ASR in Gujarati

Chapter 6
Application to ESC, SSD, 

and ICC

Chapter 4
Improved Auditory Filterbank Learning

Chapter 8
Summary and Conclusions

Figure 1.6: Organization of the chapters in the thesis.

tal sound classification. To improve the security of the voice biometrics, a spoof
speech detection task is also discussed. Finally, a socially relevant problem of in-
fant cry classification is discussed where we show that ConvRBM can be trained
even on the small amount of database.

Chapter 7 discusses the proposed deep model UDAM and its application to
ASR task. The overall summary of the thesis and future research directions are
presented in Chapter 8.

1.5 Chapter Summary

In this Chapter, an introduction to the problem of auditory representation learn-
ing in this thesis is presented. The motivation for our research work in this thesis
is discussed that is based on significance of data-driven techniques for auditory
representations. The major contributions in the thesis include a novel model of
auditory representation learning, analysis of the filterbank, and applications to
ASR, ESC, SSD, and ICC. The organization of the chapters in the thesis is also pre-
sented. In the next Chapter, we discuss the background studies and the literature
corresponding to the auditory representation learning.

8



CHAPTER 2

Background and Literature Survey

2.1 Introduction

To understand our proposed approach of the auditory representation learning,
the required background topics are presented in this Chapter. Since our proposed
model is probabilistic in nature, the fundamentals of the probabilistic graphical
models (PGM) are discussed in Section 2.2. In Section 2.3, we will discuss how
the Boltzmann machines are formulated from the Hopfield networks followed by
its restricted version called as restricted Boltzmann machine (RBM) in Section 2.4.
Introducing a convolution as a strong prior in RBM, the Convolutional RBM is
presented in Section 2.5. The Section 2.6 describes various stages of the human
auditory processing. The fundamentals of deep learning is presented in Section
2.7. Since our early motivation for the auditory representation learning was the
ASR, the fundamentals of the ASR is presented in Section 2.8. Finally, the litera-
ture on the auditory modeling is presented in Section 2.9.

2.2 Probabilistic Graphical Models (PGM)

PGM combine the graph theory and probability theory in a efficacious approach
for the statistical modeling. PGM has several advantages, such as [14]:

• Using the graph theory, PGMs provide a simple way to visualize the struc-
ture of a probabilistic model and its variables. Visualization property also
helps to make any changes in the design and create new models.

• Probabilistic properties of the model, such as conditional independence, and
dependence can directly be observed from the structure of the graph.

• Graphical manipulations are helpful to understand the complex computa-
tions required to perform inference and learning in the model.
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Figure 2.1: Examples of graphical models: (a) directed, and (b) undirected.

A graph consists of the nodes (also called as vertices) connected by the edges
(called as links or arcs) [14]. In PGM, each node represents a random variable (or
sometimes a group of random variables), and edges represent probabilistic rela-
tionships between these variables. The graph describes the approach in which
the joint distribution over all of the random variables can be decomposed into a
product of factors each depending only on a subset of the variables. There are two
types of PGMs depending on the directionality of the connections. The first one is
directed graphical models (DGM) where the edges in a graph have a particular di-
rection indicated by the arrows between the nodes. They are also called Bayesian
networks [14]. The second category is undirected graphical models (UGM), where
there are no arrows between nodes. They are also called as Markov Random Fields
(MRF) [14]. Examples of graphical models are shown in Figure 2.1. The main ad-
vantages of UGM over DGM are [51]: (1) they are symmetric and therefore more
“natural” for certain domains, such as spatial or relational data, and (2) discrim-
inative UGM (known as conditional random fields, or CRFs), which define con-
ditional densities of random variables work better than the discriminative DGM.
The main disadvantages of the UGM compared to the DGM are [51]: (1) the pa-
rameters are less interpretable and less modular, (2) estimation of parameters is
computationally more expensive and hence, it is generally based on statistical
sampling techniques. The Markov Random Fields or Markov networks or UGM
specify both conditional independence and factorization properties.

2.2.1 Conditional Independence (CI)

The CI property of random variables is defined as [14]:
Definition: Let A, B, and C be discrete random variables. We say that A and C
are conditionally independent given B, written as A ⊥⊥ C|B, if

P(A = a, C = c|B = b) = P(A = a|B = b)P(C = c|B = b), ∀a, b, c. (2.1)

The simple example of illustrating the CI is shown in Figure 2.2, where A ⊥⊥ C|B.
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Figure 2.2: An example of a simple graph to illustrate the CI property.

The intuitive meaning of the CI is that once you know B, C provides no extra
information about A. One can also directly observe or encode CI between a pair
of random variables given the rest of the variables in the graph by not connecting
with the edge between variables, and hence,

No edge between A and C ⇔ A ⊥⊥ C|rest, (2.2)

where the rest refers to all other variables in the graph besides A and C. This type
of graph is called a pairwise Markov graph or having the Global Markov property.

2.2.2 Factorization Property

If the two nodes xi and xj are conditionally independent then their joint probabil-
ity distribution factorizes as follows [14]:

p(xi, xj|x\{i,j}) = p(xi|x\{i,j})p(xj|x\{i,j}), (2.3)

where x\{i,j} denotes the set x of all the variables in the graph with xi and xj re-
moved. The factorization property of an MRF involves expressing the joint distri-
bution as a product of functions defined over sets of variables that are local to the
graph [14]. A clique is defined as a subset of the nodes in a graph such that there
exists a link between all pairs of nodes in the subset [14]. The set of nodes in a
clique is fully connected. A clique is called maximal clique if no node can be added
such that the resulting set is still a clique [14], [52]. The example for explaining this
concept is shown in Figure 2.3. This graph has five cliques one of which is shown
by a dot-dash line, and maximal clique is shown by a dashed line in Figure 2.3.

Figure 2.3: An example of a four-node undirected graph showing a clique (dot-
dash lines) and a maximum clique (dashed lines). After [14].

The factors in decomposition of the joint distribution can be defined as the
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functions of variables in the cliques. Without the loss of generality, we can also
consider these factors as the maximal cliques since other cliques are subsets of it.
Let us denote a clique by C and the set of variables in that clique by xC . The joint
distribution is now written as a product of non-negative potential functions (such
that p(x) ≥ 0) ψC(xC) over the maximal cliques of the graph [14]:

p(x) =
1
Z ∏
C

ψC(xC), (2.4)

where Z is a normalization constant also called the partition function [14]. It en-
sures the overall distribution sums to 1, and is given by:

Z = ∑
x

∏
C

ψC(xC). (2.5)

This framework is also applicable to a graph with continuous random variables,
where instead of summation we use integration. The normalization constant is
one of the major limitations of the UGM. If a model has M discrete nodes each
having K states, then the normalization constant is obtained by summing KM

states, and hence is exponential in the size of the model [14]. The CI of random
variables and the factorization properties of the joint probability distribution are
closely related. The connection between them is given by the Hammersley-Clifford
Theorem [14], [52]. The theorem states that a strictly positive distribution p satisfies
the Markov property w.r.t. an undirected graph if and only if p factorizes over a
graph [52]. Since we are restricting the potential functions to be strictly positive,
it is convenient to express them as exponential functions so that [14]

ψC(xC) = e−E(xC ), (2.6)

where E(xC) is called an energy function. The high probability states correspond
to low energy configuration and vice-versa. The exponential representation of
the energy function is called the Boltzmann distribution or the Gibbs distribution
[14], [52]. In the next section, we will discuss how the model that utilizes these
concepts will emerge known as the Boltzmann Machine (BM). There is a deep
connection between UGMs and mathematical models of statistical physics. Such
models are also called energy-based models (EBM), and are generally used in
statistical physics, biochemistry, as well as some branches of machine learning to
learn representation from the data (in the form of probability distribution) [53].
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2.3 From Hopfield Net to Boltzmann Machine (BM)

The first of EBM was the Hopfield network, which is a feedback (recurrent) neural
network [25], [54]. The Hopfield network consists of N neurons, where each unit
is connected to all other units except itself [54]. The connections between the units
are symmetric and bidirectional with weights wij = wji for connection between
unit i and j. There are no self-connections and hence, wii = 0, ∀i. The biases wi0

may be included (this can be viewed as the weights from neuron ‘0’ whose activ-
ity x0 is permanently set to 1). The Hopfield network’s activity rule is governed
by a threshold activation function [15], [54]. Due to the feedback connections in
the Hopfield network, the updates may be synchronous or asynchronous [15].
Definition: Let W denote the weight matrix of a Hopfield network with N units.
Let b be the threshold of an N-dimensional row vector of units. The energy func-
tion E(x) of a Hopfield network is given as follows [15]:

E(x) = −1
2

xWxT + bxT. (2.7)

The energy can also be written in variables form as follows [15]:

E(x) = −1
2

N

∑
i=1

N

∑
j=1

wijxixj +
N

∑
i=1

bixi. (2.8)

The factor 1/2 is present for the mathematical convenience since the identical
terms wijxixj and wjixjxi are present in the double sum. It is always guaranteed
to find local minima in the energy surface with the Hopfield network [15].
Proposition: The energy of a Hopfield network can only decrease or stay the
same. If an update causes a unit to change sign, then the energy will decrease,
otherwise it will stay the same.

A simple example of a Hopfield network is shown in Figure 2.4 as a flip-flop,
a network with two units and a zero threshold. It has only two stable states (1,-1)
and (-1,1). In any other state, one of the units forces the other unit to change its
state to stabilize the network. The energy function of the flip-flop with weights

Figure 2.4: A flip-flop as a Hopfield network. After [15].

w12 = w21 = −1 and two units with b = 0 is given by:

E(x1, x2) = x1x2, (2.9)
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where x1 and x2 denote the states of first and second units, respectively. From
the four discrete states (1,1), (1,-1),(-1,1), and (-1,-1), E(x1, x2) has local minima at
(1,-1) and (-1,1). If we choose, x1, x2 = [−1, 1] ∈ R, the energy function can be
visualized in Figure 2.5. One can see the two local minima at (1,-1) and (-1,1). The

Figure 2.5: The energy function of a flip-flop. After [15].

weights of the Hopfield network are learned using the Hebb rule [15], [54]:

∂E(x)
∂wi,j

= xixj. (2.10)

The major disadvantage of the Hopfield network is that with the increasing com-
plexity of the problem, the number of local minima increases. Hence, the network
is not able to stabilize in a correct state by always falling into local minima [54],
[25]. One of the possible strategies to avoid many local minimas of the energy
function consists in introducing the noise into the network training [54]. The best
known model incorporating these concepts is the Boltzmann Machine [55].
Definition: A Boltzmann machine is a Hopfield network composed of N stochas-
tic units with states, x1, x2..., xN. The state of a unit i is updated asynchronously
according to the rule [54]:

xi =

1 with probability pi,

0 with probability 1− pi,
(2.11)

where the probability pi is given as [54]:

pi =
1

1 + e−(∑
N
j=1 wijxj−bi)/T

, (2.12)

and T is a positive temperature constant. Here, wij denotes the weights of the
network and bi are biases. The temperature T is not actually a physical entity,
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and hence also called as a pseudo temperature due to an analogy of the Boltz-
mann machine with the statistical mechanics. The energy function of the Boltz-
mann machine is similar to the Hopfield network given in eq. (2.8). The dif-
ference between a Boltzmann machine and a Hopfield network is the stochastic
activation of the units. Hence, the Boltzmann machine and related models are
also called the stochastic neural networks (SNN). A simple example of a Boltz-
mann machine is given by a flip-flop network with wij = −1, and b = −0.5
as shown in Figure 2.6. The network states are binary with the energy values:

Figure 2.6: A flip-flop network as a Boltzmann machine. After [15].

E00 = 0, E01 = −0.5, E10 = −0.5, E11 = 0 [15]. In order to analyze the dynamics of
a Boltzmann machine, we need to construct its matrix of transition probabilities.
Definition: The probability of a transition from the state i to state j in a single
step at the temperature T in a Boltzmann machine with N units is given by a state
transition matrix, PT = {pij} of size 2N × 2N.
A matrix with 0 < pij ≤ 1 and ∑N

j=1 pij = 1 (rows sums to 1) is called a stochastic
matrix. Therefore, Boltzmann machines are examples of a first-order Markov pro-
cess, as the transition probabilities of the future states depend only on the current
state, not on the history of the system [15], [54]. The stochastic states of a Boltz-
mann machine thus construct a Markov chain. A fundamental result of the Markov
chains theory states that a stable probability distribution function always exists,
if all of the states can be reached from any other state in one or more steps, and
with non-zero probability [15]. In a Boltzmann machine with T > 0, such a sta-
ble probability distribution function exists representing the thermal equilibrium
of the network dynamics. We can now define transition probabilities in terms of
the energies associated with each state.

Consider a system in thermal equilibrium with m different states and asso-
ciated energies, E1, E2, ..., Em. The probability pij of a transition from a state of
energy Ei to another state of energy Ej is given by [15]:

pij =
1

1 + e(Ej−Ei)/T
. (2.13)

The probability distribution function of a physical system, governed by the
energy transition, and reaching a stable state at thermal equilibrium, is known as
the Boltzmann distribution [54].
Definition: The probability pi of a system with energy Ei in state i during thermal
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equilibrium is given by a Boltzmann distribution:

pi =
e−Ei/T

Z
, (2.14)

where Z = ∑m
i=1 e−Ei/T is a normalizing constant (also called as the partition func-

tion) so that distribution pi sums to one. The Boltzmann machine is governed by
eq. (2.13). If a transition from state α to β occurs, a unit k must have changed its
state from xk to x

′
k. The transition probability pαβ is given by [15]:

pαβ =
1

1 + e−(∑
N
i=1 wkixi−bk)/T

, (2.15)

=
1

1 + e−(Eβ−Eα)/T
, (2.16)

where the difference between two energy functions is given by [15]:

Eβ − Eα = −
N

∑
i=1

wkixi + bk. (2.17)

Hence, eq. (2.13) and eq. (2.16) are equivalent. To model more complex dis-
tributions, hidden units (also known as the latent variables) are also added to the
Boltzmann machine [55]. The example of the Boltzmann machine with hidden
units is shown in Figure 2.7. The variables where input is connected are called
the visible units (denoted as x) and the variables where pattern representation
is learned are called the hidden units (denoted as h). The learning rule of the
Boltzmann machine can be derived from the maximum likelihood principle [55].
The major disadvantage of the Boltzmann machine is that due to large number
of connections, the inference is intractable. However, restricting the connection to
only between visible and hidden units leads to an interesting probabilistic model
called a Restricted Boltzmann Machine (RBM).

x1 x2 x3 x4

h1 h2 h3

Figure 2.7: An example of Boltzmann machine with the hidden units.
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2.4 Restricted Boltzmann Machine (RBM)

An RBM with the binary visible and hidden units is the first original variant of
the Boltzmann machine family [56]. It was extended to model real variables in
the visible units known as the Gaussian-Bernoulli RBM (GBRBM) [57]. Here, we
describe an RBM with the real-valued visible units, x ∈ R and the binary hidden
units, h ∈ {0, 1}. The energy function of the GBRBM is given as [57]:

E(x, h) =
1

2σ2
x

N

∑
i=1

x2
i −

N

∑
i=1

M

∑
j=1

xiwijhj −
N

∑
i=1

cixi −
M

∑
j=1

bjhj, (2.18)

where bi and cj are hidden and visible biases, respectively and σx is a variance
of the visible units. An example of RBM with three hidden units and four vis-
ible units is shown in Figure 2.8. It is an MRF with a bipartite graph with the
visible and hidden units forming two layers of the vertices in the graph (and no
connection between the units of the same layer) [40].

x1 x2 x3 x4

h1 h2 h3

Figure 2.8: An example of RBM with hidden and visible units.

The joint probability distribution of the GBRBM is given as:

p(x, h) =
1
Z

e−E(x,h), (2.19)

where Z is the partition function, Z =
∫ ∞
−∞

∫ ∞
−∞ e−E(x,h)dxdh. Here, compared

to a Boltzmann machine, the temperature parameter is set to 1. Since there are
no connections between hidden-hidden and visible-visible units, hidden units are
conditionally independent given the state of the visible units. Hence, the condi-
tional distribution p(h|x) and p(x|h) factorize nicely [52]. The probability of the
hidden units given the visible units is calculated as follows:

p(h|x) = p(x, h)
p(x)

, (2.20)

=
M

∏
j=1

p(hj|x). (2.21)
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The probability that a hidden unit is ON (i.e., binary state 1) is given by

p(hj = 1|x) = sigmoid(
M

∑
i=1

xiwij + bj), (2.22)

where the sigmoid function is given as sigmoid(x) = 1
1+e−x . The probability of

the visible units given the hidden units is calculated as follows:

p(x|h) = p(x, h)
p(h)

, (2.23)

=
N

∏
i=1

p(xi|h), (2.24)

=
N

∏
i=1
N (

M

∑
j=1

wijhj + ci, 1), (2.25)

where N (∑M
j=1 wijhj + ci, 1) is a Gaussian distribution with mean ∑M

j=1 wijhj + ci

and a unit variance. The parameters of the RBM are learned using a contrastive di-
vergence (CD) technique [24]. More detailed discussion on the RBM is presented
in [52]. The CD learning technique is presented in detail in Chapter 3.

2.5 From RBM to Convolutional RBM

The RBMs are very successful to learn the feature representations in various sig-
nal processing applications including the speech processing [58]. However, they
do not scale well as the dimensionality of the input increases. Another important
drawback is they do not learn invariant representation, since it requires applying
the transformations locally. The translation invariance (and to other groups to
certain extent) is achieved by Convolutional Neural Networks (CNN), a state-of-
the-art architecture in computer vision [43]. Lee et al. proposed a Convolutional
Deep Belief Network by a stack of Convolutional RBMs incorporating ideas from
the CNN and RBM [59]. First, we will discuss the difference between fully con-
nected (dense) and having a convolution connection in a network.

2.5.1 Understanding Convolutional Connections

Let us take an example of a dense network of the input, x = [x1, x2, x3] and out-
put, y = [y1, y2, y3, y4] as shown in Figure 2.9 (for simplicity, we ignore the bias
terms). If Wij denotes the weights ( for i = {1, 2, 3, 4}, and j = {1, 2, 3}), the out-
put y1, y2, y3, y4 is given by:
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y1 = sigmoid(W11x1 + W12x2 + W13x3), (2.26)

y2 = sigmoid(W21x1 + W22x2 + W23x3), (2.27)

y3 = sigmoid(W31x1 + W32x2 + W33x3), (2.28)

y4 = sigmoid(W41x1 + W42x2 + W43x3). (2.29)

It can also be written in a matrix form as follows:

y = sigmoid(xTW), (2.30)

where the matrix W is written as:

W =


W11 W12 W13

W21 W22 W23

W31 W32 W33

W41 W42 W43

 . (2.31)

x1 x2 x3

y1 y2 y3 y4

Figure 2.9: An example of a dense neural network.

Now consider a network shown in Figure 2.10. It can be seen that each output
node is only connected to two input nodes and weights W11 and W12 are shared
between the output nodes. One can also think of it as connecting each node locally
to the input. The output equations (before nonlinearity) are written as:

y1 = W11x1 + W12x2 + 0 · x3, (2.32)

y2 = 0 · x1 + W11x2 + W12x3. (2.33)

Writing it in matrix form as y = sigmoid(xTW) (similar to a dense network),

W =

[
W11 W12 0

0 W11 W12

]
. (2.34)

This is a convolution matrix with a band diagonal structure (also called as Toeplitz
matrix). It is important to note that the weights must be flipped before processing
in the network according to the definition of a convolution. It is a valid length con-
volution operation between the input and weights. For N-dimensional input and
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l-dimensional weight vector, the length of output sequence is N − l + 1. Hence,
there are only two outputs (3-2+1=2) for given a example under consideration.

The actual definition of the discrete linear convolution (with finite impulse re-

x1 x2 x3

y1 y2

W11 W12 W11 W12

Figure 2.10: An example of simple 1-D CNN with valid length convolution.

sponse) is given as:

y[n] =
N−1

∑
k=0

x[n− k]w[k], for n = 0, .., M− 1. (2.35)

The length of the output sequence y[n] is N + M− 1 and hence, the convolutional
operation increases the output length. To incorporate the full length convolution
in the convolutional network, zero padding is applied to the input as shown in
Figure 2.11. In this example, the weight matrix can be written as:

W =


W11 W12 0 0 0

0 W11 W12 0 0

0 0 W11 W12 0

0 0 0 W11 W12

 . (2.36)

0 x2 x3 x4 0

y1 y2 y3 y4

W11 W12 W11 W12 W11 W12 W11 W12

Figure 2.11: An example of simple 1-D CNN with full length convolution.

There are many notable differences between a dense and convolutional net-
work. The first one is the local connections to the input layer that help to learn
local structures in a signal. The second is a weight sharing that leads to reduced
parameters compared to the dense network (as seen from matrix in eq. (2.34)
with few zero entries). If we have K such groups of the hidden units and in each
group neurons share weights, then any variable-sized input can be applied to the
convolutional network.
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2.5.2 Convolutional RBM

The convolutional RBM (denoted as ConvRBM or CRBM) was first proposed by
Lee et al. in [59]. The ConvRBM has two layers, namely, the visible and hidden
layers similar to the RBM. We describe ConvRBM with 1-D input signal x ∈ R1×Nx

in the visible layer and K number of groups in the hidden layer. The weights are
denoted as W ∈ RK×m, where m is the convolution window length. The weights
in the kth group are denoted as Wk = wk

r , r = 1, 2..., m. The length of the hidden
layer is determined as Nh = Nx − m + 1 (due to valid length convolution), and
can change according to input length Nx. Hence, the ConvRBM has a flexibility of
working with variable-sized input signals. Let us denote the visible bias as c ∈ R

(since input is 1-D, visible bias is just a scalar) and hidden bias as b ∈ R1×K. The
energy function of ConvRBM is given by [50]:

E(x, h) =
1

2σ2
x

Nx

∑
i=1

x2
i −

1
σx

K

∑
k=1

l

∑
j=1

m

∑
r=1

(
hk

j wk
r xj+r−1

)
−

K

∑
k=1

bk

Nh

∑
j=1

hk
j −

1
σ2

x
c

Nx

∑
i=1

xi,

(2.37)

where σx is a standard deviation of the visible units. Generally, we normalize the
input by performing a zero-mean and a unit standard deviation so that σx = 1 as
suggested by Hinton in [60]. The equation for the joint probability distribution is
same as eq. (2.19) of RBM. The model of ConvRBM proposed by Lee at el. in [59]
also include probabilistic max-pooling after a convolution operation. Similar to
CNN, probabilistic max-pooling reduces the ConvRBM responses by a constant
factor. It helps to learn invariant representation and reduce computational cost
for higher layers when used in belief network framework [59]. Probabilistic max-
pooling is possible only when hidden units are binary. If hidden units are real-
valued, it is difficult to introduce pooling while learning the ConvRBM. In that
case, one can use the pooling on feature representation as used in our proposed
work discussed in Chapter 3. In the next section, we will discuss the physiology
of hearing from ear to the auditory cortex.

2.6 Auditory Processing

The human auditory system (HAS) is one of the engineering masterpieces of the
human body, which is unique and distinct from other animals. In this Section,
we review the HAS. Most of the discussion is motivated from the recent excellent
book on auditory neuroscience [61].
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Figure 2.12: A cross-section inside the human ear to show the structures of the
outer, middle, and the inner ear. Adapted from [16].

2.6.1 Early Auditory Processing of Sounds

The auditory processing on the incoming sound is based on various physiological
aspects of the human ear. Such processing by the ear is also called as an early
auditory processing [49], [62]. The anatomy of the human ear is shown in Figure
2.12. The hearing mechanism begins when the sound waves enter the ear canal
and push against the eardrum. The eardrum separates the external (or outer)
ear from the middle ear. The middle ear consists of three bones, known as the
malleus, incus, and stapes [61]. The role of the middle ear is to transmit the tiny
sound vibrations to the cochlea, where as the inner ear structure is responsible
for sound encoding. The middle ear acts as a bridge between air-filled spaces of
the outer and middle ear, and fluid-filled spaces of the cochlea. The cochlea is a
coiled tube, a bone-like structure as shown in Figure 2.12 and is filled with the
physiological fluids, specifically slightly salted water. The air propagated sound
waves are too weak to impart similar size vibrations onto the fluid in the cochlea.
To achieve an efficient transmission of sound from the air filled outer and middle
ear to the cochlea, it is therefore necessary to concentrate the pressure of a sound
wave onto a small spot, which is precisely the purpose of the middle ear [61].

There are two openings in the cochlea as shown in Figure 2.13 (b). The one
is the oval window and another is the round window. Every time the stapes (a
bone from the middle ear) pushes against the oval window, it increases the pres-
sure in the fluid-filled spaces of the cochlea. The motion of the fluid column in
the cochlea causes motion of the round window. A structure that subdivides the
fluid-filled spaces in the cochlea is called the basilar membrane (BM), which runs
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along the entire length of the cochlea shown in Figure 2.13 (c) [61]. The BM has
interesting mechanical properties. It is narrow and stiff at the basal end of the
cochlea (i.e., near the oval and round window), however, wider and floppy at the
other end of the cochlea (i.e., apex). The cochlea has two sources of mechanical

Figure 2.13: (a) Cross-section of human ear, (b) cochlea, (c) cross-section of
cochlea, and (d) basilar membrane. Adapted from [17].

resistance, one provided by the stiffness of the BM, and the other by inertia of
the cochlear fluids [61]. Both resistances are graded along the cochlea. However,
they run in the opposite directions. The inertial gradient increases as we move
away from the oval window, but the stiffness gradient decreases and vice-versa.
Since the inertial resistances are frequency-dependent, the path of the overall low-
est resistance depends on the frequency [61]. It is long for low frequencies that
are less affected by the inertia, and shorter for higher frequencies. Thus, if the
stapes vibrates at low frequencies (order of few hundred Hz), it cause vibrations
in the BM mostly at the apex. However, as we increase the frequency,the stapes
causes vibrations towards the base end of the BM. Hence, the cochlea can act as
a frequency analyzer. The cochlear frequency tuning characteristics are shown in
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Figure 2.14: The traveling waves and frequency tuning in the cochlea. Adapted
from [17].

Figure 2.14. Mathematically, it decomposes any complex sound into different fre-
quency bands (also called the subbands). Each point of the BM has its own ‘best
frequency’, a frequency that will make this point on the BM vibrate more than any
other. Each small part of the BM, together with the fluid columns, forms a small
mechanical filter element, each with its own resonance frequency (or center fre-
quency). These resonance frequencies are determined by the membrane stiffness
and fluid columns. One can compare the standard method of frequency analy-
sis, the Fourier transform with the kind of transformation applied by the cochlea.
However, unlike the frequency components of the Fourier transform, the cochlear
filters are not placed at linear frequency intervals. Instead, their spacing is non-
linear, approximately logarithmic.

The mechanical filtering provided by the cochlea is neither linear, nor time-
invariant. Still, a set of linear filters can provide a useful first-order approximation
of the mechanical response of the BM. A set of auditory motivated filters is known
as the gammatone filterbank as shown in Figure 2.15. The high frequency impulse
responses are much faster than the low frequency ones, in the sense that they op-
erate on a much smaller time window. The length of the temporal analysis win-
dow that is required to achieve a frequency resolution of about 12 % of the center
frequency can be achieved with proportionally shorter time windows as the cen-
ter frequency increases. This also explains why the impulse responses of the base,
high frequency regions of the BM are shorter than those of apex, low frequency re-
gions. After the decomposition of sound into different frequency components by
the BM, the next stage is the conversion of mechanical vibrations of the BM into a
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Figure 2.15: The gammatone filterbank: (a) time-domain impulse responses, and
(b) corresponding frequency responses. After [18].

pattern of electrical excitaion. It can further be encoded by sensory neurons in the
spiral ganglion of the inner ear for transformation to the auditory regions in the
brain. The transformation from mechanical to electrical signals takes place in the
organ of corti, a delicate structure in the BM. Figure 2.13 (d) shows the schematic
drawing of a slice through the inner part of the cochlea. When the parts of the BM
move up and down, the corresponding parts of the organ of corti will also move
together with the membrane. The organ of corti has a folded structure as shown
in Figure 2.13. There are rows of sensory hair cells on the foot of structure that
sits directly on the BM. The organ of corti curves up and folds back over to form
a little roof-like structure known as the tectorial membrane (shown by a purple
glassy structure), which comes into close contact with the stercocillia (the hairs)
on the sensory hair cells, inner and outer. The inner hair cells (IHC) form a single
row of cells all along the BM, and they owe their name due to the fact that they
are in inner parts of the organ of corti. Outer hair cells (OHC) form three rows of
cells. The organization of the IHC and OHC along with the stercocillia is shown
in Figure 2.13. The pattern of mechanical vibrations in the BM is converted into
an analogous pattern of depolarizing current via IHC. The larger the deflection
in the stereocilia, the greater the current. The amount of depolarizing current is
in turn manifested in the IHC membrane potential. Hence, the voltage difference
across the hair cell’s membrane decreases and increases periodically in synchrony
with the BM vibrations. At low frequencies, each cycle of stimulus is faithfully
reflected in the sinusoidal change in the membrane potential. However, as the
sound frequency increases, the individual cycles of the vibrations become less
visible in the voltage response. The mathematical modeling of IHC is performed
using the half-wave rectification.

While the job of the IHC is to communicate with other nerve cells, the job of
the OHC is to vibrate in the sense of “moving in tune the rhythm of the sound".

25



The OHC provide a mechanical amplification of the vibrations in the BM pro-
duced by the incoming sound. The role of the OHC is very critical, and they can
be easily damaged. The animals or people who suffer permanent damage to the
OHCs are subsequently severely hearing impaired [61]. The careful psychoacous-
tical studies show that the OHC amplifies weaker sounds (low sound pressure
level (SPL)) more strongly than the louder sounds. Mathematically, an operation
that amplifies small values a lot, however, a large values only little bit, is called
a “compressive nonlinearity". Hence, the role of OHC is represented by the com-
pressive nonlinearity, such as logarithm or cubic nonlinearity.

The hair cells can be considered as neurons. Unlike typical neurons, they do
not fire action potentials, and they have neither axons nor dendrites, however,
they do have excitatory synaptic contacts with the neurons of the spiral gan-
glion [61]. These spiral ganglion neurons then form the long axons that travel
through the auditory nerve to connect the hair cell receptors to the first audi-
tory relay station in the brain called as the cochlear nucleus. The spiral ganglion
cell axons are also known as auditory nerve fibers (ANF). The IHC and OHC are
connected to different types of ANFs . More the particular region of the BM vi-
brates, the higher the firing rate of their ANFs. Furthermore, the BM tonotopy
is preserved in the arrangements of the ANFs. Thus, the pattern of vibrations of
membrane of the BM is translated into a neural “rate-place-code" in the auditory
nerve. The firing rate distribution across the population of the ANFs produces a
“neurogram" representation of sounds that resembles the filterbank responses of
the sounds. The simplified stages of an early auditory processing are summarized
in the Figure 2.16.

The hair cell membrane potentials encode low frequencies faithfully as analog,
AC voltage signals. However, for frequencies higher than a few kHz, they switch
into DC mode, i.e., not following individual cycles of the waveform. This behav-
ior of the IHC is also reflected in the firing of the ANFs to which they connect. At
low frequencies, as the IHC potential oscillates up and down in phase with the in-
coming sound, the probability of an action potential firing of ANFs also oscillates
accordingly. Hence, for low stimulus frequencies, ANFs exhibit a phenomenon
known as ‘phase locking’. The phase locking of a nerve fiber response is said to
be stochastic, to reflect the residual randomness that arises because auditory nerve
fibers may skip cycles, and their firing is not precisely time locked to the crest of
the wave. The term “volly principle" is used to convey the idea, that if one fiber
skips a particular cycle of sound stimulus, another nerve filter may mark it with
a nerve impulse. This volly principle seems to make it possible for the auditory
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Figure 2.16: Simplified stages of an early auditory processing.

nerve to encode temporal fine structure (TFS) of the sounds at frequencies up to
a few kHz. It is also said that high frequency ANFs are phase locked to the tem-
poral envelope or amplitude modulations patterns, which ride on top of higher
frequencies. All the outputs from the ANFs will reach the first major acoustic pro-
cessing station of the mid-brain, the inferior colliculus (IC). Some of the auditory
stations, not discussed here, play the central role in spatial hearing.

2.6.2 Cortical Representation of Sounds

The responses from the IC are sent to the auditory cortex as shown in Figure 2.17.
The auditory cortex is also subdivided into a number of separate fields, some
of which show clear tonotopic organization shown in Figure 2.17. The neurons
in the auditory cortex process the temporal and spectral information jointly via
their spectro-temporal receptive field (STRF). The STRF can be thought of as a
two-dimensional impulse response of the neuron that characterizes it completely.
Mathematically, it is denoted as STRF(t, f ). The linear response of an auditory
neuron r(t) is related to the input spectro-temporal representation S(t, f ) and
STRF(t, f ) as follows [63]:

r(t) =
∫ ∫

STRF(t− τ, f ) · S(t, f )dτd f + E(t), (2.38)

where convolution is along the temporal dimension t and integration along the
spectral dimension f . E(t) is the residual response not explained by the STRF
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Figure 2.17: The lateral view of the human brain along with the auditory cortex
areas exposed. An example of tonotopic organization of frequency tuning is
shown here in the scale of 2. Adapted from [16].

Figure 2.18: Examples of estimated STRFs at different auditory processing levels.
Adapted from [19].

model. The STRF is computed from the responses to elementary ripple sounds, a
family of sounds with the drifting sinusoidal spectral envelopes [63]. The collec-
tion of auditory neuron responses to all the elementary ripples is the estimated
STRF [63]. The examples of STRFs estimated at different levels of auditory pro-
cessing are shown in Figure 2.18. The red color shows the excitatory regions,
i.e., it allows the corresponding spectro-temporal components in the neurons’ re-
sponses. The blue color shows the inhibition regions that suppress the spectro-
temporal components in the neuron’s response. The complex spectro-temporal
envelope of any dynamic sound can be expressed as the linear sum of individ-
ual ripples. Since the STRF can describe spectro-temporal responses, it is natural
to think whether the spectral and temporal components are separable or not. It
is observed that most of the STRF are either fully separable or quadrant sepa-
rable [63]. The computational model to characterize the STRF is based on a 2-D
Gabor/wavelet filterbank [49], [64]. In this thesis, we discuss our proposed model
to learn the temporal receptive field (TRF), also known as the temporal response
function (TRF). The TRF is estimated for each frequency subband, and hence, we
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can write the expression of the TRF from the STRF eq. (2.38) as [65]:

r(t) =
∫

TRF(t− τ) · Si(t)d f + E(t), (2.39)

where Si(t) is the spectral envelope in the ith subband. A detailed review of the
neural processing of sounds is given in [19]. In the next section, we will define
deep learning and present the state-of-the-art deep learning architectures.

2.7 Deep Learning

Since 2006, the new area of machine learning has emerged that has significant im-
pact in many signal processing applications, such as speech, images, biomedical,
etc. Since the early techniques started with learning from unlabeled data [66], it
is known as representation learning. Later impressive results also achieved using
supervised learning techniques by using many parallel data processing units with
nonlinearities. It is now called deep learning or hierarchical learning. There are vari-
ous definitions of representation learning or deep learning.
Representation learning: It is defined as learning the representation of the data
that makes it easier to extract the meaningful and useful information, when build-
ing classifiers or other predictors for signal processing applications [40].
Deep learning: Deep learning is a new area of machine learning research, which
has been introduced with the objective of moving machine learning closer to one
of its original goals: Artificial Intelligence (AI). Deep learning is about learning
multiple levels of representation, and abstraction that helps to make sense of data,
such as speech and audio, images, and text [67].

Comparison of classical machine learning and representation techniques is
shown in Figure 2.19. In a classical or traditional machine learning approach,
the input signal is first processed with signal processing techniques to obtain the
meaningful features followed by a supervised classifier to obtain the mapping cor-
responding to the given task. Such features are called the handcrafted (or hand-
designed) features [20]. In the representation learning approach, the meaningful
features are learned from the data itself, without requiring any specific domain
knowledge or the need of a specialized signal processing. If we increase the fea-
ture learning technique to learn low-level to high-level features through the mul-
tiple learning stages (either layerwise training or joint training), it is called deep
learning as defined above. We discuss the three types of deep learning architec-
tures based on artificial neural networks (ANN) that are used in this study either
for acoustic modeling in the ASR task or for the audio classification task.
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Figure 2.19: Comparison of classical machine learning and representation tech-
niques. After [20].

2.7.1 Deep Neural Networks (DNN)

Feedforward neural networks (FFNN) or multilayer perceptrons (MLP) are used
in signal processing tasks from the late 90s. However, for a large scale task, such as
speech recognition, these neural networks requires a high computational power
to train the models. The resurgence of neural networks is possible because of
two key factors: (1) massive amount of data available, and (2) parallel processing
using Graphical Processing Units (GPU). The goal of the FFNN is to approximate
the function f . FFNN learns the value of parameters of the network θ, and finds an
appropriate mapping, y = f (x; θ). The network is called the MLP when we have
more than one layer, and called DNN when it has more than two-three layers [20].
The example of a three layer DNN is shown in Figure 2.20. The input is connected
to all the neurons in the first hidden layer followed by two more fully connected
hidden layers (dense connections as discussed in Section 2.5.1). The outputs of
neurons in the final layer are the posterior probability of a particular class.

For the input signal x, the neurons’ activations in the lth hidden layer are cal-
culated as [20]:

h(l) = g
(

W(l)Tx + b(l)
)

, (2.40)

where g(·) is the nonlinear activation function, W(l) is a weight matrix, and b(l) is
a bias vector. The output neurons in the DNN use the softmax nonlinearity. The
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Figure 2.20: An example of the three layer DNN.

softmax function can be seen as a generalization of the sigmoid function, which is
used to represent a probability distribution function over a binary variable. The
softmax functions are used as the output of a DNN classifier, to represent the
probability distribution function over n different classes. The expression for the
softmax function is given by:

softmax(zi) =
ezi

∑j ezj
, (2.41)

where z = WTx + b. From a neuroscience perspective, it is interesting to think
of the softmax function as a way to create a form of competition between the
units that participate in it [20]. The softmax outputs always sum to 1 and hence,
an increase in the value of one unit necessarily corresponds to a decrease in the
value of others [20].

The hidden units in the DNN have many choices to use activation functions.
The older DNN networks use sigmoid function g(·) = sigmoid(·) defined as [20]:

sigmoid(W(l)Tx + b(l)) =
1

1 + e−(W(l)Tx+b(l))
. (2.42)

The sigmoid function is bounded in the range [0,1]. This sometimes causes the
sigmoid function to go in the saturation regions, which leads to the vanishing
gradient problem [20]. Hence, recently, rectifier linear units (ReLU) are more pop-
ular, which is defined as [20]:

g(W(l)Tx + b(l)) = max(0, W(l)Tx + b(l)). (2.43)

It can be seen that this suppresses the negative values of the neuron’s input. The
ReLU has a range [0,∞]. There are several advantages of ReLU over the sigmoid
function as listed below:
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• Sparsity: Since ReLU makes the negative values of the neuron’s input to
zero, it enforces sparsity in the neuron’s activation values [68]. It is mathe-
matically proved that ReLU can lead to sparsity in the DNN [69].

• Fast convergence: It has been empirically shown that ReLU leads to faster
learning of DNN. In addition, the computations are also very cheap (eco-
nomical): there is no need for computing the exponential function in activa-
tions as needed in the sigmoid units [68].

• No need for pre-training: Earlier in order to train DNN with more num-
ber of layers, DNNs are pre-trained using unsupervised learning techniques
[60]. However, it is shown that when ReLU is used as an activation function,
it achieves similar performance as pretrained DNN [68].

• Biologically motivated: ReLU is motivated from the biologically plausible
leaky integrate-and-fire (or LIF) neuron activation function [68].

There are many variants of ReLU proposed to further improve the performance,
such as leaky ReLU (LReLU), and parametric ReLU (PReLU). The parameters of
the DNN are optimized using the back-propagation algorithm [70].

2.7.2 Convolutional Networks

The convolutional networks are a specialized kind of neural network for process-
ing data that has known grid-like topological structures. If they are based on
neural networks, it is known as convolutional neural networks (CNN), first pro-
posed in [71] and implemented by [72]. The convolutional networks employ a
mathematical operation called the convolution, a linear operator. CNNs are sim-
ply neural networks that use a convolution operation in place of general matrix
multiplication compared to the DNN in at least one of their layers [20]. We have
discussed the difference between dense connections vs. convolutional connection
in Section 2.5.1. Here, we discuss specifically the architecture of the supervised
CNN. The CNN architecture has a convolution layer followed by fully-connected
layers. Various stages in the convolution layer are shown in Figure 2.21. The con-
volution stage computes the convolution between the input signal and weights
known as convolution kernals or filters. The detection stage includes generally the
ReLU nonlinearity. In the third stage, the dimensions of the output of a detection
stage are reduced by a pooling or subsampling method. Two popular pooling
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operations are average and max-pooling defined as follows:

Pavg =
1

np

np

∑
i=1

xi, (2.44)

Pmax = maxi=1:np(xi), (2.45)

where xi are the neuron’s activation values, and np is the length of the pooling
region. In the subsampling technique, the features are uniformly downsampled
instead of taking an average or max operation.

The pooling stage helps to make the representation become approximately in-
variant to small translations of the input signal [20]. The invariance to translation
means that if one translates the input signal by a small amount (either in time,
frequency or both), the activation values of most of the pooled outputs remain
changed [20]. The convolutional networks are inspired from the neuroscientific
discovery of a simple and complex cells in the visual cortex by Hubel and Wiesel,
which led them to win the Noble Prize. The role of a convolution layer is similar to
simple cells while the detection and pooling layer function as complex cells [20].

Figure 2.21: Various stages in the CNN architecture. After [20].

The convolution networks have a property called equivariance to translation
[20] defined as follows [73]:
Definition: Let f : (X, ρ) → (X, ρ) be applied on the input signal x, where (X, ρ)

is a metric space. Let a translation operator T on the function f be [73]:

T ( f (x)) = f (x− x
′
), x, x

′ ∈ X. (2.46)

The function f is said to be invariant to the translation if T ( f (x)) = f (x) and
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equivariant if f (T (x)) = T ( f (x)). The convolution operator is translation equiv-
ariant while the pooling stage provides some form of translation-invariance [20].
Earlier, Lang and Hinton [74] introduced the use of back-propagation to train
time-delay neural networks (TDNNs). The TDNNs are actually one-dimensional
convolutional networks applied to time series data [20]. Recently, the TDNN con-
cept is revived in [75] and successfully applied in the ASR task. Next, we discuss
the neural networks known as the recurrent neural networks (RNN).

2.7.3 Recurrent Neural Networks

To model sequential data, such as time series, speech, etc., recurrent neural net-
works (RNN) are the first choice. We can understand the RNN structure in a
graphical form. Consider the classical form of a dynamical system [20]:

s(t) = f (s(t−1); θ), (2.47)

where s(t) is called as the state of the system. This equation is recurrent (occurring
repeatedly or often) since the state s at time t refers back to the same definition at
time t− 1. The graph for this dynamical system can be unfolded by applying the
definition τ− 1 times for a finite number of time steps, τ. Unfolding the equation
by repeatedly applying the definition eq. (2.47) has yielded an expression that
does not involve recurrence. A directed acyclic computational graph is used to
represent the above expression [20].

s(t−1). . . s(t) s(t+1) . . .

Figure 2.22: The graph representation of the dynamical system described by eq.
(2.47). After [20].

Now, consider the dynamical system driven by an external signal x(t):

s(t) = f (s(t−1), x(t); θ), (2.48)

where it can be seen that the state now contains information about the whole past
sequence. In the context of RNN, we can rewrite equation (2.48) using the hidden
variables h as follows:

h(t) = f (s(t−1), x(t); θ). (2.49)
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Figure 2.23: The unfolded deep RNN architecture including input, hidden and
output nodes. Adapted from [20].

RNN also includes nodes to read information out of the state h(t) to make the
predictions. The example of the deep RNN in the form of an unfolded graph with
the three hidden layers is shown in Figure 2.23. The use of back-propagation on
the unrolled RNN is called the back-propagation through time (BPTT) algorithm
[20]. The basic problem in the RNN training is that the gradients propagated
over many stages tend to either vanish (most of the time) or explode, i.e., making
weights and biases infinity (rarely, but with much damage to the optimization)
[20]. The gradient vanishing problem arises due to large multiplications of the
sigmoid functions in the RNN in gradient computation. Even if it is assumed that
the parameters are such that the RNN will be stable (i.e., no gradient exploding),
the difficulty with long-term dependencies arises from the exponentially smaller
weights given to long-term interactions compared to the short-term ones.

The most effective and popular sequence models used in the practical applica-
tions are called gated RNNs. These include the long short-term memory (LSTM)
and the bidirectional LSTM (BLSTM). The gated RNNs are based on the idea
of creating paths through time that have derivatives that neither vanish nor ex-
plode [20]. The LSTM model is based on introducing self-loops to produce the
paths, where the gradient can flow for longer durations. Using the gate controlled
by the hidden unit, the time scale of integration can be changed dynamically. In
this case, even for an LSTM with fixed parameters, the time scale of integration
can change based on the input sequence lengths, since the time constants are out-
put by the model itself [20]. The LSTM block diagram is shown in Figure 2.24.

An input feature is computed with a regular ANN unit such as sigmoid or hy-
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Figure 2.24: An example of LSTM cell. Adapted from [21].

perbolic tangent. Its value can be accumulated into the state if the sigmoidal input
gate allows it. The state unit has a linear self-loop whose weight is controlled by
the forget gate. The output of the cell can be shut off by the output gate. All
the gating units have a sigmoid nonlinearity, while the input unit can have any
squashing nonlinearity, such as sigmoid or hyperbolic tangent. The state unit can
also be used as an extra input to the gating units. The equations for these units
are written as follows [21]:

it = tanh(Wxixt + Whiht−1 + bi), (2.50)

jt = σ(Wxjxt + Whjht−1 + bj), (2.51)

ft = σ(Wx f xt + Wh f ht−1 + b f ), (2.52)

ot = σ(Wxoxt + Whoht−1 + bo), (2.53)

ct = ft ⊗ ct−1 + it ⊗ jt, (2.54)

ht = tanh(ct)⊗ ot, (2.55)

where W and b are the biases of the LSTM cell. Here, ⊗ denotes an element-wise
multiplication. Instead of only using previous context for the sequence prediction,
we can use the future context also in a form of bidirectional LSTM (BLSTM) [21].
The block diagram of BLSTM is shown in Figure 2.25. One can also combine
different DNN along with the RNN models as done in [76].

2.8 Automatic Speech Recognition (ASR)

The task of an ASR system is to convert a speech signal into a sequence of words
(or phonemes) in the text format with the help of a machine. The ultimate goal of
the ASR task is to enable people to communicate with the machines in the form of
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Figure 2.25: Architecture of the BLSTM network. After [21].

human-computer interaction. There are many potential applications of the ASR
that includes call centers, voice dialing, data entry and dictation, command and
control, computer-aided language learning, etc. In recent days, ASR along with
text-to-speech synthesis (TTS) is used effectively in chat bots and in mobile phones
as an intelligent personal assistant (e.g., Apple Siri, Ok Google, Amazon Echo).
The modern ASR problem is based on statistical pattern recognition along with
speech signal processing as a front end.

Feature Extraction Decoding

Acoustic 
Models (AM)

Language 
Models (LM)

Pronunciation 
Dictionary

Speech 
Signal

Feature 
Vectors

Words

Figure 2.26: The architecture of the statistical ASR system. After [22].

The principal components of the ASR system are shown in Figure 2.26. The
input speech signal is first converted into a sequence of feature vectors through
feature extraction block. A typical feature extraction procedure is to transform
a raw speech signal into a time-frequency representation via auditory filterbank
or Short-Time Fourier Transform (STFT) followed by the auditory scale. Let us
denote the feature vector sequence as X = x1, ..., xF, where F is the number of
frames. The goal of the decoder is to find the optimal word sequence Ỹ through
the fundamental equation of the ASR given by:

Ỹ = arg max
Y

P(Y|X). (2.56)
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However, in the generative models, it is difficult to find the posterior probability
P(Y|X) directly. Hence, applying Bayes’ rule to eq. (2.56), we get

Ỹ = arg max
Y

P(Y)P(X|Y)
P(X)

, (2.57)

≈ arg max
Y

P(Y)P(X|Y). (2.58)

Since the maximization is done with a fixed observation X, P(X) will not take
part in optimization. The likelihood P(X|Y) is determined by the acoustic model
and the prior P(Y) is determined by the language model. Apart from feature
representation, the major challenge in statistical ASR is to build accurate acoustic
and language models. We will discuss various components of the ASR briefly in
the upcoming sub-sections.

2.8.1 Feature Extraction

The feature extraction stage generally converts the speech signal into a time-
frequency representation using the perceptual/auditory filterbank. Typically, the
Mel frequency scale is used for feature extraction; however, significant efforts are
devoted to find better representation using speech signal processing and machine
learning techniques [38], [39], [77]. Here, we discuss the very popular and state-
of-the-art Mel filterbank first used in [78] for the ASR task. The Mel scale is a
perceptual scale proposed by Stevens, Volkmann, and Newman in 1937 [79]. The
name Mel comes from the word melody to indicate that this frequency scale is
based on perceived pitch comparisons [79]. The mathematical formula to convert
the frequency fHz in Hz to fMel in Mel is given as [79]:

fMel = 2595 log10

(
1 +

fHz

700

)
. (2.59)

The nonlinear Mel frequency scale is shown in the Figure 2.27 along with the
Equivalent Rectangle Bandwidth (ERB) and the Bark scales [39] defined as:

fBark =

[
26.81 fHz

(1960 + fHz)

]
− 0.53, (2.60)

fERB = 21.4 log10 (1 + 0.00437 fHz) . (2.61)

The Mel filterbank derived in [78] has the triangular-shaped filters in the frequency-
domain as shown in Figure 2.28. One can see that the filters are becoming broader
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Figure 2.27: The comparison of standard auditory-based frequency scales.
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Figure 2.28: An example of a Mel filterbank with 40 subband filters.

as the frequency increases. This is due to the nonlinear frequency scale as shown
in Figure 2.27. The Mel spectrogram is shown in Figure 2.29. The important aspect
of the Mel spectrogram is that it reduces the spectral harmonics so that formants
can be more effectively represented. However, the time-frequency resolution de-
creases as the frequency increases due to the averaging by the Mel subband filters.

To use Mel spectrogram-based features in the ASR task, a Discrete Cosine
Transform (DCT) is applied to reduce the dimension and decorrelate the features.
Further by selecting only few coefficients (generally 13), it also eliminates the
source effect due to homomorphic nature of speech signal processing [80]. These
reduced features are called as the Mel Frequency Cepstral Coefficients (MFCC),
a state-of the-art features in many speech processing applications [78]. The dy-
namic features known as first-order delta and second-order delta features (also
called delta-delta or acceleration coefficients) were also added to the static MFCC
features. If the feature vector is xt at frame index t, the first-order delta features
∆xt are calculated as follows [22]:

∆xt =
∑n

i=1 di(xt+i − xt−i)

2 ∑n
i=1 d2

i
, (2.62)

where n is the window length and di are the regression coefficients. The second-
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order delta features denoted as ∆∆ are derived in a similar manner using the first-
order delta ∆xt features. In the DNN-based approaches for ASR, it is shown that
Mel spectrograms showed improved performance compared to the DCT-based
MFCC features. It is shown that DNNs can better model correlated features [81].
The Mel spectrograms are now state-of-the-art features in the DNN-based ASR
[58]. Other auditory-based features include perceptual linear prediction (PLP)
[82] and gammatone-based models [83]. The PLP features are based on the Bark
frequency scale while the gammatone filterbank uses the ERB scale. A detailed
discussion on various features for the ASR task is presented in [38], [77], and [84].
Next, we discuss the details of statistical acoustic modeling for ASR.
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Figure 2.29: (a) Speech signal, (b) STFT, and (c) Mel spectrogram. The utterance
is “she had your dark suit in greasy wash water all the year".

2.8.2 Acoustic Modeling

The role of acoustic model is to improve the recognition accuracy by combating
variations in speakers, dialects, environment, and noise. It is believed in the re-
search community that the acoustic model is the central part of any ASR system.
Acoustic modeling of speech signals refers to the process of establishing the sta-
tistical representation for the feature vector sequences computed from the speech
signals. The Hidden Markov Models (HMM) are the most popular type of statisti-
cal model used for acoustic modeling since for a long time [85], [86]. However, re-
cently deep learning-based frameworks are becoming popular for acoustic mod-
eling which will be discussed in Section 2.8.5. Acoustic modeling also includes
“pronunciation modeling" that describes how a sequence or multi-sequence of the
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fundamental speech units (e.g., phones) is used to represent larger speech sound
units, such as words or phrases.

2.8.2.1 Acoustic Modeling using GMM-HMM

Each spoken word w is decomposed into a sequence of Nw basic speech sound
units called as base phones, a fixed set of basic sound units for a given language.
This sequence is called its pronunciation denoted as qw = q1, q2, ..., qNw . Generally,
this pronunciation of words is supplied via what is called the pronunciation dic-
tionary, which contains the phonetic decomposition of words. Multiple pronun-
ciations are allowed by computing the likelihood P(X|Y) that can be computed
over multiple pronunciations as follows:

P(X|Y) = ∑
Q

P(X|Q)P(Q|Y), (2.63)

where the summation is all over the valid pronunciation sequences for Y, and Q
is a particular sequence of pronunciations. The probability P(Q|Y) is given by:

P(Q|Y) =
L

∏
l=1

P(qwl |wl), (2.64)

where each qwl is a valid pronunciation for the word wl. Each base phone q is pre-
sented by a continuous density HMM as shown in Figure 2.30. It is assumed that
the sequence of all observed features vectors are generated by a Markov chain.
Generally, a left-to-right form of an HMM is used as shown in the Figure 2.30.
The transition probabilities are denoted as {aij} and the output emission proba-
bilities are denoted as {bj(·)}. The probability of making a transition from state si

to sj is given by the transition probability aij. An HMM is a finite state machine
(FSM) that changes a state once every time frame t when a state j is entered. Then
the observation feature vector xt is generated from the emission probability dis-
tribution {bj(xt)} [87]. This is due to the conditional independence assumptions
in HMM [88], [22]:

• The HMM states are contitionally independent of all other states given the
previous state.

• The observations are conditionally independent of all other observations
given the HMM state that generated it.

In the left-to-right model of an HMM, two extra non-emitting states are also used
called an entry state, and an exit state at the entry of speech feature vector genera-
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Figure 2.30: An example of HMM-based phone model. Adapted and modified
from [22].

tion, and the exit of the generation process, respectively. The emitting probability
density bj(x) describes the distribution of the observation vectors at the state j. In
the continuous density HMM (CD-HMM), a Gaussian Mixture Model (GMM) is
used to represent the emission probability density as follows [87]:

bj(x) =
M

∑
m=1

cjmN
(
x; µjm, Σjm

)
, (2.65)

where the GMM is represented as:

N
(
x; µjm, Σjm

)
=

1

(2π)
D
2 |Σjm|

1
2

e−(
1
2 )(x−µjm)

TΣ−1
jm (x−µjm) (2.66)

is a multivariate Gaussian density for D-dimensional feature vector x. cmj, µjm, Σjm

are the weight, mean, and covariance of the mth Gaussian mixture component
at state j, respectively. Since the dimensionality of the acoustic vector x is rela-
tively high, the covariances Σjm are often constrained to be a diagonal matrix [22].
Such form of acoustic modeling is known as the GMM-HMM technique, where
the GMM is used to estimate the feature vector probability density in the HMM
and the Markovian nature of HMM is used for the temporal sequence model-
ing. A more detailed discussion on HMMs is given in an excellent tutorial by
Rabiner in [89]. The mathematical treatment of the HMMs considering the statis-
tical properties of random variables and conditional independence is given in [88].
Given the composite HMM, Q is formed by concatenating all of the base phones
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q(w1), ..., q(wL). Then the acoustic likelihood is given by:

P(X|Q) = ∑
θ

P(θ|X, Q), (2.67)

where θ is a state sequence through the composite HMM model and

P(θ|X, Q) = aθ0θ1

T

∏
t=1

bθt(xt)aθtθt+1 , (2.68)

where θ0 and θT+1 correspond to the non-emitting entry and exit states shown
in Figure 2.30, included to simplify the process of concatenating HMM phone
models to make the words. The acoustic model parameters, aij and bj(·) can
be efficiently estimated from the feature vectors of the training utterances using
the forward-backward algorithm [89], which is an example of the Expectation
Maximization (EM) algorithm [90]. So far, we discussed how the speech feature
vectors are represented by concatenating a sequence of HMM phone models to-
gether. However, we ignored the context-dependent variations in the speech. For
example, the pronunciation of the vowel “a" in the words “bat" and “ball" are
different. Such context-free phone models are referred to as monophones [22].
A simple way to incorporate the context in the phones is to use a unique HMM
phone model for every possible pair of left and right neighbors of the phones. The
resulting HMM models are called as triphones [22].
2.8.3 Language Modeling

The role of the language model in ASR is to provide the value P(Y) in the funda-
mental equation of the ASR (eq. (2.58)). The probabilistic relationship between a
sequence of words can be directly derived and modeled from a text corpus with a
large number of words. These probabilistic models are called stochastic language
models or N-grams. A language model can be formulated as a probability distri-
bution P(Y) over a word string Y that reflects how frequently a string Y occurs as
a sentence [87]. The P(Y) can be decomposed as:

P(Y) = P(y1, y2, ..., yN), (2.69)

=
N

∏
i=1

P(yi|y1, y2, ..., yi−1), (2.70)

where P(yi|y1, y2, ..., yi−1) is the probability that yi will follow given the previous
word sequence, y1, y2, ..., yi−1. For a large vocabulary continous speech recogni-
tion (LVCSR) task, the word history is truncated to N − 1 words due to compu-
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tational issues, which leads to an N-gram language model. If the current word
depends on the previous word, we have the bi-gram model P(yi|yi−1), and if the
word depends on two previous words, we have a trigram model P(yi|yi−2, yi−1).
The probabilities in the N-gram model are estimated from the training text corpus
by counting N-gram occurrences to form the maximum likelihood estimates [22].
For example, in the case of a trigram model, the word probabilities can be esti-
mated by the frequency of occurrences or the counts of the word pair C(yi−2, yi−1),
and triplet C(yi−2, yi−1, yi) as follows:

P(yi|yi−2, yi−1) =
C(yi−2, yi−1, yi)

C(yi−2, yi−1)
. (2.71)

A more detailed treatment of language modeling can be found in the book [86].
Next, we discuss briefly about the decoding process of ASR.

2.8.4 Decoding

The role of the decoding process in ASR is to find a sequence of words whose
corresponding acoustic and language models best match the input feature vector
sequence [87]. The decoding process is also called a search process in the ASR
literature [22], [86], [87]. An efficient way to solve the search problem is to use
dynamic programming. Let φ

(t)
j = maxθP(X1:t, θt = sj|λHMM), i.e., the maximum

probability of observing the partial sequence, X1:t, and then being in the state sj

at time t given the model parameters λHMM. This probability can be efficiently
computed using the Viterbi algorithm as follows [22]:

φ
(t)
j = max{φ(t−1)

i aij}bj(xt). (2.72)

It is initialized by setting φ
(t)
0 = 1 for the initial non-emitting entry state and

0 for all other states. The probability of the most likely word sequence is then
given by maxj

(
φ
(j)
t

)
. If every maximization decision from the decoding process

is recorded, a traceback to all such paths will yield the required best matching
state/word sequence [22]. One can also generate an N best set of hypothesis
instead of one best hypothese as from the above eq. (2.72), where N is chosen
between 100-1000. This is very much useful since it allows multiple passes over
the data without the computational expense of repeatedly solving eq.(2.72) from
scratch. A compact and efficient structure for storing these hypotheses is called
the word lattice in the ASR literature [22].
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2.8.5 Deep Learning for ASR

The GMM-HMM-based ASR has shown impressive results for the LVCSR task
in the past. However, to date ASR is not a solved problem in any fundamental
sense [91]. The Table 2.1 shows the ‘pros’ and ‘cons’ of an HMM for the ASR task.
Many of the limitations of the GMM-HMM can be alleviated using the deep neu-

Table 2.1: Advantages and shortcomings of the classical ASR approach using
GMM-HMM. After [1].

Pros Cons
Mathematically rich framework Poor discrimination capability
Efficient learning and decoding
methods

Requirement of distributional as-
sumptions

Better at sequence learning consid-
ering the temporal aspects of the
speech signal

Phones and subword are assumed to
follow the Markov assumption

Flexible HMM topology for statistical
phonetics and syntax

Assumption of uncorrelated acoustic
features

ral networks [58], earlier known as the connectionist approach [92]. Currently, the
state-of-the-art ASR approaches are based on using DNN for the acoustic mod-
eling and HMM for the sequence modeling and decoding. Such an approach is
known as the hybrid DNN-HMM approach [81]. In the classical ASR, the likeli-
hood probabilities P(X|Y) are estimated using the GMM-HMM from the acoustic
feature vectors. The DNN can estimate posterior probabilities that are related
to the emission probabilities and, hence, can be easily integrated with an HMM-
based approach [92]. Hence, instead of the GMM, the DNN provides the emis-
sion probabilities. In particular, the DNNs can be trained to produce the poste-
rior probability P(θ|X), i.e., the posterior probability of the HMM state given the
acoustic feature vectors [92]. This is done by setting the DNN output layer as
states of the HMM, and then it is converted to the emission probabilities using
Bayes’ rule [92]. Several researchers have shown that, when neural networks are
used in the classification mode, the outputs of neural networks can be interpreted
as the estimates of a posterior probabilities of the output classes conditioned on
the input [92]. Applying the Bayes’ rule to the DNN outputs, we obtain

P(θ|X) = P(X|θ)P(θ)
P(X)

, (2.73)

where P(θ|X) is the posterior estimated using DNN, P(θ) is the class prior, namely,
the relative frequencies of each class as determined from the class labels that are

45



produced by a forced-alignment in the GMM-HMM training. The equation (2.73)
can also be written as:

P(X|θ)
P(X)

=
P(θ|X)
P(θ)

. (2.74)

The scaled likelihood P(X|θ) on the left hand side can be used as an emission
probability for the HMM. We will not worry about P(X), since it is a scaling factor
and will not change the classification. An example of the hybrid DNN-HMM
approach is shown in Figure 2.31 for a three-layer DNN.

� � �� �
�
��

�
�� �

��
�
��

�
��

�
��

�
��

�
�
��

�
� �

�
��

�
� �

�
��

�
� �

�
��

�
� �

�
��

�
�

���	
�� ����

�����������

�����������

�����������

����	

Figure 2.31: An example of hybrid DNN-HMM approach. Adapted and modi-
fied from [23].

The hybrid DNN-HMM has two advantages [58], [92]:

1. As mentioned the Table 2.1, the classical ASR system needs strong assump-
tions about the statistical nature of the input, such as parameterize the input
densities as the mixtures of Gaussian densities (i.e., GMM). Furthermore,
in order to obtain the emission probability from the GMM, feature vectors
need to be uncorrelated (e.g., statistically independent). Such assumptions
are not required with the DNN models. With DNN, one can directly use
the Mel spectrogram or the STFT-based spectrogram, which yields better re-
sults than the standard uncorrelated MFCC feature vectors [81]. One can
also effectively use two different types of feature vectors with DNN in a
feature-level fusion framework [93].

2. DNN provides a simple mechanism to incorporate the contextual informa-
tion in the acoustic feature vectors. If we take a context of c frames on the left
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and right of the current frame of a feature vector, i.e., Xn+c
n−c = {xn−c, ..., xn, ..., xn+d},

DNN will estimate, P(θ|Xn+c
n−c).

3. DNNs are trained using discriminative criteria and hence, the posterior prob-
abilities will be optimized to maximize the discrimination between classes
of the acoustic sounds, rather than to most closely match the distributions
with each acoustic sound class [92].

Earlier it was difficult to train deeper DNN-HMM networks and hence, the
concept of pre-training emerged. Pre-training involves training the unsupervised
model, such as stacks of RBM (i.e., DBN) or autoencoders using a large amount
of unlabeled data [58]. The weights and biases of the pre-trained network are
then used to initialize the parameters of the supervised DNN. There have been
number of attempts to justify this approach including a remarkable mathematical
approach presented in [94]. Recently, there are approaches called as end-to-end
deep learning that do not require sequence modeling using HMMs in the ASR
task or sequence classification in general. Such models are based on a variant of a
RNN along with the connectionist temporal classification (CTC) loss function [95].
In this thesis, we used the hybrid DNN-HMM approach for the ASR task. Next,
we will discuss the literature on approaches for the auditory modeling.

2.9 Literature on Auditory Modeling

The representation of a speech and audio signal based on sound perception in
humans is of significant interest in developing features for speech and audio pro-
cessing applications. The classical auditory models were developed during the
1980s to mimic the human auditory processing. However, such physiological
models often do not reflect the full complexity of the HAS which, for example,
is able to adapt readily to the variability in acoustic conditions. There are many
approaches that are based on data-driven learning and/or optimization of pa-
rameters of auditory models. Data-driven learning or representation learning can
be supervised (i.e., with label information) or unsupervised (where no such class
labels are available). We review the literature of auditory models based on com-
putational/mathematical models and machine learning-based approaches.

2.9.1 Computational and Mathematical Models

The Seneff, Ghitza, and Lyon’s auditory models have made a huge impact on
many recent computational auditory models as reviewed in [39]. These audi-
tory models are based on mathematical modelling of auditory processing or psy-
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chophysical and physiological experiments. The auditory filterbank is a principal
component of these models. It includes two kinds of models: (1) motivated by
reproducing the observed behavior of the mechanical vibrations of the BM or the
ANF responses and (2) motivated by psychoacoustic experiments, such as detec-
tion of tones in noise maskers [96]. The MFCC and PLP coefficients are the state-
of-the-art auditory-based features for speech recognition that use a simplified au-
ditory pipeline. The audio classification application also uses gammatone-based
features. Such handcrafted features rely on simplified auditory models [38], [39].
The modulation representation is obtained using another transformation applied
on spectrograms or any similar time-frequency representation. Such two-level
auditory models are called deep auditory models (DAM) in this thesis. The deep
auditory representation is obtained using S. Shamma’s auditory model that con-
sists of two layer wavelet transforms with many auditory nonlinearities [49]. An-
other deep auditory model was proposed by T. Dau that utilize the masking effect
in the auditory processing [97]. Using similar approaches by S. Shamma and T.
Dau’s models, S. Mallat proposed the deep scattering transform (DST) that has
nice intriguing mathematical properties [98]. The DST was successfully applied
in various speech and audio processing applications [98].

2.9.2 Machine Learning-based Models

Supervised learning approaches for raw speech signals include work in [99–105]
which the end-to-end approaches for acoustic modeling in ASR. In the case of
audio processing, supervised learning approaches include end-to-end audio clas-
sification proposed in [106] and [107]. Most works on unsupervised learning for
speech and audio signals are based on cochlear filterbank learning to model audi-
tory processing. The first approach was to use Independent Component Analysis
(ICA) as a learning model applied on the small windows of speech and audio
signals [12, 108, 109]. To model a Mel-like filterbank, Nonnegative Matrix Factor-
ization (NMF) was applied to the power spectra of speech signals [110]. In [111],
nonlinearity associated with the auditory system is optimized using a data-driven
method. Based on local geometry of the feature vector-domain and the perceptual
auditory-domain, MFCC features were optimized in [112]. The RBM with ReLU
was also used to learn features using segments of raw speech signals [113].

The unsupervised learning methods described above are based on processing
small segments of speech and audio signals or operating on STFT of speech and
audio signals. However, there are many disadvantages of such block-based (or
window-based) signal processing as discussed in [114]. In particular, a speech
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signal has very brief transient sounds as well as quasi-periodic voiced sounds;
fixed window segments of speech may smear these sounds. In addition, the rep-
resentation is very sensitive to the temporal shifts of windows as experimentally
proved in [114]. To avoid these problems, sparse spike coding is used to learn fil-
terbanks from speech and audio signals [114], [115]. However, spike coding does
not include any nonlinearity in the model and optimization is performed on the
linear superposition of kernel functions [114]. To obtain a MFCC-like representa-
tion using time-domain formulation, the scattering transform was proposed [98].
Scattering wavelets on Mel scale are convolved with speech/audio signals and
averaged later using a lowpass filter (that has a similar effect as that of the Mel
scale averaging). However, deep scattering wavelets do not involve learning of
subband filters [98]. A summary of the ASR literature is given in Table 2.2. A
summary of the ESC, SSD and ICC literature is given in Table 2.3.

Table 2.2: Selected chronological progress using the representation learning for
the ASR task

Models Input Databases Source

LDA-RASTA PLP OGI-multilingual S. Vuuren et al. 1997 [116]

Discriminative filters Bell Lab feats AURORA 2 B. Mak et al. 2003 [117]

LDA MFCC NUM-100 J. W. Hung et al. 2006 [118]

ConvRBM STFT TIMIT H. Lee et al. 2009 [50]

Nonlinearity learning STFT TIMIT, TIDIGITS S. Chatterjee et al. 2011 [119]

NMF STFT TIMIT A. Bertrand et al. 2008 [110]

RBM Speech TIMIT N. Jaitly and G. E. Hinton 2011 [113]

Autoencoder STFT TIMIT N. Jaitly and G. E. Hinton 2013 [120]

DNN Speech Quaero Z. Tuske et al. 2014 [105]

Gabor-CNN FBANK WSJ, AURORA 4 S. Chang et al. 2014 [121]

CNN Speech Google ASR T. Sainath et al. 2015 [102]

CNN Speech Quaero P. Golik et al. 2015 [103]

CNN Speech TIMIT, WSJ D. Palaz et al. 2015 [104]

CNN Speech Switchboard, WSJ P. Ghahremani et al. 2016 [122]

ConvRBM∗ FBANK TIMIT, WSJ H. Sailor and H. Patil 2016 [10]

ConvRBM∗ Speech TIMIT, WSJ H. Sailor and H. Patil 2016 [2]

ConvRBM∗ Speech TIMIT, WSJ, AURORA 4 H. Sailor and H. Patil 2016 [3]

Stacked ConvRBMs∗ Speech TIMIT, AURORA 4 H. Sailor and H. Patil 2016 [11]

ConvRBM and TEO∗ Speech AURORA 4 H. Sailor and H. Patil 2017 [4]

DNN AMFB CHiME2, REVERB, Librispeech N. Moritz et al. 2016 [123]

DNN STFT ASJ, JNAS H. Seki et al. 2017 [124]

Sparse representations STFT, Speech TIMIT, WSJ, AURORA 4 P. Sharma et al. 2017 [125]

ConvRBM STFT AURORA 4, REVERB P. Agrawal and S. Ganapathy 2017 [126]

ConvRBM∗ Speech Gujarati Agri-ASR H. Sailor and H. Patil 2017 [30]
∗ indicates proposed model in this thesis.

To alleviate the problems discussed above, this thesis proposes an unsuper-
vised filterbank learning model which is shown to perform better than the MFCC
and Mel filterbank features for the speech recognition task [2]. Later the model is
applied on various audio classification tasks, such as Environmental Sound Clas-
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Table 2.3: Selected chronological progress using representation learning for
speech and audio processing applications

Models Input Domain Databases Source

Spherical k-means FBANK ESC Urbansound8k J. Salamon et al. 2015 [127]

Spherical k-means DSS ESC Urbansound8k J. Salamon et al. 2015 [128]

CNN Audio ESC ESC-50 Y. Tokozume et al. 2017 [106]

CNN Audio, video ESC Soundnet Y. Aytar et al. 2016 [107]

ConvRBM∗ Audio ESC ESC-50 H. Sailor, et al. 2017 [5]

DNN FBANK SSD ASVSpoof 2015 N. Chen et al. 2015 [129]

DNN, RNN FBANK SSD ASVSpoof 2015 Y. Qian et al. 2016 [130]

DNN bottleneck FBANK SSD ASVSpoof 2015 M. Alam et al. 2016 [131]

CLDNN Speech SSD BTAS 2016 H. Dinkel et al. 2017 [132]

ConvRBM∗ Speech SSD ASVSpoof 2015 H. Sailor, et al. 2017 [6]

LCNN STFT SSD ASVSpoof 2017 G. Lavrentyva et al. 2017 [133]

ConvRBM∗ Speech SSD ASVSpoof 2017 H. Sailor, et al. 2017 [45]

DNN Speech SSD ASVSpoof 2015 H. Yu et al. 2017 [134]

DNN, RNN FBANK, CQCC SSD ASVSpoof 2015 Y. Qian et al. 2017 [135]

GMM MFCC ICC Private dataset H. Alaie et al. 2016 [136]

ConvRBM∗ Cry signal ICC DA-IICT, Chillanto H. Sailor, et al. 2017 [46]
∗ indicates proposed model in this thesis.

sification (ESC) [5], spoof speech detection (SSD) [6], and infant cry classification
(ICC) tasks [46]. The novelty of the proposed model lies in learning directly from
the speech and audio signals of any arbitrary lengths in order to alleviate artifacts
of windowing. In addition, it includes nonlinearity in learning and the model is
stochastic in nature. Our proposed model is based on a Convolutional Restricted
Boltzmann Machine (ConvRBM), which was first proposed in [59] to improve the
scalability of RBM. Earlier ConvRBM was applied on spectrograms of speech sig-
nals to model the TRFs in the auditory cortex [50]. Our work is highly motivated
by success of RBM-based approaches in [50] and [232] for auditory representa-
tion learning. In [10], we have introduced noisy rectified linear units (NReLU) in
ConvRBM to learn the TRFs. We developed ConvRBM to model auditory pro-
cessing in the human ear using raw speech signals [2], [3]. We have used ReLU to
increase the sparsity, and inference is based on NReLU. Compared to recent ap-
proaches for filterbank learning in convolutional networks [102–104], our model
is unsupervised and probabilistic in nature. The two ConvRBMs are stacked to-
gether via layerwise training which we refer to as the unsupervised deep auditory
model (UDAM), which is successfully applied for the ASR task [11]. Unsuper-
vised filterbank learning along with the Teager Energy Operator (TEO) is applied
for noise-robust speech recognition in [4].

50



2.10 Chapter Summary

In this Chapter, we presented the basic background for auditory signal process-
ing and representation learning. In addition, the fundamentals of speech recog-
nition were presently briefly. The discussion on Hopfield networks and Boltz-
mann machines makes a starting point to understand our proposed Convolu-
tional RBM. The literature on auditory modeling is presented using both com-
putational/mathematical methods and machine learning-based methods. In the
next Chapter, we will present our proposed ConvRBM model in detail.
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CHAPTER 3

Auditory Filterbank Learning

3.1 Introduction

In this chapter, we introduce our proposed model of unsupervised auditory fil-
terbank learning using speech signals. The model is based on a Convolutional
Restricted Boltzmann Machine, abbreviated as ConvRBM. The architecture of the
proposed model is discussed in Section 3.2. Section 3.3 presents the training cri-
terion of ConvRBM and an algorithm to update the model parameters in detail.
After the model is trained, the stages of feature extraction are presented in Section
3.4. An analysis of the learned filterbanks and its comparison with the standard
auditory frequency scales is discussed in Section 3.5. We have shown that the
learned subband filters resemble the gammatone-like auditory filters. An appli-
cation to the ASR task is presented in Section 3.6-3.7 for various databases.

3.2 Proposed Model for Filterbank Learning

Figure 3.1: The arrangement of the hidden units in K groups, and the corre-
sponding weight connections. The filter index-axis is perpendicular to the plane
of this paper. Each hidden unit (red dots) in the kth group is wired such that it re-
sults in a valid convolution between the speech signal and weights Wk. After [3].
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ConvRBM has two layers, namely, a visible layer and a hidden layer [2, 3, 50,
59]. The input to the visible layer (denoted as x) is an entire speech signal of length
n samples. The hidden layer (denoted as h) consists of K-groups (i.e., number of
subband filters) with filter length of m samples in each. Weights (also called as
filters or in fact, subband filters w.r.t. the speech perception mechanism in hu-
man hearing [137]) are shared between the visible and hidden units amongst all
the locations in each group [59]. Weight sharing reduces the number of param-
eters compared to the fully connected RBM, and helps the model to learn time-
frequency structures in the speech signals as discussed later in this Section. De-
noting bk as the hidden bias for the kth group, the response of the convolution
layer for the kth group is given as [3]:

Ik = (x ∗ W̃k) + bk, (3.1)

For ConvRBM with the visible units x and hidden units h, the energy function of
the model is given as [2], [3]:

E(x, h) =
1

2σ2
x

n

∑
i=1

x2
i −

1
σx

K

∑
k=1

l

∑
j=1

m

∑
r=1

(
hk

j wk
r xj+r−1

)
−

K

∑
k=1

bk

l

∑
j=1

hk
j −

1
σ2

x
c

n

∑
i=1

xi,

(3.2)

where c is a visible bias, which is also shared. We have used ‘valid’ length con-
volution (as discussed in Section 2.5.1, Chapter 2) and hence, the length of each
group is l = n− m + 1. Each speech signal is normalized to the zero-mean and
unit variance. Hence, variance (σ2

x) in eq. (3.2) is set to 1 as suggested in [60]. The
joint distribution function of the visible and hidden units is

p(x, h) =
1
Z

e−E(x,h), (3.3)

where Z is the partition function, Z =
∫ ∞
−∞

∫ ∞
−∞ e−E(x,h)dxdh, which normalizes

the energy, and thereby making it a probability distribution function (PDF). In
case of sigmoid hidden units, the stochastic sampling equations of visible and
hidden units are given as [50]:

hk ∼ sigmoid((x ∗ W̃k) + bk),

xrecon ∼ N
(

K

∑
k=1

(hk ∗Wk) + c, 1

)
,

(3.4)
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whereN (µ, 1) is a Gaussian distribution with mean µ and variance 1. Generaliza-
tion of binary hidden units is achieved by replacing each binary unit with infinite
copies of binary units that all have the same weights and progressively more neg-
ative bias [138]. If the offsets of the sigmoid units are -0.5,-1.5,..., we obtain a set of
sigmoid units referred to as the Stepped Sigmoid Units (SSU). The sum of proba-
bilities of the copies of a single unit is extremely close to a form given by:

lim
N→∞

N

∑
i=1

sigmoid(Ik − i + 0.5) = log(1 + eIk). (3.5)

Hence, the total activities of the copies of a single unit act like a smoothed recti-
fied linear unit known as the softplus function. The drawback of such an approach
is that the sigmoid function needs to be used many times to get the probabilities
required for sampling an integer value correctly. A fast approximation is possible
where the sampled value of the ReLU is not constrained to be an integer. It is
obtained by addition of a Gaussian noise whose variance is controlled by the sig-
moid of the input. Since it is a stochastic version of the ReLU, it is known as Noisy
ReLU (NReLU). With NReLU, following are the stochastic sampling equations for
the hidden and visible units (use the reconstructed speech signal, xrecon to further
update hidden units) [2], [3]:

hk ∼ max(0, Ik +N (0, sigmoid(Ik))),

xrecon ∼ N
(

K

∑
k=1

(hk ∗Wk) + c, 1

)
,

(3.6)

where N (0, sigmoid(Ik)) is a Gaussian noise with mean zero and sigmoid of Ik

as its variance. While calculating the relationship between the hidden and visible
units, a deterministic ReLU (i.e., max(0, Ik)) is used as an activation function of
the hidden units (as shown in Algorithm 1 in Section 3.3). The example of various
activation functions is illustrated in Figure 3.2 for activation function F(x) applied
on the input x ∈ R. The NReLU activation function is plotted for 100 realizations
of the Gaussian noise added to the input signal as shown in Figure 3.2 (c). The
main difference between the ReLU and NReLU is the increased dynamic range
of NReLU due to the addition of the Gaussian noise, which in turn leads to the
stochastic nature of the hidden units.

With a convolution layer and ReLU nonlinearity, an example of processing
stages is shown in Figure 3.3. The convolution with the subband filters (i.e.,
weights of the proposed model) decomposes the speech signal into different sub-
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Figure 3.2: Example of activation functions for (a) Sigmoid, (b) ReLU, and (c)
NReLU.

bands. We will see in Section 3.5 that such decomposition of the speech signal is
due to using different subband filters that are localized in the frequency-domain.
Learning of such subband filters is possible because of the weight sharing in Con-
vRBM and temporal information in the speech signals (see in Appendix A for de-
tailed discussion). ReLU reduces the information by making the negative values
to zero that leads to the sparsity in the hidden units.

Figure 3.3: The example of decomposition of a speech signal using the weights
of ConvRBM with a convolution layer followed by ReLU nonlinearity. After [3].

3.3 Model Learning

Unsupervised learning of a probabilistic model means adjusting the model pa-
rameters θ so as to maximize the likelihood of training data [52]. Let us assume
that we have a set of D training examples (i.e., X = {xd|d ∈ [1, 2, ..., D] sampled
from some underlying function f (x)). Assuming that all the training examples
are i.i.d (independent and identically distributed) sampled from the data distri-
bution p(x), we can write likelihood for the observed data as a multiplication of
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the probability densities of each training example [52]:

p(X; θ) =
D

∏
d=1

p(xd; θ). (3.7)

Generally, it is convenient to use log-likelihood and hence, products in eq. (3.7)
can be written as sum of logarithms as follows [52]:

`(X; θ) = log
D

∏
d=1

p(xd; θ), (3.8)

=
D

∑
d=1

log p(xd; θ). (3.9)

Since logarithm is a monotonic function, maximization of likelihood will be intact
in log-likelihood domain [14]. The details of ML optimization are given in Ap-
pendix F, Section F.1. For a single training example with the visible and hidden
units [x, h], the log-likelihood of the MRFs is given as [52]:

`(x; θ) = log p(x; θ), (3.10)

= log
∫ ∞

−∞
p(x, h; θ)dh. (3.11)

Using eq. (3.3), the log-likelihood can be written in terms of the energy function
E(x, h) as follows:

`(x; θ) = log
1
Z

∫ ∞

−∞
e−E(x,h)dh, (3.12)

= log
∫ ∞

−∞
e−E(x,h)dh− log Z, (3.13)

`(x; θ) = log
∫ ∞

−∞
e−E(x,h)dh− log

∫ ∞

−∞

∫ ∞

−∞
e−E(x,h)dxdh, (3.14)

where the partition function is given as Z =
∫ ∞
−∞

∫ ∞
−∞ e−E(x,h)dxdh. The gradient

of log-likelihood is calculated as the derivative of the log-likelihood function w.r.t.
the model parameters, θ :=

(
Wk, bk, c

)
[3], [52]:
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(3.15)

where p(h|x) can be derived using the product rule of probability [14]:

p(h|x) = p(x, h)
p(x)

=
e−E(x,h)∫ ∞

−∞ e−E(x,h)dh
. (3.16)

With the notations used in [52], we can write the log-likelihood in terms of expec-
tations as [3]:

∂

∂θ
`(x; θ) = −Ep(h|x)

[
∂

∂θ
E(x, h)

]
+ Ep(h,x)

[
∂

∂θ
E(x, h)

]
,

≈ −
〈

∂

∂θ
E(x, h)

〉
data

+

〈
∂

∂θ
E(x, h)

〉
model

,
(3.17)

where 〈·〉 is the sample mean under distribution used to calculate expectations.
Here, 〈·〉data is the sample mean estimated, when the visible units are clamped to
the speech signal (i.e., input data) and 〈·〉model is the sample mean estimated when
the visible and hidden units are sampled from a model distribution. The first part
of eq. (3.17), for Wk as a model parameter, can be computed by taking a derivative
of eq. (3.2) w.r.t. Wk. The gradient for weights in each kth group is given as [3]:

∂

∂wk
r

E(x, h) = − ∂

∂wk
r

[
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∑
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l
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j wk
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)]
. (3.18)
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For r = 1 to m, eq. (3.18) can be written as a set of equations as follows [3]:

∂

∂wk
1

E(x, h) =
l

∑
j=1

(
hk

j xj

)
,

...

∂

∂wk
m

E(x, h) =
l

∑
j=1

(
hk

j xj+m−1

)
.

(3.19)

Since Wk = [wk
1, wk

2, ..., wk
m] is a weight vector, we can write this as a gradient of

weight vector, Wk [3]:

∴

[
∂

∂wk
1

E(x, h), . . . ,
∂

∂wk
m

E(x, h)

]
=

∂

∂Wk E(x, h), (3.20)

= −
l

∑
j=1

hk
j xj+r−1, (3.21)

= −conv(x, h̃k). (3.22)

where h̃k is a flipped array to represent the linear convolution operation denoted
as conv(·). The length of this valid convolution between the input of length n
samples and the kth hidden group of length, l = n − m + 1 (obtained from the
convolution of input and weights), is n− l + 1 = m samples. This term is easy to
calculate. We clamp the visible units to the speech signal, x, and find hidden unit
activations. The hidden unit activations can be found by passing convolution
responses, Ik, from the deterministic ReLU nonlinearity. Then, the relationship
between the hidden and visible units can be found using eq. (3.22). This is called
the positive phase of CD learning [24].

The second term in eq. (3.17) requires samples from a model distribution,
which is very difficult to obtain. Since we have conditional probabilities of both
visible and hidden units, blocked Gibbs sampling is used to obtain samples from
the model [51]. The Gibbs sampling is a type of Markov Chain Monte Carlo
(MCMC) technique to draw samples from the distribution and to approximate the
expectation operator in the sample average form [14], [51]. Ideally, we should run
the chain to infinity to obtain the samples from the model distribution at equilib-
rium state [139]. We clamp the visible units to the input data, update the hidden
units, and reconstruct back the visible units, and repeat this procedure infinite
times as shown in Figure 3.4. Infinite steps in Gibbs sampling can be well approx-
imated in finite time using a technique called the Contrastive Divergence (CD) [24].

58



Instead of sampling infinite times, we can sample only up to N times called as
(CD-N) or it is shown in [24] that even a single step gives a good approximation
called as CD-1. We have used a single step CD learning as shown in Figure 3.5.
Updating hidden units using reconstructed speech signal is called the negative
phase of CD learning [24]. The second term in eq. (3.17) can be written as:

Visible units

Hidden units

Visible units

Hidden units

Visible units

Hidden units

o o o

Visible units

Hidden units

Equilibrium 
after infinite 
steps

CD-1 CD-2 CD-∞

Figure 3.4: Gibbs sampling in ConvRBM. After [24], [25].

Visible units

Hidden units

Visible units

Hidden units

Speech signal Reconstructed speech signal

Figure 3.5: Demonstration of a CD-1 learning. After [3].

∂

∂Wk E(x, h) = −conv(x, h̃k), (3.23)

where the underline symbol denotes visible (x = xrecon), and the hidden states (h̃k)
in the CD-1 stage (negative phase). We obtain samples of the visible and hidden
units using eq. (3.6). For the weights of model, eq. (3.17) can now be written as:

∂

∂Wk `(x; θ) = Ep(h|x)

[
conv(x, h̃k)

]
−Ep(h,x)

[
conv(x, h̃k)

]
,

≈
〈

conv(x, h̃k)
〉

data
−
〈

conv(x, h̃k)
〉

model
.

(3.24)

The corresponding gradient update for weights is now written as [3]:

∇Wk = ε
(〈

conv(x, h̃k)
〉

data
−
〈

conv(x, h̃k)
〉

model

)
, (3.25)

where ε is a learning rate parameter. For the hidden biases, bk, we can write the
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gradient equation as:

∂

∂bk
`(x; θ) = −Ep(h|x)

[
∂

∂bk
E(x, h)

]
+ Ep(h,x)

[
∂

∂bk
E(x, h)

]
,

= Ep(h|x)

[
l

∑
j=1

hk
j

]
−Ep(h,x)

[
l

∑
j=1

h̃k
j

]
,

≈
〈

l

∑
j=1

hk
j

〉
data

−
〈

l

∑
j=1

h̃k
j

〉
model

.

(3.26)

For visible bias c, we can write the gradient equation as:

∂

∂c
`(x; θ) = −Ep(h|x)

[
∂

∂c
E(x, h)

]
+ Ep(h,x)

[
∂

∂c
E(x, h)

]
,

= Ep(h|x)

[
n

∑
i=1

xi

]
−Ep(h,x)

[
n

∑
i=1

xi

]
,

≈
〈

n

∑
i=1

xi

〉
data

−
〈

n

∑
i=1

xi

〉
model

.

(3.27)

The gradient update equations for the hidden and the visible biases are given
as [3]:

∇bk = ε

〈 l

∑
j=1

hk
j

〉
data

−
〈

l

∑
j=1

h̃k
j

〉
model

 ,

∇c = ε

(〈
n

∑
i=1

xi

〉
data

−
〈

n

∑
i=1

xi

〉
model

)
.

(3.28)

The iterative updates for model parameters θ :=
(
Wk, bk, c

)
are given as [52]:

θ(t+1) = θ(t) +∇θ(t) + ηθ(t−1), (3.29)

where the momentum term with the parameter η helps against the oscillatory be-
havior in the parameter space, and accelerates the learning process [14], [52], [70].
In addition, we include the weight decay regularization term in the likelihood
function in eq. (3.11) to combat overfitting in the ConvRBM training. The weight
decay regularization is discussed in Appendix F. The steps for the model learning
using CD-1 are described in Algorithm 1 [3].
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Algorithm 1 The proposed algorithm for ConvRBM training applied on speech
signals. After [3].

Input: Speech signals, x, with arbitrary length of n samples.
Output: Weights, W, hidden biases b, and visible bias c.

1: for each training iteration t do
2: Use weights and biases updated during the last iteration t− 1
3: for each training example x do
4: for each kth group do
5: Convolution response, Ik = (x ∗ W̃k) + bk
6: hk

act = max(0, Ik)

7: hk
sample ∼ max(0, Ik +N (0, sigmoid(Ik)))

8: VH = conv(x, hk
act)

9: H∑ = ∑(hk
act)

10: end for
11: Sample the visible units (reconstruct speech signal) from the hidden units

as:
12: xrecon ∼ N

(
∑k(hk

sample ∗Wk) + c, 1
)

13: for each kth group do
14: Convolution response, Ik = (xrecon ∗ W̃k) + bk
15: hk

act = max(0, Ik)

16: hk
sample ∼ max(0, Ik +N (0, sigmoid(Ik)))

17: VH = conv(xrecon, hk
act)

18: H∑ = ∑(hk
act)

19: end for
20: ∇W(t) = [VH −VH] /n
21: ∇b(t) =

[
H∑ − H∑

]
/n

22: ∇c(t) = [∑(x)−∑(xrecon)] /n
23: W(t+1) ←W(t) + ε∇W(t) + ηW(t−1)

24: b(t+1) ← b(t) + ε∇b(t) + ηb(t−1)

25: c(t+1) ← c(t) + ε∇c(t) + ηc(t−1)

26: end for
27: end for
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Figure 3.6: Block diagram of stages in the feature representation using Con-
vRBM: (a) speech signal, (b) and (c) responses from convolution layer, and
ReLU, respectively, (d) pooling, and (e) logarithmic compression. After [2], [3].

3.4 Feature Extraction

After ConvRBM is trained, pooling is applied to reduce the representation of Con-
vRBM responses in the temporal-domain. Our proposed model is different from
the one used in [50], where a probabilistic max-pooling was used in the infer-
ence stage itself for the binary hidden units. Our approach resembles the method
used in [140], where the time-domain gammatone responses were reduced using
average-based framing, which is a pooling-like operation. Such an approach is
also used in [98], where after convolution with the scattering wavelets, averaging
is performed using a lowpass filtering. Here, pooling in the time-domain is equiv-
alent to short-time averaging in the spectral features, such as MFCC, and lowpass
filtering in the scattering wavelets. For a speech signal with the sampling fre-
quency, Fs = 16 kHz, pooling is applied using a 25 ms (i.e., 400 samples) window
length (wl) and 10 ms (i.e., 160 samples) shift (ws). We used this setup to compare
the MFCC extracted using the same windowing parameters. Pooling is performed
across time and separately for each subband filter. The speech signal with n sam-
ples has F = n−wl+ws

ws number of frames. We have experimented with both the
average and max-pooling and found better experimental results with the average
pooling. After the pooling, a stabilized logarithm log(·+ δ) (with δ = 0.0001) is
applied as a compressive nonlinearity similar to [141].
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The block diagram for the feature extraction procedure (described above) is
shown in Figure 3.6. To obtain the same length as the speech signal, ‘same’ length
convolution is used. During the feature extraction stage, we have used determin-
istic ReLU nonlinearity max(0, Ik) as an activation function of the hidden units.
The pooling operation reduces the temporal resolution from K × n samples to
K × F frames. The logarithmic nonlinearity compresses the dynamic range of
features, which was found to improve the performance in ASR tasks [141]. The
feature extraction steps involved in this ordering resemble the early auditory pro-
cessing [39], [62] (discussed in the Figure 2.16 in Section 2.6, Chapter 2). In the
next Section, the analysis of the ConvRBM filterbank is presented.

3.5 Analysis of ConvRBM

3.5.1 Analysis of Learned Subband Filters

For the analysis of the subband filters, we computed the center frequencies (CFs)
of the subband filters as described in [105]. We have analyzed the model with
K=60 subband filters (i.e., 60 groups in the hidden layer). Examples of subband
filters learned using ConvRBM on the TIMIT, WSJ1 and AURORA 4 databases are
shown in Figure 3.7. Filters were arranged according to their increasing order of
CFs. Weights of ConvRBM were initialized randomly, and there is no constraint
on the filter shapes; still the model was able to learn meaningful representation
from the speech signals. Weights of the model called impulse responses of sub-
band filters in the time-domain are shown in Figure 3.7 (a)-(c). We can see that
for all three databases, many subband filters are very similar to the auditory gam-
matone filters and physiological auditory filters (i.e., primarily motivated by the
studies reported in [12], [115]). Unlike the filters derived using RBM [113], our
learned subband filters resemble more closely the auditory subband filters for the
speech signals [12]. This may be due to the fact that RBM was trained on ran-
domly selected smaller windows of the speech signal and hence, they were in
any random temporal phase [113]. We have trained our model on speech sig-
nals in the time-domain without windowing to learn subband filters, and all sub-
band responses are pooled later to get the short-time spectral representation of
the speech signal. Figure 3.7 (d)-(f) shows the frequency-domain representation
of corresponding time-domain impulse responses. We can see that all the sub-
band filters are localized in the frequency-domain with the different CFs. Filters
with lower CFs are highly localized in the frequency-domain, while those with
higher CFs are broader in terms of their bandwidth.
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Proposed subband filters can also accurately reconstruct a speech signal even
after ReLU nonlinearity. A small segment of the original speech signal (about 500
samples) from the WSJ1 database, a segment of reconstructed speech from the
model and the residual error are shown in Figure 3.8. From the residual error
(RMSE = 0.032), we can see a very accurate reconstruction of the speech signal.

Figure 3.8: (a) Segment of speech signal, (b) reconstructed speech from the pro-
posed model, and (c) residual error. Root Mean Squared Error (RMSE) between
the original and reconstructed speech signal is 0.032. After [3].

3.5.2 Comparison with Standard Auditory Filterbanks

In order to compare a learned filterbank with the standard auditory filterbanks,
we have shown a CF vs. subband filter index plot in Figure 3.9 for a filterbank
learned on three databases. We can see that the ConvRBM filterbank has also a
nonlinear relationship between CF and subband filter ordering similar to other
auditory filterbanks (more closely with the Mel scale). This represents the place-
ment of subband filters on the BM in the cochlea. Out of 60 subband filters, more
than 40 subband filters have CFs below 4 kHz. Low frequency regions are repre-
sented by more number of subband filters learned by the model compared to the
high frequency regions (similar to the Mel scale). Hence, the learned filters can
represent frequency tuning in the human cochlea, which can be modeled more
effectively using a bank of subband filters [61].

We have also computed Equivalent Noise Bandwidth (ENBW) of the Con-
vRBM subband filters as done in [105] for CNN filters. The scatter plot of band-
width vs. CF is shown in Figure 3.10. The Gammatone filterbank (GTFB) with
ERB scale is chosen as a reference since GTFB is more physiological filterbank.
One can see that GTFB is perfectly a constant-Q filterbank since bandwidths of
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Figure 3.10: Bandwidth vs. CF for speech databases.

the Gammatone filters are progressively increasing as the increase in CF. Con-
vRBM filterbank for all the three databases also largely preserve the constant-Q
nature. This observation is also consistent with the study presented in [12] for
speech signals.

A detailed comparison of the filterbank is shown in Figure 3.11. In Figure 3.11
(a), filterbanks are compared with CFs up to 1 kHz. We can see that, in all the
learned filterbanks, some of the subband filters have similar CFs. This redun-
dancy is only observed for CFs up to 1 kHz and not in CFs above 1 kHz as shown
in Figure 3.11 (b). This may be due to the lack of regularization in ConvRBM. We
have also compared filterbanks trained on the clean WSJ0 database, and multi-
condition training database AURORA 4 in Figure 3.11 (c). The difference between
both the filterbanks can be seen after 2 kHz, since the filterbank learned from the
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Figure 3.12: (a) Speech signal, (b) ConvRBM spectrogram, and (c) Mel spec-
trogram. Full line regions are marked to see similarities and the dotted circle
indicates differences in both the spectrograms. After [3].

AURORA 4 database uses more subband filters compared to the clean WSJ0 in
the low frequency regions. This observation is different from the one reported
in [102], where the filterbank trained on a clean database uses more subband fil-
ters than the noisy database. However, the major difference is that the weights
of our model were randomly initialized without any constraints, while in [102]
weights were initialized using the gammatone filterbank.

The spectrum representation of the speech signal using subband filters is com-
pared with the Mel spectrogram in Figure 3.12. Similar to a Mel spectrogram, a
ConvRBM spectrogram indeed represents the spectrum information, such as for-
mant contours, voiced, and the unvoiced sounds, etc. The regions marked using
solid lines shows that learned subband filters are capturing spectrum information.
However, the filterbank scale is slightly different from the Mel scale as seen from
Figure 3.12. We have also noticed that for the ConvRBM filterbank, the resolution
is slightly poor at the higher frequencies compared to the Mel spectrogram (e.g.,
the region marked by the dotted circles). In the next Section, we will discuss how
ConvRBM subband filters can represent an optimal auditory code.

3.5.3 Optimal Auditory Code

The auditory code (also called as the auditory neural code) is an auditory repre-
sentation obtained from the transformations applied on sounds, which encodes
the unique characteristics of a particular sound [115]. It must represent a wide
range of the auditory tasks that require the great sensitivity in time and frequency
and be effective over the diverse nature of sounds present in the natural acoustic
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environments [115]. It has been suggested that our sensory systems might have
evolved highly efficient coding strategies to maximize the information conveyed
to the brain, while minimizing the required energy and neural resources [142],
[143]. It was observed the first time by Lewicki that such auditory coding can be
learned through the statistics of natural sounds [12]. The auditory code is optimal
for the underlying natural sound categories and also resembles auditory revcor
(reverse correlation) filters obtained from the auditory nerves of a cat [61]. The re-
verse correlation is a technique to estimate the auditory nerve impulse responses
from the cochlea or STRFs from the auditory cortex [144]. The examples of au-
ditory revcor filters are shown in Figure 3.13 obtained from the EarLab, Boston
University, USA, [26], [13]. Comparison of our auditory subband filters in Figure
3.5.1 and Figure 3.13 concludes that our model can also learn the auditory-like
codes similar to as obtained from the physiological experiments.

Figure 3.13: Examples of auditory revcor filters in (a) time-domain, and (b)
frequency-domain. The *.mat files are obtained from the website given in [26].

In this section, we will also investigate as to whether the learned subband fil-
ters represent an optimal auditory code (as investigated in other landmark stud-
ies [12], [115]). First, ConvRBM was trained on single speaker ‘SLT’ database
taken from the CMU-ARCTIC database [145]. We have found that some sub-
band filters are different from the ConvRBM trained on TIMIT or WSJ databases.
The example of subband filters of ConvRBM trained on ‘SLT’ speaker is shown in
Figure 3.14. We can see a harmonic nature of the subband filters (examples are
marked by the dotted boxes) in both time and frequency-domains. This sup-
ports the findings reported in [12], and [109] that when a probabilistic model is
trained on a single speaker database, subband filters represent formant contours
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as well as harmonic structures in the speech signal, which is speaker-specific (e.g.,
the fundamental frequency (F0) and its harmonics or pitch contours). Such sub-
band filters are not localized like the one that are trained on TIMIT and the WSJ
database (as shown in Figure 3.5.1). Hence, we can say that the learned subband
filters can best represent a single speaker or an optimal auditory code for that par-
ticular speaker. This may help for several speech processing applications where
the speaker-specific information is required in the feature extraction stage.

(a) (b)

Figure 3.14: Training ConvRBM on a single speaker database: (a) subband filters
in time-domain, and (b) corresponding frequency responses.

When a model is trained on a database with multiple speakers, it captures the
statistical properties of speech signals, which may be speaker-independent [12]. In
particular, such statistical properties can best represent the speech signal, which
in turn leads to an invariant representation with respect to the speakers and envi-
ronmental differences. Hence, the subband filters do not represent any harmonic
structure, which is speaker-specific; rather it may represent vocal tract character-
istics, i.e., formants (such as emphasis on lower formants F1, and F2 to aid for
speech recognition tasks). Hence, these subband filters can be considered to be an
optimal auditory code for a speech database prepared from multiple speakers.

3.5.4 Stability Analysis of ConvRBM to Additive Noise

Since the ConvRBM filterbank largely preserve constant-Q nature for speech sig-
nals, it can be shown that it is stable to time and frequency deformations similar
as mathematically proved for constant-Q scattering wavelets [98]. Here, we will
discuss the stability of the transformations in the ConvRBM w.r.t. the additive
noise motivated by the studies in [98], [146]. Let T be the transformation applied
on input x ∈ lp that can be linear or nonlinear. Let us assume a bounded additive
noise n = [n1, n2, ..., nN], i.e., |ni| ≤ M < ∞, ∀i. We want to prove stability of
ConvRBM for a signal with additive noise x̂ = x + n. For T to be stable to the
additive noise n, the Lipschitz continuity condition needs to be satisfied for constant
λ > 0, which is given as [146]:

‖Tx− Tx̂‖2 ≤ λ ‖x− x̂‖2 . (3.30)
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The definition of the Lipschitz continuity condition is given in Appendix D. This
condition was derived for scattering convolutional networks [98]. Recently, it was
proved for the supervised CNN with certain criteria, such as max-norm regular-
ization for weights, ReLU nonlinearity, and max-pooling [147]. Our model also
has the convolution and ReLU stages and hence, we can prove that ConvRBM is
also stable to the additive noise.

3.5.4.1 Stability of Convolution in ConvRBM

The transformation T for the convolution operation in ConvRBM for the kth group
is Tx = x ∗Wk. For sequences fn ∈ lp and gn ∈ lg (n ∈ N) , Young’s inequality is
defined as follow:

‖ fn ∗ gn‖r ≤ ‖ fn‖p ‖gn‖q , (3.31)

where 1 ≤ p, q, r ≤ ∞ and 1
r = 1

p +
1
q − 1. Here, ‖ fn‖p is defined for sequence fn =

[ f1, f2, ..., fn] as ‖ fn‖p = (∑n
i=1 | fi|p)1/p. Young’s inequality for the convolutions

of the form, Tx = x ∗W (with Wk ∈ lp, ∀k) can be written as:

‖x ∗W‖2 ≤ ‖W‖1 ‖x‖2 , (3.32)

where p = 1, q = 2, r = 2 satisfy 1 ≤ p, q, r ≤ ∞ and 1
r = 1

p +
1
q − 1. The Lipschitz

continuity for convolutions can be written as:

‖x ∗W− x̂ ∗W‖2 ≤ ‖W‖1 ‖x− x̂‖2 . (3.33)

Comparing eq. (3.30) and eq. (3.33), the Lipschitz constant λ = ‖W‖1. Hence, sta-
bility analysis depends on the L1-norm of weights of ConvRBM. This condition is
similar to the stability condition in the LTI system that the impulse response of an
LTI system is absolutely summable or integrable (i.e., ‖W‖1 << ∞) [148]. How-
ever, the Lipschitz continuity requires that ‖W‖1 should be as small as possible.
In [147], weights are max-norm regularized to obtain the stability criteria. Con-
vRBM training includes weight decay, which penalizes the weights to be small
and smooth [20]. For TIMIT and AURORA 4 databases, we have observed that
‖W‖1 ≤ 3, and ‖W‖1 ≤ 2.5, respectively. Hence, based on the derivation in [147],
for convolution operation in ConvRBM, the following stability condition holds:∥∥∥x ∗Wk − x̂ ∗Wk

∥∥∥
2
≤ λ ‖x− x̂‖2 , (3.34)

where 〈λk〉 ≤ 3 for TIMIT and 〈λk〉 ≤ 2.5 for the AURORA 4 (〈λk〉 = 1
K ∑K

k=1 λk).
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3.5.4.2 Stability of Rectified Nonlinearity

As discussed in Section 3.4, we have used the deterministic ReLU for feature ex-
traction. It is proved in [147] that the ReLU operation is also stable with λ=1. The
stability condition for ConvRBM with response, Ik for clean and Îk for the additive
noise is given as: ∥∥max(Ik, 0)−max(Îk, 0)

∥∥
2 ≤

∥∥Ik − Îk
∥∥

2 . (3.35)

We can prove this with four cases depending on signs of Ik and Îk.
Case 1: Ik, Îk > 0 ∥∥max(Ik, 0)−max(Îk, 0)

∥∥ =
∥∥Ik − Îk

∥∥ . (3.36)

Case 2: Ik, Îk < 0 ∥∥max(Ik, 0)−max(Îk, 0)
∥∥ <

∥∥Ik − Îk
∥∥ . (3.37)

Case 3: Ik > 0, Îk < 0

∥∥max(Ik, 0)−max(Îk, 0)
∥∥ = ‖Ik‖ <

∥∥Ik − Îk
∥∥ (3.38)

Case 4: Ik < 0, Îk > 0

∥∥max(Ik, 0)−max(Îk, 0)
∥∥ =

∥∥Îk
∥∥ <

∥∥Ik − Îk
∥∥ (3.39)

Hence, from all the four cases, eq. (3.35) is verified. The rectifier nonlinearity can
also be viewed as a mapping T : R→ R+ that has fixed points for x > 0 [149]. The
stability of ConvRBM to the additive noise resulted in an improved performance
in the AURORA 4 speech recognition task.

3.6 Experimental Setup

3.6.1 Speech Databases

3.6.1.1 Small Vocabulary Speech Database

We have used the TIMIT database for the phone recognition task [150]. In the
TIMIT database, all SA category sentences (that are spoken by all the speakers)
were removed as they may bias the speech recognition performance. Training
data contain utterances from the 462 speakers. The Development set and test set
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contain utterances from 50 and 24 speakers, respectively.

3.6.1.2 Large Vocabulary Speech Databases

Large Vocabulary Continuous Speech Recognition (LVCSR) tasks were performed
using the Wall Street Journal (WSJ) databases [151]. Both WSJ0 SI-84 (the subset of
WSJ) and the full WSJ corpus (also known as WSJ1) are used for the experiments.
The WSJ0 SI-84 training data consist of 14 hours of speech data, which include
7138 utterances spoken by the 84 speakers. Two Nov’92 evaluation sets, namely,
5K-word and 20K-word vocabulary (denoted as Eval92_5K and Eval92_20K, re-
spectively), were used for testing. The WSJ1 training database is of 81 hours.
Notations of the development and the evaluation sets for WSJ1 are as follows: D1
and D2 for the development sets Dev93 and Dev93_5k, E1 and E2 for the eval-
uation sets Eval93 and Eval93_5k, E3 and E4 for the evaluation sets Eval92 and
Eval92_5k, respectively.

3.6.1.3 Noisy Speech Database

We have also used the AURORA 4 database (obtained from the WSJ0 database),
which was created using six different types of additive noises, namely, car, a
crowd of people (babble), restaurant, street, airport, and train station [152]. The
multi-condition training database was prepared with 7138 utterances from the
WSJ0 database with half of them recorded with a Sennheiser microphone and the
other half recorded with a second microphone. The type of noise is randomly cho-
sen out of six noises in total and at a randomly chosen SNR between 10 dB and 20
dB. A set of 330 utterances has been designated to perform a baseline recognition
on the 5K word vocabulary. The test set consists of 14 subsets, each with 330 utter-
ances denoted as T1 to T14. The test sets are grouped into four categories, namely,
A: clean (set T1), B: noisy (set T2 to set T7), C: clean with channel distortion (set
T8), and D: noisy with channel distortion (set T9 to T14).

3.6.2 Training of ConvRBM and Feature Extraction

We have trained ConvRBM on each individual speech databases. Each speech sig-
nal after mean-variance normalization was applied to the ConvRBM. The weight
decay parameter was set to 0.001 (from the range 0.01-0.00001). The learning rate
was empirically chosen to be 0.005 (from the range 0.01-0.0001), which was fixed
for the first 10 epochs and decayed later at each epoch for stable learning of the
model parameters. We observed that, with ReLUs, only 25-35 training epochs
were found to be sufficient. For the first five training epochs, momentum was
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set to 0.5 and after that, it was set to 0.9. We have trained the model with dif-
ferent lengths of ConvRBM filters, and with different number of subband filters.
Since the average phoneme duration in speech signal is less than or equal to 10
ms [153], the window duration is selected in the range 8-10 ms. After the model
was trained, features were extracted from the speech signal as shown in Figure 3.6.
To reduce the dimension of a feature vector and to compare proposed feature set
with the MFCC, the DCT was applied and only first 13-D were retained. Delta and
delta-delta features were also appended resulting in 39-D cepstral feature vector
(indicated as ConvRBM-CC). We have not used DCT for filterbank experiments,
and use only 40 subband filters of ConvRBM (indicated as ConvRBM-BANK) sim-
ilar to the 40 subbands in Mel filterbanks.

3.6.3 ASR System Building

Baseline monophone GMM-HMM systems and hybrid DNN-HMM systems were
built using 39-D MFCC and 120-D FBANK feature vectors, respectively, for all the
databases used in this Chapter. The MFCC feature vectors were extracted from
the windowed speech signal with a 25-ms length window, and a 10-ms window
shift similar to the parameters of pooling. For the TIMIT database, 48 phones
were used for training and mapped to 39 phones during the scoring [154]. The
LM was performed using a bi-gram language model. For WSJ databases (WSJ0
and WSJ1), 5K and 20K tri-gram LMs were used using 46 phones. The 5K bi-gram
LM and tri-gram LM were used for AURORA 4 test sets. In this thesis, all the
ASR systems were built using the KALDI speech recognition toolkit [155]. We also
experimented with the hybrid DNN-HMM system using the forced-aligned labels
obtained from the corresponding GMM-HMM systems. The results are reported
using DNN with 3 hidden layers, an 11-frame context-window, and 3000 hidden
units. The DNN-HMM system combination is performed using the Minimum
Bayes Risk (MBR) technique [156]. Lattices generated by N different systems are
combined to get the optimal word sequence as follows [156]:

W∗ = arg min
W

{
N

∑
i=1

λi ∑
W ′

Pi(W ′|O)L(W, W ′)

}
, (3.40)

where L(W, W ′) is the Levenshtein edit distance between two word sequences,
Pi(W ′|O) is the posterior probability of the word sequence W ′ given the acoustic
observation sequence O, and λi is the weight assigned to the ith system.
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3.7 Experimental Results

The significance of the ConvRBM filterbanks using various datasets is verified
using a phone recognition task, an LVCSR task, and ASR in degraded conditions.
We will first fine-tune the parameters of the model for each individual database
and use the optimal set of parameters in corresponding ASR experiments.

3.7.1 Experiments on TIMIT Database

In this Section, the effect of a number of subband filters (K), filter length (m), and
pooling type is verified through the experiments on the TIMIT database using
GMM-HMM systems, and results are reported in Table 3.1 [2], [3]. We can see
that the optimal filter length corresponding to the least Phone Error Rate (PER)
(see Appendix B.1) is 128 samples on the development (Dev) and test set. A filter
length of 128 samples (i.e., 8 ms) is sufficient to capture the small temporal varia-
tions in the speech signals [12]. In our case, average pooling works better than the
max-pooling. Since we are using the rectifier nonlinearity, it eliminates the can-
cellations between neighboring filter outputs, when combined with the average
pooling [157]. Hence, we achieved good performance with the average pooling.
Best performance is obtained with 60 subband filters, 128-sample filter length, and
using the average pooling.

Table 3.1: % PER for comparison of the number of subband filters (K), filter
length (m), and pooling type on the TIMIT database. After [2], [3].

K m Pooling type Dev Test
40 128 Avg 32.0 32.6
60 128 Avg 31.2 31.8
80 128 Avg 31.5 31.9
60 96 Avg 31.4 32.5
60 160 Avg 31.7 33.0
60 256 Avg 32.8 33.5
60 128 Max 32.6 33.5

Avg=Average Pooling, Max=Maximum Pooling

The experimental results are reported in % PER and % relative improvement
(in the parenthesis) in Table 3.2 [2], [3]. The relative improvements due to the
ConvRBM-CC and ConvRBM-FBANK are shown w.r.t. the MFCC and FBANK,
respectively. We can see that the ConvRBM-CC perform better than the MFCC
giving an absolute reduction of 1.5 % in PER on the development set, and 1.7 %
on the test set. Table 3.2 shows that for DNN-HMM systems, there is an absolute
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reduction of 1.1 % in PER using the ConvRBM-CC feature set, and 0.7 % using
ConvRBM-BANK on the development set. We achieved an absolute reduction of
0.7 % (3.15 % relative) in PER using ConvRBM-CC, and 0.6 % (2.56 % relative)
using the ConvRBM-BANK on the test set. Combining systems (denoted as ⊕)
trained using both the filterbank features gave an absolute reduction of 1 % in
PER compared to the ConvRBM-BANK and 1.7 % PER compared to the FBANK.
The comparison of a supervised CNN trained on the raw speech signals shows
that unsupervised ConvRBM-based features indeed perform better on the small
size datasets. However, later on, we observed in Section 3.7.3 that a supervised
CNN performs well with larger datasets, such as WSJ.

Table 3.2: % PER and relative improvements for TIMIT database. After [2], [3]

Feature Set System Dev Test
MFCC GMM-HMM 32.7 33.5

ConvRBM-CC GMM-HMM 31.2 (4.59) 31.8 (5.07)
MFCC DNN-HMM 23.0 24.0

ConvRBM-CC DNN-HMM 21.9 (4.78) 23.3 (2.92)
A:FBANK DNN-HMM 22.2 23.4

B:ConvRBM-BANK DNN-HMM 21.5 (3.15) 22.8 (2.56)
A ⊕ B DNN-HMM 20.5 (7.66) 21.7 (7.26)

CNN with the raw speech [158] - 29.9
⊕ denotes system combination experiments

3.7.2 Experiments on WSJ0 Database

The effects of parameters of ConvRBM were tested on the WSJ0 database and
results are reported in Table 3.3. We can see a similar set of parameters as TIMIT
that resulted in a lower % Word Error Rate (WER) (see Appendix B.1). The results
of ASR experiments are reported in Table 3.4 in terms of % (WER) [2], [3]. There is
an absolute reduction of 0.99 % WER on the eval92_5K test set, and 1.92 % WER
on the eval92_20K test set over MFCC using the GMM-HMM system. Significant
absolute reduction of 2.3 % WER is obtained for the 20K test set using the DNN-
HMM systems. The lowest WER 5.85 % (3.6 % relative improvement) for the 5K
test is achieved with the ConvRBM-BANK, while improvement is less using the
ConvRBM-CC. There is a relative improvement of 14.6 % over the MFCC and 5.6
% over the FBANK for the 20K test set. The ConvRBM-CC and ConvRBM-BANK
yielded almost similar WER for the 20K test set. This may be due to different
numbers of the subband filters in ConvRBM feature set (K = 60 followed by 13-D
DCT) and the ConvRBM-BANK (K = 40) to compare results with the MFCC and
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FBANK, respectively. However, compared to the FBANK, an absolute reduction
of 1.24 % (8.66 % relative) in WER for the 20K test set, and 0.67 % (11.40 % relative)
for the 5K test set was achieved by the MBR system combination.

Table 3.3: % WER for comparison of number of subband filters (K), filter length
(m) and pooling type on the WSJ0 database. After [2], [3]

K m Pooling type Eval92_5K Eval92_20K
40 128 Avg 13.49 26.21
60 128 Avg 12.96 25.80
80 128 Avg 13.41 25.66
60 96 Avg 13.97 25.94
60 160 Avg 13.25 26.1
60 256 Avg 13.75 27.01
60 128 Max 13.50 26.80

Table 3.4: % WER and relative improvements for the the WSJ0 database. Af-
ter [2], [3]

Feature Set System Eval92_5K Eval92_20K
MFCC GMM-HMM 13.95 27.72

ConvRBM-CC GMM-HMM 12.96 (7.09) 25.80 (6.93)
MFCC DNN-HMM 6.30 15.70

ConvRBM-CC DNN-HMM 6.05 (3.97) 13.40 (14.65)
A:FBANK DNN-HMM 6.07 14.32

B:ConvRBM-BANK DNN-HMM 5.85 (3.62) 13.52 (5.59)
A ⊕ B DNN-HMM 5.40 (11.04) 13.08 (8.66)
⊕ denotes system combination experiments

3.7.3 Experiments on WSJ Database

With the parameters of ConvRBM obtained from the WSJ0, we experimented on
the full WSJ database (i.e., WSJ1). The results are reported in Table 3.5 in terms
of % Word Error Rate (WER). We can see that our ConvRBM-CC feature set gave
an improvement on all the test sets. Using the GMM-HMM systems, we achieved
a relative improvement of 8 % (3-1.85 % absolute) on the development sets, 1.9-
5.2 % on the evaluation set: E1 and E2 and 10.7-12.3 % (2.85-1.72 % absolute) on
the evaluation set: E3 and E4. Using DNN-HMM systems, ConvRBM-CC gives
relative improvement of 9.65-13.42 % on the development sets, 7.21-17.8 % on the
evaluation sets, E1 and E2 and 12.49-13.16 % on the evaluation sets, E3 and E4.
Experiments on the filterbank feature sets also show improvements (1.35-6.82 %
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relative improvements) using ConvRBM-BANK compared to the FBANK except
on the test set E4. System combination of both the filterbank-based feature sets
gives further improvements with an absolute reduction of 1.44 %, 1.45 % and 0.95
% in WER for the test set D1, E1 and E3, respectively, compared to the FBANK
feature set. The comparison with supervised CNN (for test set E4) trained on the
raw speech signals shows that on larger data sets the supervised method performs
slightly better compared to our proposed unsupervised method.

Table 3.5: % WER and % relative improvements (shown in the brackets) for the
WSJ1 LVCSR task. After [3]

Feature Set D1 D2 E1 E2 E3 E4
GMM-HMM system

MFCC 37.45 23.04 30.95 17.87 26.60 13.94

ConvRBM-CC
34.37 21.19 29.35 17.53 23.75 12.22
(8.22) (8) (5.17) (1.9) (10.71) (12.34)

DNN-HMM system
MFCC 20.94 11.40 17.75 9.76 13.93 5.47

ConvRBM-CC
18.92 9.87 16.47 8.02 12.19 4.75
(9.65) (13.42) (7.21) (17.82) (12.49) (13.16)

A:FBANK 18.70 9.66 17.31 8.10 12.26 4.39

B:ConvRBM-BANK
17.96 9.53 16.13 7.92 11.80 4.91
(3.96) (1.35) (6.82) (2.22) (3.75) (-11.84)

A ⊕ B
17.26 9.04 15.86 7.76 11.31 4.22
(7.7) (6.42) (8.38) (4.2) (7.75) (3.87)

ConvRBM-BANK with CD-DNN-HMM, bi-gram 5k LM 6.4
CNN with raw speech, bi-gram 5k LM [104] 5.6

⊕ denotes system combination experiments

3.7.4 Experiments on the AURORA 4 Database

Multi-condition AURORA 4 training data is used for the ASR system building.
ConvRBM parameter tuning experiments on AURORA 4 database are shown in
Table 3.6. Since we need robustness against the signal degradation conditions, we
choose % WER of test sets, B and D as ConvRBM parameter selection criteria. The
ConvRBM with filter lengths 160 and 60 number of filters, is found to perform
relatively best for test sets B and D (however, the difference in % WER using both
the sets of parameters is very small).

The comparison of different feature sets are given in Table 3.7. Performance on
test sets with channel distortions is improved using context-independent DNN-
HMM (CI-DNN-HMM) systems. We obtained a relative reduction of 6.7 % WER
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on test set B, and an absolute reduction of 4.5 % and 3.05 % in WER for test sets
C and D, respectively. The ConvRBM-BANK gave an absolute reduction of 1.25
% on test set B and 1.73 % on test set D over the FBANK feature set. For test sets
A and C, an absolute reduction of 1.57 % and 3.85 %, respectively, is achieved
using ConvRBM-BANK compared to the FBANK feature set. High absolute re-
duction in % WER is obtained using system combination S1 ⊕ S2 of FBANK and
ConvRBM-BANK trained systems, respectively.

Table 3.6: % WER for comparison of number of subband filters (K), filter Length
(m) and pooling type on AURORA 4 database. After [3]

K m Pooling type A B C D Avg
40 128 avg 21.65 35.70 38.71 51.65 36.92
60 128 avg 22.53 32.77 36.63 49.04 35.24
60 128 max 21.48 32.72 37.34 49.08 35.15
80 128 avg 21.95 34.2 36.93 50.53 35.90
60 160 avg 21.02 32.76 37.08 48.95 34.95

We have also reported results on the CD-DNN-HMM with the forced-aligned
labels obtained from the triphone GMM-HMM system. In both bi-gram and tri-
gram 5K LM cases, the ConvRBM-BANK showed improvements compared to the
FBANK. With bi-gram 5K LM, 3 % (the relative improvement) is achieved for the
channel distortion test sets. With tri-gram 5K LM, 1.4-12.94 % relative improve-
ments are achieved for test sets (less improvements for the test set B and set D).
System combination for both LMs gives significant improvements compared to
the baseline FBANK systems. This shows that complementariness of both the
filterbanks-based features further helps for a robust ASR task.

Figure 3.15: Detailed evaluation of AURORA 4 test sets using MFCC and
ConvRBM-CC feature sets. After [3].
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Table 3.7: % WER and % relative improvements (as shown in the brackets) for
AURORA 4 database. After [3]

Feature Set A B C D Avg
GMM-HMM system tri-gram 5k LM

MFCC 22.62 33.21 39.4 49.51 36.18

ConvRBM-CC
21.02 32.76 37.08 48.95 34.95
(7.07) (1.35) (5.89) (1.13) (3.39)

CI-DNN-HMM system with tri-gram 5k LM
MFCC 17.92 26.63 32.97 43.36 30.22

ConvRBM-CC
17.06 24.84 28.47 40.31 27.67
(4.8) (6.72) (13.65) (7.03) (8.44)

S1:FBANK 12.33 21.59 29.35 38.57 25.46

S2:ConvRBM-BANK
10.76 20.34 25.5 36.84 23.36

(12.73) (5.79) (13.12) (4.49) (8.24)

S1 ⊕ S2
10.65 19.22 26.42 36.38 23.17

(13.63) (10.98) (10) (5.68) (8.99)
CD-DNN-HMM system with bi-gram 5k LM

S3:FBANK 10.61 14.85 20.38 30.71 19.12

S4:ConvRBM-BANK
9.68 14.81 19.58 29.69 18.44

(8.77) (0.3) (3.9) (3.32) (3.6)

S3 ⊕ S4
9.47 13.91 18.85 28.52 17.69

(10.74) (6.33) (7.5) (7.31) (7.48)
CD-DNN-HMM system with tri-gram 5k LM

S5:FBANK 5.62 9.29 15.15 24.27 13.58

S6:ConvRBM-BANK
4.89 9.15 13.86 23.93 12.95

(12.98) (1.5) (8.5) (1.4) (4.6)

S5 ⊕ S6
4.71 8.43 13.53 22.74 12.35

(16.19) (9.26) (10.69) (6.3) (9.06)
⊕ denotes system combination experiments

Detailed evaluations of AURORA 4 test sets are shown in Figure 3.15 and Fig-
ure 3.16 for the CI-DNN-HMM systems. From Figure 3.15, we can see that, in
all the test conditions, ConvRBM-CC are performing better than the MFCC fea-
ture set except the T4 test set. ConvRBM-FBANK also performs better than the
FBANK feature set except for restaurant noise conditions (i.e., test sets T4 and
T11). To justify the improvements in ASR task using the AURORA 4 database, we
have investigated log-spectrum amplitude variations during the time for three
test conditions (namely, babble, street, and babble+distortion) against a clean log-
spectrum as a reference. A log-spectrum for a subband filter with CF 2.16 kHz
is plotted for ConvRBM in Figure 3.17 (a)-(c) and for the Mel spectrum in Fig-
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Figure 3.16: Detailed evaluation of AURORA 4 test sets using FBANK and
ConvRBM-BANK feature sets. After [3].

ure 3.17 (d)-(f). Since we have not applied any mean-variance normalization on
the spectrum, there is a difference in amplitude level in all the noisy spectra. It
is clearly seen that the Mel spectrum is very much affected by the noise (exam-
ples of selected regions are marked in Figure 3.17 (d)-(f)) in all the test conditions
compared to the ConvRBM spectrum. Hence, the ConvRBM trained filterbank is
likely to reduce the noise distortions, which may improve the ASR performance
in the degraded conditions as well. Comparison of our approach using a bi-gram
5K LM with other approaches (specifically, convolutional networks) is given in
Table 3.8. Our supervised back-end is DNN with 3 hidden layers as we have dis-
cussed in Section 3.6.3. Many recent architectures, such as [159] and [160] are able
to perform quite well for AURORA 4 task.

Table 3.8: Comparison of % WER for AURORA 4 database using different ap-
proaches. After [3]

Approaches A B C D Avg
Our approach (S4, 3 layers) 9.68 14.81 19.58 29.69 18.44

Our approach (S3 ⊕ S4, 3 layers) 9.47 13.91 18.85 28.52 17.69
DNN (5 layers) [161] 10.6 16.4 15.8 26.6 20.3

CNN (5 layers, 1-D filters) [161] 9.5 14.8 14.6 23.6 18.2
PNS-CNN (2-D filters) [121] 7.4 13.4 12.8 24.7 17.8

CNN (2-D filters) [159] 5.1 8.8 8.5 20.1 13.4
AD Maxout CNN [160] 4.0 7.8 6.7 14.9 10.5
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Figure 3.17: Comparison of spectrum for one subband filter on AURORA 4 test
sets. (a)-(c) ConvRBM generated spectrum, (d)-(f) Mel spectrum. Highlighted
regions show the examples of regions distorted due to the noise. After [3].

3.7.5 Cross-domain Experiments

We have also experimented using a TIMIT-trained ConvRBM filterbank for the
AURORA 4 speech recognition task, and vice-a-versa to see whether ConvRBM
subband filters are a generalized representation of auditory processing? We have
changed the filterbanks in the front-end to extract features from the TIMIT, and
AURORA 4 databases. Once the features were extracted, acoustic modeling was
performed as per the TIMIT and AURORA 4 tasks. Following are the results of
cross-domain experiments.

Table 3.9: Results of the TIMIT phone recognition task using the AURORA 4
trained ConvRBM in % PER. After [3]

ConvRBM training database Test
TIMIT 22.8

AURORA 4 23.6

Table 3.10: Results of the AURORA 4 task using the TIMIT-trained ConvRBM.
After [3]

ConvRBM Training Database A B C D Avg
AURORA 4 9.68 14.81 19.58 29.69 18.44

TIMIT 9.9 14.92 19.3 29.18 18.52
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Table 3.9 shows that relative % PER of subband filters of the AURORA 4
database is 3.4 % higher (an absolute difference of 0.8 %) compared to the sub-
band filters of the TIMIT database. However, there is no significant difference
in % PER, when we have used subband filters trained on the different database
(along with different training conditions). Table 3.10 shows that the % WER of all
AURORA 4 test sets are similar for subband filters of both the databases. These
results also explain that, even with a small amount of the TIMIT training data, we
can achieve similar gains on the larger AURORA 4 task. These experiments also
suggest that we can train ConvRBM on larger and more diverse datasets to use it
for smaller ASR task or different application in the form of transfer learning.

3.8 Chapter Summary

In this chapter, we have described the architecture of the proposed model us-
ing ConvRBM for auditory filterbank learning. The proposed model can take
arbitrary length speech signals as an input to the ConvRBM. The detailed the-
ory of the model learning and algorithm to train the model using speech sig-
nals is presented. The feature extraction from the trained ConvRBM is discussed.
We have shown that the proposed model is able to learn the auditory-like sub-
band filters from the raw speech signals. Comparisons with standard auditory
frequency scales further justify the proposed model’s capability for the auditory
representation learning. Results are shown for the ASR task on the phonetically
balanced TIMIT database, and statistically meaningful LVCSR databases, WSJ and
AURORA 4. In the next chapter, we will discuss the improved version of the Con-
vRBM for filterbank learning.
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CHAPTER 4

Improved Auditory Model

4.1 Introduction

Earlier we described our proposed model for filterbank learning from speech sig-
nals in Chapter 3. In this Chapter, we present our improved auditory model using
an annealed dropout for regularization and Teager Energy Operator (TEO) as a
noise-robust energy estimation technique. The ConvRBM training using an an-
nealed dropout is discussed in Section 4.2. The effect of an Adam optimization
algorithm applied on the ConvRBM is discussed in Section 4.3. The application
of TEO on the subbands of ConvRBM is presented in Section 4.4. The proposed
feature representation is discussed and analyzed in Section 4.5. The ASR experi-
ments and the statistical significance of the results are presented in Section 4.6.

4.2 Dropout Convolutional RBM

Dropout is a stochastic regularization technique that prevents a network from
overfitting by preventing the co-adaptation of weights in the network. The term
dropout refers to randomly dropping out neurons (i.e., assigning the zero value)
in a neural network with a probability p. In Chapter 3, we presented our pro-
posed model of auditory processing using the ConvRBM. In ConvRBM training,
a dropout is applied before sampling the hidden units in both the positive and
negative phase of CD-1 learning. Applying a dropout to the ConvRBM can be
thought of as multiplying each unit in the kth group with a binary mask (called
the dropout mask). The dropout mask for the kth group is defined as random vari-
ables drawn from the Bernoulli distribution, i.e.,

mk = Bernoulli(p), (4.1)
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Figure 4.1: The block diagram of dropout ConvRBM model. After [4].

where P(mk = 0) = p and P(mk = 1) = 1− p. The sampling equations for the
hidden and visible units in the dropout ConvRBM are given as:

hk ∼ max(0, mk � Ik +N (0, sigmoid(mk � Ik))),

xrecon ∼ N
(

K

∑
k=1

(hk ∗Wk) + c, 1

)
.

(4.2)

Here, � indicates an elementwise multiplication. The block diagram of our pro-
posed ConvRBM architecture is shown in Figure 4.1. In [4], we explored an an-
nealed dropout training of ConvRBM that was proposed for supervised deep net-
works in [162]. In an annealed dropout, the dropout probability of the units in
the network is gradually decreased over the training period. We have used the
following annealing dropout schedule as suggested in [162]:

P[t] = max
(

0,
(

1− t
N

)
P[0]

)
, t ∈ [0, N], (4.3)

where P[0] is the initial dropout rate at training iteration, t = 0. The dropout rate
is decayed from P[0] to a small value or zero for t = N iterations. After N iter-
ations, P[t] is kept zero. In the next section, we discuss the improved ConvRBM
parameter updates using Adam optimization.

4.3 ConvRBM Training with Adam Optimization

Until now, we used the stochastic gradient descent (SGD) algorithm to update the
ConvRBM parameters. In this Section, the novel stochastic optimization method
called Adam is used, which is based on first-order gradient-based optimization
of the ConvRBM parameters. The Adam computes individual adaptive learning
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rates for different parameters from the estimates of first and second moments of
the gradients [163]. The name Adam is derived from adaptive moment estimation
[163]. The Adam optimization has several advantages, such as the magnitudes of
parameter updates being invariant to rescaling of the gradient, its step sizes are
approximately bounded by the step size hyperparameter, it does not require a
stationary objective, it works with sparse gradients, and it naturally performs a
form of step size annealing [163]. The pseudo-code of the Adam optimization is
shown in Algorithm F.4. The effect of Adam optimization on the RMSE between
the original and reconstructed speech signals (averaged over the entire database
of AURORA 4) is shown in Figure 4.2. It can be seen that the RMSE curve over
the training iterations for the Adam optimization is significantly lower compared
to the SGD optimization in the ConvRBM.
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Figure 4.2: The comparison of SGD and Adam optimization in ConvRBM train-
ing on the RMSE during training iterations.

In next the section, we discuss the noise-robust energy estimation using the
Teager Energy Operator (TEO).

4.4 Representing Energy in the Auditory System

Among many acoustic and perceptual features of the speech signal, temporal
modulations are one of the important parametric representations of the speech
signal. Temporal modulations describe changes of a speech signal in terms of
amplitude modulation (AM) and frequency modulation (FM) [164]. The acoustic-
phonetic analysis examines the AM/FM in the speech signal for detecting and
characterizing speech sounds [61]. It is observed that AM and FM always co-occur
and are inseparable features of speech signals [164]. The AM-FM responses can
be obtained from the auditory filterbank. However, instead of separating AM and
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FM responses after a filterbank, we consider here using an operator that can track
the running estimate of energy jointly contributed by both AM and FM. The non-
linear operator known as the Teager Energy Operator (TEO) introduced by Kaiser
can effectively estimate the “true" energy of a signal or the energy required to pro-
duce a signal [165]. The discrete-time version of the TEO applied on the AM-FM
signal of the form, s[n] = a[n]cos(φ[n]) is defined as [166]:

Ψ{s[n]} := s2[n]− s[n− 1]s[n + 1] ≈ a2[n]ω2[n], (4.4)

where a[n] and ω[n] = d
dn φ[n] are discrete time-varying amplitude and instanta-

neous frequency (the derivative of instantaneous phase, φ[n]), respectively. Ac-
cording to the noise suppression capability of the TEO, for a signal with additive
noise, i.e., ŝ[n] = s[n] + v[n], the TEO of ŝ[n] is given as [167]:

Ψ{ŝ[n]} = Ψ{s[n]}+ Ψ{v[n]}+ 2Ψ̃{s[n], v[n]}, (4.5)

where s[n] is a clean signal and v[n] is a zero-mean additive noise. Using eq. (4.4),
Ψ̃{s[n], v[n]} can be derived as:

Ψ̃{s[n], v[n]} = s[n]v[n]− (1/2)s[n− 1]v[n + 1]− (1/2)s[n + 1]v[n− 1]. (4.6)

Here, s[n] and v[n] are assumed to be zero-mean independent stochastic processes
and hence, the expected value of cross-TEO terms Ψ̃{·} are zero [167]. In addition,
E[Ψ{v[n]}] is approximately zero since E[Ψ{v[n]}] = Rvv(0)− Rvv(2) ≈ 0. This
can also be explained by observing the power spectral density (PSD) of a noise
before and after applying the TEO as shown in Figure 4.3. We can see that, the
PSD of three different types of noises are lower when TEO is applied and hence,
the spectral power of a noise is reduced. Since the babble noise is made of random
speech signals (e.g., people talking in the background), the PSD is similar to with-
out applying the TEO after 4 kHz. Still for the lower frequencies, the PSD is lower
after applying the TEO. Hence, E[Ψ{ŝ[n]}] ≈ E[Ψ{s[n]}], where E[·] is an expec-
tation operator [167]. This shows the significance of the TEO as a noise-robust
energy estimator that has noise suppression capability. The detailed derivation of
noise suppression capability of the TEO is given in Appendix C. Application of
the TEO on the responses of subband signals represents the noise-robust energy
estimation of the basilar membrane (BM) (as done in [168]).

Despite recent breakthrough studies using deep learning for ASR, it is shown
that feature engineering indeed helps for the robust ASR task [161]. One of the
approaches for the robust feature representation is to use the Teager Energy Op-
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Figure 4.3: The effect of TEO on the PSD of noises: (a) white, (b) car, and (c)
babble.

erator (TEO) [165]. TEO is used as an energy estimation along with an auditory
feature processing pipeline as proposed in [168]. Compared to earlier works in
the ASR with TEO-based feature sets [167, 168], in this work, we have reported
results on the AURORA 4 database using filterbank learning as a front-end and
various deep networks as a back-end. The ConvRBM model of filterbank learning
and feature extraction is similar to an early auditory processing stage in many au-
ditory models. The TEO-based energy estimation on the subband filtered signals
from the ConvRBM filterbank is discussed in the next section.

4.5 Proposed Feature Representation

The block diagram of our proposed feature extraction method is shown in Figure
4.4. Inspired by state-of-the-art auditory models [169], a lowpass filter with cutoff
frequency 1 kHz is also used after the ConvRBM responses. The lowpass filtering
retains the temporal fine structure (TFS) of the subband signals (as discussed in
Appendix A) at low frequencies and extracts the envelope of the signal at high
frequencies (that corresponds to the phase-locking phenomenon) [61], [169]. The
energy estimates using TEO for each subband were pooled later to obtain the
short-term features followed by a logarithmic compressive nonlinearity. The av-
erage pooling is used based on our experiments reported in [3].

The subband filters trained using ConvRBM with and without dropout are
shown in Figure 4.5. We can see the higher number of low frequency subband
filters when ConvRBM is trained with annealed dropout as shown in Figure 4.5.
The high-frequency subband filters (Figure 4.5 (b)) are less noisy when using the
annealed dropout due to the dropout regularization effect. To analyze how an
annealed dropout training affects the nonlinear relationship between the CF and
filter ordering, the frequency scales of ConvRBM are compared with standard au-
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Figure 4.4: Block diagram of the proposed feature extraction method: (a) speech
signal, (b) responses from the filterbank (c) lowpass filtering, (d) energy estima-
tion using TEO, and (e) short-time spectrum representation.

ditory filterbanks in Figure 4.6. The ConvRBM trained with an annealed dropout
uses more subband filters in the frequency range 500-5500 Hz compared to the
ConvRBM without dropout. It follows the ERB scale up to 1 kHz, the Bark scale
from 1 kHz-2.5 kHz and after that it is in between the Mel and the Bark scale. The
bandwidth vs. CF scatter plot is shown in Figure 4.7. Due to regularization effect
of annealing dropout, the ConvRBM filterbank trained on AURORA 4 database
obtained better constant-Q nature compared to the ConvRBM trained without
dropout.

The spectrogram representation of the proposed approach (Figure 4.4) is com-
pared with the Mel and ConvRBM spectrograms in Figure 4.8. The ConvRBM
filterbank is able to suppress the noise compared to the Mel filterbank. An appli-
cation of the TEO on the ConvRBM filterbank suppresses the noise much better
compared to the ConvRBM alone. The formant transitions are clearly visible in
the TEO applied ConvRBM. One can also see that the noise in the silence regions
(before and after the utterance) is completely eliminated after the TEO applied.
The significance of a lowpass filtering is shown in Figure 4.9 for the same utter-
ance taken in Figure 4.8. The TEO supressed the noise at the cost of reducing the
spectral energies in the lower frequencies (below 4 kHz). Since this lowpass filter
is introduced to mimic phase synchrony, it extracts the envelope of the signal at
the higher frequencies (above 1 kHz). Hence, application of the TEO on the low-
pass filtered subbands preserves the spectral energies for subbands above 1 kHz.
We have also verified this with reduced % WER in Section 4.6.
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Figure 4.5: The subband filters trained on the AURORA 4 database: time and
frequency-domain subband filters using ConvRBM without dropout ((a) and (c))
and ConvRBM with annealed dropout ((b) and (d)).
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Figure 4.6: Comparison of filterbank scale learned using ConvRBM (with and
without annealed dropout (AD)) with auditory filterbanks.

4.6 Experimental Setup and Results

4.6.1 ASR System Building

We have used the AURORA 4 multicondition training database as described in
Section 3.6.1, Chapter 3. The triphone GMM-HMM systems were built using 39-D
MFCC feature vectors to obtain the forced-aligned labels. MFCC and Mel filter-
bank (FBANK) feature sets were used in the GMM-HMM and DNN-HMM system
building, respectively. The WSJ0 bi-gram 5K language model was used for AU-
RORA 4 test sets. All the ASR systems were built using the KALDI toolkit [155].
Three types of neural networks were used in this study, namely, CNN [170],
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Figure 4.7: Comparison of bandwidth vs. CF for filterbank learned using Con-
vRBM (with and without annealed dropout (AD)).

TDNN [75], and BLSTM networks [21]. The results are reported using (1) CNN
with 150 and 300 feature maps in the first and second layer and 1024 hidden units
in other two layers, (2) TDNN with 5 hidden layers and 1024 hidden units, and (3)
BLSTM networks with 3 hidden layers and 800 cells. The system combination is
performed using the MBR technique [156] as discussed in Chapter 3, Section 3.6.

4.6.2 Training of ConvRBM and Feature Extraction

We have trained ConvRBM with an annealed dropout (AD) using P[0] = 0.3, 0.4, 0.5
decayed to P[N] = 0 and a fixed dropout (FD) using P[t] = 0.3, ∀t ∈ [0, N]. The
learning rate was chosen to be 0.01 (two times larger than the one used in [3]),
which was fixed for first 10 epochs and decayed later at each epoch. For the first
five training epochs, momentum was set to 0.5 and after that, it was set to 0.9. The
model is trained with 40 subband filters (i.e., K) and a convolution window of
length (i.e., m) 128 samples. After the model was trained, features were extracted
from the speech signal as discussed in Section 4.5. The delta and delta-delta fea-
tures were also appended resulting in a 120-dimensional (120-D) feature vector.
The notations for different feature sets (120-D) are given in Table 4.1.

4.6.3 Experimental Results

The results of the ASR experiments using different configurations of the Con-
vRBM filterbank and TEO are shown in Table 4.2 in terms of % word error rate
(WER). The performance of the AD-CBANK is better than the CBANK and FD-
CBANK on average. The AD-CBANK has low WER for test sets C and D com-

91



Figure 4.8: Comparison of spectrograms: (a) speech signal, (b) Mel spectrogram,
(c) ConvRBM spectrogram, and (d) TEO applied ConvRBM spectrogram.

Table 4.1: Notations of different feature sets used in this study

Feature Set Description
FBANK Mel filterbank
CBANK ConvRBM filterbank

FD-CBANK ConvRBM filterbank learned using FD
AD-CBANK ConvRBM filterbank learned using AD
TEO-CBANK TEO applied on CBANK

TEO-FD-CBANK TEO applied on FD-CBANK
TEO-AD-CBANK TEO applied on AD-CBANK

pared to the FBANK. Application of the TEO on the CBANK without half-wave
rectification (HWR) (with the method similar to as in [168]) resulted in improve-
ments with all the three types of ConvRBM configurations. Thus, the noise sup-
pression capability of the TEO indeed helps to reduce % WER. FD-CBANK did
not perform well compared to the CBANK and AD-CBANK, which shows the
significance of the annealing dropout technique. Our proposed TEO-AD-CBANK
resulted in reduced % WER compared to the FBANK in the channel distortion
test sets (i.e., C and D) as can be seen from Table 4.2. TEO-AD-CBANK resulted in
WER of 15.43 % and 25.83 % for test sets C and D, respectively. Hence, an absolute
reduction of 1.43-2.49 % in WER was achieved using the TEO-AD-CBANK com-
pared to the FBANK. We also investigated the effectiveness of the HWR nonlinear-
ity with the proposed feature pipeline (Figure 4.4). TEO-AD-CBANK with HWR
got improvements only for the test sets A and B. Hence, TEO directly applied on
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Figure 4.9: Effect of lowpass filtering: TEO-ConvRBM spectrogram (a) without
lowpass filtering, and (b) with lowpass filtering.

CBANK performs well. Furthermore, TEO-AD-CBANK feature extraction with-
out lowpass filtering (LPF) did not perform well. TEO-AD-CBANK without HWR
and using LPF proved to be a better feature representation for the AURORA 4
task and is used for other experiments. The experiments show that P[0] = 0.3
performs well compared to other P[0] values as shown in Table 4.2. We have also
shown the results for all the 14 test sets for different noise types in Figure 4.10
using TDNN models. The proposed TEO-AD-CBANK feature set performs better
than the FBANK except for the comparable performance in test sets T2, T5, and
T13, as can be observed from Figure 4.10.

Table 4.2: % WER for the AURORA 4 test sets using TDNN models. Here, P[0]
indicates dropout probability and X means the corresponding technique is ap-
plied vice-versa. After [4]

Feature Set LPF HWR P[0] A B C D Avg
FBANK - - - 11.48 15.21 17.92 27.26 20.3
CBANK - X - 11.17 16.04 17.4 28.14 20.9

FD-CBANK - X 0.3 10.63 15.61 18.42 27.35 20.48
AD-CBANK - X 0.3 12.06 15.29 17.62 27.16 20.31
TEO-CBANK X × 0.3 10.5 15.50 16.38 25.99 19.70

TEO-FD-CBANK X × 0.3 10.83 15.45 17.4 26.79 20.12
TEO-AD-CBANK X × 0.3 10.89 15.17 15.43 25.83 19.45
TEO-AD-CBANK X X 0.3 10.44 15.04 16.73 26.64 19.80
TEO-AD-CBANK × × 0.3 11 15.16 16.62 26.40 19.78
TEO-AD-CBANK X × 0.4 10.44 15.33 16.66 26.49 19.86
TEO-AD-CBANK X × 0.5 11.13 15.27 16.84 26.56 19.92

We have used TDNN (in Table 4.2) to generate the alignments for all the ex-
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Figure 4.10: Detailed comparison of FBANK and TEO-AD-CBANK features on
the AURORA 4 test sets using TDNN models. After [4].

periments in Table 4.3. The CNN models did not perform well compared to the
TDNN and BLSTM, which exploits the temporal context better compared to the
traditional CNN. Using TDNN, TEO-AD-CBANK features gave relative improve-
ments of 2.59-11.63 % for test sets A to D compared to the FBANK. With BLSTM
models, TEO-AD-CBANK gave relative improvements of 1.26-6.87 % for test sets
A, C, and D, respectively, compared to the FBANK. The system combination (de-
noted as ⊕) of both feature sets resulted in a significant improvement for both
TDNN and the BLSTM models. The best results were achieved using S3 ⊕ S4
based on the BLSTM model that gave an absolute reduction of 1.56-2.82 % and
1.18-2.22 % in WER compared to the FBANK and TEO-AD-CBANK, respectively.

Table 4.3: % WER for the AURORA 4 test sets using various deep networks.
After [4]

Feature Set Model A B C D Avg
FBANK CNN 10.55 14.19 18.14 27.70 20

TEO-AD-CBANK CNN 10.55 14.5 18.4 27.82 20.1
S1:FBANK TDNN 11.72 15.04 16.86 26.56 19.87

S2:TEO-AD-CBANK TDNN 10.55 14.65 14.9 25.54 19.04
S3:FBANK BLSTM 9.65 14.62 15.73 25.91 19.18

S4:TEO-AD-CBANK BLSTM 9.27 14.80 14.65 25.42 18.94
S1 ⊕ S2 TDNN 9.49 13.05 13.39 23.86 17.45
S3 ⊕ S4 BLSTM 8.09 12.73 12.91 23.20 16.90

The significance of Adam optimization in ConvRBM training is shown in Ta-
ble 4.4. The filterbank obtained by training ConvRBM using Adam optimization
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followed by the TEO is used in the AURORA 4 task with the BLSTM acoustic
models. Compared to the SGD optimization in ConvRBM, Adam optimization
provides an absolute reduction of 1 % in WER on the noisy test sets B and D.
Compared to the baseline FBANK feature set, there is a relative reduction of 5-
6.6 % in WER on the AURORA 4 test sets. Furthermore, the system combination
with FBANK significantly reduces % WER compared to FBANK alone. Use of an
Adam optimization in TEO-AD-CBANK improves performance compared to the
TEO-AD-CBANK with SGD optimization.

Table 4.4: % WER task for significance of Adam optimization in ConvRBM

Feature Set Optimization A B C D Avg
S1:FBANK - 9.65 14.62 15.73 25.91 19.18

S2:TEO-AD-CBANK SGD 9.27 14.80 14.65 25.42 18.94
S3:TEO-AD-CBANK∗ Adam 9.13 13.89 14.69 24.37 18.1

S1 ⊕ S2 - 8.09 12.73 12.91 23.20 16.90
S1 ⊕ S3∗ - 8.07 12.35 13.04 22.66 16.51
∗These results were obtained later and not part of our research study reported in [4].

Figure 4.11: Detailed comparison of FBANK and TEO-AD-CBANK with Adam
optimization on AURORA 4 test sets using BLSTM models.

4.6.4 Statistical Significance of ASR Results

The statistical significance of the ASR results was assessed using the bootstrap
algorithm discussed in Appendix B. Here, we describe the bootstrap algorithm for
the ASR task. It is assumed that the test corpus contains N number of sentences
for which the recognition result is independent, and the number of errors can thus
be evaluated independently. For each sentence i, we record the number of words,
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ni, and the errors ei as follows:

X = {(n1, e1), ..., (nN, eN)}. (4.7)

Generate the bootstrap sample for b = 1, ..., B such as given below:

X∗b = {(n∗b1 , e∗b1 ), ..., (n∗bN , e∗bN )}. (4.8)

The sample will contain several of the original sentences multiple times, while
others are missing. Then, we calculate the WER on this sample as follows [171]:

WER∗b :=
∑N

i=1 e∗bi

∑N
i=1 n∗bi

. (4.9)

The WER∗b are called the bootstrap replications of WER. They can be thought
of as samples of the WER from an ensemble of virtual test sets. The bootstrap
estimate of the WER is given by [171]:

WERboot := 〈WER∗〉 ≈ 1
B

B

∑
b=1

WER∗b. (4.10)

Given the two ASR systems with the WER counts eASR1
i and eASR2

i , the difference
in WER is [171]:

∆WER := WERASR1 −WERASR2 =
∑N

i=1(e
ASR1
i − eASR2

i )

∑N
i=1 ni

. (4.11)

The difference in number of errors is calculated on the identical bootstrap sam-
ples. The bootstrap estimate of probability of error reduction is defined as [171]:

POI := P(∆WER∗ < 0),

= 〈Θ(−∆WER∗)〉 ,

≈ 1
B

B

∑
b=1

Θ(−∆WER∗b),

(4.12)

where Θ(x) is the step function, which is one for x > 0. This statistical measure
is called the Probability of Improvement (POI). The steps in POI computation are
summarized in Algorithm 2. We used the method proposed in [171] for quoting
the statistical significance test that is based on the bootstrap technique.

To show how our proposed feature set TEO-AD-CBANK performs compared
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Algorithm 2 The bootstrap algorithm for the ASR task

Input: Original test set X and two trained ASR systems, namely, ASR1 and ASR2
Output: The POI estimate

1: for each bootstrap interval, b = 1, 2, ..., B do
2: Generate a random test set with replacement X∗b of size X
3: Compute the bootstrap WER for both system WERASR1∗ and WERASR2∗

4: Compute the difference in the bootstrap WER:
∆WER∗b := WERASR1∗ −WERASR2∗

5: end for
6: POI = 1

B ∑B
b=1 Θ(−∆WER∗b)

to the FBANK, we have found the % POI as formulated in [171] to compare the
two systems. The statistical significance of the AURORA 4 test sets is shown in
Figure 4.12 for all the 14 test sets. It can be seen that for the TDNN acoustic
models, except test sets T2, T6 and T13, % POI values are significantly higher
(with 100 % POI in some of the cases). For BLSTM acoustic models, except test
sets, T2, T4, and T5, % POI values are more than 25 % for all the test sets. Hence,
a statistical significance test shows that the TEO-AD-CBANK features perform
better than the FBANK (with significant % POI in many test sets) for both the
acoustic models (i.e., TDNN and BLSTM). The POI values for the FBANK and
TEO-AD-CBANK are summarized in terms of standard AURORA 4 test sets in
Table 3. One important aspect of the TEO-AD-CBANK feature set is the high %
POI values for channel distortion test sets (i.e., C and D). This observation is in line
with the reduction of % WER in channel distortion test sets. Hence, the TEO-AD-
CBANK performs well compared to the FBANK with 75.09 % and 55.84 % POI for
the TDNN and BLSTM models, respectively, indicating the statistical significance
of the results for the proposed approach.

Figure 4.12: The % POI values for AURORA 4 test sets.
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Table 4.5: % POI using the TEO-AD-CBANK over FBANK for AURORA 4 test
sets. After [4]

Model A B C D Avg
TDNN 99.59 59.89 99.95 82.07 75.09
BLSTM 84.01 34.47 97.29 65.61 55.84

4.6.5 Comparison with the ASR Literature

The comparison of the proposed features with the literature is given in Table 4.6.
We have also compared the BLSTM model trained with the Teager Energy Spectral
Coefficients (TESC) implemented using the Gammatone filterbank (GTFB) [168].
Application of the TEO on GTFB reduces % WER compared to the FBANK. How-
ever, it did not perform well compared to the TEO-AD-CBANK. This indicates
that applying TEO on the learned ConvRBM filterbank indeed improves the per-
formance in the ASR task. The power normalized spectra (PNS) include more
complex auditory processing stages [121]. Hence, there is an absolute 1 % differ-
ence in WER compared to the TEO-AD-CBANK. However, the proposed system
combination performs similar and/or better to the PNS-CNN [121]. The study re-
ported in [161] used various features including the auditory-motivated Normal-
ized Modulation Coefficients (NMC) and Damped Oscillator Coefficients (DOC).
The % WER for NMC and DOC is lower compared to our proposed work. This
may be due to the generation of the alignments for DNN models from the fMLLR-
based speaker adaptation techniques in the GMM-HMM pipeline as opposed to
our speaker-independent GMM-HMM models (in which no such speaker adapta-
tion is used). The results are not compared with the studies, such as in [162], that
used the clean training alignments.

Table 4.6: Comparison of our proposed feature representation approach and the
system combination model with different feature sets in the ASR literature

Feature Set A B C D Avg
Proposed: TEO-AD-CBANK [4] 9.27 14.80 14.65 25.42 18.94

Proposed: TEO-AD-CBANK (Adam) 9.13 13.89 14.69 24.37 18.1
FBANK ⊕ TEO-AD-CBANK (Adam) 8.07 12.35 13.04 22.66 16.51

TESC 9.44 14.58 15.06 25.57 18.96
Gabor-DNN [121] 8.4 14.2 14.3 25.8 18.8
PNS-CNN [121] 7.4 13.4 12.8 24.7 17.8

NMC [161] 8.4 11.9 11.4 21.3 15.64
DOC [161] 9.0 11.9 11.8 21.8 15.93
⊕ represents the system combination experiments
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4.7 Chapter Summary

In this Chapter, our efforts to improve our proposed model for the noise-robust
ASR task are presented. We applied an annealed dropout as a regularization tech-
nique in ConvRBM training, where the dropout probability is reduced gradually.
To improve the gradient-based optimization, an Adam optimization technique is
explored. Furthermore, the noise-robust energy estimation approach based on the
TEO is applied on each subband signal of the ConvRBM. Experiments on the AU-
RORA 4 database were conducted using various deep networks and compared
the results with the ASR literature. The statistical significance tests using the boot-
strap technique show the efficacy of the proposed auditory feature representation.
In the next Chapter, we apply ConvRBM on the agricultural speech database for
the ASR task in the Gujarati language (an Indian language).
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CHAPTER 5

ASR in the Agricultural Domain

5.1 Introduction

In this Chapter, an ASR system for the Gujarati language is discussed for the de-
velopment of a speech-based access system in the agricultural domain. The re-
search study in this Chapter is a part of the MeitY, Govt. of India sponsored con-
sortium project, namely, "Speech-Based Access of Agricultural Commodity Prices
and Weather Information in 12 Indian Languages". We are developing this system
in the Gujarati language at Speech Research Lab, DA-IICT. The system architec-
ture, data collection, and transcription are discussed in Section 5.2. The experi-
mental setup and results for the ASR task are given in Section 5.3 and Section 5.4,
respectively. The Chapter is summarized in Section 5.5.

5.2 Speech-Based Access for Agricultural Commodity

5.2.1 The Need of a Speech-Based Access System for Agriculture

Gujarat is one of the states that provide the highest grossing in India’s agricultural
progress. With farming land of 98 lakh hectares, Gujarat is a major agricultural
crop provider with major possible crops being cotton, groundnut, castor, etc. Sev-
eral websites are maintained to provide current prices of agricultural commodi-
ties [172], [28]. Thus, it helps farmers to know the better prices to sell their crops.
However, socio-economic status and variation in educational backgrounds make
them less aware and accessible to the agricultural commodity prices, weather
forecasts and various Government schemes for the benefits of farmers.

To provide information to the farmers, we are developing a speech-based ac-
cess system in Gujarati (an Indian language) called the Mandi Information System
(MIS). In this Chapter, mandi means the marketplace in India. The project is based
on using an Interactive Voice Response System (IVRS) and an ASR system trained
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on voices recorded from the farmers in the districts of Gujarat. The farmers need
to call a toll-free number and follow the call flow to get information regarding the
prices of commodities and the weather. This telephone-based system is helpful to
all the farmers even with those who have different educational backgrounds, since
they can get information in their native regional language just by making a tele-
phone call. Earlier, the MIS were built for the six Indian languages [27, 173–177].

5.2.2 System Architecture

There are three major building blocks of the system, namely, information source,
IVRS, and ASR system as shown in Figure 5.1. Everyday information regarding
the agricultural commodities is fetched from the AGMARKNET webportal main-
tained by the Government of India [28]. The information regarding the weather
forecast is fetched from the IMD website maintained by the Ministry of Earth Sci-
ence, Government of India [29]. Snapshots of the AGMARKNET and IMD web-
sites are shown in Figure 5.2 and Figure 5.3, respectively. Our local agricultural
database is updated based on a webcrawler program that automatically updates
the AGMARKNET and IMD data related to the Gujarat state. An IVRS is used
to record the speech signals from the farmers via a telephone line (called the Pri-
mary Rate Interface (PRI) line). Based on the information from the database, the
response is given to the farmer for a query recognized by the ASR system.

Figure 5.1: Block diagram of a speech-based access system for an agricultural
commodity. After [27].

The ASR system is one of the major components in a speech-based access sys-
tem for an agricultural commodity. It is this component that identifies the re-
quired query, which is then passed to the IVRS. The success of the response to a
farmer’s call is based on the accuracy of the ASR system.

5.2.3 Data Collection

Data collection from the farmers in villages is an important task of this project
work. The total number of districts in the Gujarat are 33 (out of which 27 regis-
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Figure 5.2: The snapshot of the AGMARKNET. Adapted from [28].

Figure 5.3: The snapshot of the IMD website. Adapted from [29].

Figure 5.4: The photographs of data collection in the villages of Gujarat state by
the project staff members and volunteers. After [30].
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Figure 5.5: Agricultural speech data collection from the Gujarat districts.

tered with AGMARKNET website). The major dialects observed in Gujarat state
are: Gamadia (Ahmedabad, Vadodari), Kakari, Kathiyawadi (Saurastra), Kharwa,
Parsi, Standard Gujarati, Tarimuki, and Surati (South Gujarat). The project staff
members and volunteers of the Speech Research Lab at DA-IICT have gone to
the several villages belonging to different dialectal regions of Gujarat state to col-
lect the speech data. They have used mobile phones to record speech signals via
a toll-free number (079-30515300). The snapshots taken during the field record-
ings by the project staff and volunteers are shown in Figure 5.4. The recording
of speech signals is based on the Asterisk server configuration and prompts are
stored in the server, located at Speech Research Lab, DA-IICT. The database in-
cludes the names of agricultural crops, mandi, weather information, and yes/no
type of questions. The data collection includes natural speaking styles and di-
alects of the farmers with real environmental noises, such as vehicles, animals,
babble, etc. The dataset also includes channel mismatch conditions since the
recording was done with several mobiles of different companies (that include dif-
ferent microphones). The data collection from 1005 farmers has been completed
covering 21 districts of Gujarat (namely, Gandhinagar, Sabarkantha, Mehesana,
Patan, Kheda, Panchamahal, Surat, Navsari, Surendranagar, Anand, Vadodara,
Bharuch, Rajkot, Chhota Udepur, Jamnagar, Porbander, Junagadh, Amreli, Bhav-
nagar, Tapi, Ahmedabad). The distribution of the collected database is shown in
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Figure 5.6: Transliteration for Gujarati UTF-8 to common phoneset. After [31].

Figure 5.5. There are a number of issues in data collection, such as explaining
the farmers about the task, since they are hesitant to talk, and response to the
IVRS, disfluencies in speech since many farmers are not much habituated to such
mobile-based recording, field recordings, etc.

5.2.4 Transcription

We prepared the dictionary (along with transcription) containing the names of
crops, mandis and districts. The Indian Language Speech sound Label set (ILSL)
format has been used for transcription and dictionary preparation as shown in
Figure 5.6 for the Gujarati language [31]. The dictionary contains different vari-
eties of commodities, mandi, names of villages, and districts. There are 25 dis-
tricts, 328 markets, and 159 unique commodities (excluding variations) in the lex-
icon. The lexicon contains 5387 words including varieties in commodities, speak-
ing market names and yes/no utterances spoken in various dialectal manner from
the farmers. Examples of dialect variations in speaking commodity names are
shown in Table 5.1. The speech signals were transcribed using semi-supervised
transcription tool, namely, “Indic Language Transliteration Tool", provided by the
MeitY ASR Phase-II consortium. An example of the transcription tool is shown
in Figure 5.7. The transcriber can play the audio to mark the labels. The spectro-
gram of the speech signal can also be seen in the tool, which helps the transcriber
to mark the labels more correctly. After the transcription, validation of the dictio-
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nary is done via the same tool. The dictionary also shows variations in the spoken
word in the transcription tool as shown in Figure 5.8, which helps transcribers to
validate the transcription easily.

Figure 5.7: An example of a transcription tool developed by IIIT Hyderabad.

Figure 5.8: An example of a validation tool developed by IIIT Hyderabad.

5.2.5 Analysis of Filterbank

The subband filters learned using ConvRBM are shown in Figure 5.9. The time-
domain subband filters (weights of the model) are shown in Figure 5.9 (a)-(c) and
corresponding frequency-domain subband filters (obtained by applying Fourier
transform) are shown in Figure 5.9 (d)-(f). We can see that the model is able to
learn auditory-like filters similar to the one reported in [2]. Some of the subband
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Table 5.1: An example of a word presented in the dictionary with different pho-
netic pronunciation

Word Phonetic description (spoken form)
batxaakaa b a t aa k aa
batxaakaa b a tx aa k aa
batxaakaa b a tx aa k u
batxaakaa b a tx aa tx aa
batxaakaa b a tx ae k aa

Figure 5.9: The subband filters trained on Gujarati ((a) and (c)) and the TIMIT
database ((b) and (d)): (a)-(b) subband filters in time-domain, (c)-(d) subband
filters in the frequency-domain.

filters are not localized compared to the filters trained on the TIMIT database.
We would like to emphasize here an important point that speech signals for this
project are recorded over PRI telephone line via mobile phone. Hence, the sam-
pling frequency of speech is limited to 8 kHz. This may restrict the model to learn
subband filters for high frequencies as we can see this difference in Figure 5.9 (a)
and (b). We believe that the model may have learned Gujarati language-specific
structures as well as the real environmental scenarios in speech signals, the anal-
ysis of which is an important open question for future research direction. The
Mel filterbank and ConvRBM filterbank are compared in Figure 5.10. The speech
signal is shown for a crop named “turmeric" (h lx d lx in English transliteration
format) in the Gujarati language spoken along with babble noise as seen in Figure
5.10. We can see from the plots that formant structures are more clearly visible us-
ing the ConvRBM filterbank compared to the Mel filterbank (highlighted by the
red circle). The babble noise is suppressed in the ConvRBM filterbank, while high
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Figure 5.10: Comparison of filterbanks: (a) speech signal for the word
“turmeric" (h lx d lx in English transliteration format) in the Gujarati language,
(b) ConvRBM filterbank, and (c) Mel filterbank.

energy regions are still visible in the Mel filterbank as seen in rectangular regions
of noise in Figure 5.10.

5.3 Experimental Setup

5.3.1 ConvRBM Training and Feature Extraction

The parameters of ConvRBM, learning rate, weight decay, etc. are similar as se-
lected in Chapter 4. The ConvRBM is trained by 40 filters and an 8 ms convolution
window length. To train the GMM-HMM systems, DCT-based 39-D ConvRBM-
CC features are used. For the neural network training, 120-D ConvRBM-BANK
features are used.

5.3.2 ASR System Building

The CD-GMM-HMM system was built from the MFCC feature set by varying the
number of Gaussians and senones. We have used the finite state transducer (FST)-
based LM (using the recipe provided by the IIT Madrass ASR team) trained from
the agricultural commodity text data. We have applied linear discriminant anal-
ysis (LDA) after the GMM-HMM triphone system. LDA is used to reduce the
dimensionality of the context-based cepstral features, e.g., context of 7 frames of
MFCC with 39 coefficients (39×7=273) to 40-D using discriminative training. To
decorrelate the features, the feature space transformation technique called Maxi-
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mum Likelihood Linear Transform (MLLT) is applied on the LDA-based features.
It is a feature orthogonalizing transform that makes the features more accurately
modeled by diagonal-covariance Gaussians.The LDA-MLLT system was trained
with the context of 7 frames on top of the CD-GMM-HMM system. The align-
ments obtained from the LDA-MLLT system were used in the hybrid DNN-HMM
training in all the experiments. Here, we have explored the recently proposed
Lattice-free Maximum Mutual Information (LF-MMI) in the HMM framework for
sequence-to-sequence learning [178]. The sequence learning framework is later
used for the hybrid DNN-HMM training in the KALDI toolkit. The LSTM-TDNN
and BLSTM models were used for acoustic modeling. The LSTM-TDNN has 3
LSTM layers and TDNN layers (with a context of {-13,9}) in between while the
BLSTM has three layers. The number of hidden units and layers in the BLSTM
were chosen based on the % WER. The deep networks were trained using the
ConvRBM filterbank and the Mel filterbank (denoted as FBANK). The systems
were combined using the MBR decoding with the fusion factor, λ =0.5.

5.4 Experimental Results

Since there is no standard recipe for this ASR in Gujarati task, we varied the num-
ber of Gaussians and senones for GMM-HMM systems. The results are summa-
rized in Table 5.2 for MFCC and ConvRBM-CC feature sets. Using the CD-GMM-
HMM system, best results are obtained using 1800 senones and 12 Gaussians for
both the feature sets. The ConvRBM-CC performs better than the MFCC using
the CD-GMM-HMM system with an absolute reduction of 1.09 % in WER. The
ConvRBM-CC also significantly performs better than the MFCC using the LDA-
MLLT system with an absolute reduction of 1.53 % in WER. Hence, ConvRBM-CC
improved the ASR performance compared to the baseline MFCC feature set using
the CD-GMM-HMM and LDA-MLLT systems. The alignments generated from
the respective LDA-MLLT systems (for MFCC and ConvRBM-CC) are used in the
hybrid DNN-HMM systems.

The experiments on the hybrid DNN-HMM models are reported in Table 5.3.
The ConvRBM-BANK perform better compared to the FBANK with both DNN
models. Using the TDNN-LSTM models, the best results were achieved using 800
hidden units for the FBANK and 900 hidden units for the ConvRBM-BANK. There
is an absolute reduction of 0.8 % in WER when the ConvRBM-BANK feature set is
used in the TDNN-LSTM models. The performance of both feature sets improved
when BLSTM models are used for acoustic modeling. However, due to increased
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Table 5.2: The summary of results using GMM-HMM systems in % WER for
1005 speakers

Feature Set Acoustic model Test
MFCC Triphone (CD-GMM-HMM) 30.36

ConvRBM-CC Triphone (CD-GMM-HMM) 29.27
MFCC LDA-MLLT 26.98

ConvRBM-CC LDA-MLLT 25.45

Table 5.3: The experimental results using various parameters of hybrid DNN-
HMM models in % WER for 1005 speakers

Feature Set DNN Model Hidden Units Hidden Layers Test
FBANK TDNN-LSTM 700 7 21.74
FBANK TDNN-LSTM 800 7 21.01
FBANK TDNN-LSTM 900 7 21.42

ConvRBM-BANK TDNN-LSTM 800 7 20.83
ConvRBM-BANK TDNN-LSTM 800 7 20.42
ConvRBM-BANK TDNN-LSTM 900 7 20.21

FBANK BLSTM 700 3 21.28
FBANK BLSTM 700 4 20.59
FBANK BLSTM 800 3 21.11
FBANK BLSTM 800 4 20.62
FBANK BLSTM 900 3 20.28
FBANK BLSTM 900 4 20.45

ConvRBM-BANK BLSTM 700 3 20.90
ConvRBM-BANK BLSTM 700 4 20.56
ConvRBM-BANK BLSTM 800 3 19.55
ConvRBM-BANK BLSTM 800 4 20.00
ConvRBM-BANK BLSTM 900 3 20.10
ConvRBM-BANK BLSTM 900 4 19.72
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Table 5.4: The summary of results using hybrid DNN-HMM models along with
the system combination in % WER for 1005 speakers

Feature Set DNN Model Test
FBANK TDNN-LSTM 21.01

ConvRBM-BANK TDNN-LSTM 20.21
A:FBANK BLSTM 20.28

B:ConvRBM-BANK BLSTM 19.55
A ⊕ B BLSTM 16.65

complexity, increasing number of layers in BLSTM did not improve the results.
The best results for BLSTM models were achieved using 3 layers and 900 hidden
units for the ConvRBM-BANK feature set. There is an absolute reduction of 0.73
% in WER using ConvRBM-BANK compared to FBANK feature set using BLSTM
models. The system combination of the ConvRBM-BANK and FBANK shows the
significant reduction of 2.9 % in the WER.

Since the Gujarati ASR database is recorded in real environments, TEO-based
auditory representation presented in Section 4.4, Chapter 4 is also used here. The
TEO and ConvRBM-based auditory feature representation is denoted as TEO-
ConvRBM-BANK in this Chapter. The experiments are performed using the sim-
ilar LF-MMI and BLSTM models by varying the number of hidden units and hid-
den layers. The ASR results are shown for the optimal BLSTM parameters in Ta-
ble 5.5. The TEO-ConvRBM-BANK perform better than FBANK and ConvRBM-
BANK with a relative reduction of 5.8 % and 2.3 % in WER, respectively. Hence,
the TEO along with ConvRBM indeed helps to supress real environmental noise in
the speech recordings. The system combination of FBANK and TEO-ConvRBM-
BANK (S1⊕S3) performed significantly better than FBANK, ConvRBM-BANK,
TEO-ConvRBM-BANK, and S1⊕S2. Compared to FBANK and ConvRBM-BANK,
S1⊕S3 gives an absolute reduction of 4.45 % and 3.72 % in WER, respectively. The
S1⊕S3 also gives an absolute reduction of 0.82 % in WER over S1⊕S2. This shows
the strong complementary information of TEO-ConvRBM-BANK that is helpful in
the ASR task. The final system combination of all the three feature sets S1⊕S2⊕S3
further reduce % WER.
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Table 5.5: The summary of results using the TEO-based auditory representation
along with the system combination in % WER for 1005 speakers

Feature Set Hidden Units Hidden Layers Test
S1:FBANK 900 3 20.28

S2:ConvRBM-BANK 800 3 19.55
S3:TEO-ConvRBM-BANK 900 3 19.10

S1 ⊕ S2 - - 16.65
S1 ⊕ S3 - - 15.83

S1 ⊕ S2 ⊕ S3 - - 15.21

5.5 Chapter Summary

In this Chapter, the first attempt of its kind for development of an ASR system
for a speech-based access system for an agricultural commodity in Gujarati is
presented. The data collection of farmers from the Gujarat state and transcrip-
tion techniques are discussed. The ConvRBM is used as a front-end to learn fea-
tures from the raw speech signals recorded from the realistic noisy scenarios. The
ASR experiments using the TDNN-LSTM and BLSTM systems show that the pro-
posed front-end provides lower % WER compared to the Mel filterbank feature
set. In the next Chapter, we will discuss the application of ConvRBM in various
audio classification tasks, such as environmental sound classification (ESC), spoof
speech detection (SSD) task, and infant cry classification (ICC).
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CHAPTER 6

Application to Audio Classification

6.1 Introduction

In the Chapters 3-5, we have discussed our proposed model of auditory filterbank
learning and applied on speech signals for the ASR task. However, our auditory
system is able to discriminate the variety of natural sounds, such as human speech
vs. dog barking [19], [179]. In this Chapter, to explore the potential of our pro-
posed model to represent different variety of natural sounds, we have considered
the environmental sound classification (ESC) task in Section 6.2. The experimental
setup for the ESC task is discussed in Section 6.3. The analysis of the ConvRBM
filterbank presented in Section 6.4 revealed that optimal auditory codes to repre-
sent the environmental sounds are different from the speech signals. Section 6.5
discusses the study of the spoof speech detection (SSD) task. The experimental
setup for the SSD task is given in Section 6.6. The analysis and results of the SSD
task is presented in Section 6.7. This study also presents other insights of the syn-
thetic speech signals in terms of the spectral and temporal content compared to
the natural speech signals. In addition, ConvRBM is also applied in the replay
SSD task discussed in Section 6.8-6.10. We have also applied our feature learning
framework to the socially-relevant problem of infant cry classification (ICC) task
presented in 6.11-6.14, where it is shown that our model is able to learn filterbank
even from very small size of database.

6.2 Environmental Sound Classification (ESC)

Environmental sound classification is a growing research problem in multimedia
applications. Environmental sounds are a very diverse group of everyday audio
events that cannot be described as only speech or music [180]. Environmental
sounds are important for understanding the content of the multimedia. There-
fore, ESC technology development is better for characterizing the essential role of
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environmental sounds in many multimedia applications, such as audio scene clas-
sification [181], audio surveillance systems [182], hearing aids [183], smart room
monitoring [184], and video content highlight generation [185], etc. The literature
of using representation learning for the ESC task is given in Table 2.2, Chapter
2. In this Chapter, we propose to exploit ConvRBM as a front-end for filterbank
learning from raw audio signals. Here, we have used an Adam optimization [163]
along with an annealed dropout technique [162] as discussed in Chapter 5.

6.3 Experimental Setup for the ESC task

6.3.1 Database

We have used the publicly available ESC-50 database [180] for the ESC task. The
ESC-50 consists of 2000 short (5 seconds) environmental recordings. These record-
ings are divided into 50 equally balanced classes. These 50 classes form five major
groups, namely, animals, natural soundscapes and water sounds, human non-
speech sounds, interior/domestic sounds and exterior/urban noises. The audio
files are prearranged in 5-fold cross-validation format. Due to this reason, the re-
sults of the experiments can be directly compared to the baseline results and with
the previous approaches.

6.3.2 Training of ConvRBM and Feature Extraction

We have trained ConvRBM with an annealed dropout using P[0] = 0.3, and
P[0] = 0.5, that is decayed to zero during training (discussed in Section 4.2, Chap-
ter 4). The learning rate was chosen to be 0.001, and decayed according to the
learning rate schedule as suggested in [163]. The moment parameters of Adam
optimization were chosen to be β1=0.5 and β2=0.999. We have trained the model
with 60 subband filters (i.e., K) with different convolution window lengths (i.e.,
m=132, 176, 220 samples). The delta features were also appended resulting in two
channels (60-dimensional each) for the CNN classifier.

6.3.3 CNN Classifier

The CNN classifier with the architecture as proposed in [32] was used for the ESC
task. Earlier, feature extraction for the CNN classifier, we first pre-processed the
audio signal. All the audio files were downsampled to 22.05 kHz. The audio files
were divided into frames by using a 25-ms Hamming window with 50 % overlap.
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Then, we applied a silence removal algorithm. For silence removal, we first check
for more than three consecutive silence frames (approximately, 50 ms duration).
If silence is present in more than three frames, then we remove the silence frames
else we keep those frames. A Simple energy thresholding algorithm was used to
remove the silence regions. The Mel Filterbank (FBANK) is used as the baseline
features. We have also used an auditory inspired Gammatone filterbank. Short
segments of 41 frames were used as the input to the CNN. The segments were
extracted with 50 % overlap from the audio files.

Figure 6.1 shows the details of each layer in the CNN architecture that we have
used in the ESC task. The network was implemented using Keras [186] with theano
back-end. A mini-batch implementation with a 200 batch size was used to train
the network. The network hyperparameters were similar to the one used in [32].
At the testing time, the class of the test audio files was decided using the prob-
ability prediction scheme [32]. The performance of the classifier was evaluated
using % classification accuracy (defined in Appendix B.2). We have also done the
score-level fusion of different feature sets as used in [187].
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Figure 6.1: The CNN architecture for ESC task. After [5], [32], and [33].
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Figure 6.2: Filterbank learned using ESC-50 and TIMIT databases: (a), (c) sub-
band filters in the time-domain (b), (d) corresponding frequency responses of
subband filters in the frequency-domain. After [5].

6.4 Experimental Results of the ESC Task

In this Section, the filterbank learned using ConvRBM is analyzed first, followed
by a discussion on the experimental results.

6.4.1 Analysis of Subband Filters

The impulse responses of the subband filters and their corresponding frequency
responses are shown in Figure 6.2. It can be seen that many of the subband filters
are Fourier-like basis functions that represent harmonic sounds, such as animal
vocalizations. Lower frequency subband filters are gammatone-like basis func-
tions. From Figure 6.2 (b), we can see that most of the subband filters are highly
localized in the frequency-domain. The frequency responses of the higher fre-
quency subband filters are not localized, which represent noise-like sound classes,
such as rain, airplane, and thunderstorm. Similar insights have been discussed
in [12], [115], [188], where the filterbanks were learned using an efficient coding
principle. The work of [12], [115] analyze the filterbank on a separate database of
the animal vocalizations and environmental sounds. Here, the ESC-50 database
is a mixture of both of these categories. The subband filters are also different than
the one we obtained, when ConvRBM is trained on the speech signals [2], [3] (as
shown in Chapter 3, Section 3.5). The study in [189] also revealed that the auditory
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cortex regions that are sensitive to speech and other sounds are different. Hence,
to completely characterize auditory processing, we should consider using statis-
tics of speech and environmental sounds together. This approach can be helpful
as the transfer of knowledge from the speech to the ESC tasks as done in [190].

The spectrogram obtained from the ConvRBM filterbank is shown in Figure
6.3 along with the Mel spectrograms using 60 subbands. The time-domain audio
signals of the three environmental sounds category, namely, hen, rain, and mouse
click are shown in Figure 6.3 (a)-(c). The ConvRBM spectrograms reveal time-
frequency patterns similar to the Mel spectrograms. However, the intensity of
the subbands are more dominant in the ConvRBM spectrograms than the Mel
spectrograms (see, for example, rain and mouse click sounds in Figure 6.3).
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Figure 6.3: The examples of environmental sounds from the ESC-50: (a)-(c) audio
signals, (d)-(f) Mel spectrograms, and (g)-(i) ConvRBM spectrograms.

6.4.2 Analysis of Filterbank Scale and Bandwidth

In order to compare the learned filterbank with the standard auditory filterbanks,
we have shown a CF vs. subband filter index plot in Figure 6.4. We have also
compared two ConvRBMs, the one that is trained using SGD, without dropout
and the other that is trained using AD and Adam optimization. Both ConvRBM
filterbanks have a nonlinear relationship between CF and filter ordering similar
to the other auditory filterbanks. The ConvRBM trained with AD and Adam
optimization uses more subband filters in the frequency range 1.5-8 kHz (simi-
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larly observed in [124], when using Adam optimization in DNN). Since the ESC-
50 dataset contains harmonics, transients, and noise-like sound classes, the fre-
quency scale learned is also similar, when ConvRBM is trained with the speech
signals [3]. However, the shape of the subband filters are different compared to
the speech signals [3], which indicates a different optimal auditory code for the
environmental sounds. The scatter plot of bandwidth vs. CF is shown in Figure
6.5 for two ESC databases, namely ESC-50 and UrbanSound8k for better under-
standing and two ASR databases. The Q-factors for ESC sounds are different than
speech sounds and did not preserve the constant-Q characteristics. However, the
Q-factors still increasing as CF increasing. This may be due to the fact that ESC
databases also contain mixture of harmonic, transient, and noisy sounds.
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6.4.3 Classification Results

To evaluate the performance of the proposed filterbank with different parameters,
5-fold cross-validation was performed on the ESC-50 database as shown in Table
6.1. We observed that a filter length of 132 samples (i.e., 6 ms) gave better perfor-
mance. In all the cases, Adam optimization performed better than the stochastic
gradient descent (SGD) in the ConvRBM training. From Table 6.1, it can be seen
that the max-pooling with dropout significantly works better than the average-
pooling in ConvRBM for the ESC task. This observation is different from what
we observed in the ASR task in Section 3.7.1, Chapter 3, where average-pooling
performed well [2]. We also performed the experiments with different dropout
probabilities (P) for filterbank learning. The annealing dropout with probability
0.5 performed better than 0.3 with the same configurations of ConvRBM. Hence,
we have selected ConvRBM with filter length of 132 samples, dropout probability
of 0.5, Adam optimization, and max-pooling for rest of the experiments.

Table 6.1: % Classification accuracy using ConvRBM-BANK features with dif-
ferent tuning parameters. Here, m is the ConvRBM filter length and P[0] is the
annealed dropout probability. After [5]

m Optimizer P[0] Pooling Accuracy (%)
132 SGD - average 59.85
132 SGD - max 76.95
132 ADAM - average 66.55
132 ADAM - max 76.15
132 ADAM 0.3 average 67.45
132 ADAM 0.3 max 78.15
132 ADAM 0.5 max 78.45
176 ADAM 0.3 average 57.40
176 ADAM 0.3 max 74.90
176 ADAM 0.5 max 75.30
220 ADAM 0.5 max 73.25

We compared the performance of ConvRBM-BANK with FBANK and Gam-
matone Spectral Coefficients (GTSC). The overall results of the proposed method
and baseline feature sets are summarized in Table 6.2 with the CNN classifier.
ConvRBM-BANK performs significantly better than the FBANK with an abso-
lute improvement of 10.65 % in the classification accuracy. The gammatone fil-
terbank is inspired from auditory physiology [191], whereas ConvRBM filterbank
is learned from the raw audio signals with the randomly initialized weights. In-
terestingly, it gives a comparable classification accuracy with GTSC ( 79.10 % vs.
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78.45 %). The score-level fusion of the ConvRBM-BANK with the FBANK and
GTSC improves the performance. However, the score-level fusion of ConvRBM-
BANK (78.45 %) and FBANK (67.80 %) achieved the best accuracy of 86.50 % in
this study. This shows that the proposed ConvRBM-BANK contains highly com-
plementary information over the Mel filterbank, which is helpful in the ESC task.

Table 6.2: % Classification accuracy with different feature sets. Here, ⊕ and α
indicate score-level fusion, and fusion factor, respectively. After [5]

Feature Sets α Accuracy (%)
FBANK - 67.80
GTSC - 79.10

ConvRBM-BANK - 78.45
FBANK ⊕ ConvRBM-BANK 0.5 86.50
GTSC ⊕ ConvRBM-BANK 0.5 83.00

Our proposed work is also compared with other studies in the literature in
Table 6.3. The ConvRBM-BANK performs significantly better than the CNN with
FBANK [32], [106]. In [106], the filterbank is learned from the raw audio sig-
nal using the CNN as an end-to-end system. The EnvNET [106] performs bet-
ter compared to the FBANK, when combining with log Mel CNN. However, our
proposed ConvRBM-BANK outperforms EnvNET [106] even without the system
combination. This shows the significance of unsupervised generative training us-
ing ConvRBM. In the next Section, we will present another audio classification
problem of the SSD task.

Table 6.3: Comparison of classification accuracy of the ESC-50 dataset in the
literature. The ⊗ sign indicated system combination before soft-max. After [5]

Feature Sets Accuracy (%)
ConvRBM-BANK (proposed) 78.45

FBANK ⊕ ConvRBM-BANK (proposed) 86.50
Piczak FBANK-CNN [32] 64.50

Human [180] 81.30
EnvNET [106] 64.00

logmel-CNN [106] 66.5
logmel-CNN ⊗ EnvNet [106] 71.00
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6.5 Spoof Speech Detection (SSD)

Automatic Speaker Verification (ASV) or voice biometrics is the task of verify-
ing the claimed identity of a person from his or her voice with the help of ma-
chines [192]. However, practical ASV systems are vulnerable to the biometric
attacks, also known as the voice presentation attacks, according to the ISO/IEC
standard 30107-1:2016 [193]. The major voice attacks include voice conversion
(VC) [194], speech synthesis (SS) [195], replay [196], and impersonation [197],
which are known to degrade the performance of ASV systems [192]. Hence, a
speaker verification system also includes the SSD system as a countermeasure
along with the ASV system as shown in Figure 6.6. The general countermeasure
approach is one of the solutions to focus on feature representation and statisti-
cal pattern recognition techniques. In particular, feature representation forms a
key task for the SSD task. The aim is to distinguish between genuine and im-
postor speech by capturing the key discriminative features between two speech
signals. This might suggest that the design of spoofing countermeasures should
better focus on feature representation, rather than on advanced or complex clas-
sifiers [198, 199]. The details of various approaches used for the SSD task both
for the ASVspoof 2015 challenge, and post evaluation results are given in [200].
The literature of using representation learning for the SSD task is given in Table
2.3, Chapter 2. In this Chapter, we describe our approach of the unsupervised
filterbank learning using ConvRBM for the SSD task [6].

Figure 6.6: A speaker verification system along with the spoof speech detection
system as a countermeasure.

6.6 Experimental Setup

6.6.1 ASVspoof 2015 Challenge Database

The experiments are conducted on the ASVspoof Challenge 2015 database [192].
It consists of speech data without channel or background noise collected from the
106 speakers (45 male and 61 female). It is divided into three subsets, namely,
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training, development, and evaluation set. The description of the database is
given in Table 6.4.

Table 6.4: Number of speakers and utterances in different datasets

Subset
# Speakers # Utterances

Male Female Genuine Spoofed
Training 10 15 3750 12625

Development 15 20 3497 49875
Evaluation 20 26 9404 184000

6.6.2 Training of ConvRBM and Feature Extraction

The ConvRBM is trained on the training set of the ASVspoof Challenge 2015
database. Each speech signal after mean-variance normalization was applied to
the ConvRBM. The filter length is chosen to be m=128 samples (i.e., 8 ms), similar
to as in [3]. The learning rate was chosen to be 0.0001 and decayed at each epoch
according to the learning rate scheduling as suggested in [163]. The moment pa-
rameters of an Adam optimization were chosen to be β1=0.5 and β2=0.999. We
have trained the model with different numbers of ConvRBM filters, with average
and max-pooling. After the model was trained, the ConvRBM-CC features were
extracted from the speech signals.

6.6.3 Model Training and Score-Level Fusion

We used the GMM with 512 mixtures for modeling the two classes, in which the
classes correspond to the genuine and impostor class in ASVspoof 2015 database.
The GMMs are trained with the training set of the database. The use of a GMM
classifier has been shown to perform best in the detection of genuine vs. impostor
speech in the ASVspoof 2015 challenge [200]. Final scores are represented in terms
of the log-likelihood ratio (LLR). The decision of the test speech being genuine or
impostor is based on the LLR, i.e.,

LLR = log
p(X|H0)

p(X|H1)
, (6.1)

where p(X|H0) and p(X|H1) are the likelihood scores from the GMM for the gen-
uine and impostor trials (with hypothesis H0 and H1), respectively, for feature vec-
tors X. To obtain the complementary information of the MFCC and ConvRBM-CC
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feature sets, we use their score-level fusion, i.e.,

LLRcombine = (1− α)LLR f eature1 + αLLR f eature2, (6.2)

where LLR f eature1 is the log-likelihood score of MFCC, and LLR f eature2 is the score
for ConvRBM-CC, respectively. The weights of the scores are decided by the fu-
sion parameter of α.

6.7 Experimental Results of the SSD Task

In this section, first we will analyze the subband filters of ConvRBM followed by
the experimental results.

6.7.1 Analysis of Subband Filters

The ConvRBM is trained using the training set of the ASVspoof Challenge 2015
database [201]. Figure 6.7 shows the subband filters learned using ConvRBM
trained on the entire training set (denoted as ConvRBM-TrainingAll), synthetic
speech from the training set (denoted as ConvRBM-TrainingSyn) of the ASVspoof
2015 database and the TIMIT database (denoted as ConvRBM-TIMIT). The model
is analyzed with K = 40 subband filters for all the cases. The subband filters in the
time-domain as shown in Figure 6.2 (a)-(c), and the corresponding frequency re-
sponses are shown in Figure 6.2 (d)-(f). The subband filters of ConvRBM-TrainingAll
and ConvRBM-TrainingSyn are different from the ConvRBM-TIMIT. However,
the filterbanks of ConvRBM-TrainingAll, and ConvRBM-TrainingSyn includes more
lower frequency subband filters with many of the subband filters being wavelet-
like basis functions (e.g., Figure 6.7 (a), (b) shows the short duration impulses re-
sponses). We can also see that all the subband filters are localized in the frequency-
domain with different CFs except in the synthetic speech case as shown in Figure
6.2 (e). These observations are also reflected in the ConvRBM spectrogram (as
shown in Figure 6.8). The ConvRBM spectrogram shows more emphasis in the
lower frequency subbands compared to the Mel spectrograms. The training set of
the ASVspoof 2015 database contains 3750 utterances of natural speech and 12625
utterances of synthetic speech. Hence, the ConvRBM subband filters trained on
the training set (that includes both the natural and synthetic speech) adapted more
towards representing the synthetic speech signals (since the model is biased to-
wards them). From the frequency responses of filters, we can see that it also limits
the model to represent higher frequencies that are difficult to model in the syn-
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thetic speech signals, such as fricative and transient sounds.
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Figure 6.7: The subband filters trained on the training set of ASVspoof 2015
(Panel I), synthetic speech of ASVspoof 2015 (Panel II), and the TIMIT (Panel III)
databases, respectively: subband filters in (a)-(c) time-domain, (d)-(f) frequency-
domain.

6.7.2 Filterbank Scale Analysis

The CF vs. subband filter index plot is shown in Figure 6.9. The filterbank learned
with ConvRBM-TrainingAll, ConvRBM-TrainingSyn, and ConvRBM-TrainingNat
(natural speech) uses more lower-frequency subband filters compared to the rest
of the filterbanks. The frequency scale of ConvRBM-TrainingNat is slightly dif-
ferent in the frequency range 1-3 kHz compared to ConvRBM-TrainingAll and
ConvRBM-TrainingSyn. However, the frequency scales of ConvRBM-TrainingNat
and ConvRBM-TIMIT alone are significantly different after 1 kHz. Since Con-
vRBM is a statistical model, it better learns the subband filters with more diverse
databases and encodes the statistical properties of the underlying database (such
as 462 speakers in the TIMIT database vs. 25 speakers in the training set). We
also observe that the model is biased towards synthetic speech due to the large
number of examples compared to the natural speech in the training set.

6.7.3 Experimental Results on Development Dataset

The results on the development set for the individual performance of the 39-D
MFCC and ConvRBM-CC with different parameters (number of subband filters K,
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Figure 6.8: Spectrogram analysis: (a) speech signal, (b) ConvRBM spectrogram,
and (c) Mel spectrogram. The utterance is: “We have to pull together or we will
hang apart".

and pooling techniques) are shown in Table 6.5. It is observed that the ConvRBM-
CC feature set (3.71-2.53 % EER) gives relatively better performance compared to
the MFCC (6.14 % EER). However, an increasing number of subband filters (i.e.,
K=60) does not improve the performance of classification compared to the smaller
number of subband filters (i.e., K=40). The lowest % EER is achieved using max-
pooling and 40 subband filters. We have used 40 subband filters for rest of the
experiments. The score-level fusion of ConvRBM-CC (K=40, average and max-
pooling) with the MFCC further reduces % EER. This shows that the ConvRBM-
CC feature set contains complementary information that was not evident from
the MFCC alone. The DET curves of the two GMM systems using the MFCC and
ConvRBM-CC feature sets, respectively, are shown in Figure 6.10.

Table 6.5: The results of different parameters of ConvRBM-CC features on the
development set in % EER. After [6]

Feature Set No. of Filters (K) Pooling % EER
MFCC 40 - 6.14

ConvRBM-CC 60 average 3.71
A:ConvRBM-CC 40 average 3.18
B:ConvRBM-CC 40 max 2.53

A⊕MFCC 40 - 2.80
B⊕MFCC 40 - 2.31

⊕ indicates score-level combination
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Figure 6.9: Comparison of the filterbank learned using ConvRBM with auditory
filterbanks. After [6].

6.7.4 Experimental Results on the Evaluation Dataset

Table 6.6 shows the performance of the ConvRBM-CC feature set for each of
the different spoofing attacks grouped into known and unknown attacks with
their average EERs for known and unknown spoofing attacks. It is observed that
ConvRBM-CC performs better than the MFCC on the evaluation set in all the
spoofing attacks. The ConvRBM-CC with the max-pooling performs better than
the average-pooling for known attacks (S1-S5). However, in the case of unknown
attacks, specifically S10 (unit selection speech synthesis), the average-pooling per-
forms better (22.64 %) than the max-pooling (33.20 % EER). Due to the dominance
of S10 % EER, the average pooling gave the lowest EER of 5.87 % in unknown
attacks compared to the max-pooling (7.69 %) and MFCC (13.76 %). Compared
to the development set, ConvRBM-CC with the average-pooling performs better
than the max-pooling on the evaluation set with the lowest EER 3.90 % on av-
erage. To observe whether any complementary information is being captured in
the average and max-pooling of ConvRBM-CC, score-level fusion is performed.
It resulted in the reduction of % EER in a few cases and increased % EER (in-
cluding S10). We have also performed the score-level fusion of the MFCC and
ConvRBM-CC with the average-pooling. Here, the fusion reduces the % EER for
all the attacks except S2, S6 and S10 (which are having significantly higher %
EER). Hence, the individual ConvRBM-CC with average pooling performed well
in the SSD task. A comparison of the proposed feature representation with the
literature (state-of-the-art as well as the feature learning methods) is shown in Ta-
ble 6.7. Compared to the supervised features obtained using DNN with linear
discriminant analysis (LDA) and GMM classifiers [130], [131], our unsupervised
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Figure 6.10: The DET curve of ConvRBM-CC (60 and 40 subband filters with
max, and average pooling), and MFCC on the development set. After [6].

Table 6.6: Results on the evaluation dataset for each spoofing attack in terms of
% EER. After [6]

Feature Set
Known Attacks Unknown Attacks All

S1 S2 S3 S4 S5 Avg. S6 S7 S8 S9 S10 Avg. Avg.
MFCC 0.78 9.68 0.00 0.00 7.42 3.57 7.45 1.82 0.17 1.80 57.57 13.76 8.66

A:ConvRBM-CC (avg) 0.00 5.68 0.00 0.00 3.97 1.93 3.26 1.60 0.00 1.88 22.64 5.87 3.90
B:ConvRBM-CC (max) 0.00 3.61 0.00 0.00 2.82 1.26 2.15 1.69 0.00 1.45 33.20 7.69 4.47

A⊕B 0.35 3.70 0.16 0.21 2.50 1.13 2.13 1.13 0.00 1.20 24.49 5.79 3.46
MFCC⊕A 0.00 4.13 0.00 0.00 2.79 1.38 2.39 0.68 0.00 0.00 54.16 11.44 6.41

⊕ indicates score-level combination

filterbank learned using ConvRBM performs better in S10 class and similar %
EER on an average in the unknown attacks. It also performs better than the su-
pervised spectro/CNN [202] in S10 and resulted in similar % EER for unknown
attacks. The CQCC feature set gave the lowest results achieved on the ASVspoof
2015 databases.

6.8 Replay Spoof Speech Detection

Among all the spoofing attacks, the replay attacks are a major threat to the ASV
systems since they can be easily performed (using playback of recorded voice)
[204]. A simple example is to use a device (either in smartphone or standalone)
to replay a recording of a target speaker’s speech to unlock a smartphone that
uses the ASV-based access control [205]. To promote the research in development
of countermeasures for the replay SSD, the ASVspoof 2017 Challenge was orga-
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Table 6.7: Comparison of various feature sets in the SSD literature in terms of
feature vector dimension (D), classifier, S10 class, unknown attacks and all the
attacks. After [6]

Feature Set D Classifier S10 Unknown All
ConvRBM-CC 39 GMM 22.64 5.87 3.90

CQCC [203] 38 GMM 1.07 0.46 0.26
Best DNN [130] 96 LDA 25.5 5.1 2.6
Best RNN [130] 96 LDA 10.7 2.5 1.4

DMCC-BNF [131] 64 GMM 21.47 - 2.15
DPSCC-DNN [131] 60 DNN 12.86 - 2.18
Spectro/CNN [202] 128 CNN 26.83 5.83 3.07
Spectro/RNN [202] 128 RNN 17.97 4.05 2.46

Spectro/CNN+RNN [202] 128 RNN 14.27 3.33 1.86

nized as a part of a special session at INTERSPEECH 2017 [205]. The goal of the
challenge is to develop replay SSD using the only acoustic characteristics of the
utterances [205]. The replayed speech may contain unknown background noises,
reverberation, channel noise, etc. In addition, the recordings made from very
high-quality devices may also be close to the genuine speech.

It is observed in the literature that low frequency information is useful to de-
tect synthetic speech. As discussed above, our ConvRBM learns more lower fre-
quency subband filters naturally. In the replay speech detection, high frequency
information is important [206], [207]. Hence, in this task, we used pre-emphasized
speech signals to train the ConvRBM as discussed below:

6.8.1 Filterbank Learning From Pre-emphasized Speech

In order to learn subband filters that are more localized towards the high fre-
quency components, we used pre-emphasized speech signals to train ConvRBM.
The speech spectrogram (STFT and Mel) shows large intensity for lower frequency
regions below 1 kHz. Perceptual experiments suggest that some aspects of the
weak energy in the high frequency range is also important [153]. In particular, the
center frequencies of the second and third formants (i.e., F2 and F3) of the sonorant
sounds or correspondingly the lowest resonance of the obstruent sounds are very
important and must be modeled well in speech analysis [153]. The pre-emphasis
is a technique for flattening the magnitude spectrum and balancing the low and
high frequency components. The pre-emphasis also models the combined effect
of the glottal flow waveform and the lip radiation. It is mathematically modeled
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using a smooth highpass filter given as:

H(z) = 1− αz−1, (6.3)

where α = 0.97 [153]. We observed in Section 6.10 that the subband filters learned
in this way represent the high frequency components much better.

6.8.2 Feature Normalization

The mismatch between training and testing data is a major source of error for
many speech processing applications including ASV [208]. The mismatch condi-
tions include differences in background noises, communication channel, record-
ing equipment, etc. In the case of the replay SSD task, mismatch includes different
replay conditions for the training, development, and evaluation data [205]. A sim-
ple technique to reduce the channel mismatch is the cepstral mean normalization
(CMN) [208], also known as the cepstral mean subtraction (CMS) [209]. The basic
principle behind CMN is based upon the behavior of the cepstrum under the con-
volutional distortions [210]. The assumption is that the channel impulse response
h[n] is linear time-invariant, i.e., it does not vary significantly over the duration of
the utterance [210].

The channel distortion h[n] may also include the distortions due to record-
ing/playback device (h1[n]) and communication channel (h2[n]), i.e., h[n] = h1[n] ∗
h2[n] [211]. Let us denote the speech signal prior to the channel distortion h[n] as
x[n], then the corrupted speech signal is y[n] given by:

y[n] = x[n] ∗ h[n], (6.4)

where ∗ denotes the convolution operation. The convolution in the time-domain
becomes additive in the cepstral-domain [209]. Hence, eq. (6.4) can be written
as [210]:

cy = cx + ch, (6.5)

where cy, cx and ch, denotes the cepstrum representation of eq. (6.4). Now, con-
sider taking the mean of the cepstrum in eq. (6.5),

E[cy] = E[cx] + E[ch], (6.6)

where E[·] is the expected value and can be calculated as sample average. Since
it is assumed that the channel does not vary over the duration of an utterance,
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E[ch] = ch. If the distribution and variety of sounds in x[n] is such that the average
spectrum over the utterance is relatively flat, then E[cx] ≈ 0. As we discussed in
Section 6.8.1, the pre-emphasis produces a flat spectrum and hence, E[cy] = ch.
Thus, we can reduce the channel distortion by subtracting the cepstral mean E[cy]

from the cepstra of a corrupted speech signal in eq. (6.5) [210], i.e.,

cy = cy −E[cy], (6.7)

= cx. (6.8)

It is also known that normalizing the variance of the cepstrum known as cepstral
mean variance normalization (CMVN) further helps in adverse conditions [208].
However, when we remove all the cues from the replayed speech apart from
the channel mismatch, then it becomes difficult to distinguish from the natural
speech. Our experiments (in Section 6.10) show that CMVN degrades the perfor-
mance severely. CMVN is not directly related to reduce the channel distortion and
the reason for robustness is not well understood. Hence, we only use the CMN
as a feature normalization technique. Compared to our earlier feature representa-
tion using ConvRBM, here we used pre-emphasis as pre-processing on the speech
signals and CMN as post-processing on the frame-level ConvRBM-CC feature set.

6.9 Experimental Setup for Replay SSD

6.9.1 ASVspoof 2017 Challenge Database

The ASVspoof 2017 Challenge database is based on the RedDots corpus and its
replayed speech, which is a text-dependent database [212]. The spoofed data
were recorded through a variety of different environments in the ongoing H2020-
funded OCTAVE project2 [205]. The RedDots corpus was developed through dif-
ferent replay configurations consisting of varied playback devices, recording de-
vices, and loudspeakers. The number of speakers and utterances in each subset
are summarized in Table 6.8.

In contrast to the training and development sets, spoofed data in the evalua-
tion set are generated in accordance with the intentionally recorded and replayed
in different unseen environmental and channel conditions to encourage the re-
search towards the generalized spoofing countermeasures. Only some of the re-
play conditions are the same as those in the development and training sets.
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Table 6.8: Statistics of the ASV Spoof 2017 challenge corpus

Subset No. of Speakers
No. of Utterances
Genuine Spoofed

Training 10 1508 1508
Development 8 760 950

Evaluation 24 1298 12922
Total 42 3566 15380

Figure 6.11: The subband filters trained on the training set of ASVspoof 2017
Challenge: (a) and (c) without and with pre-emphasis speech signals, respec-
tively, (b) and (d) are the corresponding frequency responses. After [7].

6.9.2 Feature Extraction and Classifier

The speech signals are pre-emphasized prior to applying to ConvRBM followed
by mean-zero, unit variance normalization. The rest of the parameters of Con-
vRBM are similar to those used in the synthetic spoof speech detection. The CMN
is applied on the ConvRBM-CC feature set. The number of subband filters and
dimension of the cepstral coefficients and type of pooling are decided by the per-
formance of ConvRBM-CC features in the SSD task. The GMM classifier with the
same parameters as used in synthetic SSD task are used here. The baseline GMM
system was built using the CQCC features (90-D) with implementation provided
by the ASVspoof 2017 Challenge organizers. Another GMM baseline system with
CQCC was built by applying the pre-emphasis on speech signals and feature nor-
malization using CMN.
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6.9.3 Analysis of the ConvRBM Filterbank

The subband filters learned from the ASVspoof 2017 Challenge training database
are shown in Figure 6.11. We have compared the subband filters trained with
(denoted as ConvRBM-PEtraining) and without pre-emphasized speech signals.
The difference between learned subband filters can be clearly seen in Figure 6.11.
The filterbank learned without pre-emphasized speech signals contains many ir-
regular low-frequency subband filters (Figure 6.11 (a)). Since the pre-emphasis
increases the intensity of high frequency components, the filterbank learned with
the pre-emphasized speech signals contains relatively few lower frequency fil-
ters, while many subband filters represent relatively high frequency components
in the spectrum (Figure 6.11 (c)). The frequency responses of the subband filters
in Figure 6.11 (b) and (d) show that ConvRBM trained on pre-emphasized speech
signals learned more localized subband filters.

A comparison of frequency scales obtained for the pre-emphasized speech sig-
nals from the ASVspoof 2017 Challenge database is shown in Figure 6.12. The
frequency scale obtained from the ConvRBM-PEtraining model is significantly
different from other auditory scales as well as ConvRBM trained without pre-
emphasized speech signals. Since the pre-emphasis performs flattening of the
spectrum, the frequency scale obtained is more linear compared to the nonlinear
scale obtained without pre-emphasis. It uses progressively more subband filters
to represent higher frequencies. To represent the frequencies above 2 kHz, the
ConvRBM-PEtraining model uses double the number of subband filters (45 vs.
20) compared to the other auditory scales and ConvRBM trained without pre-
emphasized speech signals.

10 20 30 40 50 60

1000

2000

3000

4000

5000

6000

7000

8000

Subband filter index

C
en

te
r 

fr
eq

u
en

cy
 (

H
z)

 

 

ConvRBM

ConvRBM−PEtraining

Mel

ERB

Bark

Figure 6.12: The comparison of ConvRBM filterbank scales (with and without
pre-emphasized speech signals) for the ASVspoof 2017 Challenge database along
with different auditory frequency scales. After [7].
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Figure 6.13: Comparison of spectrograms: (a) pre-emphasized speech signal,
(b) constant-Q spectrogram, (c) Mel spectrogram, and (d) ConvRBM-PEtraining
spectrogram. The utterance is: “Artificial intelligence is for real".

The spectrogram representation of the proposed filterbank is shown in Figure
6.13. We have also shown the constant-Q spectrogram (from the CQCC feature
representation) and the Mel spectrogram in Figure 6.13. The ConvRBM spectro-
gram is obtained using 60 subband filters followed by the max-pooling opera-
tion. The constant-Q spectrogram has several subband filters representing the
low frequencies. Hence, when the pre-emphasized speech signal is used in the
constant-Q spectrogram, the intensities of the lower frequency components re-
duced significantly as can be seen from Figure 6.13 (b). The difference (w.r.t. the
time-frequency representation) between the Mel and ConvRBM spectrogram is
due to the frequency scale learned by the ConvRBM using pre-emphasized speech
signals. The higher frequency components are more clearly visible than the Mel
spectrograms. Since Mel filterbank filters are placed according to the Mel scale, it
will not represent high frequency components even if we use the pre-emphasized
speech signals (Figure 6.13 (b)). The ConvRBM subband filters are optimized in
such a way that it represents the frequency range of the pre-emphasized speech
signals.

6.10 Experimental Results

The effect of ConvRBM parameters in replay detection is shown in Table 6.9 on
the development set in terms of % EER. It is observed from the previous studies
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that the ASVspoof 2017 task requires more number of cepstral coefficients. Hence,
we compare different ConvRBM configurations with the 90-D feature vector (30
(static)+30 (∆)+30 (∆∆)). The 90-D was chosen to compare the results with base-
line 90-D CQCC features. The ConvRBM-CC obtained from the pre-emphasized
filterbank resulted in an improved performance compared to the ConvRBM-CC
feature set without a pre-emphasized filterbank. The use of NLReLU as hidden
unit activations in ConvRBM improved the performance even further along with
pre-emphasis (2.2 % absolute reduction). The significance of max-pooling can be
seen in Table 6.9 compared to the average pooling (0.91 % absolute reduction in
EER) for K = 60 and m = 128. Reducing the number of filters from K = 60 to
K = 40 and increasing to K = 80 did not help in reduction of % EER. The filter
length m = 160 and m = 96 also did not result in an improved performance. The
lowest EER obtained is 9.48 % using K = 60, m = 128 and max-pooling with
ConvRBM-CC features obtained from the ConvRBM-PEtraining.

Table 6.9: The analysis of various parameterization of ConvRBM-CC (90-D)
in terms of % EER on the development set (Dev). Here, K and m represent the
number of subband filters and filter length, respectively. After [7].

K m Pre-emphasis Hidden units Pooling Dev
60 128 No NReLU avg 14.89
60 128 No NReLU max 12.39
60 128 Yes NReLU max 11.68
60 128 Yes NLReLU max 9.48
60 128 Yes NLReLU avg 9.70
40 128 Yes NLReLU max 11.93
80 128 Yes NLReLU max 9.80
60 160 Yes NLReLU max 11.46
60 96 Yes NLReLU max 12.42

avg= average pooling, max= max pooling, Dim= dimension of feature vector

Further analysis in terms of the pre-emphasis and feature normalization for
the proposed ConvRBM-CC feature set along with CQCC is shown in Table 6.10.
The pre-emphasis on the CQCC slightly reduces the % EER. However, applying
the CMN further drops % EER to 9.61 % (absolute reduction of 0.74 %). Applying
pre-emphasis and the CMN together to the CQCC reduces the EER from 10.35
% to 9.61 %. The feature normalization using the CMN significantly reduce %
EER (from 12.39 to 9.86 %) even without using the ConvRBM-PEtraining feature
set. Using only the ConvRBM-PEtraining feature set improves the performance
in ConvRBM-CC with 0.69 % absolute reduction in % EER. However, the low-
est EER of 8.79 % on the development set was achieved using the pre-emphasis
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Table 6.10: The effect of pre-emphasis and feature normalization on CQCC (90-
D) and ConvRBM-CC (90-D) in % EER on the development set. After [7].

Feature Set Pre-emphasis Normalization Dev
CQCC No No 10.35
CQCC Yes No 10.28
CQCC Yes CMN 9.61

ConvRBM-CC No No 12.39
ConvRBM-CC No CMN 9.86
ConvRBM-CC Yes No 9.48
ConvRBM-CC Yes CMN 8.79
ConvRBM-CC Yes CMVN 13.94

CMN=cepstral mean normalization,
CMVN=cepstral mean variance normalization

trained ConvRBM-CC along with the CMN. The CMVN did not perform well and
increases the % EER. Hence, for our proposed feature set pre-emphasis trained
ConvRBM and CMN resulted in an improved performance on the development
set.

The effects of feature dimension in the ConvRBM-CC and CQCC are shown
in Figure 6.14a and Figure 6.14b for the development and evaluation set, respec-
tively. For different feature dimensions, the ConvRBM-CC feature set performs
better than the CQCC feature set on both the development and evaluation set. In
the case of the development set, 120-D feature dimension is optimal for both the
CQCC and ConvRBM-CC, with the later performing relatively better. An absolute
improvement of 0.7 % is obtained on the development set using the ConvRBM-
CC over CQCC. In the case of the evaluation set, there is not much difference
in % EER for CQCC feature set with minimum % EER for 60-D and 150-D. For
ConvRBM-CC,better performance is obtained with 120-D, similar to the develop-
ment set. ConvRBM-CC performs significantly better compared to the CQCC on
the evaluation set with 5.07 % absolute reduction in % EER.

The final results using the proposed feature representation are summarized
in Table 6.11. The baseline system using CQCC provided by the ASVspoof 2017
Challenge organizer has much higher % EER on the evaluation set compared to
the baseline system we built using the CQCC feature set with pre-emphasis and
CMN. In order to see the complementary information from CQCC and ConvRBM-
CC, the score-level fusion is employed using eq. (5). The fused scores show sig-
nificant reduction in % EER on the development set (5.90 %). However, for the
evaluation set the reduction in % EER is not much significant. The performance
analysis is also shown by the DET curve in the Figure 6.15a for the development
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(a) (b)

Figure 6.14: The effect of feature dimension on (a) the development set and (b)
evaluation set in % EER.

set and in the Figure 6.15b for the evaluation set. As seen from Figure 6.15a, ex-
cept for a few operating points of the DET curve, ConvRBM-CC has lower false
alarms and miss probabilities in the DET curve. The DET curve of score-level
fusion is clearly distinct at all the operating points of the DET curve for the de-
velopment set. For the evaluation set, the ConvRBM-CC features have signifi-
cantly lower false alarms and miss probabilities in the DET curve compared to
the CQCC. However, the score-level fusion does not have much benefit and also
can be seen from the DET curve.

Table 6.11: The results on development and evaluation sets in % EER. After [7].

Feature Set Dev Eval
Challenge baseline [205] 10.35 30.17

S1:CQCC 9.61 19.93
S2:ConvRBM-CC 8.19 14.86

S1 ⊕ S2 5.90 14.56
⊕ represents the score-level combination

The proposed feature set is compared to various feature sets proposed in the
ASVspoof 2017 Challenge that was published in the special session during IN-
TERSPEECH 2017. Our proposed feature set performs better on the evaluation set
than the existing features based on using the high frequency information (HFCC
and CQCC (i.e., for 6-8 kHz)). Most of the approaches used a GMM-based clas-
sifier. Few approaches used a deep learning framework either for classification
or for feature learning followed by the GMM classifier [133]. Our proposed fea-
ture set resulted in lower % EER compared to the few approaches that use deep
learning-based complex architectures except the work in [133]. The best results
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(a) (b)

Figure 6.15: The DET curve for ConvRBM-CC, CQCC and their score-level fusion
on (a) development set, and (b) evaluation set. After [7].

on the development set were achieved by the study [213] that incorporated the
pre-emphasis technique. On the evaluation set, the system in [133] performed the
best with the lowest 7.37 % EER that used feature normalization in both spectrum
and cepstral-domain.

In the next section, we discuss classification of healthy vs. pathology infant cry
classification.

6.11 Infant Cry Classification (ICC)

Humans cry to express a range and degree of emotions, such as from happiness
after passing a tough exam or meeting a beloved one to grief after the death of a
person or difficult situations in life [218]. On the whole, crying is not just a sim-
ple reaction to any feeling or emotional state but rather a multifaceted behavior
that can offer clues to how we process and regulate our feelings, and how we
experience the world around us [218]. The evolutionary background of crying is
discussed in a book [219], where it is shown that only humans have the ability
to cry, not other mammals. In humans, infants communicate their need, such as
feeding, distress or pain by crying [220]. Intra-individual variation in infant cries
is known to encode qualitative and quantitative information on the condition,
needs, emotional status and the degree of urgency. Infant cry carries multiple lev-
els of information as shown in Figure 6.16. Based on the perception of the cry, par-
ents or caretakers empirically try to understand the reason for the crying and even
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Table 6.12: The comparison of proposed features with various features proposed
in the ASVspoof 2017 Challenge

Feature Set Classifier Dim Dev Eval
Challenge baseline [205] GMM 90 10.35 30.60
Proposed:ConvRBM-CC GMM 120 8.19 14.86

Proposed fusion GMM 120 5.90 14.56
VESA-IFCC [214] GMM 120 4.61 14.06

HFCC [206] GMM 30 5.9 23.9
CQCC [215] DNN 90 5.18 19.41
CQCC [215] ResNet 90 5.05 18.79

CQCC (6-8 kHz) [207] GMM 90 5.13 17.31
DA-CQCC [216] GMM 60 7.01 19.18
DA-CQCC [216] ResNet 60 6.32 23.14

MFCC [215] ResNet 90 10.95 16.26
SFFCC-D [213] GMM 30 2.35 20.2
SFFCC-D [213] BLSTM 30 3.66 22.4

SCMC [217] GMM 120 9.32 11.49
RFCC [217] GMM 60 6.91 11.90
MFCC [217] GMM 90 7.76 27.12

LCNN (FFT) [133] GMM - 4.53 7.37
LCNN (CQT) [133] GMM - 4.80 16.54

identify their newborn [220]. Recently, there is an increasing effort to investigate
the reasons for Sudden Infant Death Syndrome (SIDS) [34] through the analysis
of infant cry signals. Infant cry analysis is also valuable in the clinical diagnostics
in order to know whether a disease to the newborn is due to the central nervous
system (CNS) [221]. From a signal processing perspective, our goal is to classify
whether the infant is crying due to pain, hunger or some medical diseases. The
detailed discussion on the topic of infant cry and the literature of infant cry clas-
sification are found in [34] and in [222] to the best of authors’ knowledge, the first
Ph.D. thesis in this area from India. To date, there is no standard publicly available
database for infant cry classification. Many researchers collected their own data
including our Speech Research Group at DA-IICT [8], [223]. Other studies include
the work in [136, 224–227]. In this chapter, we used the Baby Chillanto infant cry
database, which is a property of INAOE-CONACyT, Mexico [228]. The literature
of using representation learning for the ICC task is given in Table 2.3, Chapter
2. These techniques used handcrafted features such as the MFCC for acoustic
analysis. Here, we used our proposed auditory filterbank learning framework us-
ing ConvRBM for feature learning from infant cry signals. Next, we discuss the
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Figure 6.16: Multiple levels of information present in the infant cry signal.
Adapted from [34].

database, the experimental setups, and results.

6.12 Experimental Setup

6.12.1 Databases

The DA-IICT Infant Cry database was collected as a part of a B.Tech project work,
Ph.D. thesis work, and the DST fast track award for young scientists to Prof. He-
mant A. Patil for the project, “Development of Infant Cry Analyzer using Source
and System Features" [8]. The infant cry data was collected from three hospitals
in Visakhapatnam, namely, 1. King George Hospital, 2. Prabha Nursing Home,
and 3. Child Clinic. The sampling frequency of the original recordings was 12
kHz, quantized at 16-bit PCM. For our experiments, we downsample it to 11.025
kHz since at a later stage, we will compare the experimental results with another
database. The statistics of the DA-IICT Infant Cry database is shown in Table 6.13.
The healthy cry signals consist of normal and hunger cry signals. The pathology
cry includes two types of pathologies, namely, asphyxia (also called Hypoxic Is-
chemic Encephalopathy (HIE)) and Asthma.

Table 6.13: Description of DA-IICT Infant Cry database. After [8]

Class Category No. of samples
Healthy Normal, hunger 793

Pathology
Asphyxia 215
Asthma 182

The Baby Chillanto infant cry database was developed by recordings con-
ducted by medical doctors. The infant cry signals were carefully labeled at the
time of the recording with the references, such as reason for crying, sick or not,
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Table 6.14: Description of infant cry database.

Class Category No. of samples

Healthy
Normal 507
Hungry 350

Pain 192

Pathology
Asphyxia 340

Deaf 879

and, infant age. Each cry signal was segmented into one second duration (that
represents one sample) and is grouped into five categories as shown in Table 6.14.
Since the sampling rate of cry signals is different in all the categories, we kept
the sampling rate of 11.025 kHz for all the categories. Two groups were formed
for binary classification of healthy vs. pathology. Healthy cry signals include
three categories, namely, normal, hungry, and pain resulting in 1049 cry samples.
Pathology cry signals include two categories, namely, asphyxia (also called as Hy-
poxic Ischemic Encephalopathy (HIE)) and deaf resulting in 1219 cry samples.

6.12.2 Feature Extraction and GMM Training

ConvRBM is trained with infant cry signals with parameters similar to those used
in the other audio classification task. The model is trained with 40 subband filters
(i.e., K) with convolution window length m= 88 samples (i.e., 8 ms). After the
model was trained, the features were extracted from the infant cry signals. The
39-D cepstral features ConvRBM-CC are used in the GMM classifier. Since the
Baby Chillanto infant cry database is very small in size (37 min and 50 second
duration), the GMM is used for binary classification. Healthy cry features belong
to one class and pathology cry features belong the other class. The GMMs with
different mixture components were trained using the MFCC and ConvRBM-CC
feature sets. The results are predicted using log-likelihood scores with 10-fold
cross-validation. In each fold, the numbers of healthy and pathology cry samples
were 945 and 1098, respectively, for training and the remaining (104 and 121 for
healthy and pathology, respectively) for testing. For each fold, we noted % classi-
fication accuracy and % EER. The performance of the ICC task is evaluated using
various performance measures obtained from the confusion matrix as discussed
in Appendix B.3.
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Figure 6.17: The subband filters trained on DA-IICT Infant Cry (Panel I), Baby
Chillanto (Panel II), and TIMIT (Panel III) databases, respectively:(a)-(c) in the
time-domain, (d)-(f) corresponding frequency responses. After [9].

6.13 Analysis of Infant Cry Signals

6.13.1 Analysis of Subband Filters and Frequency Scale

The subband filters learned from the DA-IICT Infant Cry and Baby Chillanto
databases are shown in Figure 6.17. We have also shown the subband filters ob-
tained from the TIMIT speech database. It is very interesting to note an intriguing
observation that these subband filters were learned from only 37 minutes and 50
seconds duration of cry signals from the Baby Chilanto and 30 minutes of cry sig-
nals from the DA-IICT Infant Cry database (such scarcity of larger databases is all
the more the case in medical scenarios). Thus, it shows the applicability of our
proposed model even in very small database scenarios. The time-domain sub-
band filters are significantly different from the one for the normal adult TIMIT
speech database. The subband filters of the infant cry databases contain more
Fourier-like basis functions due to the harmonic nature of the infant cry signals
as shown in Figure 6.18. The analysis of the frequency-domain subband filters
revealed that many subband filters are not localized and contain harmonic struc-
tures. This may be due to more harmonic content present in the infant cry signals.
On comparing the subband filters learned from the two different databases, the
subband filters from the baby Chillanto database has more lower frequency filters.
However, the filter shapes of most of the subband filters are similar.
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Figure 6.18: Segments of the infant cry signals showing the harmonic nature of
the cry signals for (a) normal, (b) deaf, (c) asphyxia, and (d) asthma.

The frequency scales obtained using ConvRBM are compared with the stan-
dard auditory frequency scales in Figure 6.19. Unlike the scale obtained through
the speech database [3], here we observed two linear segments in the frequency
scale, from 0 to 1 kHz and from 1 kHz to 3 kHz. After 3 kHz, it is nonlinear and
follows the ERB and Bark scales. However, the frequency scale from the DA-IICT
Infant Cry database is more away from the standard scales. It has minimum cen-
ter frequency of 500 Hz and after 4 kHz it follows the other frequency scales. The
difference in the frequency scales of both the databases may be due to variabil-
ity in the cry signal production mechanism through language perception (Indian
languages vs. English in the Baby Chillanto), data recording conditions, back-
ground noise, channel characteristics, microphone specifications, etc. The scatter
plot of bandwidth vs. CF is also shown in Figure 6.20. Due to harmonic nature
of cry sounds, Q factors of ConvRBM filterbank are not constant specifically up
to 4 kHz. The bandwidth of ConvRBM subband filters is constant around 150 Hz
for CF up to 4 kHz. However, after 4 kHz bandwidth value increases as the CF
also increases. This may be due to the fact that many of pathological cry signals
contain distorted harmonics, transient, and noisy-like sounds. Hence, it leads to
learn few large bandwidth subband filters at higher frequencies.

6.13.2 Analysis of ConvRBM Spectrograms

In this section, the spectrogram representation for the cry signals using the Con-
vRBM filterbank is presented in detail.
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Figure 6.20: Comparison of bandwidth vs. CF for infant cry databases. After [9].

6.13.2.1 Normal Infant Cry Signals

The spectrograms from three normal infant cry signals taken from the Baby Chi-
lanto database are shown in Figure 6.21. A better time-frequency resolution is
obtained using the ConvRBM filterbank as marked in the spectrograms, specif-
ically in the high frequency regions. We can see the slowly-varying harmonic
structures and some noise (this is predominantly due to the turbulent excitation
source and not due to the environmental noise) in the normal cry signals that are
related to the cry modes as observed in [8], [222]. Figure 6.21 (a) is an example of
falling, (b) is an example of flat, and (c) is an example of rising with the vibration
cry mode. We can also observe the dysphonation cry mode in Figure 6.21 (a) af-
ter 0.2 seconds along with the falling cry mode. The spectrograms from the three
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Figure 6.21: Comparison of the spectrograms for normal cry from the Baby
Chillanto database: (a)-(c) time-domain signals, (d)-(f) Mel spectrograms, and
(g)-(i) ConvRBM spectrograms. The rectangular and circular regions indicate
differences in the two spectrograms.

normal infant cry signals taken from the DA-IICT Infant Cry database are shown
in Figure 6.22. The resolution of the ConvRBM spectrograms is higher than the
Mel spectrograms, as shown in marked regions in Figure 6.22. The harmonics are
clearly resolved in the ConvRBM spectrograms. The cry modes, such as series of
rising, falling, and flat, can be observed in Figure 6.22 (d) and (g). The dyspho-
nation cry mode is observed in Figure 6.22 (e), (h) with the harmonic vibration
mode (shown by a circle). Our observations for the normal cry signals are similar
to those observed in [8], [222] for the normal infant cry signals.

6.13.2.2 Asphyxia Infant Cry Signal

The asphyxia or HIE is a disease caused in the newborn due to the lack of supply
of oxygen or blood to the brain that arises due to abnormal breathing. In very
serious conditions, asphyxia can cause coma or even death. The infants suffering
from asphyxia are not able to produce a normal cry that results in pathological
signs in the cry signals. The spectrograms from three asphyxia infant cry sig-
nals taken from the Baby Chillanto database are shown in Figure 6.23. The time-
frequency resolution is significantly better compared to the Mel spectrograms as
can be seen from Figure 6.23. The difference between normal and asphyxia cry is
clearly visible from the spectrograms. There are no continuous harmonic struc-
tures present in the asphyxia cry; rather, it is of very short duration and noisy.
This is due to the infant is not able to vocalize due to an inadequate supply of
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Figure 6.22: Comparison of spectrograms for normal cry signals from the DA-
IICT Infant Cry database: (a)-(c) time-domain signals, (d)-(f) Mel spectrograms,
and (g)-(i) ConvRBM spectrograms. The rectangular and circular regions indi-
cate the differences in two spectrograms.

oxygen or blood to his/her brain. Many of the cry modes related to harmonics
are absent in asphyxia cry. The blurred harmonics can be seen from asphyxia
cry signals in Figure 6.23 (a)-(c). The ConvRBM spectrogram can show continu-
ous dysphonation cry mode for one of the asphyxia cry signals in Figure 6.23 (i)
which is not revealed by the Mel spectrogram in Figure 6.23 (f). Similar obser-
vations are made from the asphyxia cry signals taken from the DA-IICT Infant
Cry database as shown in Figure 6.24. The continuous dysphonation cry mode
is present in the asphyxia cry signals shown in Figure 6.24 (g). One can see that
the Mel spectrograms are not able to resolve leading and trailing harmonics on
both sides of dysphonation cry mode. The asphyxia cry signals from the DA-IICT
Infant Cry database also show much less spectral energies or dysphonation cry
mode in the spectrograms.

6.13.2.3 Deaf Infant Cry

There are several reasons for deafness in newborns and in many cases they be-
come deaf early in life. It is not always possible to identify the reason for such
cases; however, there are two possible cases, namely, pre-natal and post-natal
causes [229]. Pre-natal cases include genetic reasons, complications during preg-
nancy, illnesses, such as rubella, cytomegalovirus (CMV), toxoplasmosis and her-
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Figure 6.23: Comparison of spectrograms for asphyxia cry signals from the Baby
Chillanto database: (a)-(c) time-domain signals, (d)-(f) Mel spectrograms, and
(g)-(i) ConvRBM spectrograms. The rectangular and circular regions indicate the
differences in two spectrograms.
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Figure 6.24: Comparison of spectrograms for asphyxia cry signals from the DA-
IICT Infant Cry database: (a)-(c) time-domain signals, (d)-(f) Mel spectrograms,
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Figure 6.25: Comparison of spectrograms for deaf cry signals from the Baby
Chillanto database: (a)-(c) time-domain signals, (d)-(f) Mel spectrograms, and
(g)-(i) ConvRBM spectrograms. The rectangular and circular regions indicate the
differences in two spectrograms.

pes can cause newborn to be deaf [229]. Post-natal causes include infection, specif-
ically in prematurely born babies and exposure to loud noise [229]. The deaf
infant’s cry signals differ from the normal infant cry. The onset of crying or
canonical babbling is delayed in deaf infants and cry signals differ in duration
and timing [230]. Moreover, vocal cry inventories are very limited in the deaf in-
fants. The deaf infants rely on only sounds that are visually prominent, such as
/ba/ and /ma/. It has significant impact on the acquisition of language where
sound perception plays a critical role [44]. Hence, early detection of deafness in
infancy may help in providing a hearing aid that benefit for the better develop-
ment of infants. Spectrograms from the three deaf infant cry signals from the baby
Chillanto database are shown in Figure 6.25. One can see more resolved harmon-
ics in the high frequency regions in ConvRBM spectrograms (as marked in Figure
6.25) compared to the Mel spectrograms. In all the deaf cry samples, dysphona-
tion cry mode is present in the high frequency regions. There are vibration cry
modes also present as seen in the cry signals in Figure 6.25) (a) and Figure 6.25)
(b).

6.13.2.4 Asthma Cry

Asthma is a chronic inflammatory disease that inflames and narrows the airways.
These airways allow air to come in and out of the lungs. Asthma causes recurring
periods of wheezing (a whistling sound when you breathe), shortness of breath
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Figure 6.26: Comparison of spectrograms for asthma cry signals from the DA-
IICT Infant Cry database: (a)-(c) time-domain signals, (d)-(f) Mel spectrograms,
and (g)-(i) ConvRBM spectrograms. The rectangular regions indicate the differ-
ences in two spectrograms.

(i.e., difficulty in breathing), chest tightness, and coughing. The symptoms of
asthma are seen in people of all ages, but it most often starts during childhood
or in the infant stage. Asthma is thought to be caused by a combination of ge-
netic and environmental factors that include allergens or air pollution. There is
no cure for asthma till now; however, early symptoms can be prevented by avoid-
ing triggers, such as allergens and irritants, etc. An infant suffering from asthma
faces difficulties in breathing and hence, proper treatment must be conducted to
reduce the symptoms. The spectrograms from the three deaf infant cry signals
from the DA-IICT Infant Cry database are shown in Figure 6.26. Due to frequent
inhalation, distorted harmonic structures are seen in the spectrograms in Figure
6.26 (d) and Figure 6.26 (g). Abrupt dysphonation cry modes are present in Figure
6.26 (e) and Figure 6.26 (h). Due to breathing difficulty, sometimes acoustic energy
level, and harmonic frequency range changes abruptly Figure 6.26 (f) and Figure
6.26 (i).

6.14 Experimental Results

In this section, the classification results and evaluation using various performance
measures are presented.
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Figure 6.27: The % classification accuracy using for various GMM components
the DA-IICT Infant Cry database. After [9].

6.14.1 Results on the DA-IICT Infant Cry Database

The classification accuracies for the DA-IICT Infant Cry database using the MFCC
and ConvRBM-CC feature sets are shown in Figure 6.27. The ConvRBM-CC ob-
tained higher % classification accuracy compared to the MFCC for all the GMM
components. For the MFCC, optimal results are obtained using 200 GMM com-
ponents. For the ConvRBM-CC, the optimal results are obtained using 400 GMM
components. We achieved an absolute improvement of 2 % in the classification
accuracy compared to the MFCC feature set. The confusion matrices for the clas-
sification experiment are shown in Figure 6.28. The FP and FN rate of the MFCC is
quite high compared to the ConvRBM-CC feature set. From Figure 6.28 (b), it can
be seen that the ConvRBM-CC has no FP and only 4 FN compared to the MFCC
with 21 FN (Figure 6.28 (a)). Hence, with the ConvRBM-CC, there is no chance
that normal cry signal is considered as a pathological cry signal.

Healthy Pathology
Healthy 791 8

Pathology 21 378

(a)

Healthy Pathology
Healthy ��� �

Pathology � ���

(a)

Figure 6.28: Confusion matrices for experiments on the DA-IICT Infant Cry
database using: (a) MFCC, and (b) ConvRBM-CC. After [9].

The performance measures of the classification experiments on the DA-IICT
Infant Cry database are shown in Table 6.15. The ConvRBM-CC obtain signifi-
cantly high values for all the measures compared to the MFCC. Since F-measures
do not consider the true negatives, the values of an F-measure are very similar
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for both the feature sets. The MCC and the J-statistic values are higher for the
ConvRBM-CC compared to the MFCC. The % accuracy does not consider false
positives and false negatives. From Table 6.15, one can see that the difference in
MCC and J-statistic for the MFCC and ConvRBM-CC is higher compared to %
accuracy. Hence, MCC and the J-statistic are more meaningful performance mea-
sures than just % classification accuracy. Hence, ConvRBM-CC discriminates nor-
mal and pathology classes in the DA-IICT Infant Cry database more significantly
than the MFCC.

Table 6.15: Performance measures for the classification experiments on the DA-
IICT Infant Cry database. After [9].

Feature Set MCC F-measure J-statistic
MFCC 0.945 0.963 0.937
ConvRBM-CC 0.993 0.995 0.99

Figure 6.29: The % classification accuracies using for various GMM components
of the Baby Chillanto database. After [9].

6.14.2 Results on the Baby Chillanto Database

The experimental results using the Baby Chillanto Database are shown in Figure
6.29 for the MFCC and ConvRBM-CC with different GMM mixture components.
Compared to the DA-IICT Infant Cry database, both the feature sets were able to
perform well in the classification of normal and pathology cry signals. However,
ConvRBM-CC consistently performs better than the MFCC for all the GMM mix-
ture components. The best classification accuracy of 99.87 % was achieved using
ConvRBM-CC (0.58 % absolute improvement compared to the MFCC) obtained
with 300 GMM mixture components. The confusion matrices for both feature sets

149



are shown in Figure 6.30. The false positive rate of the MFCC is quite higher
than the ConvRBM-CC (15 vs. 1), while there are no false negatives when the
ConvRBM-CC is used in the classification task. Hence, with the ConvRBM-CC
feature set, all the cry samples are correctly classified with only one false nega-
tive. The significance of this improvement using the ConvRBM-CC feature set
can also be seen from the performance measures in Table 6.16. Here, again the
F-measure is similar for both ConvRBM-CC and the MFCC. The MCC and the
J-statistic are quite high for the ConvRBM-CC with value 0.999 (close to 1). The
difference in values of the MCC and the J-statistic indicates that the ConvRBM-CC
performs better than the MFCC even though % accuracy is quite similar.

Healthy Pathology
Healthy ���� ��

Pathology � ����

(a)

Healthy Pathology
Healthy ���� �

Pathology � ����

(a)

Figure 6.30: Confusion matrices for experiments on the Baby Chillanto database
using: (a) MFCC, and (b) ConvRBM-CC. After [9].

Table 6.16: Performance measures for the classification experiments on the baby
Chillanto database. After [9].

Feature Set MCC F-measure J-statistic
MFCC 0.986 0.994 0.985
ConvRBM-CC 0.999 0.999 0.999

6.15 Chapter Summary

The application of ConvRBM on audio classification tasks, namely, the ESC, SSD,
and ICC task are presented in this Chapter. The experiments on the ESC task
demonstrate that it performs significantly better than the baseline system and
end-to-end CNN-based system. The experiments on the SSD task (synthetic and
replay) show that the proposed ConvRBM-based features performed well com-
pared to the MFCC-based baseline. Finally, we have also shown the improved
performance in the ICC task by learning the filterbank from a very small amount
of database. In the next Chapter, we will present our unsupervised deep auditory
model obtained by stacking two ConvRBMs.
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CHAPTER 7

Unsupervised Deep Auditory Model (UDAM)

7.1 Introduction

In Chapter 3, we have introduced our proposed model for auditory filterbank
learning using ConvRBM. In this Chapter, we extend our proposed approach to
model time-frequency representation of the sound in the higher-levels of the au-
ditory processing. Since auditory processing is hierarchical in nature, we propose
the two layer auditory representation learning model using stacks of the Con-
vRBMs. We first describe our proposed model of learning temporal modulation
representation in Section 7.2. Our initial attempt of using the Mel spectrogram
as an input to ConvRBM is discussed in Section 7.3-7.4. In Section 7.5, we will
show that deep auditory representation can be achieved by taking spectrum rep-
resentation of the ConvRBM trained on the speech signals as an input to another
ConvRBM. The ASR experiments and results are given in Section 7.6. The im-
proved UDAM model is presented along with experimental results in Section 7.7.

7.2 Temporal Modulations in Speech using ConvRBM

The ConvRBM filterbank responses show the temporal modulations at various
temporal scales as discussed in Appendix A. Temporal modulations in speech can
be modeled by applying a wavelet or Fourier transform on subbands of spectro-
temporal representation of a speech signal. Hence, in order to use ConvRBM to
model temporal modulations, the earlier study used PCA whitened spectrograms
as an input to ConvRBM [50]. The ConvRBM is applied along each frequency
subband in a similar manner to the modulation spectrum computation [231]. The
difference between modulation spectrum and our proposed model is that we learn
multiple modulation filters (W ∈ Rm×S×K, where m, S, K are the modulation filter
length, number of subbands, and number of groups, respectively) for each sub-
band. In our initial attempt, we proposed to use Mel spectrograms in ConvRBM
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with NReLUs [10]. Later, we used the ConvRBM filterbank that is learned from
the raw speech signals to model temporal modulations [11]. In this section, we
describe the architecture and training procedure of the model proposed in [10]
and [11].

The input to the ConvRBM is a spectro-temporal representation of a speech
signal. Let us denote the input x ∈ RS×F as the spectro-temporal representation
(also called time-frequency representation), where S and F are the numbers of
subbands (also called as channels in terms of CNN terminology [20]) and frames,
respectively. The hidden layer has K groups. The temporal convolution operation
is applied on each subband individually from all the K groups. The convolutional
responses for the kth group in the hidden layer are given as:

yk
1 = x1 ∗ w̃1

k,

yk
2 = x2 ∗ w̃2

k,
... =

...

yk
S = xS ∗ w̃S

k,

(7.1)

where w̃s
k are weights of the kth group in s = 1, .., S subbands. The convolutional

responses are added together in the respective groups followed by addition of
biases in each group as shown below:

Ik =
S

∑
s=1

(
xs ∗ w̃s

k
)
+ bk, (7.2)

where bk is the hidden bias in the kth group. The sampling equation of hidden
units in the kth group is similar to what we presented in Chapter 3:

hk ∼ max(0, Ik +N (0, sigmoid(Ik))). (7.3)

In the negative phase, the reconstructed subband signals are given as:

x1 ∼ N
(

K

∑
k=1

(
hk ∗wk

1

)
+ c1,

)
,

x2 ∼ N
(

K

∑
k=1

(
hk ∗wk

2

)
+ c2

)
,

...
...

xS ∼ N
(

K

∑
k=1

(
hk ∗wk

S

)
+ cS

)
,

(7.4)
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where c = [c1, c2, ..., cS] are the visible biases that are also shared among all the
visible units in each subband. The energy function of ConvRBM applied on the
spectro-temporal representation of speech signals is given as:

E(x, h) =
1
σ2

x

S

∑
s=1

F

∑
i=1

x2
s,i −

1
σx

S

∑
s=1

K

∑
k=1

l

∑
j=1

m

∑
r=1

(
hk

j wk
s,rxs,j+r−1

)
−

K

∑
k=1

bk

l

∑
j=1

hk
j −

1
σ2

x

S

∑
s=1

F

∑
i=1

cxs,i.

(7.5)

The variance σx is set to one, when the PCA whitening or spectral mean variance
normalization (SMVN) is applied on the input as suggested in the practical guide
of training RBM [60]. The gradient of weights in the kth group is given as:

∂

∂wk
s,r

E(x, h) =
∂

∂wk
s,r

[
S

∑
s=1

K

∑
k=1

l

∑
j=1

m

∑
r=1

(
hk

j wk
s,rxs,j+r−1

)]
. (7.6)

For subbands, s = 1, 2, ..., S, eq. (7.6) can be written as a set of equations simi-
larly as derived in filterbank learning ConvRBM in Chapter 3:

∂

∂wk
1,r

E(x, h) = conv(x1, h̃k),

∂

∂wk
2,r

E(x, h) = conv(x2, h̃k),

... =
...

∂

∂wk
S,r

E(x, h) = conv(xS, h̃k).

(7.7)

It can also be written in matrix form as follows, where each Wk ∈ Rm×S:

∂

∂Wk E(x, h) =

[
∂

∂wk
1,r

E(x, h),
∂

∂wk
2,r

E(x, h), ...,
∂

∂wk
S,r

E(x, h)

]
. (7.8)

The gradient update rule for weights in the kth group is given as:

∇Wk = ε
(〈

conv(xs, h̃k)
〉

data
−
〈

conv(xs, h̃k)
〉

model

)
, s = 1, 2, ..., S. (7.9)

With similar notations, the gradient update equations for hidden and visible
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biases are given as:

∇bk = ε

〈 l

∑
j=1

hk
j

〉
data

−
〈

l

∑
j=1

h̃k

〉
model

 ,

∇cs = ε

(〈
n

∑
i=1

xs,i

〉
data

−
〈

n

∑
i=1

xs,i

〉
model

)
, s = 1, 2, ..., S.

(7.10)

In the next section, we will describe modulation representation learning using
the Mel Spectrograms.

7.3 ConvRBM Applied on Mel Spectrograms

An input to the ConvRBM are Principal Component Analysis (PCA) whitened
Mel spectrograms extracted from the speech signals. Whitening the data using
PCA gives an approximation to sub-cortical processing, which was observed in
the auditory cortex [232]. In this study, we also analyzed the sigmoid and ReLU
activation functions in the ConvRBM. For analysis of the proposed model, the
TIMIT database is used to train the model. We have used a system combina-
tion framework for the Mel filterbank and modulation features learned by the
ConvRBM. The ASR experiments were carried out by using the TIMIT and WSJ0
databases.

7.3.1 Analysis of Learned Subband Filters

The filters learned in ConvRBM are visualized by applying the inverse of PCA
whitening on the ConvRBM weights. Since convolution is applied in the temporal-
domain (for each subband), subband filters represent Temporal Receptive Fields
(TRFs) (see Section 2.6.2, Chapter 2 for details) [50]. Examples of the TRFs learned
on the TIMIT database are shown in Figure 7.1, where each block represents one
TRF.

Unlike the cells in the visual cortex (known as V1), all the Receptive Fields
(RFs) in the auditory cortex (known as A1) are not localized [233]. Receptive fields
in A1 exhibit multiple characteristics as certain cells demonstrate responses from
the multiple frequencies [232]. Here, we observe similar behavior of the TRFs.
From Figure 7.1, it can be seen that some of the modulation filters are highly lo-
calized along the Mel frequency-axis (e.g., A1 and A2), while some modulation
filters are broadly distributed (e.g., B1, B2 and B3). Some modulation filters have
strong localized excitatory and inhibitory regions (e.g., C1 and C2) while few have

154



Figure 7.1: Examples of ConvRBM modulation filters. After [10].

a checkerboard-like pattern (e.g., D1 and D2). Similar patterns of RFs were also
found in STRFs in the auditory cortex, when PCA whitened spectrograms were
applied on the sparse coding algorithm [234]. Hence, ConvRBM filters capture the
temporal modulation information with different modulation frequencies in each
subband from the Mel spectrograms [235]. As shown in [50], each modulation
filter may represent the temporal variations in different phonetic units.

7.3.2 Rectified Linear Units (ReLU) in ConvRBM

We justify the use of ReLUs in ConvRBM (compared to the first model proposed
in [50]) by visualizing the reconstruction from the model using both nonlinear-
ities as shown in Figure 7.2. It can be observed that the reconstruction from the
sigmoid units is more noisy (as shown via dotted circles) compared to the original
spectrogram and the one reconstructed using the ReLU. This noise is due to the
saturation of neurons and the vanishing gradient effect in the case of a sigmoid
nonlinearity, which may affect the ASR performance. In the case of the ReLUs, the
hidden units are not binary; rather neurons can take any value from 0 to ∞ and
hence, can better represent the input speech signal.

7.3.3 Feature Extraction and System Combination for ASR

Since the ConvRBM filters capture the temporal modulation information, we can
use this along with the standard spectral features, Mel frequency filterbanks (de-
noted as FBANK). We trained both features on separate DNNs and use the system
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Figure 7.2: the Mel-spectrograms (a) original, (b) reconstructed using sigmoid
units, (c) reconstructed using ReLUs. Dotted regions shows the saturation effect
in the sigmoid units. After [10].

combination technique. We have used the MBR technique for system combination
(discussed in Section 3.6.3, Chapter 3), which is very helpful when two different
feature streams may represent complementary information [156]. Our feature ex-
traction and system combination method is shown in Figure 7.3. The first pipeline
is to extract FBANK features and their delta features to train DNN, which we de-
note as the spectral feature-trained DNN. The second pipeline is to extract the
temporal modulation features from the trained ConvRBM and train DNNs on
these feature sets, which we call modulation feature-trained DNN. Generated lat-
tices from both the DNN systems are combined using the MBR decoding and then
used for scoring.

7.4 Experimental Setup and Results

7.4.1 Training of ConvRBM

The Mel spectrograms were obtained from the speech signals by framing with a
window length of 25 ms and a shift of 10 ms using 40 Mel subband filters. The
PCA whitening was applied on all the concatenated Mel spectrograms. The learn-
ing rate was chosen to be 0.01 and was decayed at each epoch. The weight decay
factor of 0.01 was used for the regularization. For the first five training epochs,
momentum was set to 0.5 and after that it was set to 0.9. We trained the model on
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Figure 7.3: Block diagram for feature extraction and the system combination
framework. After [10].

different numbers of subband filters 60, 80 and 120 with different filter lengths,
namely, 6, 8, and 10. These parameters were optimized based on performance
in the ASR experiments. The modulation filters were used to extract the features
from the Mel spectrograms. Notations for ConvRBM using sigmoid and ReLU
hidden units are ReLU-ConvRBM and Sigmoid-ConvRBM, respectively.

7.4.2 Hybrid DNN-HMM Systems

The monophone GMM-HMM systems were used to generate forced-aligned tran-
scriptions for both the databases using the MFCC feature set. Acoustic modeling
was performed with the DNN-HMM system in KALDI using Dan’s recipe [155].
The CI-DNN-HMM systems were trained for the TIMIT and WSJ0 databases with
DNN output labels and the LM described in Section 3.6, Chapter 3.

7.4.3 ConvRBM Parameter Tuning

Parameters of ConvRBM were optimized using a single-layer neural network
trained on ReLU-ConvRBM features with 1500 hidden units and a CW of 11
frames. The parameters of ConvRBM include the number of filters and length
of each filter. The results of these experiments are reported in Table 7.1 on the
TIMIT and WSJ0 databases in % PER and % WER, respectively. From Table 7.1,
for the TIMIT database 120 filters and a filter length of 6 frames gave the lowest
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% PER. For the WSJ0 database, 60 filters and a filter length of 6 frames gave the
lowest % WER. In the case of large databases, 60 and 120 filters yield almost the
same WER and 60 filters are sufficient compared to double the number of filters
for the TIMIT database.

Table 7.1: Results of ConvRBM parameter-tuning experiments on the TIMIT and
WSJ0 databases. After [10]

Number of filters Filter length Dev (% PER) Test (% PER) Eval92_5K (% WER)
120 6 24.3 25.6 7.14
80 6 24.5 25.6 7.57
60 6 24.6 25.8 7.10

120 8 24.5 25.7 7.15
120 10 24.9 25.8 7.20
60 8 24.8 25.9 7.15

7.4.4 Results on the TIMIT Database

Two DNNs are trained using the FBANK (120-D) and ConvRBM (120-D) feature
sets and the results are reported with the three hidden layers, 1500 hidden units
and a context window of 11 frames. The performance of the ConvRBM-based
feature set alone and with our system combination setup is reported in Table 7.2.
The ReLU-ConvRBM feature set, which represents the modulation information,
performs similar to spectral features, namely, FBANK. ConvRBM with the sig-
moid units (denoted as Sigmoid-ConvRBM) did not perform well compared to
the ReLU units. The system combination (denoted using the ⊕ symbol) of DNNs
trained on ReLU-ConvRBM and FBANK feature sets gave relative improvement
of 7.73 % and 5.93 % on the development and test sets, respectively. System com-
bination using Sigmoid-ConvRBM has very low improvement on the develop-
ment set (4.1% relative improvement) compared to the ReLU. This shows that the
DNNs trained on the FBANK and ReLU-ConvRBM contain highly complemen-
tary information.

7.4.5 Results on the WSJ0 Database

Following the results of Table 7.1, we have used parameters of ConvRBM for WSJ0
experiments. FBANK and ConvRBM feature sets were trained using DNNs with
three layers, 1500 hidden units, and a CW of 11 frames. The experimental re-
sults are reported in Table 7.3 in % WER. From the results, we can see that the
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Table 7.2: Results on the TIMIT database in % PER. Numbers in the brackets
indicate relative improvement over FBANK-DNN. After [10]

DNN System Dev Test
A: FBANK 22.0 23.6

B: ReLU-ConvRBM 22.3 (-1.36) 24.0 (-1.69)
C: Sigmoid-ConvRBM 23.4 (-6.36) 25.4 (-7.63)

A ⊕ B 20.3 (7.73) 22.2 (5.93)
A ⊕ C 21.1 (4.09) 22.6 (4.23)

⊕ represents the system combination experiments

ReLU-ConvRBM features perform better than the Sigmoid-ConvRBM. The sys-
tem combination of the FBANK and the ReLU-ConvRBM yield relative improve-
ment of 4.3 % for the 5K word test set and 3.63 % for the 20K word test set over
FBANK. System combination of the FBANK and the Sigmoid-ConvRBM also im-
proved over FBANK. However, the improvement is less compared to the ReLU-
ConvRBM with relative improvement of 1.48 % on 5K test set and 2.09 % on 20K
test set. Hence, both ASR experiments show that the ReLU-ConvRBM performs
better than Sigmoid-ConvRBM and performance is improved using system com-
bination with the FBANK.

Table 7.3: Results in % WER and % relative improvements on WSJ0 database.
After [10]

DNN System Eval92_5K Eval92_20K
A: FBANK 6.07 14.32

B: ReLU-ConvRBM 6.52 (-7.4) 15.15 (-5.7)
C: Sigmoid-ConvRBM 7.44 (-22.57) 16.16 (-12.84)

A ⊕ B 5.81 (4.3) 13.80 (3.63)
A ⊕ C 5.98 (1.48) 14.02 (2.09)

⊕ represents the system combination experiments

7.5 Unsupervised Deep Auditory Model (UDAM) us-

ing Stacks of ConvRBM

We described the ConvRBM to model 1-D signals, such as speech in Chapter 3.
It can be extended to ConvRBM with different subbands, where the input to the
visible unit is 2-D as discussed in Section 7.2. The second ConvRBM is stacked
on top of first ConvRBM to model a 2-D time-frequency (T-F) representation (i.e.,
subband filterbank) obtained from the first ConvRBM. The block diagram of our
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proposed UDAM architecture is shown in Figure 7.4. Let C1 and C2 denote Con-
vRBMs for first and second layer, respectively. Both the ConvRBMs are trained
using CD-1 learning [24] in a greedy layerwise manner. We can write the general-
ized energy function, hidden, and visible unit activations that represent both the
ConvRBMs as follows:

Ik =
S

∑
s=1

(
xs ∗ W̃s

k
)
+ bk, (7.11)
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(7.12)

hk ∼ max(0, Ik +N (0, σ(Ik))). (7.13)

In the negative phase, the reconstructed signals are given as:

xs ∼ N
(

K

∑
k=1

(
hk ∗Wk

s

)
+ cs

)
, where s = 1, ..., S. (7.14)

Figure 7.4: Block diagram of the proposed UDAM using ConvRBMs: (a) speech
signal, (b) learned subband features of C1, (c) pooled subband signals followed
by the compressive nonlinearity, (d) PCA whitening, and (e) learned modulation
representation. After [11].
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7.5.1 ConvRBM to Model Speech Signals

The input to the ConvRBM (C1) is an entire speech signal of length n samples (i.e.,
nX = n). Weights of the C1 with length m1 samples in each are also called subband
filters with respect to the speech perception mechanism in hearing [2]. The energy
function, activations of hidden and visible units are given by equations (7.11)-
(7.14) with s = 1, i.e., single channel input to the C1. Convolution with K = K1

subband filters decompose the speech signal into different subbands. Subbands
are ordered according to the center frequencies of subband filters (examples are
shown in Figure 7.4). The output of C1 is pooled according to a 25-ms window
length and 10 ms window shift followed by compressive nonlinearity as shown
in Figure 7.4 [2]. The short-time spectral representation is now given as input to
C2, which is K1 × F-dimensional (where F is the number of frames).

7.5.2 ConvRBM to Model the Subband Filterbank

The input x to the ConvRBM C2 is a T-F representation of a speech signal with
K1 = S subbands, and nX = F frames, pooled from the C1 responses. Before pass-
ing the input to the C2, PCA as a whitening transform is applied as done in [50].
The weights of the C2 are having length m2 frames. Pooling is not performed af-
ter the C2 since we want to keep same number of frames to use as the features
concatenated with C1 (i.e., feature-level fusion). The hidden layer has K = K2

groups, which is two times overcomplete (i.e., K2 = 2K1). Hence, if K1 = 40 sub-
bands, then K2 = 80 groups in C2 resulting in a 120-D feature representation (we
kept this to compare the standard 120-D Mel filterbank with 40 filters and their
delta features). The summary of notations and the corresponding configurations
for both the layers are given in Table 7.4.

Table 7.4: Notations of the UDAM architecture

ConvRBM Input x Channels nX nW K
C1 speech s = 1 n samples m1 samples K1

C2 filterbank s = 1, ..., S F frames m2 frames K2

The weights learned in C2 are visualized by applying the inverse of PCA
whitening on the C2 weights. Examples of TRFs learned on the AURORA 4
database are shown in Figure 7.4, where each block represents one TRF. ConvRBM
subband filters capture temporal modulation information with the different sub-
band modulation frequencies from the first layer filterbank. Each subband filter
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represents the temporal variations in different phonetic units similar to delta fea-
tures (∆ + ∆∆) of filterbanks.

7.6 Experimental Setup and Results using UDAM

The ASR experiments were performed with the clean and multicondition training
databases described in the following sub-sections.

7.6.1 Training of ConvRBMs and Feature Representation

The training parameters for C1 are the same as that used in Chapter 3. The train-
ing method of C2 is different from the one used in Section 7.4. For C2, the learn-
ing rate was empirically chosen to be 0.005, which is fixed for first 20 epochs and
decayed later. Compared to work in [10] and [50], we have not used sparsity reg-
ularization, since our model uses ReLUs, which provide sparsity in the hidden
units (forcing negative activations to zero). Weights are regularized using weight
decay with a factor of 0.0001 (empirically chosen from the range 0.01-0.00001). For
comparison with the standard 120-D FBANK feature set, we restrict ourselves to
the 40-D filterbank in C1 and 80-D features in C2 giving a 120-D feature vector.
The notations for different feature sets are given in Table 7.5.

Table 7.5: Notations of different features used in this study

Description Notation of Features
Mel filterbank with delta features FBANK (120-D)

Filterbank from C1 C1 (40-D)
Modulation features from C2 C2 (80-D)

Feature-level fusion of C1 and C2 C1+C2 (120-D)

7.6.2 ASR System Building

The monophone GMM-HMM systems were built using 39-D MFCC for both the
databases to generate forced-aligned labels. Language modeling is performed us-
ing bi-grams for TIMIT and tri-grams for AURORA 4. In this Chapter, all ASR
systems were built using the KALDI speech recognition toolkit [155]. Hybrid
DNN-HMM systems were built using fast implementation of p-norm DNNs with
p = 2 [236] (different from our recent works [2] and [10], where we used DNN
with the sigmoid units). ASR system combination (denoted as the ⊕ symbol) is
performed using the MBR decoding [156] discussed in Section 3.6.3, Chapter 3.
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7.6.3 Results on the TIMIT Database

The parameters of the C1 layer are the same as that tuned in [2] with the filter
length of m1=128 samples. To analyze the significance of the second layer C2,
we have compared the performance of a single layer C1 filterbank with feature
fusion of C1 and C2. The results of these experiments are reported in Table 7.6 in %
PER using the hybrid p-norm DNN with parameters (based on a KALDI standard
recipe): 2000 hidden units, group size of 5, 2 hidden layers, and context window of
9 frames. From Table 7.6, we can see that by adding delta features in the filterbank
features extracted from the C1, we obtained a small relative improvement of 0.9
% compared to the C1. The second layer feature set C2 alone performs better or
comparable to the C1 along with their delta features. The filter length of 8 frames
in the C2 works better than 6 and 10 frames, when added to C1. It gives a relative
improvement of 3.6 % compared to only C1 and 2.73 % compared to the C1 along
with their delta features. The FBANK are compared with deep feature set C1+C2
using the same hybrid p-norm DNN of the three hidden layers in Table 7.7. The
C1+C2 feature set gives a relative improvement of 5.36 % (1.2 % absolute) on the
development set and 2.56 % on the test set compared to the FBANK. The system
combination improves performance on the test set only, which is 5.13 % relative
to the FBANK.

Table 7.6: % PER for comparison of filter length in C2 and comparison with
first-layer features on the TIMIT development set (denoted as Dev). After [11]

ConvRBM Features Filter Length in C2 (m2) Dev
C1 (40-D) - 22.2

C1+∆ + ∆∆ (120-D) - 22.0
C2 (80-D) 6 22.0
C2 (80-D) 8 21.8

C1+C2 (120-D) 6 22.1
C1+C2 (120-D) 8 21.4
C1+C2 (120-D) 10 21.8

+ represents the feature-level fusion experiments

Table 7.7: Results on the TIMIT database in % PER. After [11]

Feature Set Dev Test
A: FBANK (120-D) 22.4 23.4
B: C1+C2 (120-D) 21.2 22.8

A ⊕ B 21.2 22.2
⊕ represents the system combination experiments
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7.6.4 Results on the AURORA 4 Database

The % WER of experiments for the AURORA 4 task are reported in Table 7.8 us-
ing a hybrid p-norm DNN with parameters, namely, 2000 hidden units, group
size of 5, 2 hidden layers, and a 9-frame context window. For C2, a filter length of
10 frames performs better compared to the 8 frames in the TIMIT database. The
use of the second-layer feature set C2 improves performance compared to the C1
alone as well as addition of delta features in the C1. Specifically, for the noisy test
sets (i.e., C and D), using the C1+C2, there is an absolute reduction of 1.12-1.42
% in WER over C1 and 0.63-1.22 % in WER over C1+∆ + ∆∆. Finally, the C1+C2
feature set is compared to the FBANK in Table 7.9 with three layer p-norm DNN.
An absolute reduction of 1-2 % in WER is obtained using the C1+C2 feature set
compared to FBANK. The fusion of both C1 and C2 feature sets performs better
than the C1 and C2 alone. System combination further reduces WER (except in
test set A), with significant reduction for the test sets C and D compared to the
FBANK and C1+C2 feature sets. Hence, both the feature sets contain complemen-
tary information.

Table 7.8: Comparison of filter length in C2 for the AURORA 4 database in %
WER. After [11]

Features Set A B C D Avg
C1 9.36 17.90 22.64 34.66 21.14

C1+∆ + ∆∆ 9 17.05 22.44 33.19 20.42
C1+C2, m2=6 9.25 17.18 22.08 33.29 20.45
C1+C2, m2=8 8.91 17.25 22.17 33.47 20.45

C1+C2, m2=10 9.1 16.97 21.22 32.54 19.96
C2, m2=10 8.87 18.37 23.48 34.4 21.28

+ represents the feature-level fusion experiments

Table 7.9: Results on the AURORA 4 database in % WER. After [11]

Features Set (120-D) A B C D Avg
A: FBANK 10.41 18.16 22.45 34.09 21.28
B: C1+C2 8.37 16.89 20.96 33.04 19.82

A ⊕ B 8.56 16.14 19.73 32.07 19.12
⊕ represents the system combination experiments
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7.7 Improved UDAM

To improve the UDAM model, we used annealing dropout and Adam optimiza-
tion in both the ConvRBMs. Another change we have made is to replace PCA
whitening with the mean-variance normalization across subbands. This works
very well with an Adam optimization and avoids an extra PCA whitening pro-
cessing step. Specifically, for the AURORA 4 task, we used the TEO-based Con-
vRBM representation presented in Section 4.5, Chapter 4. For the WSJ task, we
used a ConvRBM feature representation without TEO. The subband filters learned
from the AURORA 4 database are shown in Figure 7.5. One can see that the TRFs
exhibits similar patterns as discussed in Section 7.3.1.

7.7.1 Experimental Setup

The ASR experiments were performed using the BLSTM acoustic models with
800 hidden units and 3 hidden layers (based on a standard recipe in KALDI and
earlier experiments in Chapter 4 and Chapter 5). In addition, based on very re-
cent KALDI setups, we used LF-MMI for a sequence-to-sequence learning in the
hybrid DNN-HMM framework. The initial alignments were obtained from the
LDA+MLLT+fMLLR transform as per the KALDI recipe for the AURORA 4 and
WSJ tasks. The language models were the same used in both the ASR tasks in
Chapter 3. The BLSTM models are used in the LF-MMI sequence learning frame-
work with similar parameters as used previously.

7.7.2 Experimental Results

The results on the AURORA 4 database are shown in Table 7.10 for BLSTM mod-
els. The first-layer feature set C1+∆ + ∆∆ is compared with the second-layer fea-
ture set C2 with various filter lengths (in frames). The filter length of 3 frames
performed better compared to other lengths. This shows that second-layer Con-
vRBM requires small filter length to extract the temporal modulation information.
The feature-level fusion of C1+C2 performed better compared to the C1+∆ + ∆-∆,
except the test set C. Hence, an improved UDAM performed slightly better in the
ASR task instead of using only the filterbank obtained from the single ConvRBM.

The results on the AURORA 4 task using the LF-MMI-based BLSTM mod-
els are shown in Table 7.11. Compared to our model in Chapter 3, an improved
ConvRBM (discussed in Chapter 4) performed significantly better than FBANK

165



Figure 7.5: The subband filters trained in the second ConvRBM in the UDAM.

Table 7.10: The experiments using improved UDAM and hybrid HMM-BLSTM
models on the AURORA 4 database in % WER

Features Set A B C D Avg
C1+∆ + ∆∆ 9.46 14.13 14.34 24.60 18.30

C2, m2=3 9.79 14.06 14.39 24.38 18.19
C2, m2=6 10.31 14.02 14.17 24.77 18.38
C2, m2=10 10.02 14.25 14.12 24.71 18.42

C1+C2 m2=3 9.2 13.79 14.52 24.38 18.06
+ represents the feature-level fusion experiments

(relative reduction of 1.2-8.84 % in WER). The second layer C2 is trained using
fixed 120 groups (i.e., number of filters) and filter size is varied as m2 = 3, 5, 7.
The smaller filter size m2 = 3 of C2 performed better compared to the larger one,
which is a different observation shown in Table 7.6 and Table 7.8. Hence, C2 with
m2 = 3 is used for feature fusion C1+C2 and system combination experiments.
The system combination of FBANK and C1+∆+∆∆ (S1⊕S2) significantly reduces
% WER (12.1-23.11 relative) compared with both the systems individually. Specif-
ically, on the noisy test sets C and D, S1⊕S2 give an absolute reduction of 2.58 and
3.53 in % WER, respectively. The system combination of C1 and C2 (S2⊕S3) also
significantly reduces % WER (12.01-24.88 relative) compared to both the systems
individually. On the noisy test sets C and D, S2⊕S3 gives an absolute reduction
of 2.47 and 3.8 in % WER, respectively. On an average, S1⊕S2 and S2⊕S3 give
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relative reductions of 14.75 and 15.43, respectively. The system combination of
FBANK and C1+C2 did not perform well compared to S1⊕S2 and S2⊕S3. Hence,
the system combination S2⊕S3 performed better compared to all the systems.

Table 7.11: The experiments using improved UDAM and LF-MMI-based BLSTM
models on the AURORA 4 database in % WER

Features Set A B C D Avg
S1:FBANK 8.48 11.57 12.76 23.44 16.52

C1+∆ + ∆∆ (Chapter 3 model) 8.14 12.73 13.19 23.77 17.16
S2:C1+∆ + ∆∆ 7.73 11.43 12.22 22.42 15.93

S3:C2, m2=3 7.58 12.15 11.9 23.07 16.49
C2, m2=5 7.57 12.42 11.94 23.70 16.87
C2, m2=7 7.14 12.49 11.64 23.36 16.71

S4:C1+C2, m2=3 7.36 11.92 11.97 23.08 16.38
S1⊕S2 6.52 10.17 10.18 19.91 14.08
S2⊕S3 6.37 10.18 10.29 19.64 13.97
S1⊕S4 6.69 10.07 10.7 20.56 14.37

+ represents the feature-level fusion experiments
⊕ represents the system combination experiments

Table 7.12: The experiments using improved UDAM and LF-MMI-based BLSTM
models on the full WSJ database in % WER

Feature Set D1 D2 E1 E2 E3 E4
S1:FBANK 9.30 3.81 7.13 3.14 6.70 1.57

S2:C1+∆ + ∆∆ 9.12 3.73 8.94 2.99 6.47 1.48
S3:C2 8.97 3.85 7.92 3.45 6.03 1.77

S4:C1+C2 8.65 3.41 7.57 2.99 6.36 1.57
S1⊕S2 8.31 3.21 7.28 3.01 6.22 1.27
S2⊕S3 8.23 3.23 7.16 3.04 5.97 1.46
S1⊕S4 8.21 3.44 6.84 2.78 5.94 1.38

+ represents the feature-level fusion experiments
⊕ represents the system combination experiments

The improved UDAM is trained using the full WSJ training database. The
first layer C1 has 40 subband filters each with a length of 128 samples. The sec-
ond layer C2 has 120 modulation filters each with a length of 3 frames (chosen
based on experiments on the AURORA 4 database). The experimental results on
the full WSJ database are shown in Table 7.12. The C1+∆ + ∆∆ feature set ob-
tained reduced % WER compared to the FBANK except the test set E1. The C2
feature set reduce the % WER on the 20K test sets compared to the FBANK and
C1+∆ + ∆∆ feature sets. The feature-level combination C1+C2 performed better
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or equal to the C1+∆ + ∆∆, C2 and FBANK. The system combination of FBANK
with C1 (S1⊕S2) and C1+∆ + ∆∆ with C2 (S2⊕S3) performed better than the in-
dividual systems except E1 and E2 test sets. The system combination of FBANK
with C1+C2 (S1⊕S4) performs significantly well in 20K vocabulary test sets, D1,
E1 and E3, respectively. S1⊕S4 gives a relative reduction of 11.72, 4.24, and 11.34
% in WER for D1, E1, and E3 test sets, respectively compared to the FBANK.
Hence, the UDAM-based features C1+C2 when used in a system combination
framework performs well in all the test sets compared to the FBANK.

7.8 Chapter Summary

In this chapter, we discussed our proposed model for the temporal modulation
filterbank learning. Our initial attempt is to use the Mel spectrogram as an input
to ConvRBM. Analysis of the modulation filters shows that it represents temporal
receptive fields. Inspired by this model, we proposed a two-layer deep auditory
model using the stack of ConvRBM, where first one learns the filterbank from the
speech signals and later one learns TRFs from the filterbank of the first ConvRBM.
The experiments on the ASR task showed the improved performance compared
to the baseline system. In the next chapter, we summarize the entire thesis and
present some future research directions.
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CHAPTER 8

Summary and Conclusions

In this chapter, a summary of this thesis work is presented along with the limita-
tion of the current work and future research directions.

8.1 Summary of the Thesis

The following is a summary of the research work done in the entire thesis:

• In this thesis work, a novel auditory representation learning framework is
presented. The model is based on unsupervised representation learning us-
ing a Convolutional Restricted Boltzmann Machine (ConvRBM). In particu-
lar, we proposed to model raw speech signals with arbitrary lengths. Com-
pared to earlier works on feature learning using ConvRBM, we proposed to
use noisy rectified linear units (NReLU) for inference from the hidden units.
The model is successfully applied for various speech and audio processing
applications.

• The background studies required to understand our proposed model and
applications are discussed in Chapter 2. The detailed architecture of the pro-
posed model and the mathematical derivation for learning parameters are
presented in Chapter 3. The model is first trained with standard databases
in the ASR task. The subband filter shapes (i.e., impulse responses) and fre-
quency responses are analyzed and compared with the physiological filters.
The frequency scale obtained from the ConvRBM is similar to the standard
auditory frequency scales. However, the subband filter shapes and center
frequencies are adapted according to the statistics of the database. The fea-
tures extracted from the ConvRBM filterbank are applied for the clean and
noisy ASR tasks. The proposed feature set performed very well compared
to the Mel filterbank (which is a standard auditory-based feature). The per-
formance improvements in the noisy ASR task were justified using the Lip-
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schitz continuity condition applied on ConvRBM for stability to additive
noise. The convolution and ReLU transformations in ConvRBM are stable
to additive noise.

• To further improve our proposed model, we presented approaches to en-
hance the training of ConvRBM using Adam optimization in Chapter 4. The
annealing dropout regularization was also added to prevent co-adaptation
of weights in ConvRBM. We observed that the filterbank learned using an
Adam and dropout are more smooth and averaged RMSE were lower dur-
ing ConvRBM training. For the noise-robust ASR task, nonlinear energy es-
timation using Teager Energy Operator (TEO) was applied in the ConvRBM-
based feature representation. The proposed amalgamation of signal process-
ing and machine learning for auditory feature representation improved the
ASR task in noisy environments. The statistical significance of the proposed
approach was evaluated using the bootstrap method to estimate the % prob-
ability of improvement (POI).

• As a special case study, we applied our ConvRBM filterbank learning model
in ASR for the agricultural-domain in the Gujarati language, a MeitY, Gov-
ernment of India supported consortium project. The speech data is col-
lected from the 21 districts of Gujarat state with other project staff members
and volunteers from the Speech Research Lab, DA-IICT. The ConvRBM is
trained with the speech database collected from the real noisy environments
and various dialectal regions of Gujarat state. The ConvRBM filterbank-
based features significantly reduce the % WER in this ASR task.

• After successful application of ConvRBM filterbank learning framework us-
ing speech signals, we have also applied in other audio processing appli-
cations. To show our model’s capability to adapt diverse sound classes, it
is applied in the Environmental Sound Classification (ESC) task. The pro-
posed features perform significantly better compared to the Mel filterbank
and earlier approaches using supervised CNNs. The next application was
the spoof speech detection (SSD) task, which is a part of the recent ASV sys-
tem. Two different spoof speech types were considered, namely, synthetic
and replay speech that were based on the ASVSpoof challenges organized in
2015 and 2017. Specifically, for the replay speech detection, we applied pre-
emphasized speech signals in the ConvRBM training. Pre-emphasis leads
to the more subband filters representing high frequency regions. Such an
approach significantly reduced equal error rate compared to the baseline
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and many approaches in the literature. Finally, ConvRBM is applied in a
socially-relevant problem of Infant Cry Classification (ICC). Our proposed
ConvRBM-based features are able to better classify healthy vs. pathologi-
cal cry signals using various performance measures even with the filterbank
learned using 30 minutes of the cry signals.

• Finally, an extension of the ConvRBM to learn temporal receptive fields is
presented by stacking the two ConvRBMs together. We refer to this new
model as the unsupervised deep auditory model (UDAM). UDAM is ap-
plied to the ASR task and showed improvements compared to the Mel fil-
terbank as well as single layer ConvRBMs. Hence, our proposed ARL model
learns subband filters similar to the cochlear filter responses from the speech
signals and when stacked by another ConvRBM, it learns the temporal re-
ceptive field that extracts the modulation information.

The MATLAB codes for ConvRBM and some pre-trained filterbanks (weights
of ConvRBM) can be obtained from my homepage:

URL: https://sites.google.com/site/hardik89sailor/publications

8.2 Limitations of the Current Work

Our proposed model is one of the contributions towards the research in the au-
ditory representation learning. However, there are certain limitations of our ap-
proach as described below:

• First of all, compared to the physiological auditory models [49], [169], a few
aspects of the auditory processing are either approximated by the linear sys-
tem or ignored. We have assumed the cochlear signal processing as an LTI
system and hence, a convolutional model is used in ConvRBM. Auditory
nonlinearities, such as sound level-dependent gain control or automatic gain
control (AGC) [237], are not incorporated in our model.

• In central auditory processing, our model currently represents only tempo-
ral modulations. However, spectro-temporal receptive fields (STRFs) are
not considered in our model, ignoring spectral processing on the subbands
in the second ConvRBM.
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• The inference in ConvRBM is based on the reliability of samples estimated
from the Gibbs sampling technique in the CD-1 stage. However, it may be
possible that the CD-1 estimate of the gradients does not always follow the
actual gradient direction. Hence, there is a need of using Bayesian tech-
niques, such as variational-likelihood, to be incorporated in the ConvRBM
training.

8.3 Future Research Directions

Future research directions include possible solutions to the above mentioned lim-
itations and further advancements in our proposed model as described below:

• One of the important extensions of our model is to represent the binaural
sounds, i.e., mimicking the auditory processing that involves two ears. Such
modeling will be helpful in spatial hearing tasks, such as sound localization,
source separation, etc. We can also extend it to model the multiple chan-
nels of speech for application in the distant ASR task, where a microphone
array is used. For example, in our very recent work, we developed Con-
vRBM to model the two-channel speech signals. The model is developed
in a spirit of acoustic beamforming, i.e., combining two channels into a sin-
gle channel using the weights learned in ConvRBM. The examples of sub-
band filters trained using channels 1 and 2 from the CHiME 4 database are
shown in Figure 8.1. The difference in the amplitude and phase can be seen
in time-domain impulse responses. In binaural speech terminology, they are
called the Interaural Time Differences (ITD) and Interaural Level Differences
(ILD) [238]. The ITD is related to the difference in the arrival time of speech
signals in the ears that results in a delay in the BM vibrations in one ear rel-
ative to the other [238]. The ILD is related to differences in amplitude for
frequencies higher than 2 kHz that result in differences in intensity of the
speech signals [238]. Our future work is to develop binaural ConvRBM that
can be possibly used for noise-robust speech recognition, speech separation
and sound localization.

• In order to make our model more close to the human auditory processing,
our future work is to incorporate nonlinear auditory processing stages, such
as Automatic Gain Control (AGC) and synaptic depression, in the ConvRBM
training as done in [239].

• Spectro-temporal Receptive Field (STRF) learning in the ConvRBM to jointly
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Figure 8.1: Subband filters from the two channel ConvRBM: (a) time-domain
impulse responses, and (b) frequency-domain responses.

represent spectro-temporal modulations inspired by the phenomenal audi-
tory model [49].

• We can improve the learning in ConvRBM using many recent advancements
for RBM, such as stochastic spectral descent for parameter updates, varia-
tional inference instead of CD-1 learning, etc.

• Our auditory system is continuously adapting to a variety of different sounds
from simple tones to more complex sounds, such as songs (that has music
and human vocals). As a generalized auditory model, we would like to train
ConvRBM on the ensemble of sounds that includes speech, environmental
sounds, and music. The analysis of the filterbanks trained from different
categories of sounds may reveal interesting auditory representations.
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Appendix A. Significance of Temporal Information in

Filterbank Learning

In order to justify the significance of temporal context in learning the ConvRBM,
we used an audio scrambling technique with the MATLAB code obtained from
[240]. It works by scrambling an audio file by moving around short, 50 % overlap-
ping windows within a local window. They can be used to create new versions of
existing recordings that preserve the spectral content over longer time scales, but
remove the structure at shorter time scales. This can be useful, e.g., for making the
speech unintelligible. The example of a scrambled speech signal from the TIMIT
database is shown in Figure A.1. One can see from Figure A.1 that the scrambled
speech signal looks like random noise and spectral content in the shorter time
scales is destroyed. The ConvRBM is trained with such scrambled speech signals
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Figure A.1: (a) Time-scrambled speech signal, (b) Mel spectrogram, and (c) Con-
vRBM spectrogram. The utterance is: “Spring Street is straight ahead".

taken from the TIMIT database. The resulting subband filters are shown in Figure
A.2. The lower frequency subband filters are impulse-like signals while higher
frequency filters are wavelet-like basis functions. Since the temporal structure is
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Figure A.2: (a), (c) Subband filters trained on time-scrambled speech signals and
(b), (d) trained without time-scrambled speech signals.

destroyed, the speech signals have random transient-like sound events abruptly
occurring at many places. Hence, the model tries to fit the optimal weights for
such signals. Since there are short duration wavelet-like impulse responses, the
frequency responses show that the subband filters are not localized as compared
to the subband filters obtained from without scrambling. Hence, the temporal in-
formation in the speech signals such as the context of phonetic sounds, formant
contours, etc. has a significant effect on filterbank learning.

To show that ConvRBM subbands represent the temporal modulations, we
have shown the three kinds of temporal modulations at various scales in Figure
A.3. The speech signal is convoluted with the ConvRBM subband filter with the
center frequency 700 Hz as shown in Figure A.3 (a). The segments in the sub-
band filtered signal roughly correlate with the different syllabic segments of an
utterance. The envelope obtained from the short-time averaging (as done in our
proposed feature representation in Section 3.4, Chapter 3) or by taking the Hilbert
transform, called the slow temporal modulations. At the intermediate temporal
scale, the temporal modulations (sharp peaks) due to the interharmonic interac-
tions reflect the fundamental frequency (F0) of the signal, as shown in Figure A.3
(b). The rapid temporal modulations at very fine scale in Figure A.3 (c) are due to
the frequency component driving this subband best around 700 Hz. These are also
called the Temporal Fine Structure (TFS). This analysis of the ConvRBM filterbank
has similar insights as obtained in [49]. Hence, when we abruptly destroy such an
important temporal information, the ConvRBM is not able to learn auditory-like
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subband filters as shown in Figure A.2.

� (a)

(b)

(c)

(d)

Figure A.3: The temporal modulations in the speech signal (a) convolution of
speech signal with the ConvRBM subband filter, (b) subband filtered signal that
has slow temporal modulations, (c) temporal modulations due to interharmonic
interactions, and (d) Fast temporal modulations.
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Appendix B. Performance Measures

B.1 Word Error Rate (WER)

The standard performance metric for automatic speech recognition (ASR) systems
is the Word Error Rate (WER) [86]. The WER is computed for the decoded word
sequence in the ASR output against the reference transcription. The % WER is
defined as follows [86]:

WER =
S + D + I

N
× 100, (B.1)

where
S = Number of substitutions (one word is replaced with another one),
D = Number of deletions (word is missed out),
I = Number of insertions (word is added),
N = Total number of words in the reference transcription

In the case of the phone recognition task, the reference is the phonetic tran-
scription (not word-level) and the ASR decoder also produces phone sequences
in the output. In such a case, the same performance measure is applied; however,
instead of words, we use phones. Hence, it is also called the % Phone Error Rate
(PER).

B.2 Classification Accuracy

The performance of the classification task is measured by the classification accu-
racy. If ẑi is the predicted value of the ith sample, and zi is the corresponding true
value, then the % classification accuracy (the fraction of correct prediction) over a
total of N samples is defined as [241]:

% Classification Accuracy =
1
N

N−1

∑
i=0

I(ẑi = zi)× 100, (B.2)

where I(·) is an indicator function with I=1 when ẑi = zi, otherwise I=0.
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B.3 Performance Measures from Confusion Matrix

The confusion matrix of a binary classification task shows how errors are dis-
tributed across the classes [242]. The example of a confusion matrix for a classi-
fication task is shown in Figure B.1 for healthy vs. pathological infant cry. The
rows indicate the actual classes and columns indicate the predicted outcome of
the pattern classifier [242]. Since our task is to detect the pathology in an infant
cry, we denote the results associated with pathology as positive and healthy as
negative. Given the labels of actual and predicted classes by the classifier, there
are four outcomes possible [242]:

• True positive (TP): Actual class is pathology and predicted pathology

• True negative (TN): Actual class is healthy and predicted healthy

• False positive (FP): Actual class is healthy and predicted pathology

• False negative (FN): Actual class is pathology and predicted healthy

Figure B.1: The details of a confusion matrix for the binary classification task.

In the case of k-fold CV, we find the combined confusion matrix (i.e., all the
entries in the matrix are summed for all the folds). Various other performance
measures can be obtained from the confusion matrix. The numbers along the
major diagonal indicates (TP and TN) the correct decisions made by the classifier
[242]. The classification accuracy can also be obtained from TP, TN and a total
number of instance of both the classes (i.e., P+N) as follows [242]:

Classification accuracy (%) =
TP + TN

P + N
. (B.3)

Another important performance measure is the F1-score, also known as F-measure.
The range of F-measure is between 1 and 0, where 1 represents the perfect predic-
tion and 0 means the worst. The F-measure is defined as follows [242]:

F-measure =
2TP

2TP + FP + FN
. (B.4)
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The F-measure does not take TN into account. Hence, we also used another per-
formance measure called Youden’s J-statistic or informedness [243]. The range
of the J-statistic is between -1 and +1, where -1 indicates no agreement between
the observation and the prediction, and +1 represents a perfect prediction. The
J-statistic estimates the probability of an informed decision and is given by [243]:

J-statistic =
TP

TP + FN
+

TN
TN + FP

− 1. (B.5)

Another important performance measure is the Matthews Correlation Coefficient
(MCC) [244]. It takes into account TP, TN, FP, FN and is generally regarded as a
balanced measure that can be used even if the classes are of very different sizes.
The range of MCC is between -1 and +1, where +1 indicates a perfect prediction,
0 means no better than just a random prediction, and -1 indicates a total disagree-
ment between the observation and the prediction. MCC is expressed as [244]:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TN + FN)(TP + FN)(TN + FP)
. (B.6)

B.4 Equal Error Rate (EER)

A detection task or classification task can also be viewed as involving a trade-
off between the two types of errors, namely, miss detection and false alarm. The
miss detection or the False Rejection Rate (FRR) is the probability that the classi-
fier fails to detect a match between the input pattern and a matching class in the
database [35]. FRR measures the percentage of valid inputs that are incorrectly
rejected in the classification task. The false alarm or the False Acceptance Rate
(FAR) is the probability that the classifier incorrectly matches the input pattern to
a non-matching class in the database [35]. FAR measures the percent of invalid
inputs that are incorrectly accepted in the classification task. A detection error
trade-off (DET) graph is a graphical plot of error rates for binary classification
systems, plotting the FRR vs. FAR [35]. Since FAR and FRR are opposite functions
(when one monotonically increases, the other decreases and vice-versa), there is
a trade-off in the error reduction in the detection task and hence the name DET
curve. The point where FRR and FAR are equal is called as the % Equal Error
Rate (EER), which is generally used as the performance measure. An example
of the DET curve is shown in Figure B.2 for the SSD task. A lower FAR means
higher security against spoof speech. A lower FRR means higher convenience of
the system performance.
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Figure B.2: An example of the DET curve. After [35].

B.5 Statistical Significance of Results Using Bootstrap

Statistical performance analysis is a challenging task, when the numbers of ob-
servations are small, and repeating the experiments is difficult. The test sets for
the ASR task are fixed (e.g., WSJ and AURORA 4 test sets were decided by the
ARPA evaluation framework), and repeating experiments on LVCSR task is time
consuming. The bootstrap is a technique that does with a computer what the
experimenter would do in practice if it were feasible: repeating the experiment
several times [36]. The two main advantages of a bootstrap technique are: (1)
recomputations are done for a large number of times, (2) does not require large
number of observations, since it create them. The core idea of the bootstrap is to
create the replication of the statistic by a random sampling from the dataset with
replacement. The principle of the non-parametric bootstrap is presented in Figure
B.3. The basic principle of the bootstrap technique is presented in Algorithm 3.

Algorithm 3 The bootstrap algorithm. After [36].

Input: Original data samples X
Output: Bootstrap estimates

1: for each bootstrap interval, b = 1, 2, ..., B do
2: Generate a random sample with replacement X∗b of size X
3: Compute the estimate θ̂∗b for each bootstrap sample
4: end for
5: θ̂∗b for b = 1, 2, ..., B are the bootstrap estimates
6: Estimate confidence intervals, histogram of estimates, probability statements
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Figure B.3: Principle of the non-parametric bootstrap technique. Adapted
from [36].
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Appendix C. Noise Suppression Using the Teager En-

ergy Operator (TEO)

The Teager Energy Operator (TEO) has the noise suppression capability first ana-
lyzed in [167] for speech recognition applications in the car noise scenario in [245]
for epoch estimation using various noises, and for person recognition in noisy en-
vironments [246]. Here, we discuss the noise suppression capability of TEO for
the additive noise case. Let x[n] and x̂[n] = x[n] + v[n] be clean, and noisy speech
signal, where v[n] is a zero-mean additive noise signal. The TEO profiles for x[n]
and v[n] are given as:

Ψ{x[n]} = x2[n]− x[n− 1]x[n + 1], (C.1)

Ψ{v[n]} = v2[n]− v[n− 1]v[n + 1]. (C.2)

The TEO profile for the noisy speech signal x̂[n] is calculated as:

Ψ{x̂[n]} = x̂2[n]− x̂[n− 1]x̂[n + 1],

= (x[n] + v[n])2 − (x[n− 1] + v[n− 1])(x[n + 1] + v[n + 1]),

= x2[n] + 2x[n]v[n] + v2[n]− x[n− 1]x[n + 1]− x[n− 1]v[n + 1]

− v[n− 1]x[n + 1]− v[n− 1]v[n + 1].

(C.3)

Rearranging the above terms and using eq. (C.1) and eq. (C.2), we get

Ψ{x̂[n]} = Ψ{x[n]}+ Ψ{v[n]}+ 2Ψ̂{x[n], v[n]}, (C.4)

where Ψ̂{x[n], v[n]} is called the cross-TEO between x[n] and v[n], which is given
by:

Ψ̂{x[n], v[n]} = x[n]v[n]− 1
2

x[n− 1]v[n + 1]− 1
2

x[n + 1]v[n− 1]. (C.5)
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Considering x[n] and v[n] as random variables, the expected value of the TEO is
given as:

E [Ψ{x̂[n]}] = E [Ψ{x[n]}] + E [Ψ{v[n]}] + 2E
[
Ψ̂{x[n], v[n]}

]
, (C.6)

where E[·] is an expectation operator. Since v[n] is a zero-mean additive noise,
and x[n] and v[n] are statistically independent so that E

[
Ψ̂{x[n], v[n]}

]
= 0 and

hence:
E
[
Ψ̂{x[n], v[n]}

]
= E [x[n]v[n]]− 1

2
E [x[n− 1]v[n + 1]]

− 1
2

E [x[n + 1]v[n− 1]] ,
(C.7)

Here, E [x[n]v[n]] = E [x[n]]E [v[n]] = 0, since E[v[n]] = 0, and similarly for
other two terms in the above equation. Hence,

E [Ψ{x̂[n]}] = E [Ψ{x[n]}] + E [Ψ{v[n]}] . (C.8)

The expected values in eq. (C.8) can also be represented in terms of autocorrela-
tion as follows:

E [Ψ{x̂[n]}] = Rxx(0)− Rxx(2) + Rvv(0)− Rvv(2), (C.9)

where Rxx(τ) = E[x[n]x[n− τ]] and Rvv(τ) = E[v[n]v[n− τ]] are autocorrelation
functions of clean and noise signals, respectively. It is experimentally verified
in [167] and [245] that, when the TEO is applied on the noise signal, Rvv(0) −
Rvv(2) ≈ 0. Hence, it can be proved that:

E [Ψ{x̂[n]}] ≈ E [Ψ{x[n]}] . (C.10)

The eq. (C.10) indicates that TEO when applied on the noisy signal, with the
additive zero-mean noise, can suppress the noise and hence, TEO has the noise
suppression capability.
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Appendix D. Lipschitz Continuity Condition

In order to define the Lipschitz continuity condition, the basic definitions of con-
tinuous mappings between two metric spaces are given. The continuity for the
real-valued functions of a real variable are defined as follows [149]:

Definition 1: A mapping T from a metric space X to a metric space Y is said to be
continuous at the point x ∈ X provided for any sequence {xn} in X,

if {xn} → x, then {T(xn)} → T(x). (D.1)

The mapping T is said to be continuous if it is continous at every point in X.

The ε − δ criterion for continuity: A mapping T from a metric space (X, ρ) to
(Y, σ) is continous at the point x ∈ X if and only if for every ε > 0, ∃ δ > 0 for
which if ρ(x, x

′
) < δ, then σ(T(x), T(x

′
)) < ε, that is,

T(B(x, δ)) ⊆ B(T(x), ε), (D.2)

where B(x, δ) and B(T(x), ε) are the open balls centered at x and T(x) of radius r
and ε, respectively.

Definition 2: A mapping T : (X, ρ) → (Y, σ) is said to be uniformly continuous,
provided for every ε > 0, ∃ δ > 0 such that for u, v ∈ X:

if ρ(u, v) < δ, then σ(T(u), T(v)) < ε. (D.3)

Uniformly continuous mapping is continuous; however, the converse is not true.

Definition 3: A mapping T : (X, ρ)→ (Y, σ) is said to be Lipschitz provided there
is a λ ≥ 0 such that ∀u, v ∈ X,

σ(T(u), T(v)) ≤ λρ(u, v), (D.4)

where λ is called the Lipschitz constant. This is a very general definition of
the Lipschitz continuity. A Lipschitz mapping is uniformly continuous, since it
satisfies the criterion for uniform continuity that for any ε > 0, we always find δ
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such that δ = ε
λ . This definition also holds for a mapping T from a metric space

(X, ρ) into itself, i.e., T : (X, ρ)→ (X, ρ).
For our analysis of ConvRBM in Chapter 3, Section 3.5.4, we have used the

following Lipschitz continuity condition defined on the L2 norm and in the metric
space of m-dimensional real numbers. Let the mapping (or the transformation)
T : Rm → Rm. Given an open set B ⊆ Rm, we say that T is Lipschitz continuous
on the open subset B if ∃ a constant λ > 0 such that

‖T(x)− T(y)‖ ≤ λ ‖x− y‖ , ∀x, y ∈ B, (D.5)

where λ is the Lipschitz constant of T on B, which depends on the choice of a
norm. The mapping is locally Lipschitz continuous if λ depends on the input
signal and globally Lipschitz continuous on all of the space, Rm. Important Re-
marks:
Definition 4: A point x ∈ X is called a fixed point of the mapping T : X → X
provided T(x) = x.

A fixed point of a real-valued function of a real variable corresponds to a point
in the place at which the graph of the function intersects the diagonal line y = x.

1. If λ=1, the mapping T is called a short map or firmly non-expansive map-
ping or weak contraction. Such functions do not increase or decrease distance
between metric spaces; for example, the rectifier nonlinear function.

2. If 0 ≤ λ < 1, the mapping is called a contraction [149], which has exactly
one fixed point. The contraction mapping implies Lipschitz continuous and
hence, uniformly continuous.

3. The usual definition of continuity in the calculus is purely qualitative since it
requires to define ε and δ, while Lipschitz continuity is quantitative in terms
of the Lipschitz constant.

4. Lipschitz continuity is a special case of Hölder continuity, defined as [149]:

Definition 5 The mapping, T : Rm → Rm, is Hölder continuous, if ∃ positive
constant λ and α, such that

‖T(x)− T(y)‖ ≤ λ ‖x− y‖α , (D.6)

where the constant α ∈ R is called the Hölder exponent [149]. If α = 1, T is said
to be Lipschitz continuous.
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Appendix E. Agri-ASR System Building in Kaldi

E.1 Data Preparation

• First get the wave and label files for both the training and testing set.

• Prepare wav.scp, spk2utt, utt2spk and text files for both the train and test set
as follows:
ls *.wav | cut -d "." -f 1 >../cname.txt (instead of ls *.wav> ../cname.txt
because we dont need .wav extension)
ls -d $PWD/*.wav > ../cpath.txt
cd ..
paste cname.txt cpath.txt > wav.scp
paste cname.txt cname.txt > spk2utt
paste cname.txt cname.txt > utt2spk
ls *.lab | cut -d "." -f 1 > ../labname.txt
cat *.lab > ../labcont.txt
cd..
paste labname.txt labcont.txt >text

• In kaldi/egs/ make a ASR_Guj directory In ASR_Guj directory make ver-
sions of your system, e.g., s1, s2... etc. Here, we make s1 directory inside
ASR_Guj directory.

• Create a data directory in ASR_Guj. Make train and test folders inside data
directory.

• Place the training and testing files wav.scp, spk2utt, utt2spk and text in
data/train and data/test directory, respectively.

E.2 Language Model Preparation

• Create a folder named dict in the /s1/data/local. Put following files in this
folder:lexicon.txt, nonsilence_phones.txt, optional_silence.txt, silence_phones.txt
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• From the text of test set, find unique words and store them in words.txt

awk ’print $2’ < text > testwords.txt
sort -u testwords.txt > words.txt

• Use fst.sh and generate_bigram.py files provided by the IIT-Madras. The
content of the fst.sh is as follows:

# ./fst.sh contents
#!/bin/bash
. ./cmd.sh
. ./path.sh
main_dir=/home/daiict/kaldi/egs/ASR_Guj/s1/
data_dir=$main_dir/data
dict_dir=$main_dir/data/local/dict
tmp_dir=$main_dir/data/tmp
lang_dir=$main_dir/data/lang
mkdir -p $tmp_dir
utils/prepare_lang.sh $dict_dir ’!SIL’ $data_dir/local/actual_overal
$main_dir/data/lang || exit 1;

python local/generate_bigram.py $tmp_dir/words.txt
> $tmp_dir/wp_gram.txt

local/make_rm_lm.pl $tmp_dir/wp_gram.txt > $tmp_dir/G.txt

fstcompile --isymbols=$lang_dir/words.txt
--osymbols=$lang_dir/words.txt --keep_isymbols=false
--keep_osymbols=false $tmp_dir/G.txt > $lang_dir/G.fst
utils/validate_lang.pl $lang_dir

• generate_bigram.py program is used to generate the wp_gram from the dis-
trict or commodity list. The content of this file is as follows:
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#!/usr/bin/env python
import sys
from collections import defaultdict
word_list = [xx.strip().split() for xx in open(sys.argv[1])]
word_list = [ ["SENTENCE-END"] + xx + ["SENTENCE-END"] for xx in
word_list ]
suc_list = defaultdict(set)
for line in word_list:
for w1, w2 in zip(line[:-1], line[1:]):
suc_list[w1].add(w2)
list_of_keys = suc_list.keys()
list_of_keys.sort()
for ww in list_of_keys:
print ">" + ww
for ss in suc_list[ww]:
print " " + ss

• Change the paths in the fst.sh file and execute it; make sure to clear all the
errors in this step. If it runs successfully, then you have no errors of mis-
match in label files and lexicon. Do check G.fst file for binary file and not of
very small size (in few bytes).

E.3 Feature Extraction

In this section, we will extract the MFCC feature set that will be used to build
the GMM-HMM systems and the Mel filterbank (FBANK) feature set that will be
used to build the hybrid DNN-HMM systems. Here, “nj 10" indicates the number
of jobs to extract the features in parallel.

• The MFCC feature set is obtained as follows:

mfccdir=mfcc
for x in test train; do

steps/make_mfcc.sh --cmd "$train_cmd" --nj 10 $datadir/$x
exp/makemfcc/$x $mfccdir || exit 1;
steps/compute_cmvn_stats.sh $datadir/$x exp/makemfcc/$x $mfc-

cdir || exit 1; done
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• The FBANK feature set is obtained as follows:

fbankdir=fbank
for x in test train; do

steps/make_fbank.sh --cmd "$train_cmd" --nj 10 $datadir/$x
exp/makefbank/$x $fbankdir || exit 1;
steps/compute_cmvn_stats.sh $datadir/$x exp/makefbank/$x

$fbankdir || exit 1; done

E.4 Acoustic Modeling GMM-HMM

In this Section, we will show how to build GMM-HMM system in KALDI.

• Monophone GMM-HMM system can be build by the following commands:

expdir=mono_mfcc
steps/train_mono.sh --nj "$train_nj" --cmd "$train_cmd" $datadir/train
data/lang exp/$expdir || exit 1;
utils/mkgraph.sh --mono data/lang exp/$expdir exp/$expdir/graph ||
exit 1;
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd"
exp/$expdir/graph $datadir/test exp/$expdir/decode || exit 1;
local/score.sh --cmd run.pl $datadir/test exp/$expdir/graph
exp/$expdir/decode || exit 1;

• The triphone GMM-HMM system will be built from the alignments gener-
ated from the monophone system. Here, we have option to vary the number
of senones and Gaussians in the triphone trees. The triphone GMM-HMM
system can be built by the following commands:
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expdir=mono_mfcc
tridir=tri_mfcc

steps/align_si.sh --boost-silence 1.25 --nj "$train_nj" --cmd "$train_cmd"
$datadir/train data/lang exp/$expdir exp/$expdir_ali || exit 1;

for sen in 1800 2000 2200 2500; do
for gauss in 12 14 16; do

gauss=$(($sen * $gauss))
steps/train_deltas.sh --cmd "$train_cmd" $sen $gauss $datadir/train
data/lang exp/$expdir_ali exp/$tridir_$sen_$gauss || exit 1;
utils/mkgraph.sh data/lang exp/$tridir_$sen_$gauss
exp/$tridir_$sen_$gauss/graph || exit 1;
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd"
exp/$tridir_$sen_$gauss/graph $datadir/test

exp/$tridir_$sen_$gauss/decode || exit 1;

• The triphone system with the lowest % WER is selected for the LDA+MLLT
system building. For example, here a system with 2000 senones and 12
Gaussians is selected.

steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" data/train data/lang
exp/tri_mfcc_2000_24000 exp/tri_mfcc_2000_24000_ali || exit 1;
for sen in 2000 2500 3000; do
for gauss in 12 16; do

gauss=$(($sen * $gauss))
steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts
"--left-context=3 --right-context=3" $sen $gauss data/train data/lang
exp/tri_mfcc_2000_24000_ali exp/$tridir2_$sen_$gauss || exit 1;
utils/mkgraph.sh data/lang exp/$tridir2_$sen_$gauss
exp/$tridir2_$sen_$gauss/graph2 || exit 1;
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd"
exp/$tridir2_$sen_$gauss/graph2 data/test

exp/$tridir2_$sen_$gauss/decode3 || exit 1;
done
done
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E.5 Acoustic Modeling using DNN-HMM

• The LDA-MLLT system with the lowest % WER is selected for the hybrid
DNN-HMM experiments. First generate the alignments from the LDA-MLLT
system as follows:

expdir=exp/tri2_mfcc_2500_40000
steps/align_si.sh --nj 8 --cmd "$train_cmd" data/train data/lang
exp/$expdir exp/$expdir_ali

• To train the DNN-HMM system, the Mel filterbank features are extracted as
follows:

fbankdir=fbank
for x in test train; do

steps/make_fbank.sh --cmd "$train_cmd" --nj 10 $datadir/$x
exp/makefbank/$x $fbankdir || exit 1;
steps/compute_cmvn_stats.sh $datadir/$x exp/makefbank/$x
$fbankdir || exit 1;

done

• The hybrid DNN-HMM system using nnet3 setup in the KALDI toolkit. We
show a demo of building TDNN system with different numbers of hidden
units as follows:

for x in 500 600 700 800 900; do
datadir=nnet2_data_$features
nndir=tri2_fbank40_TDNN_$x
steps/nnet3/tdnn/train.sh --relu-dim $x $datadir/train
data/lang $expdir_ali exp/tdnn/$nndir_nnet3 || exit 1;

steps/nnet3/decode.sh $expdir/graph $datadir/test
exp/tdnn/$nndir_nnet3/decode

local/score.sh --cmd run.pl $datadir/test $expdir/graph
exp/tdnn/$nndir_nnet3/decode

done
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Appendix F. Miscellaneous

F.1 Maximum Likelihood Estimation (MLE)

Mathematical modeling represents an underlying process (such as hearing as a
physiological auditory processing) by means of certain parameters of the model
that completely characterize the model. There are two general methods for esti-
mation of the parameters, namely, least squares estimation (LSE) and maximum
likelihood estimation (MLE). The LSE is popular in statistical model fitting tech-
niques, such as linear regression and root mean squared error (RMSE), which un-
like MLE does not require distributional assumptions [247]. MLE is considered
as a general approach for parameter optimization, which has the following nice
properties [14], [247]:

• sufficiency: complete information about the parameters in the MLE,

• efficiency: lowest possible variance of the parameter estimates achieved
asymptotically,

• consistency: for data of sufficiently large samples, the true parameter value
that generated the data recovered asymptotically,

• parameterization invariance: same MLE solution obtained independent of
the parametrization used.

Let X = {xd|d ∈ {1, 2, ..., D}} be independent and identically distributed
(i.i.d.) samples with probability density function (pdf) p(xd; θ), where θ are the
model parameters that characterize p(xd; θ). The likelihood function is defined as
the joint probability density p(x1, x1, ..., xD; θ) treated as a function of the parame-
ters θ:

L(θ|x1, x1, ..., xD) = p(x1, x1, ..., xD; θ) =
D

∏
d=1

p(xd; θ). (F.1)
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To simply the notation, it can be written in a vector form as:

L(X|θ) = p(X; θ). (F.2)

There is an important difference between pdf p(X; θ) and likelihood function.
Both functions are defined on different scales and hence, they are not directly
comparable as shown in [247]. The p(X; θ) is a function of data given a particular
set of parameters defined on the data scale [247]. On the other hand, the like-
lihood function L(X|θ) is a function of the parameters given a particular set of
observed data, defined on the parameter scale [247]. We are interested in estimat-
ing the optimal value of θ such that it maximizes the likelihood of the observed
data. The principle of MLE, originally developed by R.A. Fisher (1920), states
that the desired probability distribution is the one that makes the observed data
“most likely", which means that one must obtain the value of the parameters that
maximizes the likelihood function L(X|θ) [247]. The ML estimate denoted as θ∗ is
given as:

θ∗ = arg max
θ

L(X|θ). (F.3)

It is often very difficult to solve eq. (F.3). Hence, for mathematical convenience,
we maximize the log-likelihood log L(X|θ) given as:

log L(X|θ) = log

(
D

∏
d=1

p(xd; θ)

)
=

D

∑
d=1

log p(xd; θ). (F.4)

Since logarithm is a monotone function, the optimal value θ∗ remains the same in
the optimization. The monotone function is defined as follows:

Definition: Let T : R→ R be a function. T is a monotonically increasing (decreas-
ing) on R, if ∀x, y ∈ R, x ≤ y one has T(x) ≤ T(y) (respectively, T(x) ≥ T(y)).
The properties of monotone functions are given by following theorems [149].

Theorem: Let T be a monotone function on the open interval (a, b). Then, T is
continuous except possibly at a countable number of points in (a, b).

Lebesgue’s theorem: If the function T is monotone on the open interval (a, b),
then it is differential almost everywhere (that is, except for a set of points that has
Lebesgue measure zero) on (a, b).

Since ML optimization involves finding derivatives of log-likelihood function,
the optimal θ can be found by differentiating the log-likelihood, and solving the
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first-order conditions (known as the likelihood equation) as follows:

∂

∂θ
log L(X|θ) = 0, (F.5)

1
L(X|θ)

∂

∂θ
L(X|θ) = 0, (F.6)

∂

∂θ
L(X|θ) = 0. (F.7)

A necessary condition for the existence of an MLE estimate is represented by
the likelihood equation (F.7). Since the first-order derivatives cannot reveal that
the function is maximum or minimum, we need additional conditions for the ML
estimate. This can be done by checking second-order derivatives as follows:

∂2

∂θ2 log L(X|θ) < 0. (F.8)

In many cases, it is difficult to find the value of parameters analytically using
equations (F.7) and (F.8). In that case, the usual way to find the parameters is to use
gradient-based techniques, such as gradient-ascent [14], [25]. This corresponds to
iteratively updating the parameters θ(t) to θ(t+1) based on the gradient of L(X|θ).
The update rule for the gradient-ascent is given as follows [25], [14]:

θ(t+1) = θ(t) +∇θ(t), (F.9)

where ∇θ(t) = ε ∂
∂θ(t)

log L(X|θ(t)) is a gradient of log-likelihood, and ε is called
the learning rate parameter. The learning rule can also be extended by including
the momentum term as follows:

θ(t+1) = θ(t) +∇θ(t) + ηθ(t−1), (F.10)

where η ∈ [0, 1) is called as the momentum parameter that helps against os-
cillatory behavior in the iterative updates, and can speed up the learning pro-
cess [52], [70].

F.2 Relationship Between KL-Divergence and ML

The goal of probabilistic graphical models (PGM) is to learn the model distri-
bution p(x; θ) that approximates the true distribution of the data points f (x) [14].
The relative entropy or Kullback-Leibler (KL) divergence is used to find the differ-

194



ence between two probability distributions, and it is defined as follows [54], [248]:

KL( f (x)||p(x; θ)) =
∫ ∞

−∞
f (x) log

(
f (x)

p(x; θ)

)
dx, (F.11)

=
∫ ∞

−∞
f (x) log f (x)dx−

∫ ∞

−∞
f (x) log p(x; θ)dx, (F.12)

= E f (x) [log f (x)]−E f (x) [log p(x; θ)] , (F.13)

where E[·] is the expectation operator over the distribution f (x). The first term
E f (x) [log f (x)] is constant (negative of the entropy), and will not take part in op-
timization of model parameters θ. Hence, KL-divergence is minimum, when the
second term E f (x) [log p(x; θ)] is maximum (due to negative sign). The second
term is just the expected log-likelihood, log p(x; θ) as given in eq. (3.11) in Chap-
ter 3. The E f (x) [log p(x; θ)] can be calculated as sample mean:

E f (x) [log p(x; θ)] ≈ 1
D

D

∑
d=1

log p(x; θ). (F.14)

Hence, eq. (F.13) can be written as:

arg min
θ

KL( f (x)||p(x; θ))⇔ arg min
θ

[
− 1

D

D

∑
d=1

log p(x; θ)

]
, (F.15)

⇔ arg max
θ

[
1
D

D

∑
d=1

log p(x; θ)

]
, (F.16)

⇔ arg max
θ

[
D

∑
d=1

log p(x; θ)

]
, (F.17)

⇔ arg max
θ

L(X|θ). (F.18)

This proves that minimizing the KL-divergence (which is an information-theoretic
measure) is equivalent to maximizing the log-likelihood function.

F.3 Weight Decay Regularization in ConvRBM

One of the key problems in representation learning is how to make a model that
will perform well not just on the training data, but also on new inputs in the test
data. One also has to be careful such that the model will not overfit either due to
more parameters or less training data. Many strategies used in machine learning
are explicitly designed to reduce the overfitting and test error. These strategies
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are known collectively as the regularization techniques [20]. The norm penalties
are the most common and the simplest regularization techniques. They are based
on limiting the capacity of models, such as linear regression, logistic regression,
and neural networks, by adding a parameter norm penalty Ω(θ) to the objective
function. In the case of ConvRBM, norm penalty Ω(W) is used for the weights W
and added to the follows

˜̀(x; θ) = `(x; θ) + λdΩ(W), (F.19)

where λd ∈ [0, ∞) is a regularization parameter that weights the relative contribu-
tion of the norm penalty term relative to the standard objective function. Larger
values of λd correspond to more regularization effect [20]. Generally for the neu-
ral networks, we penalize only the weights of the model at each layer and no
regularization for the biases. The biases typically require less data to learn than
the weights to fit accurately. Each weight specifies how two variables (in the hid-
den and visible layer) interact. Fitting the weight well requires observing both
variables in a variety of conditions as shown in eq. (3.25) in Section 3.3, Chap-
ter 3. Each bias controls only a single variable (as derived in eq. (3.26) and eq.
(3.27) in Section 3.3, Chapter 3). This means that we do not induce too much vari-
ance by leaving the biases unregularized. Also, regularizing the bias parameters
can introduce a significant amount of underfitting [20]. Hence, we regularize the
weights of the ConvRBM only.

The simplest norm penalty is the L2-norm regularization. It is also known as
the weight decay in the neural network literature [20]. In other academic com-
munities it is also known as Tikhonov regularization or ridge regression [20]. The
log-likelihood-function along with the weight decay is written as:

˜̀(x; θ) = `(x; θ) +
λd
2
‖W‖2 , (F.20)

where the factor 1
2 is only for the mathematical convenience. The gradient of

weights is then given as:

∂

∂W
˜̀(x; θ) =

∂

∂W
`(x; θ) + λdW (F.21)

The weight decay regularization prevents the weights from growing too large
and forces them to be near to zero. Hence, this introduces sparsity in the model.
One can also use L1 regularization to prevent overfitting and introduce sparsity in
the model. Since ConvRBM uses ReLU activations, it natural introduces sparsity
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in the hidden units. Our experiments with the L1-regularization show that Con-
vRBM did not work well with the ReLU activations since training such ConvRBM
makes more weights and the hidden units to zero. Hence, we prefer weight decay,
i.e., L2-regularization in the ConvRBM training along with the ReLU activations.

F.4 Adam Optimization Algorithm

Algorithm 4 The Adam optimization algorithm. After [163].

Input: Stochastic objective function f (θ) with parameters θ, exponential decay
rates for the moment estimates β1, β2 ∈ (0, 1], step size α
Initialize first moment vector: m0 ← 0
Initialize second moment vector: v0 ← 0
Initialize training iteration: t← 0

Output: Optimized parameters θt
1: while θt not converged do
2: t← t + 1
3: gt ← ∇ ft(θt−1)
4: mt ← β1 ·mt−1 + (1− β1)gt (Update biased first moment estimate)
5: vt ← β2 · vt−1 + (1− β2)g2

t (Update biased second raw moment estimate)
6: m̂t ← mt/(1− βt

1) (Compute bias-corrected first moment estimate)
7: v̂t ← vt/(1− βt

2) (Compute bias-corrected second raw moment estimate)
8: θt ← θt−1 − α · m̂t/(v̂t + ε) (Update the parameters of the model)
9: end while

197



Bibliography

[1] N. Morgan and H. Bourlard, “An introduction to hybrid HMM/connectionist con-
tinuous speech recognition,” IEEE Signal Processing Magazine, vol. 12, no. 3, pp.
25–42, May 1995.

[2] H. B. Sailor and H. A. Patil, “Filterbank learning using convolutional restricted
Boltzmann machine for speech recognition,” in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Shanghai, China, 20-25 March 2016, pp.
5895–5899.

[3] H. B. Sailor and H. A. Patil, “Novel unsupervised auditory filterbank learning us-
ing convolutional RBM for speech recognition,” IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 24, no. 12, pp. 2341–2353, Dec. 2016.

[4] H. B. Sailor and H. A. Patil, “Auditory feature representation using convolutional
restricted Boltzmann machine and Teager energy operator for speech recognition,”
Journal of Acoustical Society of America Express Letters (JASA-EL), vol. 141, no. 6, pp.
EL500–EL506, June. 2017.

[5] H. B. Sailor, D. M. Agrawal, and H. A. Patil, “Unsupervised filterbank learning
using convolutional restricted Boltzmann machine for environmental sound classi-
fication,” in INTERSPEECH, Stockholm, Sweden, 2017, pp. 3107–3111.

[6] H. B. Sailor, M. R. Kamble, and H. A. Patil, “Unsupervised representation learning
using convolutional restricted Boltzmann machine for spoof speech detection,” in
INTERSPEECH, Stockholm, Sweden, 2017, pp. 2601–2605.

[7] H. B. Sailor, M. R. Kamble, and H. A. Patil, “Auditory filterbank learning for tem-
poral modulation features in replay spoof speech detection,” to appear in INTER-
SPEECH, Hyderabad, Sept. 2018.

[8] N. Buddha and H. A. Patil, “Corpora for analysis of infant cry,” in Int. Conf. on
Speech Databases and Assessments, Oriental COCOSDA, Hanoi, Vietnam, Dec. 2007,
pp. 43 – 48.

[9] H. B. Sailor and H. A. Patil, “Auditory filterbank learning using ConvRBM for in-
fant cry classification,” to appear in INTERSPEECH, Hyderabad, Sept. 2018.

[10] H. B. Sailor and H. A. Patil, “Unsupervised learning of temporal receptive fields
using convolutional RBM for ASR task,” in European Signal Processing Conference
(EUSIPCO), Budapest, Hungary, 29 Aug. - 2 Sept. 2016, pp. 873–877.

[11] H. B. Sailor and H. A. Patil, “Unsupervised deep auditory model using stack of
convolutional RBMs for speech recognition,” in INTERSPEECH, San Francisco, Cal-
ifornia, USA, 8–12 September 2016, pp. 3379–3383.

198



[12] M. S. Lewicki, “Efficient coding of natural sounds,” Nature Neuroscience, vol. 5, no. 4,
pp. 356–363, 2002.

[13] L. H. Carney and T. Yin, “Temporal coding of resonances by low-frequency auditory
nerve fibers: single-fiber responses and a population model,” Journal of Neurophysi-
ology, vol. 60, no. 5, pp. 1653–1677, 1988.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, First Edition,
2007.

[15] R. Rojas, Neural Networks - A Systematic Introduction. New York, NY, USA: Springer-
Verlag, First Edition, 1996.

[16] L. Chittka and A. Brockmann, “Perception space: The final frontier,” Public Library
of Science (PLOS) Biology, vol. 3, no. 4, pp. 1–5, 2005.

[17] D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia, J. O. McNa-
mara, and S. M. Williams, Neuroscience. Sunderland (MA), Sinauer Associates,
Third Ddition, 2001.

[18] D. P. W. Ellis, “Gammatone-like spectrograms,” URL: http://www.ee.columbia.
edu/~dpwe/resources/matlab/gammatonegram/, {Last Accessed on 20 Decem-
ber, 2017}.

[19] F. E. Theunissen and J. E. Elie, “Neural processing of natural sounds,” Nature Re-
views Neuroscience, vol. 15, pp. 355–366, 2014.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, First
Edition, 2016.

[21] A. Graves, N. Jaitly, and A. R. Mohamed, “Hybrid speech recognition with deep
bidirectional LSTM,” in IEEE Workshop on Automatic Speech Recognition and Under-
standing (ASRU), Olomouc, Czech Republic, 2013, pp. 273–278.

[22] M. Gales and S. Young, The Application of Hidden Markov Models in Speech Recognition.
Hanover, MA, USA: Foundations and Trends in Signal Processing, Now Publishers
Inc., First Edition, 2007.

[23] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 20, no. 1, pp. 30–42, 2012.

[24] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[25] S. S. Haykin, Neural Networks and Learning Machines. Pearson Education, Third
Edition, 2009.

[26] B. U. EarLab, “The auditory revcor database,” URL: http://earlab.bu.edu/
databases/collections/Default.aspx, {Last Accessed: 20 December 2017}.

[27] J. Basu, S. Khan, R. Roy, and M. S. Bepari, “Commodity price retrieval system in
Bangla: An IVR-based application,” in Proceedings of the Asia-Pacific Conference on
Computer Human Interaction, Bangalore, India, 2013, pp. 406–415.

199

http://www.ee.columbia.edu/~dpwe/resources/matlab/gammatonegram/
http://www.ee.columbia.edu/~dpwe/resources/matlab/gammatonegram/
http://earlab.bu.edu/databases/collections/Default.aspx
http://earlab.bu.edu/databases/collections/Default.aspx


[28] AGMARKNET, “Ministry of agriculture and farmers welfare, government of In-
dia,” URL: http://agmarknet.dac.gov.in/, {Last Accessed on 22 December 2017}.

[29] IMD, “India meteorological department (IMD), ministry of earth sciences, govern-
ment of india,” URL: http://www.imd.gov.in/pages/main.php, {Last Accessed: 22
December 2017}.

[30] H. B. Sailor and H. A. Patil, “Representation learning for speech recognition system
in agricultural commodity for Gujarati (poster presentation),” in Global Conference
on Cyberspace (GCCS), Organized by MeitY, Govt. of India under National e-Governance
Division (NeGD), New Delhi, India, 2017.

[31] K. Samudravijaya and H. A. Murthy, “Indian language speech sound label set
(ILSL12), version v2.1.3,” Indian Language TTS Consortium and ASR Consortium, pp.
1–14, 2013.

[32] K. J. Piczak, “Environmental sound classification with convolutional neural net-
works,” in 25th IEEE Int. Workshop on Machine Learning for Signal Processing (MLSP),
Boston, MA, USA, 2015, pp. 1–6.

[33] D. M. Agrawal, H. B. Sailor, M. H. Soni, and H. A. Patil, “Novel TEO-based gamma-
tone features for environmental sound classification,” in European Signal Processing
Conf. (EUSIPCO), Kos island, Greece, August 28 – 2 September 2017.

[34] H. A. Patil, “Cry baby: Using spectrographic analysis to assess neonatal health sta-
tus from an infant’s cry,” in Advances in Speech Recognition Mobile Environments, Call
Centers and Clinics. A. Neustein, (Ed.), Springer, 2010, pp. 323–348.

[35] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The DET
curve in assessment of detection task performance,” in EUROSPEECH, Rhodes,
Greece, 1997, pp. 1895–1898.

[36] A. M. Zoubir and D. R. Iskander, Bootstrap Techniques for Signal Processing. Cam-
bridge University Press, First Edition, 2004.

[37] M. Benzeghiba, R. D. Mori et al., “Automatic speech recognition and speech vari-
ability: A review,” Speech Communication, vol. 49, no. 10, pp. 763 – 786, 2007.

[38] R. Stern and N. Morgan, “Hearing is believing: Biologically inspired methods
for robust automatic speech recognition,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 34–43, Nov 2012.

[39] R. M. Stern and N. Morgan, “Features based on auditory physiology and percep-
tion,” in Techniques for Noise Robustness in Automatic Speech Recognition. T. Virtanen,
B. Raj, and R. Singh, (Eds.) John Wiley and Sons, Ltd, New York, NY, USA, 2012,
pp. 193–227.

[40] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE Trans. on Pattern Anal. and Mach. Intell., vol. 35, no. 8, pp.
1798–1828, Aug. 2013.

[41] Z. Zhang, N. Cummins, and B. Schuller, “Advanced data exploitation in speech
analysis: An overview,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 107–129,
July 2017.

200

http://agmarknet.dac.gov.in/
http://www.imd.gov.in/pages/main.php


[42] G. Hinton, “Where do features come from?” Cognitive Science, vol. 38, no. 6, pp.
1078–1101, 2014.

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444,
2015.

[44] P. K. Kuhl, “Early language acquisition: cracking the speech code,” Nature Reviews
Neuroscience, vol. 5, no. 11, pp. 831–843, Nov. 2004.

[45] H. B. Sailor, M. R. Kamble, and H. A. Patil, “Novel unsupervised filterbank learning
using convolutional restricted Boltzmann machine for replay spoof speech detec-
tion,” submitted in Pattern Recognition Letters (PRL), Sept. 2017.

[46] H. B. Sailor and H. A. Patil, “Unsupervised auditory filterbank learning for infant
cry classification,” in Voice Technologies for Reconstruction and Enhancement. Hemant
A. Patil and Neustein, Amy,(Eds.), De Gruyter Series in Speech Technology and Text
Analytics in Medicine and Healthcare, 2018, pp. 1–18.

[47] R. F. Lyon, “Machine hearing: An emerging field,” [Exploratory DSP], IEEE Signal
Processing Magazine, vol. 27, no. 5, pp. 131–139, Sept. 2010.

[48] E. Smith and M. S. Lewicki, “Efficient coding of time-relative structure using
spikes,” Neural Comput., vol. 17, no. 1, pp. 19–45, Jan. 2005.

[49] T. Chi, P. Ru, and S. A. Shamma, “Multiresolution spectrotemporal analysis of com-
plex sounds,” The Journal of the Acoustical Society of America (JASA), vol. 118, no. 2,
pp. 887–906, 2005.

[50] H. Lee, P. T. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning for
audio classification using convolutional deep belief networks,” in 23rd Annual Con-
ference on Neural Information Processing Systems (NIPS), Canada, 7-10 December, 2009,
pp. 1096–1104.

[51] K. P. Murphy, Machine Learning : A Probabilistic Perspective. The MIT Press, First
Edition, 2013.

[52] A. Fischer and C. Igel, “An introduction to restricted Boltzmann machines,” in
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Al-
varez L., Mejail M., Gomez L., Jacobo J. (Eds.), Springer, 2012, pp. 14–36.

[53] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-
based learning,” in Predicting Structured Data. G. Bakir and T. Hofman and B.
Scholkopf and A. Smola and B. Taskar, (Eds.), The MIT Press, 2006, pp. 1–59.

[54] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. New York, NY,
USA: Cambridge University Press, First Edition, 2002.

[55] G. E. Hinton and T. J. Sejnowski, “Learning and relearning in Boltzmann machines,”
in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.
1. Cambridge, MA, USA: Rumelhart, David E. and McClelland, James L. and PDP
Research Group, (Eds.), CORPORATEMIT Press, 1986, pp. 282–317.

[56] P. Smolensky, “Information processing in dynamical systems: Foundations of har-
mony theory,” in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1, D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, pp. 194–281.

201



[57] M. Welling, M. Rosen-Zvi, and G. E. Hinton, “Exponential family harmoniums with
an application to information retrieval,” in Advances in neural information processing
systems (NIPS), Vancouver, Canada, 2005, pp. 1481–1488.

[58] G. Hinton, L. Deng et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal Processing Mag-
azine, vol. 29, no. 6, pp. 82–97, 2012.

[59] H. Lee, R. B. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief net-
works for scalable unsupervised learning of hierarchical representations,” in 26th

Annual International Conference on Machine Learning, (ICML), Canada, June 14-18,
2009, pp. 609–616.

[60] G. E. Hinton, “A practical guide to training restricted Boltzmann machines,” in
Neural Networks: Tricks of the Trade. Montavon G., Orr and G.B., Muller KR. , (Eds.),
Springer, 2012, pp. 599–619.

[61] J. W. Schnupp, I. Nelken, and A. J. King, Auditory Neuroscience: Making Sense of
Sound. The MIT Press, First Edition, 2012.

[62] X. Yang, K. Wang, and S. Shamma, “Auditory representations of acoustic signals,”
IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 824–839, March 1992.

[63] D. A. Depireux, J. Z. Simon, D. J. Klein, and S. A. Shamma, “Spectro–temporal re-
sponse field characterization with dynamic ripples in ferret primary auditory cor-
tex,” Journal of Neurophysiology, vol. 85, no. 3, pp. 1220–1234, 2001.

[64] A. Qiu, C. E. Schreiner, and M. A. Escabí, “Gabor analysis of auditory midbrain
receptive fields: Spectro-temporal and binaural composition,” Journal of Neurophys-
iology, vol. 90, no. 1, pp. 456–476, 2003.

[65] K. C. Puvvada and J. Z. Simon, “Cortical representations of speech in a multitalker
auditory scene,” Journal of Neuroscience, vol. 37, no. 38, pp. 9189–9196, 2017.

[66] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[67] L. Deng and D. Yu, Deep Learning: Methods and Applications. Foundations and
Trends in Signal Processing, First Edition, 2014.

[68] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), Ft. Lauderdale,
FL, USA, 2011, pp. 315–323.

[69] J. Li, T. Zhang, W. Luo, J. Yang, X. T. Yuan, and J. Zhang, “Sparseness analysis in
the pretraining of deep neural networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 6, pp. 1425–1438, June 2017.

[70] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press,
First Edition, 1995.

[71] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network model for
a mechanism of visual pattern recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-13, no. 5, pp. 826–834, Sept. 1983.

202



[72] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov.
1998.

[73] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geomet-
ric deep learning: Going beyond Euclidean data,” IEEE Signal Processing Magazine,
vol. 34, no. 4, pp. 18–42, July 2017.

[74] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recogni-
tion using time-delay neural networks,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 37, no. 3, pp. 328–339, Mar. 1989.

[75] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network architec-
ture for efficient modeling of long temporal contexts,” in INTERSPEECH, Dresden
Germany, 2015, pp. 2440–2444.

[76] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low latency acoustic modeling
using temporal convolution and LSTMs,” IEEE Signal Processing Letters, vol. PP,
no. 99, pp. 1–5, 2017.

[77] H. Hermansky, J. Cohen, and R. Stern, “Perceptual properties of current speech
recognition technology,” Proce. of the IEEE, vol. 101, no. 9, pp. 1968–1985, Sept. 2013.

[78] S. Davis and P. Mermelstein, “Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences,” IEEE Trans. on
Acoust., Speech, and Signal Process., vol. 28, no. 4, pp. 357–366, 1980.

[79] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement of
the psychological magnitude pitch,” The Journal of the Acoustical Society of America,
vol. 8, no. 3, pp. 185–190, 1937.

[80] A. Oppenheim and R. Schafer, “Homomorphic analysis of speech,” IEEE Transac-
tions on Audio and Electroacoustics, vol. 16, no. 2, pp. 221–226, Jun 1968.

[81] A. R. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep belief
networks,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1,
pp. 14–22, Jan. 2012.

[82] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,” The Journal
of the Acousti. Soc. of America (JASA), vol. 87, no. 4, pp. 1738–1752, 1990.

[83] R. Schluter, I. Bezrukov, H. Wagner, and H. Ney, “Gammatone features and feature
combination for large vocabulary speech recognition,” in Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Honolulu, Hawaii, USA, 2007, pp. 645–649.

[84] D. O’Shaughnessy, “Acoustic analysis for automatic speech recognition,” Proceed-
ings of the IEEE, vol. 101, no. 5, pp. 1038–1053, May 2013.

[85] F. Jelinek, Statistical Methods for Speech Recognition. Cambridge, MA, USA: MIT
Press, First Edition, 1997.

[86] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., First Edition, 1993.

203



[87] X. Huang and L. Deng, “An overview of modern speech recognition,” in Handbook
of Natural Language Processing, Second Edition. Nitin Indurkhya and Fred J. Dam-
erau, (Eds.), Chapman and Hall/CRC, 2010, pp. 339–366.

[88] J. A. Bilmes, “What HMMs can do,” IEICE Trans. Inf. Syst., vol. E89-D, no. 3, pp.
869–891, Mar. 2006.

[89] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

[90] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the EM algorithm,” Journal of the Royal Statistical Society, Series B,
vol. 39, no. 1, pp. 1–38, 1977.

[91] L. Deng and X. Li, “Machine learning paradigms for speech recognition: An
overview,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 5,
pp. 1060–1089, May 2013.

[92] H. A. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid Approach.
Norwell, MA, USA: Kluwer Academic Publishers, First Edition, 1993.

[93] M. Zaki, H. B. Sailor, and H. A. Patil, “Analysis of hierarchical bottleneck frame-
work for improved phoneme recognition,” in IEEE International Conference on Signal
Processing and Communications (SPCOM), IISc, Bangalore, June 2016, pp. 1–5.

[94] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why
does unsupervised pre-training help deep learning?” J. Mach. Learn. Res. (JMLR),
vol. 11, pp. 625–660, Mar. 2010.

[95] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tempo-
ral classification: Labelling unsegmented sequence data with recurrent neural net-
works,” in International Conference on Machine Learning (ICML), New York, USA,
2006, pp. 369–376.

[96] R. F. Lyon, Human and Machine Hearing: Extracting Meaning from Sound. Cambridge
University Press, First Edition, 2017.

[97] M. L. Jepsen, S. D. Ewert, and T. Dau, “A computational model of human auditory
signal processing and perception,” The Journal of the Acoustical Society of America
(JASA), vol. 124, no. 1, pp. 422–438, 2008.

[98] J. Anden and S. Mallat, “Deep scattering spectrum,” IEEE Transactions on Signal
Processing, vol. 62, no. 16, pp. 4114–4128, Aug. 2014.

[99] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent
neural networks,” in Proceedings of the 31st International Conference on Machine Learn-
ing (ICML), Beijing, China, 2014, pp. 1764–1772.

[100] D. Amodei, R. Anubhai, E. Battenberg et al., “Deep speech 2: End-to-end speech
recognition in English and Mandarin,” in arXiv preprint arXiv:1512.02595, 2015.

[101] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end speech recognition us-
ing deep RNN models and WFST-based decoding,” in IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), Scottsdale, AZ, USA, Dec. 2015.

204



[102] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals, “Learning the
speech front-end with raw waveform CLDNNs,” in INTERSPEECH, Dresden, Ger-
many, 6–10 Sept. 2015, pp. 1–5.

[103] P. Golik, Z. Tüske, R. Schlüter, and H. Ney, “Convolutional neural networks for
acoustic modeling of raw time signal in LVCSR,” in INTERSPEECH, Dresden, Ger-
many, 6-10 Sep. 2015, pp. 26–30.

[104] D. Palaz, M. Magimai-Doss, and R. Collobert, “Convolutional neural networks-
based continuous speech recognition using raw speech signal,” in 40th International
Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD,
19–24 April 2015, pp. 4295–4299.

[105] Z. Tüske, P. Golik, R. Schlüter, and H. Ney, “Acoustic modeling with deep neural
networks using raw time signal for LVCSR,” in INTERSPEECH, Singapore, 14–18
Sep. 2014, pp. 890–894.

[106] Y. Tokozume and T. Harada, “Learning environmental sound with end-to-end con-
volutional neural network,” in IEEE Int. Conf. on Acoust., Speech and Signal Process.
(ICASSP), New Orleans, USA, 2017, pp. 2721–2725.

[107] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning sound representations
from unlabeled video,” in Advances in Neural Information Processing Systems (NIPS),
Barcelona, Spain, 2016, pp. 892–900.

[108] J. Lee and et. al, “Speech feature extraction using independent component anal-
ysis,” in IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Istanbul, Turkey, vol. 3, 2000, pp. 1631–1634.

[109] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representations,” Neural
Comput., vol. 12, no. 2, pp. 337–365, Feb. 2000.

[110] A. Bertrand, K. Demuynck, V. Stouten, and H. V. hamme, “Unsupervised learning
of auditory filter banks using non-negative matrix factorization,” in IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, (ICASSP) 2008, Las Vegas,
Nevada, USA, 2008, pp. 4713–4716.

[111] Y.-H. Chiu, B. Raj, and R. Stern, “Learning-based auditory encoding for robust
speech recognition,” in IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP), Dallas, Texas, USA, March 2010, pp. 4278–4281.

[112] S. Chatterjee and W. Kleijn, “Auditory model-based design and optimization of fea-
ture vectors for automatic speech recognition,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 6, pp. 1813–1825, Aug. 2011.

[113] N. Jaitly and G. Hinton, “Learning a better representation of speech soundwaves
using restricted Boltzmann machines,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011, pp.
5884–5887.

[114] E. Smith and M. S. Lewicki, “Efficient coding of time-relative structure using
spikes,” Neural Comput., vol. 17, no. 1, pp. 19–45, Jan. 2005.

[115] E. C. Smith and M. S. Lewicki, “Efficient auditory coding,” Nature, vol. 439, no.
7079, pp. 978–982, 2006.

205



[116] S. van Vuuren and H. Hermansky, “Data-driven design of RASTA-like filters,” in
Eurospeech, Rhodes, Greece, vol. 1, 1997, pp. 1607–1610.

[117] B. Mak, Y.-C. Tam, and R. Hsiao, “Discriminative training of auditory filters of dif-
ferent shapes for robust speech recognition,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing(ICASSP), Hong Kong, China, vol. 2, April
2003, pp. 45–48.

[118] J.-W. Hung and L.-S. Lee, “Optimization of temporal filters for constructing robust
features in speech recognition,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 14, no. 3, pp. 808–832, May 2006.

[119] S. Chatterjee and W. Kleijn, “Auditory model-based design and optimization of fea-
ture vectors for automatic speech recognition,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 6, pp. 1813–1825, Aug 2011.

[120] N. Jaitly and G. E. Hinton, “Using an autoencoder with deformable templates to
discover features for automated speech recognition,” in INTERSPEECH 2013, Lyon,
France, August 25-29, 2013, pp. 1737–1740.

[121] S.-Y. Chang and N. Morgan, “Robust CNN-based speech recognition with Gabor
filter kernels,” in INTERSPEECH, Singapore, 14–18 Sept. 2014, pp. 905–909.

[122] P. Ghahremani, V. Manohar, D. Povey, and S. Khudanpur, “Acoustic modelling from
the signal domain using CNNs,” in INTERSPEECH, San Francisco, California, USA,
2016, pp. 3434–3438.

[123] N. Moritz, B. Kollmeier, and J. Anemuller, “Integration of optimized modulation
filter sets into deep neural networks for automatic speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 24, no. 12, pp. 2439–2452,
Dec. 2016.

[124] H. Seki, K. Yamamoto, and S. Nakagawa, “A deep neural network integrated with
filterbank learning for speech recognition,” in Int. Conf. on Acoustics, Speech and Sig-
nal Processing (ICASSP), New Orleans, USA, 2017, pp. 5480–5484.

[125] P. Sharma, V. Abrol, and A. K. Sao, “Deep sparse representation based features for
speech recognition,” IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing, vol. 25, no. 11, pp. 2162–2175, Nov. 2017.

[126] P. Agrawal and S. Ganapathy, “Unsupervised modulation filter learning for noise-
robust speech recognition,” The Journal of the Acoustical Society of America, vol. 142,
no. 3, pp. 1686–1692, 2017.

[127] J. Salamon and J. P. Bello, “Unsupervised feature learning for urban sound classi-
fication,” in Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brisbane,
Australia, 2015, pp. 171–175.

[128] J. Salamon and J. P. Bello, “Feature learning with deep scattering for urban sound
analysis,” in 23rd European Signal Processing Conference (EUSIPCO), Nice, France,
Aug. 2015, pp. 724–728.

[129] N. Chen, Y. Qian, H. Dinkel, B. Chen, and K. Yu, “Robust deep feature for spoof-
ing detection-the SJTU system for ASVspoof 2015 challenge.” in INTERSPEECH,
Dresden, Germany, 2015, pp. 2097–2101.

206



[130] Y. Qian, N. Chen, and K. Yu, “Deep features for automatic spoofing detection,”
Speech Communication, Elsevier, vol. 85, pp. 43–52, 2016.

[131] M. J. Alam, P. Kenny, V. Gupta, and T. Stafylakis, “Spoofing detection on the
ASVspoof2015 challenge corpus employing deep neural networks,” in Odyssey
2016, Bilbao, Spain, 2016, pp. 270–276.

[132] H. Dinkel, N. Chen, Y. Qian, and K. Yu, “End-to-end spoofing detection with raw
waveform CLDNN,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 4860–4864.

[133] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Kudashev, and
V. Shchemelinin, “Audio replay attack detection with deep learning frameworks,”
Proc. INTERSPEECH, Stockholm, Sweden, pp. 82–86, 2017.

[134] H. Yu, Z. H. Tan, Y. Zhang, Z. Ma, and J. Guo, “DNN filter bank cepstral coefficients
for spoofing detection,” IEEE Access, vol. 5, pp. 4779–4787, March 2017.

[135] Y. Qian, N. Chen, H. Dinkel, and Z. Wu, “Deep feature engineering for noise robust
spoofing detection,” IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing, vol. 25, no. 10, pp. 1942–1955, Oct. 2017.

[136] H. F. Alaie, L. Abou-Abbas, and C. Tadj, “Cry-based infant pathology classification
using GMMs,” Speech Communication, vol. 77, no. 1, pp. 28 – 52, 2016.

[137] J. B. Allen, “How do humans process and recognize speech?” IEEE Transactions on
Speech and Audio Processing, vol. 2, no. 4, pp. 567–577, Oct 1994.

[138] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann ma-
chines,” in 27th International Conference on Machine Learning (ICML), Haifa, Israel,
21–24 June 2010, pp. 807–814.

[139] G. Casella and E. I. George, “Explaining the Gibbs sampler,” The American Statisti-
cian, vol. 46, no. 3, pp. 167–174, 1992.

[140] J. Qi, D. Wang, Y. Jiang, and R. Liu, “Auditory features based on gammatone filters
for robust speech recognition,” in 2013 IEEE International Symposium on Circuits and
Systems (ISCAS), Beijing, China, 19–23 May 2013, pp. 305–308.

[141] Y. Hoshen, R. J. Weiss, and K. W. Wilson, “Speech acoustic modeling from raw
multichannel waveforms,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brisbane, Queensland, 19–24 April 2015, pp. 4624–4628.

[142] H. B. Barlow, “Possible principles underlying the transformations of sensory mes-
sages,” Sensory Communication, vol. 35, no. 8, pp. 217–234, 1961.

[143] S. B. Laughlin and T. J. Sejnowski, “Communication in neuronal networks,” Science,
vol. 301, no. 5641, pp. 1870–1874, 2003.

[144] J. J. Eggermont, P. I. M. Johannesma, and A. M. H. J. Aertsen, “Reverse-correlation
methods in auditory research,” Quarterly Reviews of Biophysics, vol. 16, no. 3, p.
341–414, 1983.

[145] J. Kominek and A. W. Black, “The CMU-ARCTIC speech databases,” in Fifth ISCA
Workshop on Speech Synthesis, Pittsburgh, PA, USA, 2004.

207



[146] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1872–1886, Aug.
2013.

[147] R. Yeh, M. H. Johnson, and M. N. Do, “Stable and symmetric filter convolutional
neural network,” in International Conference on Acoustics, Speech and Signal Processing
(ICASSP) 2016, Shanghai, China, March 2016, pp. 2652–2656.

[148] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., Second Edition, 1996.

[149] H. Royden and P. Fitzpatrick, Real Analysis. Pearson Education, Forth Edition,
2015.

[150] Garofolo et al., “DARPA TIMIT acoustic-phonetic continuous speech corpus CD-
ROM. NIST speech disc 1-1.1,” NASA STI/Recon Technical Report N, vol. 93, 1993.

[151] D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-based CSR cor-
pus,” in Proc. of the Workshop on Speech and Natural Language, ser. HLT ’91. Strouds-
burg, PA, USA: Association for Computational Linguistics (ACL), 1992, pp. 357–
362.

[152] N. Parihar and J. Picone, “AURORA working group: DSR front end LVCSR evalua-
tion AU/384/02,” Tech. Rep., Inst. for Signal and Information Process, Mississippi State
University, 2002.

[153] L. Deng and D. O’Shaughnessy, Speech Processing: A Dynamic and Optimization Ori-
ented Approach. Marcel Dekker Inc., First Edition, June 2003.

[154] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition using hidden
Markov models,” IEEE Transactions on Acoustic, Speech and Signal Processing, vol. 37,
no. 11, pp. 1641–1648, Nov. 1989.

[155] D. Povey et al., “The Kaldi speech recognition toolkit,” in IEEE Workshop on Au-
tomatic Speech Recognition and Understanding (ASRU), Big Island, Hawaii, USA, Dec.
2011, pp. 1–4.

[156] H. Xu, D. Povey, L. Mangu, and J. Zhu, “Minimum Bayes risk decoding and system
combination based on a recursion for edit distance,” Computer Speech & Language,
vol. 25, no. 4, pp. 802 – 828, 2011.

[157] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?” in IEEE International Conference on Computer
Vision, Kyoto, Japan, 29 Sept. - 2 Oct. 2009, pp. 2146–2153.

[158] D. Palaz, R. Collobert, and M. M. Doss, “Estimating phoneme class conditional
probabilities from raw speech signal using convolutional neural networks,” in IN-
TERSPEECH, Lyon, France, 25–29 August 2013, pp. 1766–1770.

[159] J.-T. Huang, J. Li, and Y. Gong, “An analysis of convolutional neural networks for
speech recognition,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), South Brisbane, Queensland, 19–24 April 2015, pp. 4989–4993.

[160] S. J. Rennie, V. Goel, and S. Thomas, “Annealed dropout training of deep net-
works,” in IEEE Spoken Language Technology Workshop (SLT), Lake Tahoe, California,
7–10 Dec. 2014, pp. 159–164.

208



[161] V. Mitra and et. al., “Evaluating robust features on deep neural networks for speech
recognition in noisy and channel mismatched conditions,” in INTERSPEECH, Sin-
gapore, 14–18 Sept. 2014, pp. 895–899.

[162] S. J. Rennie, V. Goel, and S. Thomas, “Annealed dropout training of deep net-
works,” in IEEE Spoken Language Technology Workshop (SLT), South Lake Tahoe, Cali-
fornia and Nevada, 2014, pp. 159–164.

[163] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-
tional Conference on Learning Representations (ICLR), San Diego, 2015, pp. 1–11.

[164] H. Luo, Y. Wang, D. Poeppel, and J. Z. Simon, “Concurrent encoding of frequency
and amplitude modulation in human auditory cortex: MEG evidence,” Journal of
Neurophysiology, vol. 96, no. 5, pp. 2712–2723, 2006.

[165] J. F. Kaiser, “On a simple algorithm to calculate the energy of a signal,” in Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), Albuquerque,
New Mexico, USA, 1990, pp. 381–384.

[166] P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodu-
lation using energy operators,” IEEE Trans. on Signal Processing, vol. 41, no. 4, pp.
1532–1550, 1993.

[167] F. Jabloun, A. E. Cetin, and E. Erzin, “Teager energy based feature parameters for
speech recognition in car noise,” IEEE Signal Processing Letters, vol. 6, no. 10, pp.
259–261, 1999.

[168] D. Dimitriadis, P. Maragos, and A. Potamianos, “Auditory Teager energy cepstrum
coefficients for robust speech recognition.” in INTERSPEECH, Lisbon, Portugal,
2005, pp. 3013–3016.

[169] M. L. Jepsen, S. D. Ewert, and T. Dau, “A computational model of human auditory
signal processing and perception,” The Journal of the Acous. Soc. of Amer (JASA), vol.
124, no. 1, pp. 422–438, 2008.

[170] O. Abdel-Hamid, A. R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convolu-
tional neural networks for speech recognition,” IEEE/ACM Trans. on Audio, Speech,
and Lang. Process., vol. 22, no. 10, pp. 1533–1545, Oct. 2014.

[171] M. Bisani and H. Ney, “Bootstrap estimates for confidence intervals in ASR perfor-
mance evaluation,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Montreal, Que., Canada, vol. 1, 17–21 May 2004, pp. I–409–12
vol.1.

[172] Agricoop, “Ministry of Agriculture and Farmers Welfare, Government of India,”
URL: http://agricoop.nic.in, {Last Accessed on 22 December 2017}.

[173] A. Mohan, R. Rose, S. H. Ghalehjegh, and S. Umesh, “Acoustic modelling for
speech recognition in Indian languages in an agricultural commodities task do-
main,” Speech Communication, vol. 56, pp. 167–180, 2014.

[174] G. Mantena, S. Rajendran, B. Rambabu, S. Gangshetty, S. Yegnanarayana, and
K. Prahallad, “A speech-based conversation system for accessing agricultural com-
modity prices in Indian languages,” in IEEE Joint Workshop on Hand-free Speech Com-
munication and Microphone Arrays (HSCMA), India, 2011, pp. 153–154.

209

http://agricoop.nic.in


[175] S. Shahnawazuddin, D. Thatoppa, B. D. Sarma, A. Deka, S. R. M. Prasanna, and
R. Sinha, “Assamese spoken query system to access the price of agricultural com-
modities,” in National Conference on Communication (NCC), India, March 2013, pp.
1–5.

[176] T. Godambe and K. Samudravijaya, “Speech data acquisition for voice-based agri-
cultural information retrieval,” in Proc. of 39th All India DLA Conference, Patiala, In-
dia, 2011, pp. 1–5.

[177] T. G. Yadava and H. S. Jayanna, “A spoken query system for the agricultural com-
modity prices and weather information access in Kannada language,” International
Journal of Speech Technology (IJST), Springer, vol. 20, no. 3, pp. 635–644, Sep. 2017.

[178] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, and
S. Khudanpur, “Purely sequence-trained neural networks for ASR based on lattice-
free MMI,” in Interspeech 2016, 17th Annual Conference of the International Speech Com-
munication Association, San Francisco, CA, USA, 8-12 September 2016, pp. 2751–2755.

[179] S. M. N. Woolley, T. E. Fremouw, A. Hsu, and F. E. Theunissen, “Tuning for
spectro-temporal modulations as a mechanism for auditory discrimination of natu-
ral sounds,” Nature Neuroscience, vol. 8, pp. 1371–1379, 2005.

[180] K. J. Piczak, “ESC: Dataset for environmental sound classification,” in 23rd Int. Conf.
on Multimedia, Brisbane, Australia, 2015, pp. 1015–1018.

[181] D. P. Ellis, “Prediction-driven computational auditory scene analysis,” Ph.D. disser-
tation, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (MIT), USA, 1996.

[182] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento, “Audio surveillance
of roads: a system for detecting anomalous sounds,” IEEE Trans. on Intell. Transp.
Syst., vol. 17, no. 1, pp. 279–288, 2016.

[183] E. Alexandre, L. Cuadra, M. Rosa, and F. Lopez-Ferreras, “Feature selection for
sound classification in hearing aids through restricted search driven by genetic al-
gorithms,” IEEE Trans. on Audio, Speech, and Lang. Process., vol. 15, no. 8, pp. 2249–
2256, 2007.

[184] M. Vacher, J.-F. Serignat, and S. Chaillol, “Sound classification in a smart room en-
vironment: an approach using GMM and HMM methods,” in IEEE Conference on
Speech Technology and Human-Computer Dialogue (SpeD), Publishing House of the Ro-
manian Academy (Bucharest), vol. 1, 2007, pp. 135–146.

[185] L. Ballan, A. Bazzica, M. Bertini, A. Del Bimbo, and G. Serra, “Deep networks for
audio event classification in soccer videos,” in IEEE Int. Conf. on Multimedia and
Expo (ICME), New York, USA, 2009, pp. 474–477.

[186] F. Chollet, “Keras,” https://github.com/fchollet/keras { Last Accessed on 22 De-
cember, 2017}.

[187] J. Li, W. Dai, F. Metze, S. Qu, and S. Das, “A comparision of deep learning methods
for environmental sound detection,” in IEEE Int. Conf. on Acoust., Speech and Signal
Process. (ICASSP), New Orleans, USA, 2017, pp. 126–130.

210



[188] R. G. Erra and J. Gervain, “The efficient coding of speech: Cross-linguistic differ-
ences,” Public Library of Science (PLOS) ONE, vol. 11, no. 2, pp. 1–18, 2016.

[189] T. Overath, J. H. McDermott, J. M. Zarate, and D. Poeppel, “The cortical analysis of
speech-specific temporal structure revealed by responses to sound quilts,” Nature
Neuroscience, vol. 18, no. 6, pp. 903–911, 2015.

[190] H. Lim, M. J. Kim, and H. Kim, “Cross-acoustic transfer learning for sound event
classification,” in International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, March,2016, pp. 2504–2508.

[191] B. R. Glasberg and B. C. Moore, “Derivation of auditory filter shapes from notched-
noise data,” Hearing Research, vol. 47, no. 1, pp. 103–138, 1990.

[192] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li, “Spoofing and
countermeasures for speaker verification: a survey,” Speech Communication, vol. 66,
no. Supplement C, pp. 130–153, 2015.

[193] ISO/IEC Information Technology Task Force (ITTF), “Information technology – bio-
metric presentation attack detection,” URL: https://www.iso.org/standard/53227.
html, 2016, {Last Accessed: 22 December 2017}.

[194] Y. Stylianou, “Voice trasformation: a survey,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, 2009, pp. 3585–
3588.

[195] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech synthesis,”
Speech Communication, vol. 51, no. 11, pp. 1039–1064, 2009.

[196] F. Alegre, A. Janicki, and N. Evans, “Re-assessing the threat of replay spoofing at-
tacks against automatic speaker verification,” in IEEE International Conference of the
Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2014, pp. 1–6.

[197] Y. W. Lau, M. Wagner, and D. Tran, “Vulnerability of speaker verification to voice
mimicking,” in IEEE International Symposium on Intelligent Multimedia, Video and
Speech Processing, Hong Kong, 2004, pp. 145–148.

[198] C. Hanilçi, T. Kinnunen, M. Sahidullah, and A. Sizov, “Classifiers for synthetic
speech detection: a comparison„” in INTERSPEECH, Dresden, Germany, 2015, pp.
2057–2061.

[199] M. Sahidullah, T. Kinnunen, and C. Hanilçi, “A comparison of features for synthetic
speech detection,” in INTERSPEECH, Dresden, Germany, 2015, pp. 2087–2091.

[200] Z. Wu, J. Yamagishi, T. Kinnunen, C. Hanilçi, M. Sahidullah, A. Sizov, N. Evans, and
M. Todisco, “ASVspoof: The automatic speaker verification spoofing and counter-
measures challenge,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 4,
pp. 588–604, June 2017.

[201] Z. Wu, T. Kinnunen, N. W. D. Evans, J. Yamagishi, C. Hanilçi, M. Sahidullah,
and A. Sizov, “ASVspoof 2015: the first automatic speaker verification spoofing
and countermeasures challenge„” in INTERSPEECH, Dresden, Germany, 2015, pp.
2037–2041.

211

https://www.iso.org/standard/53227.html
https://www.iso.org/standard/53227.html


[202] C. Zhang, C. Yu, and J. H. L. Hansen, “An investigation of deep learning frame-
works for speaker verification anti-spoofing,” IEEE Journal of Selected Topics in Signal
Processing, vol. 11, no. 4, pp. 684–694, 16 January 2017.

[203] M. Todisco, H. Delgado, and N. Evans, “A new feature for automatic speaker verifi-
cation anti-spoofing: Constant Q cepstral coefficients,” in Speaker Odyssey Workshop,
Bilbao, Spain, vol. 25, 2016, pp. 249–252.

[204] J. Gałka, M. Grzywacz, and R. Samborski, “Playback attack detection for text-
dependent speaker verification over telephone channels,” Speech Communication,
vol. 67, no. Supplement C, pp. 143 – 153, 2015.

[205] T. Kinnunen, N. Evans, J. Yamagishi, K. A. Lee, M. Sahidullah, M. Todisco, and
H. Delgado, “ASVspoof 2017: Automatic speaker verification spoofing and coun-
termeasures challenge evaluation plan,” in INTERSPEECH, Stockholm, Sweden,
2017.

[206] P. Nagarsheth, E. Khoury, K. Patil, and M. Garland, “Replay attack detection using
dnn for channel discrimination,” Proc. INTERSPEECH, Stockholm, Sweden, pp. 97–
101, 2017.

[207] M. Witkowski, S. Kacprzak, P. Zelasko, K. Kowalczyk, and J. Gałka, “Audio replay
attack detection using high–frequency features,” Proc. INTERSPEECH, Stockholm,
Sweden, pp. 27–31, 2017.

[208] S. Molau, F. Hilger, and H. Ney, “Feature space normalization in adverse acoustic
conditions,” in IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), Hong Kong, China, vol. 1, April 2003, pp. 656–659.

[209] M. Westphal, “The use of cepstral means in conversational speech recognition,”
in European Conference on Speech Communication and Technology (EUROSPEECH),
Rhodes, Greece, 1997, pp. 1143–1146.

[210] A. A. Garcia and R. J. Mammone, “Channel–robust speaker identification us-
ing modified–mean cepstral mean normalization with frequency warping,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings
(ICASSP), Phoenix, Arizona, USA, 1999, pp. 325–328.

[211] P. G. Radadia and H. A. Patil, “A cepstral mean subtraction based features for singer
identification,” in International Conference on Asian Language Processing (IALP), Kuch-
ing, Malaysia, Oct. 2014, pp. 58–61.

[212] T. Kinnunen, M. Sahidullah et al., “RedDots replayed: A new replay spoofing at-
tack corpus for text-dependent speaker verification research,” in IEEE Int. Conf. on
Acoust., Speech and Sig. Process. (ICASSP), New Orleans, LA, USA, 2017, pp. 1–5.

[213] K. R. Alluri, S. Achanta, S. R. Kadiri, S. V. Gangashetty, and A. K. Vuppala, “SFF
anti-spoofer: IIIT–H submission for automatic speaker verification spoofing and
countermeasures challenge 2017,” Proc. INTERSPEECH, Stockholm, Sweden, pp. 107–
111, 2017.

[214] H. A. Patil, M. R. Kamble, T. B. Patel, and M. Soni, “Novel variable length Teager en-
ergy separation based instantaneous frequency features for replay detection,” Proc.
INTERSPEECH, Stockholm, Sweden, pp. 12–16, 2017.

212



[215] Z. Chen, Z. Xie, W. Zhang, and X. Xu, “ResNet and model fusion for automatic
spoofing detection,” Proc. INTERSPEECH, Stockholm, Sweden, pp. 102–106, 2017.

[216] W. Cai, D. Cai, W. Liu, G. Li, and M. Li, “Countermeasures for automatic speaker
verification replay spoofing attack: On data augmentation, feature representation,
classification and fusion,” Proc. INTERSPEECH, Stockholm, Sweden, pp. 17–21, 2017.

[217] R. Font, J. M. Espín, and M. J. Cano, “Experimental analysis of features for replay
attack detection–results on the ASVspoof 2017 challenge,” Proc. INTERSPEECH,
Stockholm, Sweden, pp. 7–11, 2017.

[218] O. Aragón, “Why do we cry?” Scientific American Mind, vol. 28, no. 2, p. 74, April
2017.

[219] A. Vingerhoets, Why Only Humans Weep: Unravelling the mysteries of tears. Oxford
University Press, First Edition, 2013.

[220] E. Gustafsson, F. Levréro, D. Reby, and N. Mathevon, “Fathers are just as good as
mothers at recognizing the cries of their baby,” Nature Communications, vol. 4, no.
1698, pp. 1–6, 2013.

[221] O. Wasz-Höckert and et. al., “Twenty five years of Scandinavian cry research,” in
Infant Crying: Theoretical and Research Perspectives. C.F.Z. Boukydis and B.M. Lester,
(Eds.), Springer, 1985, pp. 83–104.

[222] A. Chittrora, “Crying for a reason: A signal processing based approach for infant
cry analysis and classification,” Ph.D. Thesis, Dhirubhai Ambani Institute of Informa-
tion and Communication Technology (DA-IICT), Gandhinagar, Gujarat, India, 2017.

[223] A. Chittora and H. A. Patil, “Data collection of infant cries for research and analy-
sis,” Journal of Voice, Elsevier, vol. 31, no. 2, pp. 252.e15 – 252.e26, 2017.

[224] R. Prescott, “Infant cry sound: developmental features,” The Journal of the Acoustical
Society of America (JASA), vol. 57, no. 5, pp. 1186–1191, 1975.

[225] T. Etz, H. Reetz, C. Wegener, and F. Bahlmann, “Infant cry reliability: Acoustic
homogeneity of spontaneous cries and pain-induced cries,” Speech Communication,
vol. 58, no. 1, pp. 91 – 100, 2014.

[226] S. Orlandi, C. A. R. Garcia, A. Bandini, G. Donzelli, and C. Manfredi, “Applica-
tion of pattern recognition techniques to the classification of full-term and preterm
infant cry,” Journal of Voice, Elsevier, vol. 30, no. 6, pp. 656–663, 2016.

[227] L. Abou-Abbas, C. Tadj, C. Gargour, and L. Montazeri, “Expiratory and inspiratory
cries detection using different signals’ decomposition techniques,” Journal of Voice,
Elsevier, vol. 31, no. 2, pp. 259.e13 – 259.e28, 2017.

[228] A. Rosales-Pérez, C. A. Reyes-García, J. A. Gonzalez, O. F. Reyes-Galaviz, H. J. Es-
calante, and S. Orlandi, “Classifying infant cry patterns by the genetic selection of
a fuzzy model,” Biomedical Signal Processing and Control, vol. 17, no. 1, pp. 38 – 46,
2015.

[229] N. D. C. Society, “Causes of deafness,” URL: http://www.deafchildworldwide.
info, {Last Accessed on 20 December, 2017}.

213

http://www.deafchildworldwide.info
http://www.deafchildworldwide.info


[230] P. K. Kuhl and A. N. Meltzoff, “Infant vocalizations in response to speech: Vocal
imitation and developmental change,” Journal of Acoustical Society of America (JASA),
vol. 100, pp. 2425–2438, Oct. 1996.

[231] H. Hermansky, “History of modulation spectrum in ASR,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, Texas, USA,
15–19 March 2010, pp. 5458–5461.

[232] A. M. Saxe et al., “Unsupervised learning models of primary cortical receptive fields
and receptive field plasticity,” in 25th Annual Conference on Neural Information Pro-
cessing Systems, 12-14 December, Granada, Spain., 2011, pp. 1971–1979.

[233] H. Terashima and M. Okada, “The topographic unsupervised learning of natural
sounds in the auditory cortex,” in 26th Annual Conference on Neural Information Pro-
cessing Systems 2012, December 3-6, 2012, Lake Tahoe, United States, pp. 2321–2329.

[234] D. J. Klein, P. König, and K. P. Körding, “Sparse spectrotemporal coding of sounds,”
EURASIP J. Adv. Sig. Proc., vol. 2003, no. 7, pp. 659–667, 2003.

[235] C. Lee, F. K. Soong, and K. Paliwal, Automatic Speech and Speaker Recognition: Ad-
vanced Topics. Springer Science & Business Media, First Edition, 2012.

[236] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep neural network
acoustic models using generalized maxout networks,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014,
pp. 215–219.

[237] X. Zhang, M. G. Heinz, I. C. Bruce, and L. H. Carney, “A phenomenological model
for the responses of auditory-nerve fibers: I. nonlinear tuning with compression
and suppression,” The Journal of the Acoustical Society of America, vol. 109, no. 2, pp.
648–670, 2001.

[238] B. Grothe, M. Pecka, and D. McAlpine, “Mechanisms of sound localization in mam-
mals,” Physiological Reviews, American Physiological Society, vol. 90, no. 3, pp. 983–
1012, 2010.

[239] W. Zhang, H. Li, M. Yang, and N. Mesgarani, “Synaptic depression in deep neu-
ral networks for speech processing,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Shanghai, China, March 2016, pp. 5865–5869.

[240] D. P. W. Ellis, “Time-domain scrambling of audio signals in MATLAB,” URL: http:
//www.ee.columbia.edu/~dpwe/resources/matlab/scramble/, {Last Accessed
on 20 December, 2017}.

[241] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, Second Edition, 2004.

[242] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, Elsevier,
vol. 27, no. 8, pp. 861–874, 2006.

[243] W. J. Youden, “Index for rating diagnostic tests,” Cancer, Wiley Subscription Services,
Inc., A Wiley Company, vol. 3, no. 1, pp. 32–35, 1950.

[244] B. Matthews, “Comparison of the predicted and observed secondary structure of
T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA), Protein Structure, Elsevier,
vol. 405, no. 2, pp. 442–451, 1975.

214

http://www.ee.columbia.edu/~dpwe/resources/matlab/scramble/
http://www.ee.columbia.edu/~dpwe/resources/matlab/scramble/


[245] H. A. Patil and S. Viswanath, “Effectiveness of Teager energy operator for epoch
detection from speech signals,” Int. J. Speech Technol., Springer, vol. 14, no. 4, pp.
321–337, Dec. 2011.

[246] H. A. Patil and M. C. Madhavi, “Combining evidences from magnitude and phase
information using VTEO for person recognition using humming,” Computer Speech
and Language, Elsevier, 2017.

[247] I. J. Myung, “Tutorial on maximum likelihood estimation,” J. Math. Psychol., vol. 47,
no. 1, pp. 90–100, Feb. 2003.

[248] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in Telecom-
munications and Signal Processing). Wiley-Interscience, Second Edition, 2006.

215



List of Publications from Thesis
Journal Papers

1. Hardik. B. Sailor and Hemant. A. Patil, “Novel unsupervised auditory filter-
bank learning using convolutional RBM for speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 24, no. 12,
pp. 2341-2353, Dec. 2016.

2. Hardik B. Sailor and Hemant A. Patil, "Auditory feature representation us-
ing convolutional restricted Boltzmann machine and Teager energy operator
for speech recognition", The Journal of the Acoustical Society of America Ex-
press Letters (JASA-EL), vol. 141, no. 6, pp. EL500–EL506, June 2017.

Book Chapters

1. Hardik B. Sailor and Hemant A. Patil, “Unsupervised auditory filterbank
learning for infant cry classification," submitted in Voice Technologies for
Reconstruction and Enhancement, H. A. Patil and A. Neustein, (Eds.), De
Gruyter Series in Speech Technology and Text Analytics in Medicine and
Healthcare, 2018, pp. 1–18.

Conference Papers

1. Hardik. B. Sailor, Madhu R. Kamble, and Hemant A. Patil, “Auditory fil-
terbank learning for temporal modulation features in replay spoof speech
detection," to appear in INTERSPEECH, Hyderabad, Sept. 2018.

2. Hardik. B. Sailor and Hemant A. Patil, “Auditory filterbank learning using
ConvRBM for infant cry classification," to appear in INTERSPEECH, Hyder-
abad, Sept. 2018.

3. Hardik. B. Sailor and Hemant. A. Patil, “Representation learning for speech
recognition system in agricultural commodity for Gujarati", in Global Con-
ference on Cyberspace (GCCS), MeitY, Govt. of India under National e-
Governance Division (NeGD), New Delhi, India, 23-24 Nov. 2017.

4. Hardik B. Sailor, Madhu R. Kamble and Hemant. A. Patil, “Unsupervised
representation learning using convolutional restricted Boltzmann machine

216



for spoof speech detection", in INTERSPEECH 2017, Stockholm, Sweden,
pp. 2601-2605.

5. Hardik B. Sailor, Dharmesh M. Agrawal and Hemant. A. Patil, “Unsuper-
vised filterbank learning using convolutional restricted Boltzmann machine
for environmental sound classification", in INTERSPEECH 2017, Stockholm,
pp. 3107-3111.

6. Dharmesh M. Agrawal, Hardik B. Sailor, Meet H. Soni, and Hemant A. Patil,
"Novel TEO-based gammatone features for environmental sound classifica-
tion", in European Signal Processing Conference (EUSIPCO), 2017, Kos Is-
land, Greece, pp. 1809-1813.

7. Hardik. B. Sailor and Hemant. A. Patil, “Unsupervised deep auditory model
using stack of convolutional RBMs for speech recognition,” in INTERSPEECH
2016, San Francisco, California, USA, September 2016, pp. 3379-3383.

8. Avni Rajpal, Tanvina B. Patel, Hardik B. Sailor, Maulik C. Madhavi, Hemant
A. Patil and Hiroya Fujisaki, “Native language identification using spectral
and source-based features," in INTERSPEECH 2016, San Francisco, USA,
September 2016, pp. 2383-2387.

9. Hardik. B. Sailor and Hemant. A. Patil, “Filterbank learning using convolu-
tional restricted Boltzmann machine for speech recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Shanghai, China, Mar.
2016, pp. 5895-5899.

10. Hardik. B. Sailor and Hemant. A. Patil, “Unsupervised learning of temporal
receptive fields using convolutional RBM for ASR task,” in European Signal
Processing Conference (EUSIPCO), Budapest, Hungary Aug./Sep. 2016, pp.
873-877.

11. Mohammadi Zaki, Hardik B. Sailor and Hemant A. Patil, “Analysis of hi-
erarchical bottleneck framework for improved phoneme recognition," ac-
cepted in International Conference on Signal Processing and Communica-
tions (SPCOM), IISc Bangalore, India, 12-15 June, 2016, pp. 1-5.

12. Anshu Chittora, Hemant A. Patil and Hardik B. Sailor, “Spectro-temporal
Analysis of HIE and Asthma Infant Cries Using Auditory Spectrogram,"
in International Conference on BioSignal Analysis, Processing and System
(ICBAPS), Kuala Lumpur, Malaysia, on 26-28 May 2015.

217



Brief Biography

Hardik B. Sailor received B.E. degree from Government Engg. College (GEC),
Surat in 2010. In 2013, he received M.Tech degree from Dhirubhai Ambani In-
stitute of Information and Communication Technology (DA-IICT), Gandhinagar.
Currently he is a doctoral student under a supervision of Prof. Hemant A. Patil
at DA-IICT, Gandhinagar. He was a project staff member of MeitY, Govt. of India
sponsored project Automatic Speech Recognition for Agricultural Commodities
Phase-II (April 2016 - April 2018). At DA-IICT, He was also a project staff mem-
ber of MeitY, Govt. of India sponsored project on Development of Text-to-Speech
(TTS) Synthesis Systems for Indian languages Phase-II, from May 2012 - March
2016.

He has published 25 research papers in top conferences and peer-reviewed
journals. His research area includes representation learning, deep learning, audi-
tory processing, and Automatic Speech Recognition (ASR). His main research is
focused on developing representation learning techniques to model the auditory
processing. He is a student member of IEEE, IEEE Signal Processing Society, and
International Speech Communication Association (ISCA). He is also an invited
reviewer for IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing, IEEE Signal Processing Letters, IEEE Access, and Applied Acoustics, Elsevier.
He received ISCA student grant of 650 Euros to present his three research papers
during INTERSPEECH 2018, Hyderabad.

218


	Abstract
	List of Acronyms
	List of Symbols
	List of Tables
	List of Figures
	Introduction
	Motivation
	Key Research Challenges
	Contributions from the Thesis
	Proposed Model for Auditory Representation Learning
	Analysis of the Model and Representation
	Applications

	Organization of the Thesis
	Chapter Summary

	Background and Literature Survey
	Introduction
	Probabilistic Graphical Models (PGM)
	Conditional Independence (CI)
	Factorization Property

	From Hopfield Net to Boltzmann Machine (BM)
	Restricted Boltzmann Machine (RBM)
	From RBM to Convolutional RBM
	Understanding Convolutional Connections
	Convolutional RBM

	Auditory Processing
	Early Auditory Processing of Sounds
	Cortical Representation of Sounds

	Deep Learning
	Deep Neural Networks (DNN)
	Convolutional Networks
	Recurrent Neural Networks

	Automatic Speech Recognition (ASR)
	Feature Extraction
	Acoustic Modeling
	Acoustic Modeling using GMM-HMM

	Language Modeling
	Decoding
	Deep Learning for ASR

	Literature on Auditory Modeling
	Computational and Mathematical Models
	Machine Learning-based Models

	Chapter Summary

	Auditory Filterbank Learning
	Introduction
	Proposed Model for Filterbank Learning
	Model Learning
	Feature Extraction
	Analysis of ConvRBM
	Analysis of Learned Subband Filters
	Comparison with Standard Auditory Filterbanks
	Optimal Auditory Code
	Stability Analysis of ConvRBM to Additive Noise
	Stability of Convolution in ConvRBM
	Stability of Rectified Nonlinearity


	Experimental Setup
	Speech Databases
	Small Vocabulary Speech Database
	Large Vocabulary Speech Databases
	Noisy Speech Database

	Training of ConvRBM and Feature Extraction
	ASR System Building

	Experimental Results
	Experiments on TIMIT Database
	Experiments on WSJ0 Database
	Experiments on WSJ Database
	Experiments on the AURORA 4 Database
	Cross-domain Experiments

	Chapter Summary

	Improved Auditory Model
	Introduction
	Dropout Convolutional RBM
	ConvRBM Training with Adam Optimization
	Representing Energy in the Auditory System
	Proposed Feature Representation
	Experimental Setup and Results
	ASR System Building
	Training of ConvRBM and Feature Extraction
	Experimental Results
	Statistical Significance of ASR Results
	Comparison with the ASR Literature

	Chapter Summary

	ASR in the Agricultural Domain
	Introduction
	Speech-Based Access for Agricultural Commodity
	The Need of a Speech-Based Access System for Agriculture
	System Architecture
	Data Collection
	Transcription
	Analysis of Filterbank

	Experimental Setup
	ConvRBM Training and Feature Extraction
	ASR System Building

	Experimental Results
	Chapter Summary

	Application to Audio Classification
	Introduction
	Environmental Sound Classification (ESC)
	Experimental Setup for the ESC task
	Database
	Training of ConvRBM and Feature Extraction
	CNN Classifier

	Experimental Results of the ESC Task
	Analysis of Subband Filters
	Analysis of Filterbank Scale and Bandwidth
	Classification Results

	Spoof Speech Detection (SSD)
	Experimental Setup
	ASVspoof 2015 Challenge Database
	Training of ConvRBM and Feature Extraction
	Model Training and Score-Level Fusion

	Experimental Results of the SSD Task
	Analysis of Subband Filters
	Filterbank Scale Analysis
	Experimental Results on Development Dataset
	Experimental Results on the Evaluation Dataset

	Replay Spoof Speech Detection
	Filterbank Learning From Pre-emphasized Speech
	Feature Normalization

	Experimental Setup for Replay SSD
	ASVspoof 2017 Challenge Database
	Feature Extraction and Classifier
	Analysis of the ConvRBM Filterbank

	Experimental Results
	Infant Cry Classification (ICC)
	Experimental Setup
	Databases
	Feature Extraction and GMM Training

	Analysis of Infant Cry Signals
	Analysis of Subband Filters and Frequency Scale
	Analysis of ConvRBM Spectrograms
	Normal Infant Cry Signals
	Asphyxia Infant Cry Signal
	Deaf Infant Cry
	Asthma Cry


	Experimental Results
	Results on the DA-IICT Infant Cry Database
	Results on the Baby Chillanto Database

	Chapter Summary

	Unsupervised Deep Auditory Model (UDAM)
	Introduction
	Temporal Modulations in Speech using ConvRBM
	ConvRBM Applied on Mel Spectrograms
	Analysis of Learned Subband Filters
	Rectified Linear Units (ReLU) in ConvRBM
	Feature Extraction and System Combination for ASR

	Experimental Setup and Results
	Training of ConvRBM
	Hybrid DNN-HMM Systems
	ConvRBM Parameter Tuning
	Results on the TIMIT Database
	Results on the WSJ0 Database

	Unsupervised Deep Auditory Model (UDAM) using Stacks of ConvRBM
	ConvRBM to Model Speech Signals
	ConvRBM to Model the Subband Filterbank

	Experimental Setup and Results using UDAM
	Training of ConvRBMs and Feature Representation
	ASR System Building
	Results on the TIMIT Database
	Results on the AURORA 4 Database

	Improved UDAM
	Experimental Setup
	Experimental Results

	Chapter Summary

	Summary and Conclusions
	Summary of the Thesis
	Limitations of the Current Work
	Future Research Directions

	Appendix Significance of Temporal Information in Filterbank Learning
	Appendix Performance Measures
	Word Error Rate (WER)
	Classification Accuracy
	Performance Measures from Confusion Matrix
	Equal Error Rate (EER)
	Statistical Significance of Results Using Bootstrap

	Appendix Noise Suppression Using the Teager Energy Operator (TEO)
	Appendix Lipschitz Continuity Condition
	Appendix Agri-ASR System Building in Kaldi
	Data Preparation
	Language Model Preparation
	Feature Extraction
	Acoustic Modeling GMM-HMM
	Acoustic Modeling using DNN-HMM

	Appendix Miscellaneous
	Maximum Likelihood Estimation (MLE)
	Relationship Between KL-Divergence and ML
	Weight Decay Regularization in ConvRBM
	Adam Optimization Algorithm

	Bibliography
	List of Publications from the Thesis

