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Abstract

With the increase in the resolution of image capturing sensors and data storage

capacity, a huge increase in image data is seen in past decades. This information

upsurge has created a huge challenge for machines to perform tasks such as image

recognition, image reconstruction etc. In image data, each observation or a pixel

can be considered as a feature or a dimension, thus an image can be represented as

a data point in the very high-dimensional space. Most of these high-dimensional

images lie on or near a low-dimensional manifold. Performing machine learning

algorithms on this high-dimensional data is computationally expensive and usu-

ally generates undesired results because of the redundancy present in the image

data. Dimensionality Reduction (DR) methods exploit this redundancy within

the high-dimensional image space and explore the underlying low-dimensional

manifold structure based on some criteria or image properties such as correlation,

similarity, pair-wise distances or neighborhood structure.

This study focuses on variants of one such DR technique, Orthogonal Neigh-

borhood Preserving Projections (ONPP). ONPP searches for a low-dimensional

representation that preserves the local neighborhood structure of high-dimensional

space. This thesis studies and addresses some of the issues with the existing

method and provides the solution for the same. ONPP is a three-step proce-

dure, in which the first step defines a local neighborhood followed by the second

step which defines locally linear neighborhood relationship in high-dimensional

space, the third step seeks a lower-dimensional subspace that preserved the rela-

tionship sought in the second step.

The major issues with existing ONPP technique are local linearity assump-

tion even with varying size of the neighborhood, strict distance based or class

membership based neighborhood selection rule, non-normalized projections or

susceptibility to the presence of outliers in the data. This study proposes vari-

vii



ants of ONPP by suggesting modification in each of these steps to tackle above

mentioned problems that better suit image recognition application. This thesis

also proposes a 2-dimensional variant that overcomes the limitation of Neigh-

borhood Preserving Projections (NPP) and Orthogonal Neighborhood Preserving

Projections (ONPP) while performing image reconstruction. All the new propos-

als are tested on benchmark data-sets of face recognition and handwritten nu-

merals recognition. In all cases, the new proposals outperform the conventional

method in terms of recognition accuracy with reduced subspace dimensions.

Keywords: Dimensionality Reduction, manifold learning, embeddings, Neigh-

borhood Preserving Projection (NPP), Orthogonal Neighborhood Preserving Pro-

jections (ONPP), image recognition, face recognition, text recognition, image re-

construction
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CHAPTER 1

Introduction

Recognition or identification is widely used application in the field of machine

learning, where a test data is to be labeled based on the samples present in the

training dataset. In last few decades, there has been a huge increase in image

data, increasing need for image recognition. Many methods have been devel-

oped for image recognition task including appearance-based methods which are

widely studied in last decade. While working with the images in these methods,

one is often confronted with curse of dimensionality [1] because these images can

be thought of as points in high dimensional vector space, with each input dimen-

sion corresponding to the brightness of one pixel in an image. Thus, the vector

representation of an m× n image leads to an mn-dimensional vector, which does

not allow fast computation and demands high computational facility [2, 3]. The

redundancy of image data has already exploited in many image processing tasks

such as compression [4], denoising [5] etc.

Although the input dimensionality may be quite high, the perceptually mean-

ingful intrinsic structure resembles to a low-dimensional linear or non-linear man-

ifold [6, 7]. This leads to the development of data Dimensionality Reduction

techniques to remove the curse of dimensionality and reducing undesired and

redundant information present in higher dimensional space. As discussed in

[8, 9, 10, 11] dimensionality reduction is now not limited to applications related to

computer vision, it is being employed to other machine learning tasks, too.
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1.1 Overview of Dimensionality Reduction

The fundamental idea of Dimensionality Reduction (DR) techniques is to seek a

linear or non-linear transformation to map the high dimensional data to a lower

dimensional subspace which facilitates, among others, classification, recognition

or compression of high-dimensional data [12, 13]. In last two decades, many linear

and non-linear dimensionality reduction techniques have been proposed [14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. In next two section we will discuss

popular linear and non-linear dimensionality reduction techniques in brief.

1.2 Linear Dimensionality Reduction Techniques

Linear dimensionality reduction techniques basically learn a transformation ma-

trix (or a set of bases vectors) to map higher dimensional data to lower dimen-

sional data points [28]. Some of the most popular examples of linear dimension-

ality reduction methods are Principal Component Analysis (PCA) [29, 14], Inde-

pendent Component Analysis (ICA) [30], Linear Discriminant Analysis (LDA)

[31], these techniques search low dimensional representation of data assuming

data lies on or near a linear manifold. PCA finds subspace from available data

such that preserves the direction of maximum covariance. LDA seeks a subspace

where within class scatter is minimized and between-class variance is maximizes

making classification tasks more accurate. ICA tries to make components as inde-

pendent of each other as possible.

A generic Linear DR problem can be defined as follows. Given a set of N data

points x1, x2, ..., xN in Rmn, find a transformation matrix V which maps these N

data points to a set of points y1, y2, ..., yN in Rd(d << mn) where yi is a low

dimensional representation of xi that can be obtained by a matrix-vector multipli-

cation, yi = VTxi.
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1.2.1 Principal Component Analysis (PCA)

Principal Component Analysis [14] performs dimensionality reduction by project-

ing the original mn-dimensional data vector on d-dimensional (d << mn) linear

subspace by the strongest d eigen-vectors of the data covariance matrix. PCA

projection transforms correlated features of high-dimensional space into uncorre-

lated features in low-dimensional space. The objective function of PCA is given

by a maximization problem

arg max
N

∑
i=1
‖ yi − ȳ ‖2 (1.1)

here, ȳ =
N

∑
i=1

yi

Solving the Eq. (1.1) leads to the closed form solution as an eigen-value prob-

lem CV = λV. Here, C is a covariance matrix of given data matrix X. Matrix V

is a projection matrix having eigen-vectors of C corresponding to highest d eigen-

values as d columns.

While performing PCA on image data, an image is converted into a mn-dimensional

vector thus may loose inter-pixel dependency of an image in at least one direc-

tion. To overcome this limitation of PCA, 2D variant of PCA has been proposed

in [32, 33] that handle an image as a matrix of size m× n. In [34] 2-dimensional

2D-PCA is proposed that considers row and column directions of images to find

projection matrix and proved to be better than 2D-PCA and PCA.

PCA preserves global structure of data, but fails to understand the underly-

ing non-linear manifold. To handle this problem to some extent, a non-linear

variant of PCA using kernel was proposed in [35] which improves performance

when linear classifiers are used. Later a generalized framework for learning algo-

rithms was proposed in [36] based on kernel PCA. Another disadvantage of PCA

is its poor performance when data have prominent variations, ModPCA (Mod-

ular PCA) proposed in [37] divides each of the patterns present in the data into

sub-patterns and extracts local PCs from these sub-patterns. ModPCA proved to

3



be better at classification task.

PCA has been successfully employed in image recognition problems such as

face recognition [29], palmprint recognition [38], image classification [39]. How-

ever, PCA is an unsupervised DR model, which does not incorporate any infor-

mation about class membership of training data. To get an advantage of class

knowledge, LDA [31] was introduced.

1.2.2 Linear Discriminant Analysis (LDA)

LDA [31] tries to maximize the separability between different classes, simulta-

neously finds a compact representation of data from the same class using class

label knowledge. The objective function is designed using within-class scatter

and between-class scatter as

arg max
VTSBV
VTSWV

(1.2)

SB =
C

∑
i=1

ni(µ
i − µ̄)(µi − µ̄)T

SW =
C

∑
i=1

(

nj

∑
j=1

(xi
j − µi)(xi

j − µi)T)

Here, SW is the within-class scatter matrix, SB is the between-class scatter ma-

trix, C is the number of classes in the given dataset, ni is the number of data points

in class i, µ is the mean vector of all data points, µi is the mean vector of ith class

and xi
j is the jth data point of class i. The projection basis for LDA can be obtained

by solving generalized eigen-value problem SBV = λSWV

Due to the supervised approach of LDA, LDA is proved to be better at image

recognition tasks [40]. 2D variants are also proposed in [41, 42] that performs

better than LDA. Another variant Marginal Fisher Analysis (MFA) [43] extends

LDA by characterizing the intraclass compactness and interclass separability.
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1.2.3 Indepent Component Analysis (ICA)

Another widely used linear dimensionality reduction method is Independent Com-

ponent Analysis (ICA) [15]. This technique reveals hidden features of underlying

sets of random variables by minimizing the statistical dependence of these vari-

ables. ICA is related to PCA and factor analysis but it is more powerful technique

for finding factors or sources of information. ICA representation is found by mak-

ing the features of observed data as independent as possible, which is given by

Y = VX (1.3)

here, X = [x1, x2, . . . , xN] is matrix of observed data, V is a transformation matrix

and Y = [y1, y2, . . . , yN] are the maximally independent components. Computa-

tional complexity of ICA is much higher than that of PCA [30].

The above mentioned approaches have a common assumption that the under-

lying data manifold is linear in nature, which may not be true. On the contrary

it is often proved that the data like face images etc. lies on or near a non-linear

manifold [18, 19, 20]. In last decade, many non-linear manifold learning methods

have been proposed to overcome the problem arises with linearity assumption.

1.3 Non-linear Dimensionality Reduction Techniques

Nonlinear dimensionality techniques such as Isometric MAP (ISOMAP) [18], Lo-

cally Linear Embeddings (LLE) [19] and Laplacian Eigenmaps (LE) [20] were de-

veloped to search underlying low dimensional manifold when data lie in a non-

linear manifold where linear techniques do not perform well [18, 44]. Such mani-

fold learning based methods have drawn considerable interests in recent years.

1.3.1 ISOmetric MAP (ISOMAP)

Isometric Map (ISOMAP) [18] is a non-linear dimensionality reduction technique

which finds a d-dimensional Euclidean space which preserves the geodesic dis-

5



tance between data points in high-dimensional space. In a case, where data is

lying on or near a non-linear manifoldM, for two arbitrary points, the Euclidean

distance between them may not accurately reflect their intrinsic similarity as com-

pared to their geodesic distance.

To find actual geometry of the data, pairwise geodesic distances are used. The

objective function of ISOMAP is

arg min ‖ τ(DG)− τ(Dy) ‖2 (1.4)

here, DG is the matrix of pairwise geodesic distance in the original high-dimensional

space and Dy is the matrix of pairwise Euclidean distance between embeddings

y in the projection space. Multidimensional Scaling can be used to find the bases

of newly found space, the eigen-vectors corresponding to smallest d eigen-values

can be used to project data on the linear subspace.

1.3.2 Laplacian Eigenmaps (LE)

The Laplacian Eigenmap (LE)[20] uses a graph embedding approach. An undi-

rected neighborhood graph is formed, where each data point is a vertex. Data

points xi and xj are connected by an edge with weight wij = 1 if xj is among the

k nearest neighbors of xi, otherwise the edge weight is set to zero. This simple

weighting method has been found to work well in practice.

To find a low-dimensional embedding of the graph, the algorithm tries to em-

bed points that are connected in the graph as close to each other as possible and

does not care what happens to the other points. The objective function is given as

arg min
i,j

‖ yi − yj ‖2 Wij (1.5)

here, W is a weight matrix representing the neighborhood graph. Y are low di-

mensional embeddings of data X.

The low-dimensional embeddings are eigen-vectors corresponding smallest d
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eigen-values of the generalized eigen-value problem LY = λDY. Here L = DW is

the graph Laplacian and D is a diagonal matrix with elements Dii = ∑j Wij. How-

ever, this cost function has an undesirable trivial solution: putting all points in the

same position would minimize the cost. This can be avoided by adding suitable

constraints. In practice, the smallest eigen-value corresponds to this trivial solu-

tion, but the eigen-vectors corresponding to the next smallest eigen-values give

the Laplacian Eigenmap embeddings [45]. In [46], the author proposes a mecha-

nism, named Laplacian score, to choose the best features in projected subspace in

the unsupervised environment.

1.3.3 Locally Linear Embedding (LLE)

Locally Linear Embedding [19] is a scheme that finds global low-dimensional co-

ordinates when data lies on (or very near) a linear manifold embedded in a high-

dimensional space. LLE considers a small neighborhood patch near a data points

and assumes it to be a linear patch and finds low-dimensional coordinates that

best preserves this linearity.

Firstly, A neighborhood graph for data point xi is constructed based on Eu-

clidean distance, and weights wij are sought such that the linear combination

∑ wijxj best represents the data point xi. The weight wij = 0, if xj is not a neigh-

bor of xi. In the following step, low dimensional embeddings yi are sought such

that the neighborhood relationship between the data point and its neighbors can

be represented with the same weight computed in the first step. The objective

function is given by

arg min
N

∑
i=1
‖ yi −

N

∑
j=1

wijyj ‖2 (1.6)

In the first step, LLE learns local geometry by considering a small patch of

data and its neighbors. In the second step, LLE stitches these local neighborhood

patches together to explore non-linear nature of the manifold [47, 48]. Being a non-

linear method LLE does not give an embedding for out-of-sample data points,

making it useless for tasks such as recognition. LLE gives an embedding in lower-
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dimensional space, but there is no mechanism to choose best features, in [49] LLE

score is proposed that evaluates the LLE embeddings and assigns a score to each

feature that best represents the objective of LLE.

Various variants have been proposed to improve the performance of LLE. [50]

proposes Incremental LLE that provides a mechanism to include an out-of-sample

data point in the already learned manifold. However, the procedure is computa-

tionally expensive. In [51], an enhanced scheme is suggested for neighborhood

selection in the supervised mode.

1.4 Linear DR with Non-linear Properties

Being a non-linear DR, LE and LLE provide non-explicit mappings, these methods

do not have any mechanism to handle out-of-sample data points [52]. Inclusion

or exclusion of any data point forces these DR to learn entirely new embeddings.

1.4.1 Locality Preserving Projections (LPP)

Unlike PCA which preserves the global structure of data by preserving directions

of maximum variances, LPP [6, 53] projects data to optimally preserve local struc-

ture of data. LPP achieves these by preserving the pairwise Euclidean distances in

the local non-linear neighborhood when projected in low dimensional represen-

tation. The LPP yields linear maps whose properties are similar to the non linear

maps yielded by the eigen-vectors of the true graph Laplacian also known as LE

[20].

LPP is a linear approximation of non-linear LE. The local neighborhood is de-

scribed using adjacency graph. The neighborhood selection steps of LPP is same

as LE, where neighbors are chosen based on Euclidean distance between data-

points, if xi is neighbor of xj then xj is also a neighbor of xi.

In the second step, weights are assigned to these links either by binary scheme

or using heat kernel. In binary scheme, wij = 1 if and only if vertices representing

data points xi and xj are connected. In an alternate scheme of weight assignment,

euclidean distance is used to assign weights to the link connecting to vertices
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representing data points xi and xj, wij = e−Dist(xi,xj)/t. Here, Dist(.) is a Euclidean

distance. Let W be the weight matrix, whose ijth element is a weight for link

connecting to vertices i and j.

The objective function to find projection bases of LPP is given by

N

∑
i,j=1
‖ yi − yj ‖2 wij (1.7)

under appropriate constraint.

The optimization problem leads to the closed form solution as generalized

eigen-value problem:

XLXTV = λXDXTV (1.8)

Here, L = D−W is the Laplacian matrix. D is a diagonal matrix, Dii = ∑i Wji.

projection matrix V have d eigen-vectors corresponding to smallest eigen-values

as its columns.

Various variants of LPP have been proposed so far. In [54], an enhanced and

supervised LPP is proposed that uses path based similarity weights and [55] uses

Pearson’s coefficient instead of depending on the free parameter of heat kernel

which considers Euclidean distance only.

In [56], LPP bases are learned using face database to define Laplacian-faces

and used for face recognition application, as shown in [56] Laplacian-faces proved

to be more reliable for face recognition as compared to eigen-faces and fisher-

faces. LPP gives non-orthogonal bases which makes it difficult to reconstruct the

data. The problem is addressed in [57] by orthogonal Laplacian-faces that out-

performs Laplacian-faces in face recognition task. [58, 59, 60] give some more

solution schemes based on LPP to use for face recognition. 2-dimensional vari-

ants of LPP that deals with image as matrix of dimensions m× n are proposed in

[61, 62].
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1.4.2 Neighborhood Preserving Embedding (NPE)

NPP or NPE [7] is a linear extension of LLE, the basic idea of NPE is to approxi-

mate a data point by a weighted linear combination of its neighbors assuming that

they lie on or near a locally linear manifold, and seek transformation matrix for

such a low dimensional representation that best preserves the linear combination

of all data points.

The first step of NPP involves finding neighbors of a data point xi, usually

performed using grouping methods such as k-Nearest Neighbors (k-NN) or ε-

Neighbors (ε-NN). Let Nxi be the set of k neighbors of xi, found using either of

these techniques. Euclidean distance works well with image data [63].

In the second step, data point xi is expressed as a linear combination of its

neighbors as ∑k
j=1 wijxj where, xj ∈ Nxi . The weight wij are calculated by mini-

mizing the reconstruction errors i.e. error between xi and a linear combination of

xj ∈ Nxi as,

arg min E(W) =
n

∑
i=1
‖ xi −

N

∑
j=1

wijxj ‖2 (1.9)

subject to ∑k
j=1 wij = 1

The problem stated in Eq. (1.9) can be solved for each xi individually by solving

the least square problem (XNi − xieT)wi = 0 with a constraint eTwi = 1.

Once the reconstruction weights for high-dimensional data points are found,

it is assumed that the same weights along with same neighbors will construct the

lower-dimensional representation yis. The objective function to find bases of such

low-dimensional subspace can be written as

arg minF (Y) = arg min
N

∑
i=1

∥∥∥∥∥yi −
N

∑
j=1

wijyj

∥∥∥∥∥
2

(1.10)

with a normalization constraint, to remove arbitrary scaling factor in the pro-

jection space.

As discussed earlier, most dimensionality reduction methods work with mn-
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dimensional data vector, but it is advantageous to work with m× n matrix when

data is an image. In [64], 2D-NPP is proposed which works with image data

and shows that the image recognition results are better than NPE. Even though

NPE and 2D-NPP are implemented in supervised mode, only the data points of

the same class were used. In NPDE [65], authors used data points from other

classes to add discriminative information in learned low-dimensional space that

increases the recognition results even more.

In addition to LPP and NPE, there are other techniques to handle non-linearity

known as kernel trick. In kernel methods data is projected on high-dimensional

space using some standard kernels and then dimensionality reduction methods

are applied to the projected data. Various kernel variants of PCA, LDA, LPP are

proposed in [35, 66, 67, 68, 36, 69, 70].

For applications like image recognition, data classification etc. adding dis-

criminant constraint can be helpful [71]. Variants incorporating such constraint

are proposed in [72, 73, 74]. These dimensionality reduction methods are imple-

mented as supervised methods where class knowledge is available. However,

training data having known labels are limited, but in this digital age lots of un-

labeled data is available which can be used to find more consistent manifold as

proposed in [75, 76]. These methods are categorized as semi-supervised methods.

An interesting work is proposed in [77] to estimate the optimal dimensionality of

underlying data manifold for discriminative methods. Some of the recent works

on DR include use of Deep Neural networks and Generalized Auto Encoders to

achieve low-dimensional embeddings of high-dimensional data [78, 79].
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Technique Property Description
and Author and Comment
PCA (Jolliffe et
al.)

Variance preserva-
tion

Uncorrelated features, Un-
supervised technique

LDA (Fisher et
al.)

minimizes within-
class variance &
maximizes between-
class variance

Supervised technique. In-
cludes discriminative in-
formation

ISOMAP
(Tenenbaum
et.al.)

Isometric Mapping Considers geodesic dis-
tance and uses MDS.
Computationally expen-
sive.

Locally Linear
Embedding
(Roweis et al.)

Preserves local struc-
tural linearity

Computes the reconstruc-
tion weights for each
point, and then minimizes
the embedding cost by
solving an eigenvalue
problem.

Laplacian
Eigenmaps
(Belkin et al.)

Locality Preserving Minimizing the squared
gradient of an embedding
map is equal to finding
eigen-functions of the
Laplace-Beltrami operator.

Locality Pre-
serving Projec-
tions (X He et
al.)

Locality Preserving Linearization of LE, em-
beds out-of-sample data

Neighborhood
Preserving Pro-
jection (X He et
al.)

Local linearity pre-
serving

Linearization of LLE, em-
beds out-of-sample data
points.

Table 1.1: Comprehensive summary of well-used DR methods
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1.5 Motivation of the Work

With the rapid development in the data capturing methods and increased capacity

of data storage caused a huge surge in the dimensionality of datasets. An observa-

tion of an object is often represented as a real-valued vector having each feature

as an element in a very high dimensional space, where each feature represents

one dimension. Generally, distribution of such observations in high dimensional

space contains a huge amount of redundant information and thus, an underly-

ing low dimensional subspace can be sought for such observations where only

meaningful information is preserved. In applications such as image recognition,

object classification and data mining, high dimensions of data poses two major

problems - curse of dimensionality in statistical pattern recognition which causes

very huge computation burden and small sample size problem where the number

of observation is very few compared to the large number of features. Most of the

learning algorithm fails when only limited training data with the large number of

features is available. The excessive dimension of the data space often brings the

learning algorithms into dimensionality dilemma. So dimensionality reduction is

very important for the modeling of small-sample size and high-dimensional data.

A straightforward and widely used approach is PCA [29], where a low dimen-

sional representation is learned such that information variance is maximized, but

this approach is unsupervised where the information about data class is not em-

bedded into low dimensional representation. Thus, discriminating approaches

such as LDA [31] were proposed that also tries to embed discriminating infor-

mation between the classes into a low dimensional representation. These linear

approaches work under the assumption that the high dimensional space is linear,

which may not be the case with real data. LPP [6] and NPE [7] are DR tech-

niques which work with the local non-linearity present in the data. These tech-

niques work in the small neighborhood patches and build a global geometry thus

preserving the global geometry of data as well as the local relationship in small

neighborhoods. Their orthogonal variants OLPP [57] and ONPP [80] are proved

to be useful for image recognition tasks such as text recognition or face recogni-
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tion.

Face images or text images are represented as high-dimensional pixel arrays.

Due to the high correlation between the neighboring pixel values in real images,

they often belong to an intrinsically lower dimensional manifold. Image recogni-

tion is one of the most widely used applications where dimensionality reduction

is applied prior to the recognition task [7, 80, 20, 64]. Images provides most chal-

lenging data for dimensionality reduction. For example in face recognition task,

because of high variations in face images such as pose, expressions, illumination

conditions, change in appearance etc, they may lie on a nonlinear manifold. Same

is true for hand-written texts, where huge variations in orientation, stroke width

and curves present huge challenge.

In this thesis, we are focusing on a dimensionality reduction scheme based on

neighborhood preserving property. We have addressed some of the issues in the

existing ONPP [80] technique and provided the solution for them keeping image

recognition task in the focus. Being a linear and an orthogonal variant of LLE,

ONPP carries same assumption of local linearity. ONPP defines a local neighbor-

hood for a data point and assigns weights that holds this linearity true but this

assumption of local linearity may and may not be true for a larger neighborhood.

Very small or a very large number of neighbors adversely affects the learned man-

ifold. This observation inspired us to introduce a non-linear weighing scheme to

handle local non-linearity that comes with larger neighborhood well. In image

recognition tasks knowledge of class label of training data is always available,

thus DR methods are generally implemented in supervised mode. Training data

belonging to the same class are considered neighbors of each other, regardless of

their similarity or dissimilarity. Such hard decision rules does not help in learning

low-dimensional manifold effectively, this motivated the proposal of new neigh-

borhood selection rule that takes into consideration of actual similarity of data

pairs based on their Euclidean distance as well as their class membership.

NPE [7] is a linear extension of LLE which gives normalized projection on non-

orthogonal basis, whereas ONPP gives orthogonal projection basis but relaxes the

normalization constraint on the projections. For applications where image recon-
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struction is required, Normalization and orthogonalization both are desired prop-

erties but bringing both constraint together increases the optimization difficulty,

many iterative solution have been proposed to solve such optimization problem

which randomly initiates a projection basis and optimize it iteratively, this con-

tinues on ortho-complemented space until desired number of projection bases are

achieved. This inspired an alternative solution scheme that iteratively solves for

a projection basis that are orthogonal to the previously sought projection bases

without random initialization. ONPP also inherits some of the shortcomings of

LLE such as susceptibility to outliers, because same as LLE, ONPP also use l2-

norm in the cost function. The effect of outliers gets magnified due to the use of

l2-norm. Low-dimensional manifold gets distorted in the presence of the outliers

which inspired the design of variant of ONPP which handles outliers present in

the data.

1.6 Scope and Accomplishments of the Thesis

The scope of the thesis is to study and improve the performance of DR technique

based on neighborhood preservation. ONPP [80] is a linear DR technique that

tries to exploit local linearity present in the high-dimensional space and finds its

lower dimensional representation by preserving this local neighborhood relation-

ship. Conventional ONPP is based on the hypothesis that the local neighborhood

is linear, thus it is very sensitive to the choice of this local neighborhood. Thus, the

varying number of neighbors, the presence of outliers etc. affects the performance

of ONPP. A few extensions [74, 64, 81] of ONPP have been proposed in the litera-

ture. This thesis is an attempt to address few issues with the conventional ONPP

approach and provides solutions to achieve more robust and meaningful low di-

mensional representation, reduce computational complexity to utilize in various

pattern recognition tasks.

1. In conventional ONPP algorithm the neighborhood is assumed to be a lin-

ear patch, but when the number of neighbors is large, the assumption of

linearity could be invalid and it affects the lower dimensional representa-
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tion adversely. A piece-wise non-linear weighing scheme is applied to over-

come this limitation of ONPP. This Modified ONPP (MONPP) handles the

varying number of neighbors better than ONPP. In particular piece-wise lin-

earity, within the small neighborhood is applied which gives rise to a more

compact data representation that could be utilized for recognition. The pro-

posed scheme is implemented on synthetic as well as real data. Suitability

of the proposal is tested on a set of face images and a significant improve-

ment in recognition is observed. We have also adopted two pre-processing

techniques to handle illumination variation in face images which improves

recognition performance as well.

2. In supervised settings, conventional ONPP uses knowledge of class label

to identify the neighbors of data points, but when data points are closely

placed or the classes are overlapping, such hard decision rule may not help

to find a good low dimensional representation. To overcome this limitation

of neighborhood finding rule, we are proposing a novel neighborhood rule,

where low dimensional representation is used with Logistic Regression (LR)

to find the probability of every data point to belong into a particular class.

Based on these probabilities a new distance measure - Class similarity based

distance is defined and used to find nearest neighbors of data points. It is

observed that class similarity based ONPP very well represents the relation-

ship of neighbors in low dimensional representation. The proposed scheme

used to recognize face images as well as handwritten numerals images, the

proposed neighborhood scheme improves recognition performance signifi-

cantly as compared to conventional ONPP.

3. All DR techniques deal with optimizing a cost function based on some crite-

ria imposed on either projection of data or on the basis of projection space.

NPP and ONPP are such linear methods that preserve local linear relation-

ship within the neighborhood, with two different constraints, the normal-

ized projection and the orthogonal basis of subspace, respectively. In this

thesis, we proposed a new variant - ONPPn that finds a subspace which sat-

isfies both the constraints. The thesis also provides its two-dimensional vari-
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ant. Experiments show that ONPPn outperforms NPP and ONPP versions

in image recognition tasks, whereas 2D-ONPPn overcomes the limitation of

2D-ONPP but does not perform as good as 2D-NPP for recognition. 2D-NPP

as well as 2D-ONPP are not suitable for image reconstruction task, proposed

method 2D-ONPPn overcomes drawbacks of existing methods and is best

suited for image reconstruction.

4. Generally, most of the DR techniques involve optimizing a cost function in

L2-norm and thus they are susceptible to outliers. However, recently, due

to the capability of handling outliers, L1-norm optimization is drawing the

attention of researchers. The work documented here is the first attempt to-

wards the same goal where Orthogonal Neighborhood Preserving Projec-

tion (ONPP) technique is performed using optimization in terms of L1-norm

to handle data having outliers. In particular, the relationship between ONPP

and PCA is established theoretically in the light of L2-norm and then ONPP

is optimized using an already proposed mechanism of PCA-L1. Extensive

experiments are performed on synthetic as well as real data for applications

like classification and recognition. It has been observed that when a larger

number of training data is available L1-ONPP outperforms its counterpart

L2-ONPP.

1.7 Organization of Thesis Chapters

We discuss in detail each of our above mentioned contributory works in the fol-

lowing sections. chapter 2 discusses a modified weighing approach to handle

inherent non-linearity present in neighborhood. chapter 3 discusses a class simi-

larity based technique to find neighbors of data point. chapter 4 discusses a new

ONPP technique with normalization constraint and its 2D variant. chapter 5 doc-

uments a variant of ONPP namely, L1-ONPP to handle outliers present in data.

The work uses the fact that l1-norm distance measures handle outlying data or

out-lying features better than l2-norm distance measures. Basically, in this chap-

ter we establish a relation between PCA and ONPP to achieve L1-ONPP basis.
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To analyze the usability of the proposed variants in comparison to the con-

ventional ONPP the recognition experiments are performed on widely used face

databases and handwritten numerals databases. It is to be noted that in this thesis,

the emphasis is on the development of robust variants of Linear Dimensionality

Reduction technique based on Orthogonal Neighborhood preserving projections

for image recognition and image reconstruction application. Thus, the perfor-

mance of these variants is not compared to other state-of-the-art face recognition

and text recognition methods. Overall conclusion of the thesis is given in the

chapter 6 with possible directions to work further on the same problem.
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CHAPTER 2

Modified Orthogonal Neighborhood Preserv-

ing Projections

Orthogonal Neighborhood Preserving Projections (ONPP) [80] is a linear exten-

sion of Locally Linear Embedding (LLE), which is a nonlinear dimensionality re-

duction technique that embeds high-dimensional data samples on lower dimen-

sional subspace. This mapping is not explicit in the sense that embedding is data

dependent. In LLE, intrinsic data manifold changes with the inclusion or exclu-

sion of data points. Hence, on the inclusion of a new data point, embeddings of all

existing data points changes. This prevented subspace based recognition of un-

known sample point, as this unknown sample point cannot be embedded into the

existing lower dimensional subspace. Lack of explicit mapping thus makes LLE

not suitable for recognition. ONPP resolves this problem and finds the explicit

mapping of the data in lower dimensional subspace through a linear orthogonal

projection matrix. In the presence of this orthogonal projection matrix, a new data

point can be embedded into the lower dimensional subspace. The following sec-

tion documents ONPP and some noticeable observations on ONPP.

2.1 Orthogonal Neighborhood Preserving Projections

(ONPP)

As discussed in Chapter 1, an image xi of m × n size is considered a data point

in mn dimensional space, let x1, x2, ..., xN be given images in the mn-dimensional

space. So the data matrix is X = [x1, x2, ..., xN] ∈ Rmn×N. The basic task of sub-

19



space based methods is to find an orthogonal/non-orthogonal projection matrix

Vmn×d such that Y = VTX, where Y ∈ Rd×n is the embedding of X in lower di-

mension as d is assumed to be less than m. Even though the data is sampled in mn

dimensional space, data points are assumed to lie on or near a manifold having

intrinsic dimensionality d, where d << mn.

ONPP is a three-step algorithm where, in the first step a local neighborhood is

sought for each data point, followed by the representation of each data point as

a linear combination of its neighbors. In the third step, the data compactness is

achieved through a minimization problem.

Step 1: Finding Nearest Neighbors: The first step of ONPP involves finding

neighbors of a data point xi, usually performed using grouping methods such as

k-Nearest Neighbors (k-NN) or ε-Neighbors (ε-NN).

• k-Nearest Neighbors: In this method, k neighbors are chosen based on some

distance measure, where k ∈ N is suitably chosen parameter. Here, Eu-

clidean distance is considered while choosing neighbors.

• ε Neighbors: In this technique, neighbors are selected which are enclosed

within a sphere of ε ∈ R radius of the data point.

Let Nxi be the set of k neighbors of xi, found using either of these techniques.

Step 2: Calculating Reconstruction Weight: The data point xi is expressed as a

linear combination of its neighbors as ∑k
j=1 wijxj where, xj ∈ Nxi . The weight wij

are calculated by minimizing the reconstruction errors i.e. error between xi and

linear combination of xj ∈ Nxi as,

arg min E(W) = arg min
n

∑
i=1
‖ xi −

k

∑
j=1

wijxj ‖2 (2.1)

subject to ∑k
j=1 wij = 1 i.e. eTwi = 1 where, e = [1, 1, . . . 1]

The problem stated in Eq. (2.1) can be solved for each xi individually. For

xi, let XNi be a matrix having xj as its columns, where xj ∈ Nxi . Hence XNi is a

m× k matrix. Now by solving the least square problem (XNi − xieT)wi = 0 with
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a constraint eTwi = 1, a closed form solution, as shown in Eq. (2.2)), is evolved

for wi. Here, e and wi are vectors of dimension k× 1.

wi =
Gi
−1e

eTGi
−1e

(2.2)

where, Gi is Gramiam matrix of dimension k× k for data point xi. Each entry

of Gi is calculated as gpl = (xi − xp)T(xi − xl), f or ∀ xp, xl ∈ Nxi

Gi =


< xni1 − xi, xni1 − xi > ... < xni1 − xi, xnik − xi >

... . . . ...

< xnik − xi, xni1 − xi > ... < xnik − xi, xnik − xi >

 (2.3)

Step 3 : Finding Projection Matrix : In ONPP, final step is dimensionality re-

duction or finding the projection matrix V as stated earlier. This method basi-

cally seeks the lower dimensional projection yi ∈ Rd of the data point xi ∈ Rmn

(d << mn) such that the linear combination of neighbors xj which reconstruct the

data point xi in higher dimension would also reconstruct yi in lower dimension

with corresponding neighbors yj along with same weight as in higher dimen-

sional space. The constraint imposed here is the orthogonality of the basis vectors

vis of d dimensional ONPP subspace.

Such embedding is obtained by minimizing the sum of squares of reconstruc-

tion errors in the lower dimensional subspace. Hence, the objective function is,

arg minF (Y) = arg min
N

∑
i=1
‖ yi −

N

∑
j=1

wijyj ‖2

arg minF (V) = arg min tr[VTXMXTV] (2.4)

(2.5)

with an orthogonality constraint

VTV = Id (2.6)

Lagrange equation of ONPP optimization problem for finding the projection
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matrix V which gives orthogonal bases for the subspace, can be written using

orthogonality constraint,

L(V) = VTXMXTV− λ(VTV− Id) (2.7)

Differentiating Eq. (2.7) with respect to λ and equating to zero will give

δL(V)

δλ
= 0 =⇒ VTV = Id (2.8)

Differentiating Eq. (2.7) with respect to V and equating to zero will give

2XMXTV− 2λV = 0

XMXTV = λV (2.9)

This optimization problem results in ordinary eigenvalue problem i.e. com-

puting eigen-vectors corresponding to the smallest d eigenvalues of matrix XMXT.

ONPP also explicitly maps X to Y, which is of the form Y = VTX, the only differ-

ence from NPP is that ONPP subspace is an orthogonal subspace, but projection

Y is not normalized.

2.1.1 Observations From ONPP

The noticeable aspects of the ONPP algorithm are:

• The core algorithm is simple and involves a few local computation and an

eigenvalue problem. However, it involves neighborhood search in high-

dimensional space. Note that there are several efficient algorithms for faster

neighborhood search [82].

• The basic assumption of ONPP is the local linearity within a local neighbor-

hood, which is not always true for a larger neighborhood. This assumption

limits the performance of ONPP on non-linear data manifolds. The neigh-

borhood is defined with parameter k, thus the performance of ONPP highly

depends on the choice of k.
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The ONPP algorithm is implemented on two synthetic data-sets viz Swiss-roll

(Fig. 2.1(a)) and S-curve (Fig. 2.1(d)) to visualize their two dimensional representa-

tion with the varying number of k. These two data-sets reveal a linear relationship

within the class as well as between the classes when unfolded. Linear dimension-

ality reduction techniques such as PCA when applied to these type of data, fail

to capture this intrinsic linearity. However, dimensionality reduction techniques

such as LPP [6], NPE [7] try to capture the local geometry and retain it into the

projection space are expected to perform better. These algorithms give rise to a

compact representation of the data without much distorting the shape of the data.

To implement existing ONPP on these non-linear data, 1000 data points are ran-

domly sampled from continuous 3D manifold (Fig. 2.1(b), Fig. 2.1(e)) to build the

orthogonal transformation matrix V. To explore how ONPP works with varying

values of k, experiments have been conducted for k = 4, 6, 8, 10. 2D projections us-

ing two strongest ONPP dimensions for each experiment are shown in Fig. 2.1(c)

and Fig. 2.1(f). It is observed that projection using ONPP algorithm depends on

k, variation in k results in huge variation in its lower dimensional representation.

2.2 Modified Orthogonal Neighborhood Preserving Pro-

jections

Orthogonal NPP builds a linear relationship within a small neighborhood of the

data and then assumes its validity in the lower dimension space. However, the

assumption of linearity could be invalid in some applications. With this aim in

mind, we introduce an approximate non-linearity in weighing scheme. In par-

ticular piece-wise linearity, within the small neighborhood which gives rise to a

more compact data representation that could be utilized for recognition. The pro-

posed scheme is implemented on synthetic as well as real data. Suitability of the

proposal is tested on a set of face images and a significant improvement in recog-

nition is observed.

Orthogonal Neighborhood Preserving Projection (ONPP) is based on two ba-

sic assumptions. First, it assumes that a linear relation exists in a local neigh-

23



(a) (b) (c)

(d) (e) (f)

Figure 2.1: 2D ONPP projection with varying value of k (number of NN) for syn-
thetic data (a) Swiss roll: 3D continuous manifold (b) sampled 3D data points (c)
2D projections using two strongest ONPP bases with k = 4, k = 6, k = 8 and
k = 10. (d) S-curve: 3D continuous manifold (e) sampled 3D data points (f) 2D
projections using two strongest ONPP bases with k = 4, k = 6, k = 8 and k = 10

borhood and hence any data point can be represented as a linear combination of

its neighbors. Secondly, it assumes that this linear relationship also exists in the

projection space. The same assumption gives rise to a compact representation of

the data that can enhance the classification performance. The data compactness

would be more visible in case the first assumption is strongly valid. While exper-

imenting with synthetic data, as shown in Fig. 2.3, it has been observed that data

compactness is not clearly revealed. The main drawback could be the strict local

linearity assumption. Focusing on this, we are trying to incorporate some kind of

non-linear relationship of a data point with its neighbor. The proposed algorithm

is termed as Modified ONPP (MONPP).

In this proposed modification, a Z-shaped function is used to assign weights

to nearest neighbors in the first stage of ONPP. Note that in ONPP, the weight
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matrix W is calculated by minimizing the cost function in Eq. (2.1), which is a

least square solution given in Eq. (2.2). In the least square solution, weights of

neighbors are inversely proportional to the distance of the neighbors from the

point of interest. We are looking for a situation where the neighbors closest to the

point of interest would get maximum weight and thereafter the weights will be

adjusted non-linearly (through Z-shaped function) as the distance increases. After

a certain distance, the weights will be very low. In particular, instead of assuming

a linear relationship, a piece-wise linear relationship is incorporated through the

z-shaped function. This piece-wise linear relationship is leading towards some

kind of non-linear relationship given by

Z(x; a, b) =



1 if x ≤ a

1− 2
(

x−a
a−b

)2
if a ≤ x ≤ a+b

2

2
(

x−b
a−b

)2
if a+b

2 ≤ x ≤ b

0 Otherwise

(2.10)

Figure 2.2: Z-shaped weight function for Range [0, Maximum within class dis-
tance], illustrated for max distance of 7000 unit

Parameters a and b locate the extremes of the sloped portion of the curve and

can be set to 0 and maximum within-class distance (i.e. maximum pairwise dis-

tance between data samples belonging to the same class) respectively, as shown in
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Fig. 2.2. In case of unsupervised mode, a k-NN algorithm could be implemented

before assigning the weights and hence the parameters a and b of Eq. (2.10) can

be adjusted.

Finally, Eq. (2.11) is used to assign weight to each neighbor xj corresponding

to xi. Note that this equation is same as Eq. (2.2), where G−1 is replaced by Z. The

new weights are

wi =
Ze

eTZe
(2.11)

where, elements of this Z matrix are defined as

Zpl = Z(dp; a, b) +Z(dl; a, b) f or, ∀ xp, xl ∈ Nxi (2.12)

here, Z(dk; a, b) is calculated using Eq. (2.10). dk is the Euclidean distance

between xi and it’s neighbor xk. Parameters a and b are obtained as discussed

earlier.

Next step computes the projection matrix V ∈ Rmn×d whose column vec-

tors are eigen-vectors of the matrix M = X(I −W)(I −WT)XT corresponding

to smallest d eigenvalues. Embedding of X on lower dimension Y is achieved by

Y = VTX.

The proposed Modified ONPP (MONPP) algorithm is summarized below:

Table 2.1: Modified ONPP Algorithm

Input: Dataset X ∈ Rmn×Nand number of reduced dimension d
Output: Lower dimension projection Y ∈ Rd×N

1. Project data X on lower dimension space using PCA
2. Search neighborhoodNxi for each data point xi with class information
3. Compute the weight W for each xj ∈ Nxi as given in Eq. (2.11)
4. Compute Projection matrix V ∈ Rmn×d whose column vectors are

smallest d eigen-vectors of matrix M = X(I−W)(I−WT)XT

5. Compute Embeddings of lower subspace dimension by Y = VTX
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2.3 Experiments and Results

The proposed Modified ONPP (MONPP) is used for two well-known synthetic

data-sets along with a digit data [83], a low dimensional projection of these data

sets is compared with ONPP. MONPP has also been implemented extensively

for various well-known face databases and handwritten numerals databases the

results are compared with that of the existing ONPP algorithm.

2.3.1 Synthetic data

The Modified ONPP (MONPP) algorithm is implemented on two synthetic data-

sets viz Swiss-roll (Fig. 2.3(a)) and S-curve (Fig. 2.3(e)) to visualize their two di-

mensional plot. To implement existing ONPP and proposed Modified ONPP, 1000

data points are randomly sampled from three dimensional manifold (Fig. 2.3(b),

Fig. 2.3(f)) to build the orthogonal transformation matrix (V). From Fig. 2.3(c),(d)

and Fig. 2.3(g),(h), it is clear that the 2D representations of both Swissroll and

S-curve seem to be much better for MONPP.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.3: Swissroll: (a) original 3D continuous manifold, (b) sampled data, (c)
2D projection obtained by ONPP and (d) MONPP. S-curve: (e) original 3D con-
tinuous manifold, (f) sampled data, (g) 2D projection obtained by ONPP and (h)
MONPP. k(number of NN) is set to 6.

To explore how ONPP and MONPP work with varied values of k, experiments

have been conducted and results are shown in Fig. 2.4. Note that repeated ex-

periments with a fixed k may not guarantee to generate same results. It is ob-

served that projection using ONPP algorithm depends on k, variation in k results

in huge variation in its lower dimensional representation. However, projection
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using MONPP is more stable with varying values of k. Larger values of k imply

a larger area of the local neighborhood. It is possible that larger local area does

not possess linearity. The linearity assumption of ONPP thus is invalid here. So

the non-linearity present in the moderately large local area is well-captured in

MONPP and is reflected in the results.

(a)

(b)

Figure 2.4: 2D projection of (a) S-curve and (b) Swissroll with various k (number
of NN) values with ONPP (top) and MONPP (bottom)
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(a) (b)

(c) (d)

Figure 2.5: 2D projection of MNIST handwritten numerals data using ONPP and
MONPP: (a) and (b) shows performance of ONPP algorithm, where, ′+′ denotes
0, ′o′ denotes 1, ′∗′ denotes 2, ’∆’ denotes 3, ’�’ denotes 4. (c) and (d) shows
performance of MONPP algorithm, where, ′+′ denotes 5, ′o′ denotes 6, ′∗′ denotes
7, ’∆’ denotes 8, ’�’ denotes 9.

2.3.2 Digit data

The MNIST database [83] of handwritten digits is used to compare data visualiza-

tion of both the algorithms. Randomly 40 data samples from each class (digit) are

taken and projected on 2-D plane using ONPP and proposed Modified ONPP. The

results are shown in Fig. 2.5, it can be clearly observed that the data is compact

and well separated when MONPP is applied. It seems that there is a wide range

of variations in digit ’1’ and that is reflected in Fig. 2.5 (a). But the same digit

’1’ is more compact in the 2D representation of MONPP (Fig. 2.5 (c)). A similar

argument is true for digits ’7 ’ and ’9’. Overall, better compactness is evident for

all digits in case of MONPP.

2.3.3 Text Recognition

Real data like handwritten text or numerals have huge variations in terms of

stroke width, shape, patterns, curves and orientations, thus poses a real challenge
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(a)

(b)

(c)

(d)

Figure 2.6: Some samples from handwritten numerals databases (a) digit ’2’ from
MNIST database. (b) digit ’7’ from Gujarati database. (c) digit ’4’ from Devnagari
database. (d) digit ’8’ from Bangla database. Notice the very diverse shape, stroke
width, curves, orientation and pattern of different samples.

in pattern recognition task. To compare the performance of ONPPn and MONPPn

with other four methods, handwritten numeral databases in English and three dif-

ferent Indian languages wiz Gujarati, Bangla and Devnagari are used. The MNIST

digit database [83] contains nearly 68,000 images of digits of size 28× 28, some

samples from digit ’2’ are shown in Fig. 2.6 (a). The Gujarati Numerals database

[84] has nearly 1300 images for each class, Fig. 2.6 (b) shows some images of digit

’7’ from the database. Another database for Indian script Devnagari was used

for recognition experiment. Handwritten Devnagari database [85] have approxi-

mately 1800 images for each class. Fig. 2.6 (c) shows few random samples of digit

’4’ taken from the data. For this experiment, images are resized to 20× 20 and

nearly 100 images out of each class were selected randomly as training set and
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remaining images are used for testing. Unlike other three numerals databases

used here, Bangla [85] have small number of samples accounting to 50 for each

class. Fig. 2.6 (d) shows some samples of digit ’8’ randomly chosen from the data.

Out of 50 images of each class 25 images were randomly chosen for training, re-

maining images were used for testing. Fig. 2.7 shows recognition performance of

ONPP and MONPP with varying number of subspace dimensions. It is observed

in all four databases that performance of MONPP surpasses that of ONPP with

a good margin. Average and best recognition rates are reported in Table 2.2. For

classification Nearest Neighbor (NN) is used because of its simplicity.
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Figure 2.7: Comparison of average performance of ONPP and MONPP with vary-
ing number of subspace dimensions d on MNIST database, Gujarati database, De-
vnagari database and Bangla database
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Table 2.2: Comparison of performance of ONPP and MONPP on handwritten
numerals databases in the light of recognition score (in %)

ONPP MONPP
Database Average Best (at dim d) Average Best (at dim d)
English 67.41 70.24 (380) 71.31 74.83 (380)
Gujarati 78.72 82.74 (370) 81.55 84.48 (370)

Devnagari 69.67 71.79 (380) 72.12 74.05 (380)
Bangla 77.80 79.20 (230) 77.20 80.40 (230)

2.3.4 Face Recognition

The algorithm is also tested on three different face databases viz AR [86], ORL [87],

and UMIST [88]. AR database contains over 4000 color images of 126 individuals

featuring frontal views with different facial expressions, illumination conditions,

and occlusions. The UMIST face database contains 564 images of 20 individuals,

with poses varying from profile to frontal views. ORL database contains a set

of 10 different face images for 40 distinct subjects with varying the lighting and

facial expressions. Moderate tolerance for some side movement is also allowed.

This makes the face recognition more challenging.

To maintain the uniformity, face images of all databases are resized to 38 ×

31 pixels, thus each image is considered as a point in 1178 dimensional space.

For each database, randomly 50% of face images are selected as training samples

and remaining are used for testing. The training samples are used to find the

lower dimensional projection matrix V. The test samples are then projected on

this subspace and are recognized using a NN-classifier. The main intention of these

experiments is to check the suitability of MONPP based image representation for

face recognition and hence a simple classifier such as NN is used. To ensure that

the results achieved are not biased to the randomized selection of training-testing

data, the experiments are repeated twenty times with different randomization.

Experiments are also conducted for different values of d (dimension of reduced

space) ranging from 10 to 160 (at an interval of 10). The best, as well as average

recognition rates, are reported here for all databases.

Average recognition results for AR, UMIST, ORL and The Extended Yale- B

databases using ONPP and MONPP are shown in Fig. 2.8. It can be observed
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that MONPP performs better than ONPP across almost all values of d. Average

recognition accuracy and best recognition accuracy along with the corresponding

dimensions using ONPP and MONPP for all three databases are reported in Table

2.3.
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Figure 2.8: Comparison of average performance of ONPP and MONPP with vary-
ing number of subspace dimensions d on AR database, UMIST database, ORL
database and The Extended Yale-B database

Although face recognition algorithms based on dimensionality reduction tech-

niques are performing exceptionally well under controlled illumination environ-

ments, it is still a major challenge to reliably recognize a face under pose, expres-

sion, age and illumination variations. As seen the performance on The Extended

Yale-B database shown in 2.8 (d) is very poor due to illimination variations present

in the images. Illumination variation is most common while capturing face im-
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Table 2.3: Comparison of performance of ONPP and MONPP on face databases
in the light of recognition score (in %)

ONPP MONPP
Database Average Best (at dim d) Average Best (at dim d)

AR 93.50 96.25 (100) 94.13 97.50 (110)
UMIST 98.95 99.05 (30) 98.00 99.50 (20)

ORL 93.06 98.00 (120) 95.90 99.00 (60)
Yale-B 92.51 93.42 (140) 94.07 95.80 (100)

ages. Lighting condition, camera position, face position all lead to change in il-

lumination. Such illumination changes result in a major source for recognition

errors, especially for appearance-based techniques. The task of face recognition

algorithm is to identify an individual accurately despite such illumination varia-

tions. Two face images of the same person can seem visually very different under

various illumination intensities and directions. In [89], it has been shown that the

variations in two face images of the same person captured under different illumi-

nation conditions are larger than the face images of two different person, which

makes face recognition under illumination variation a difficult task. To handle

such cases, several approaches are used such as pre-processing and normaliza-

tion, invariant feature extraction or face modeling [90]. In pre-processing based

methods, several image processing techniques are performed on the image to nul-

lify illumination effects to some extent. Gamma correction, histogram equaliza-

tion [91, 92] and logarithm transforms [93] are some of these image processing

techniques.

2.4 Handling Illumination Variations in Face Images

For better face recognition under uncontrolled and varying lighting conditions,

the features useful for discrimination between two different faces need to be pre-

served. The shadows created in face images due to different lighting directions re-

sult in loss of facial features useful for recognition. A pre-processing method must

increase the intensity in the areas those are under-exposed (poorly illuminated)

and lower the intensity in the areas those are over-exposed (highly illuminated)

simultaneously while keeping the moderately illuminated area intact. Follow-

34



ing two subsections discuss two different pre-processing techniques. In the fol-

lowing section, the recognition performance is compared using ONPP and Mod-

ified ONPP (MONPP). Detailed experiments of pre-processing to nullify the illu-

mination variation for face recognition have been performed on various bench-

mark face databases having illumination variations such as The extended Yale-B

database [94] and CMU PIE face database [95]. Face recognition results of ONPP

and MONPP are compared and presented here.

2.4.1 Locally Tuned Inverse Sine Nonlinear(LTISN)

An enhancement technique for color images proposed in [96] takes care of such

extreme illumination conditions using a series of operations and a nonlinear in-

tensity transformation performed on images to enhance a color image for better

visual perception. The intensity transformation function is based on previous re-

search suggested in [97].

In this work, we have tested the nonlinear intensity transformation based on

inverse sine function enhancement on gray-scale face images having high illumi-

nation irregularities for better recognition. This nonlinear enhancement technique

is a pixel by pixel approach where the enhanced intensity value is computed using

the inverse sine function with a locally tunable parameter based on the neighbor-

hood pixel values. The intensity range of the image is re-scaled to [0 1], followed

by a nonlinear transfer function given in Eq. (2.13).

Ienh(x, y) =
2
π

sin−1(In(x, y)
q
2 ) (2.13)

where, In(x, y) is the normalized intensity value at pixel location (x, y) and q is

the locally tunable control parameter. In the darker area where intensity needs to

be increased, the value of q should be less than 1, and the over-bright area where

intensity needs to be suppressed, the value of q should be greater than 1. Fig. 2.9

shows the transformation function with the value of q ranging from 0.2 to 5 for

intensity range [0 1]. The red curve shows transformation for q equal to 1, green

curves show q less than 1, which enhances darker region of image and blue curve
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shows q greater than 1, which suppresses higher intensity in the over-exposed

region of an image. The curve of the transformation function used for a pixel is

decided by the value of q based on its neighborhood.

The value of q is decided by the tangent function based on mean normal-

ized intensity values, which is determined by averaging three Gaussian filtered

smooth images. These smooth images are found using three different Gaussian

kernels of size Mi × Ni. Normalized Gaussian kernels are created as below:

kerneli(n1, n2) =
hg(n1, n2)

∑n1 ∑n2
hg(n1, n2)

(2.14)

hg(n1, n2) = e
−(n2

1+n2
2)

2σ2 (2.15)

where, ranges of n1 and n2 are [−bMi
2 c, b

Mi
2 c] and [−bNi

2 c, b
Ni
2 c] respectively.

Here, window size Mi × Ni is set to 6× 6, 10× 10 and 14× 14, experimentally.

The subscript i indicates which Gaussian kernel is being used and σ is set to be

0.3(Mi
2 − 1) + 0.8.

The Gaussian mean intensity at pixel (x,y) is calculated using

IM,i(x, y) =

Mi
2

∑
m=−Mi

2

Ni
2

∑
n=− Ni

2

I(m, n)kerneli(m + x, n + y) (2.16)

The mean intensity image IMn is then obtained by averaging these three fil-

tered images. The mean intensity value is normalized to range [0 1] and based

on intensity value in IMn at location (x, y), the tunable parameter q is determined

using

q =

tan( π
C1

IMn(x, y)) + C2 IMn(x, y) ≥ 0.3

1
C3

ln( 1
0.3 IMn(x, y)) + C4 IMn(x, y) < 0.3

(2.17)

where C1, C2, C3 and C4 are determined experimentally [96].

As C1 approaches to 2, q approaches to infinity and for values of C1 greater

than 2, q is inversely proportional to C1. From Eq. (2.13), it is clear that for brighter

pixels having intensity values nearer to 1, q must be high to bring it down. (ex-
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perimentally observed that when IMn = 1 q should be between 5 and 6.) This

limitation on q helps to decide the value of C1, which is set to 2.255 thus, the

maximum value of q can be 5.57 + C2. The value of C2 is found by setting IMn

to 0.5 and q to 1 to ensure that pixel with intensity value 0.5 and Gaussian mean

intensity value 0.5 remains unchanged in the output image.

For the pixel having smaller values close to 0, noise becomes a serious issue

while enhancement, thus for IMn less than 0.3, a logarithmic function is used to

determine the value of q. The parameter C4 is determined such that the transfer

function given in Eq. (2.13) remains continuous at IMn = 0.3 and is set to 0.6. The

value for C3 is proportional to the minimum value of q and set experimentally

equal to 60 to balance enhancement and noise reduction.

Transformation function for different values of q is presented in Fig. 2.9. As it

can be seen from Fig. 2.9, extreme bright pixels having high mean intensity value

nearer to 1, will be suppressed using high q values and dampen the high-intensity

pixels. Extreme dark pixel with mean values nearer to zero will be enhanced with

small q values and it will positively boost the low-intensity values.

Figure 2.9: Nonlinear Inverse Sine Transformation with parameter q varying from
0.2 to 5 for intensity range [0 1]

2.4.2 DoG based Enhancement

This Preprocessing technique employs a series of operations including Gamma

correction, Difference of Gaussian filtering and an equalization to enhance the
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over-lit or under-lit area of an image. Gamma correction is a nonlinear transfor-

mation that replaces gray-level i with iγ, for γ > 0. It enhances the local dynamic

range of the image in dark regions due to under-lit conditions, at the same time

suppressing the range of bright regions and highlights due to over-lit conditions.

Gamma correction alone is not capable to remove the influence of all inten-

sity variations, such as shadowing effects. Shading induced due to the facial sur-

face structure is useful information for recognition, whereas the spurious edges

generated due to shading introduce false information for recognition. Band-pass

filtering can help to retain useful information in face images while get rid of un-

wanted information or misleading spurious edge like features due to shadows.

DoG filtering is a suitable way to achieve such a bandpass behavior. As DoG

name suggests, it is basically a difference of 2D Gaussian filters Gσ1 and Gσ2 hav-

ing different variances (the outer mask is normally 2− 3 times broader than the

inner mask). The inner Gaussian Gσ2 is typically quite narrow (usually variance

σ2 ≤ 1 pixel essentially works as high pass filter), while the outer Gaussian Gσ1

is 2− 4 pixels wider, depending on the spatial frequency at which low-frequency

information becomes misleading rather than informative. Values for σ1 and σ2 are

set to 1 and 2 respectively based on experiments carried out on face databases[98].

The DoG as an operator or convolution kernel defined as

DoG ∼= Gσ1 − Gσ2 =
1√
2π

(
1
σ1

e
− x2+y2

2σ2
1 − 1

σ2
e
− x2+y2

2σ2
2 )

The resulting image still typically contains extreme values produced by high-

lights, small dark regions etc. Following approximation is used to re-scale the

gray values present in the pre-processed image.

I(x, y)← I(x, y)

(mean(min(τ, I(x, y))α)
1
α

(2.18)

here, I(x, y) is image intensity at (x, y) location, α is a strongly compressive expo-

nent that reduces the influence of large values, τ is a threshold used to truncate

large values after the first phase of normalization and the mean is average inten-

sity value of the image. By default, values of α and τ are set experimentally as
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0.1 and 10 respectively. The resulting image is well-scaled, but it may still con-

tain some extreme values, to reduce its effect a nonlinear mapping is done using

I(x, y)← τ × tanh(I(x, y)/τ), it scales whole image in the range of [−τ, τ].

2.4.3 Experiments and Results

The effect of LTISN and DoG based enhancement on recognition rates using ONPP

and MONPP is compared with the recognition rates without any pre-processing

and reported in this section. For unbiased results, the experiments are carried out

on 10 different realizations from Extended Yale-B [94] and CMU-PIE face database

[95].

Extended YALE-B Face Database The experiment is performed on 2432 frontal

face images of 28 subjects each with 64 illumination condition. Images are resized

to 60× 40 to reduce computation. Fig. 2.10 shows face images of a person with

24 different illumination direction along with pre-processed images using LTISN

enhancement and DoG enhancement respectively. Fig. 2.11 (left) and Fig. 2.11

(right) shows average recognition result of LTISN and DoG based enhancement

techniques respectively, combined with ONPP and MONPP with varying number

of nearest-neighbors(k) values 10, 15 and 20. The best recognition result achieved

with MONPP+LNIST is 99.84% at 110 dimension as listed in Table 2.4.

CMU-PIE face database The experiment is performed on 42 frontal face images

of 68 subjects with varying illumination. Fig. 2.12 (left) and Fig. 2.12 (right) shows

average recognition result of LTISN and DoG based enhancement techniques re-

spectively, combined with ONPP and MONPP with varying number of nearest-

neighbors(k) values 10, 15 and 20. MONPP+LNIST gives best recognition with

100% accuracy at 90 dimension as given in Table 2.4.
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Table 2.4: Comparison of performance of pre-processing techniques in the light of
recognition score (in %) of ONPP and MONPP

Database Extended Yale-B CMU PIE
Average Best (at dim) Average Best (at dim)

ONPP 92.51 93.42(140) 94.33 96.62(130)
ONPP+LTISN 97.84 99.10(250) 98.99 100(90)
ONPP+DoG 96.67 99.34(250) 98.63 99.95(160)

MONPP 94.07 95.80(120) 95.19 97.04(110)
MONPP+LTISN 99.53 99.84(110) 99.95 100(70)
MONPP+DoG 99.51 99.75(40) 99.07 100(50)
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(a)

(b)

(c)

Figure 2.10: (a) Face images form Yale-B database, (b) enhanced images using
LTISN, (C) enhanced images using DoG

41



(a) (b)

Figure 2.11: Results of recognition accuracy (in %) using (a) LNIST and (b) DoG
with ONPP and MONPP on Extended Yale-B

(a) (b)

Figure 2.12: Results of recognition accuracy (in %) using (a) LNIST and (b) DoG
with ONPP and MONPP on CMU-PIE
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2.5 Conclusion

Subspace based methods for face recognition have been a major area of research

and already proven to be more efficient. In this regard, Orthogonal Neighborhood

Preserving Projection (ONPP) is assumed to handle the intrinsic non-linearity of

the data manifold. The first step of ONPP deals with a linear model building

within local neighborhoods. This linearity assumption may not be valid for a

moderately large neighborhood. In the present work, this linear model is thus

replaced by a notion of non-linearity where a piece-wise nonlinear model (z-

shaped) is used instead. The suitability of the proposal is tested on non-linear

synthetic data as well as a few benchmark face databases. Significant and consis-

tent improvement in data compactness is observed for synthetic data where man-

ifold is surely nonlinear. This signifies the suitability of the present proposal to

handle non-linear manifold of the data. On the other hand, noticeable improve-

ment is obtained for the face recognition problem. The modification suggested

over existing ONPP though very simple but overall improvement in handwritten

numerals recognition and face recognition results is very encouraging.

To handle illumination variations present in face images captured under un-

controlled environment, a robust pre-processing technique is highly sought. In

this chapter, we adopt Locally Tuned Inverse Sine Nonlinear (LTISN) transforma-

tion and modify it to be used on gray-scale face images to nullify the illumination

variations present in the face database to improve the recognition rate. The re-

sult of recognition along with LTISN as pre-processing is compared with that of

another pre-processing technique called Difference of Gaussian (DoG). It is estab-

lished that MONPP performs better than ONPP for face recognition. It is also ob-

served that LTISN based enhancement followed by MONPP outperforms ONPP

with or without both DoG and LTISN enhancement techniques.
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CHAPTER 3

Class Similarity based Orthogonal Neighbor-

hood Preserving Projections

In supervised settings, conventional Orthogonal Neighborhood Preserving Pro-

jections (ONPP) uses knowledge of class labels to identify the neighbors of data

points. But when data points are closely placed or the classes are overlapping,

such hard decision rule may not help finding a good low dimensional represen-

tation. In this chapter, we are proposing a novel neighborhood selection rule

based on class similarity of data points to overcome the shortcomings of class

label based strict neighborhood selection rule. It is observed that Class Similarity

based ONPP (CS-ONPP) very well represents the relationship between neighbors

in low dimensional subspace. The proposed scheme CS-ONPP is used to recog-

nize face images as well as handwritten numerals images. Class Similarity based

neighborhood scheme achieves same recognition performance with significantly

less number of subspace dimensions as compared to conventional ONPP.

3.1 Introduction

For tasks such as face recognition, character recognition; supervised mode is bet-

ter suited where class labels of training data are available and class of test data

is to be predicted. In supervised ONPP, data points xi and xj belonging to the

same class are considered neighbors to each other thus the parameter k (number

of nearest neighbors) need not to be specified manually, it is automatically set to

number of data samples in particular class. The definition of neighborhood and
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the distance used to define this neighborhood have the paramount effect on the

learned manifold. Various approaches to define this neighborhood is attempted

in the past. It is proved in [99] that combining different distance matrices or dis-

similarity representations can often increase the performance of individual ones.

In [100], authors have proposed Supervised LLE (SLLE) that uses knowledge of

class label to modify the pair-wise distances that defines neighborhood. It blindly

adds a constant to the Euclidean distance, if the data points under consideration

are form two different class. This approach seems to work well with high di-

mensional data, but performs poorly on moderately low dimensional data. In

[101, 102], k-means clustering based approach is proposed to find neighbors of a

data point which is again an unsupervised approach that do not consider class

label knowledge to define neighborhood. Work documented in [103] proposes an

adaptive neighborhood of varying size based on local linearity.

We are proposing a novel neighborhood rule which takes advantage of pre-

processing stage of all dimensionality reduction techniques where high dimen-

sional data is projected on PCA subspace. Low dimensional PCA representation

of data is used with Logistic Regression (LR) [104] to find the probability of every

data point to belong into a particular class. Based on these probabilities a new dis-

tance measure - Class Similarity based distance is defined and used to find nearest

neighbors of data points.

3.2 Class Similarity based ONPP (CS-ONPP)

To incorporate underlying similarity between data points regardless of their class

label many works have been done, in [51] authors have proposed an Enhanced Su-

pervised LLE (ESLLE) where the Euclidean distance is simply modified by adding

a constant for the pairs of data that belongs to different class, keeping others un-

changed regardless of their similarity to other data points. Modified distance ∆′

is given by

∆′(xi, xj) =
∥∥xi − xj

∥∥+ α max(∆)S(i, j) (3.1)
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where, α ∈ [0, 1] is a tuning parameter. max(∆) indicates largest pair-wise dis-

tance. Class similarity function for ESLLE is only based on class labels given as

S(i, j) =

0; c(xi) = c(xj)

1; c(xi) 6= c(xj)
(3.2)

Essentially, ESLLE uses knowledge of class label to identify the neighbors of

data points and only to enlarge distance between data points those belong to dif-

ferent classes. The distance is modified with a constant increment of α max(∆) but

the scheme does not consider similarity between within class data and between

class data. When data points are similar they are closely placed in the high dimen-

sional space and thus, the classes are overlapping, such hard decision rule based

on class label may not help finding a good low dimensional representation. To

overcome this limitation of neighborhood finding rule, we are proposing a novel

neighborhood rule inspired by [105].

Instead of claiming a data point xi belonging to an unique class and modify-

ing distance accordingly, it makes much more sense that a data point belongs to a

class c with a certain probability pc and adjust distance based on class similarity.

If the data set has C classes, then for each data point we can build a C-dimensional

probability vector p(xi) = [p1(xi), p2(xi), ..., pC(xi)]
T where, pc(xi) is a probabil-

ity of data point xi belonging to cth class.

We used Logistic Discrimination (LD) to find probability of each data point xi

belonging to class c. For given data matrix X = [x1, x2, ..., xN] with known class

label, the LD assumes that the logit of the probability pcxi i.e. probability of data

point xi belonging to a certain class c is a linear combination of features of xi, that

can be given by

log(
π(xi)

1− π(xi)
) = α + βTxi

or specifically for class c,

π(xi; αc, βc) =
exp(αc + βc

Txi)

1 + exp(αc + βc
Txi)

, c = 1, ..., C. (3.3)

46



where αc ∈ R and βc ∈ Rmn are parameters for class c learned on training

data with class knowledge using maximum likelihood estimation.

Performing LD on high dimensional data causes huge computational burden,

thus we take advantage of pre-processing performed in ONPP and use lower di-

mensional representation sought using PCA to find these class probabilities for

each data point xi. Let zi be a lower dimensional PCA representation of xi to find

probability for class c. The Eq. (3.3) becomes

π(xi) = π(zi; αc, βc) =
exp(αc + βc

Tzi)

1 + exp(αc + βc
Tzi)

(3.4)

To find probability vector p(xi), each entry is the probability pc(xi) for class c

can be computed by

pc(xi) =
π(zi; αc, βc)

∑C
c=1 π(zi; αc, βc)

(3.5)

(3.6)

Note that, PCA representation [z1, z2, ...zN] carries class information form cor-

responding data points [x1, x2, ...xN].

For a pair of different data point xi and xj, we define class-similarity by

S(i, j) =

1; xi = xj

p(xi)
Tp(xj); xi 6= xj

(3.7)

Using this class-similarity we define a new distance measure ∆′,

∆′(xi, xj) =
∥∥xi − xj

∥∥+ α max(∆)(1− S(i, j)) (3.8)

Based on this new distance, neighbors for data point xi will be selected, which

incorporates class information as well as similarity among neighbors. The rest of

the method of finding subspace is similar to ONPP. Table 3.1 gives algorithm to

find Class-Similarity based ONPP subspace.
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Table 3.1: Class-Similarity based ONPP (CS-ONPP) Algorithm

Input: Dataset X ∈ Rmn×Nand number of reduced dimension d
Output: Lower dimension projection Y ∈ Rd×N

1: Find low dimensional representation zi of data by projecting on dpca dimen-
sional space using PCA (zi = VT

pcaxi)
2: Use Logistic Regression on zi to find class probability vector p(xi) corre-

sponding to data point xi
3: Calculate modified distance for all data point pairs ∆′(xi, xj) using Eq. (3.8)
2: Compute NN Nxi with modified distance∆′(xi, xj)
3: Compute the weight wij for neighbors xj ∈ Nxi for each datapoint xi
4: Compute Projection matrix V ∈ Rmn×dwhose column vectors are smallest

d eigen vectors of matrix M = X(I−W)(I−WT)XT

5: Compute Embedding on lower dimension by Y = VTX

3.3 Experiments and Results

Class-similarity based neighborhood selection approach is applied to ONPP and

MONPP, Now denoted as CS-ONPP and CS-MONPP. Recognition performance

of both the approaches are compared with respective conventional algorithm on

some well-known face databases and handwritten numerals databases.

3.3.1 Face Recognition

Face recognition experiments using proposed methods are performed on three

well-known face databases viz ORL face database [87] having 40 class, 10 images

each with variations in facial details. UMIST face database [88] has images of 20

people, with varying samples from 19 to 48 showing different poses. CMU-PIE

face database [95] consists of 38 classes with 42 images each having pose, illumi-

nation and expression variations. To maintain uniformity, all images are resized

to 40× 40, out of which 50% images are used for training and remaining images

are used for testing. To analyze the behavior of proposed method depending

on the parameters viz PCA dimensions dPCA, the tuning parameter α and ONPP

subspace dimension d, experiments are repeated with various set of (dPCA, α, d),

where values of dPCA are taken from 2:2:10, α ∈ [0.25, 0.50, 0.75] and ONPP sub-

space dimensions are considered from 5:5:1600. To achieve non-biased results,
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such 20 randomization for all set of (dPCA, α, d) were performed on all databases.

Among total 3× 5× 20 = 300 experiments, best recognition (in%) results achieved

with conventional ONPP and MONPP along with their subspace dimensions are

reported in Table 3.2 with subspace dimensions required for CS based approaches

to achieve the same recognition.

For all databases, it is observed that Class similarity based approaches achieve

better recognition at less number of subspace dimensions compared to conven-

tional approaches. For ORL database, CS-ONPP and CS-MONPP needs average

55 and 62 lesser subspace dimensions respectively as compared to conventional

methods. For UMIST, proposed methods needs on average 100 and 85 lesser sub-

space dimensions. In CMU-PIE data, CS-ONPP improved dimension reduction

with only a little margin, but CS-MONPP needs comparatively 700 less subspace

dimensions to achieve best recognition of conventional methods.

Table 3.2: Face Image data: Best Recognition Accuracy (%) achieved using ONPP
and MONPP with corresponding subspace dimensions. To achieve same recog-
nition accuracy, subspace dimensions required in CS-ONPP and CS-MONPP are
reported with corresponding tuning parameter α and PCA dimension dPCA

Conventional Class Similarity
Approach based Approach

Database Method Best subspace subspace
Recognition dimen- dimen- α dPCA
accuracy (%) sions sions

ORL ONPP 94.00 155 95 0.25 4
MONPP 94.50 150 85 0.25 4

UMIST ONPP 100 145 40 0.50 4
MONPP 100 105 20 0.50 4

CMU-PIE ONPP 93.86 955 945 0.50 4
MONPP 93.91 865 245 0.25 6

3.3.2 Text Recognition

Recognition experiments are also performed on handwritten numerals databases

namely, MNIST [83], Gujarati [84] and Devnagari [85] having nearly 68000, 13000

and 18000 images respectively. All images were resized to 30× 30. For all data

bases, 100 images from each digit were randomly selected for training and remain-
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ing images were used for testing. Best recognition results achieved with conven-

tional ONPP and MONPP along with their subspace dimensions are reported in

Table 3.3 with subspace dimensions required for CS based approaches to achieve

the best recognition. It is observed that Class-similarity based neighborhood se-

lection approach improves dimensionality reduction behavior by a good margin

compared to class-label based neighborhood approach.

Experimentally it has been observed that in MNIST database, the best recog-

nition can be achieved with average 45 lesser dimensions using CS-ONPP. CS-

MONPP achieves best recognition with average 45 lesser dimensions. In Devna-

gari handwritten numerals database, to achieve best recognition performance CS-

ONPP needs on average 20 less dimensions as compared to conventional method,

where as CS-MONPP needs average 15 less dimensions compared to its counter-

part. In Gujarati database, to reach best recognition performance of ONPP, CS-

ONPP needs average 30 less subspace dimensions, where as CS-MONPP, needs

average 27 less subspace dimensions compared to MONPP.

Table 3.3: Handwritten Numerals image data: Best Recognition Accuracy (%) us-
ing ONPP and MONPP with corresponding subspace dimensions. To achieve
same recognition accuracy, subspace dimensions d required using CS-ONPP and
CS-MONPP are reported along with tuning parameter α and PCA dimension
dPCA.

Conventional Class Similarity
Approach based Approach

Database Method Best subspace subspace
Recognition dimen- dimen- α dPCA
accuracy (%) sions sions

MNIST ONPP 86.52 90 40 0.50 4
MONPP 87.56 70 30 0.50 4

Devnagari ONPP 86.34 50 25 0.25 8
MONPP 87.94 40 25 0.50 4

Gujarati ONPP 91.76 60 40 0.50 6
MONPP 92.08 60 30 0.50 6
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It is also observed that the proposed neighborhood rule increases the perfor-

mance in terms of overall recognition accuracy. Table 3.4 reports best recognition

accuracy for proposed methods CS-ONPP and CS-MONPP along with parame-

ters subspace dimensions (d), tuning parameter α and PCA dimensions dPCA.

Table 3.4: Best Recognition Accuracy(%) of proposed CS-ONPP and CS-MONPP
along with parameters subspace dimensions (d), tuning parameter α and PCA
dimensions dPCA

CS-ONPP CS-MONPP
Database Accuracy (%) [d, α, dPCA] Accuracy (%) [d, α, dPCA]

ORL 97.50 55, 0.25, 4 98.50 30, 0.50, 4
UMIST 100 40, 0.50, 4 100 20, 0.50, 4

CMU-PIE 93.91 955, 0.75, 4 93.91 245, 0.75, 4

MNIST 88.42 30, 0.50, 4 90.21 40, 0.50, 4
Devnagari 88.89 35, 0.75, 4 90.01 35, 0.75, 2

Gujarati 92.24 55, 0.50, 6 92.42 45, 0.50, 6

3.4 Conclusion

In supervised settings conventional ONPP algorithm in the first step selects neigh-

bors based on the knowledge of class label, which may not be the best way to

select when data distribution is highly overlapping. Moreover, such class knowl-

edge based neighbor selection rule does not exploit similarity between two data

points from different classes while learning low-dimensional manifold. We pro-

pose a new neighborhood selection rule based on class similarity of data points.

PCA is used to find a lower dimensional representation of training data and Lo-

gistic Discriminator is used to calculate probability for each data point to belong

to a particular class, using this probability class similarity of data-point pairs is

computed. A new distance measure is defined based on the class similarity be-

tween two data points. Based on this new distance measure neighbors are de-

cided. Experiments performed on Face data and Handwritten numerals data

show that Class Similarity based ONPP (CS-ONPP) outperforms conventional

ONPP in recognition task and achieves superior recognition rates with compara-
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tively very less number of subspace dimensions. Similar behavior is also observed

in CS-MONPP. Also, CS-MONPP outperforms CS-ONPP.
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CHAPTER 4

Orthogonal Neighborhood Preserving Projec-

tion with Normalization

Subspace analysis or dimensionality reduction techniques are becoming very pop-

ular for many computer vision tasks such as image recognition, image denoising

etc. Some of these tasks requires image reconstruction after discarding few fea-

tures in projection space. Most DR techniques deal with optimizing a cost func-

tion based on some criteria imposed on either projections of data or on the bases

of the projection space. NPP and ONPP are such linear methods that preserve

local linear relationship within the neighborhood, with two different constraints,

normalized projection and orthogonal basis of subspace respectively. It is stated

in [80] that adding orthogonality constraint to Neighborhood Preserving Projec-

tion (NPP) improves the performance empirically in terms of recognition of high-

dimensional data, because orthogonality preserves distance well and balances the

weight on different projection directions [106, 107]. Including orthogonality con-

straint in the optimization problem and relaxing normalization constraint works

well in recognition problems, but normalization is also a necessary constraint

for application where reconstruction with less number of dimension is desired

[108, 109]. It is also established in [64] that 2D-ONPP fails at recognition task. The

2-dimensional variants of DR methods offer a great advantage in terms of less

computational complexity. This motivated us to propose a variant of ONPP that

gives normalized projections in the subspace having orthogonal bases - Orthog-

onal Neighborhood Preserving Projection with Normalization (ONPPn) for 1D

and 2D data which is suitable for image recognition as well as image reconstruc-
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tion application overcoming the limitations of NPP and ONPP. Following section

explains proposed method in detail.

4.1 Orthogonal Neighborhood Preserving Projection

with Normalization (ONPPn)

Image of size m× n is arranged into mn-dimensional vector resulting in data ma-

trix X = [x1, x2, ...xN] ∈ Rmn×N. The goal is to find a subspace with a set of or-

thogonal basis vectors represented by V ∈ Rmn×d to get normalized embeddings

Y = [y1, y2, ...yN] ∈ Rd×N in d dimensional subspace.

The cost function for ONPPn is the same as NPP and ONPP.

arg minF (Y) = arg min ∑
i

∥∥∥∥∥yi −
k

∑
j=1

wijyj

∥∥∥∥∥
2

arg minF (V) = arg min tr[VTXMXTV] (4.1)

with a normalization constraint (same as NPP)

vT
i XXTvi = 1, ∀i (4.2)

with an additional orthogonality constraint (same as ONPP)

vi
Tvk = 0, for i 6= k (4.3)

Lagrangian expression of optimization problem for finding the first basis vec-

tor v1, such that it gives normalized projections, can be written using normaliza-

tion constraint only,

L(v1) = tr[v1
TXMXTv1]− λ1(v1

TXXTv1 − 1) (4.4)
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Differentiating with respect to λ1,

δL(v1)

δλ1
= 0 =⇒ v1XXTv1 = 1 (4.5)

Differentiating with respect to v1 and equating to zero will give

2XMXTv1 − 2λ1XXTv1 = 0

XMXTv1 = λ1XXTv1 (4.6)

Solution for the first basis vector turns out to be a generalized eigenvalue prob-

lem, which is the same as NPP, where v1 is an eigen-vector corresponding to the

smallest eigenvalue λ1.

For the rest of the basis vectors vi, i = 2, 3, ..., d, problem results into minimiz-

ing Eq. (4.1) with constraint in Eq. (4.2) with an additional constraint in Eq. (4.3).

Lagrangian expression for vk

L(vk) =tr[vT
kXMXTvk]− λk(vT

kXXTvk − 1)−

µ1vT
kv1 − µ2vT

kv2....− µk−1vT
kvk−1 (4.7)

Equating partial derivative of L(vk) with respect to λk and µi, to zero will give

vT
kXXTvk = 1 and vT

kvi = 0 (for, all k 6= i) respectively, and differentiating L(vk)

with respect to vk and equating to zero will give

2XMXTvk − 2λkXXTvk − µ1v1 − µ2v2...− µkvk = 0 (4.8)

multiplying Eq. (4.8) with vk
T

2vT
kXMXTvk − 2λkvT

kXXTvk = 0

λk =
vT

kXMXTvk

vT
kXXTvk

(4.9)

multiplying Eq. (4.8) with vT
i [XXT]

−1, i = 1, 2, ..., k − 1, will result in set of
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k− 1 equations.

µ1vT
1 [XXT]−1v1 + µ2vT

1 [XXT]−1v2 + ... + µk−1vT
1 [XXT]−1vk−1

= 2vT
1 [XXT]−1[XMXT]vk

µ1vT
2 [XXT]

−1
v1 + µ2vT

2 [XXT]−1v2 + ... + µk−1vT
2 [XXT]−1vk−1

= 2vT
2 [XXT]−1[XMXT]vk

...

µ1vT
k−1[XXT]−1v1 + µ2vT

k−1[XXT]−1v2 + ... + µk−1vT
k−1[XXT]−1vk−1

= 2vT
k−1[XXT]−1[XMXT]vk

in general, ith equation can be written as

k−1

∑
j=1

µjvT
i [XXT]−1vj = 2vT

i [XXT]−1[XMXT]vk (4.10)

writing the set of k− 1 equations of Eq. (4.10) in a matrix form,

[U(k−1)]¯(k−1) = 2[V(k−1)]T[XXT]−1[XMXT]vk (4.11)

where, µ(k−1) = [µ1, µ2, ...µk−1]
T, V(k−1) = [v1, v2, ...vk−1] and

U(k−1) = [V(k−1)]T[XXT]−1[V(k−1)]

Lagrange’s kth multiplier µ(k−1) can be obtained by multiplying Eq. (4.11) with

[U(k−1)]−1

µ(k−1) = 2[U(k−1)]−1[V(k−1)]T[XXT]−1[XMXT]vk (4.12)

rewriting Eq. (4.8) in matrix form

2[XMXT]vk − 2λk[XXT]vk − [V(k−1)]µ(k−1) = 0
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multiplying with [XXT]−1

2[XXT]−1[XMXT]vk − 2λkvk − [XXT]−1[V(k−1)]µ(k−1) = 0

replacing µ(k−1)with its value from Eq. (4.12)

2[XXT]−1[XMXT]vk − 2λkvk

− 2[XXT]−1[V(k−1)][U(k−1)]−1[V(k−1)]T[XXT]−1[XMXT]vk = 0

{I−A}[XXT]−1[XMXT]vk = λvk (4.13)

where, A = [XXT]−1[V(k−1)][U(k−1)]−1[V(k−1)]T

Eq. (4.13) can be used to iteratively find orthogonal basis V such that the pro-

jection of data Y(= VTX) will result in normalized projection. The algorithm is

summarized in Table 4.1. It is important to mention that the derivation is based

on [110] that solves eigenvalue problem for each basis that handles orthogonality

as well as normalization constraint simultaneously.

An alternate solution, as suggested in [111] and [106] can also be derived

where projection matrix is recursively updated in ortho-complemented space.

Moreover, in the solution proposed in [111] and [110], a basis vector is randomly

initialized and then iteratively updated until convergence, so for d dimensional

subspace the computation of projection matrix V involves d recursive procedures

for a certain number of iterations until convergence is achieved for each basis.

The proposed approach on the other hand computes basis vector as a closed form

solution for each basis vector.

4.2 2-dimensional ONPPn (2D-ONPPn)

The main advantage offered by 2-dimensional variants of dimensionality reduc-

tion methods is computational efficiency, 1-dimensional techniques involve eigen-

value problem of order mn, which requires huge computational capacity and are

time consuming, whereas 2-dimensional approaches involve eigenvalue problem

of order m. Also the data matrix in 1D is created by rearranging 2D image into
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Table 4.1: The algorithm to find ONPPn embedding

INPUT: X = [x1, x2, ...xN]
OUTPUT: Projection matrix V

Y = [y1, y2, ...yN]
1: Find nearest neighbors Nxi for each data point xi
2: Compute weight matrix W
3: Compute matrix M = (I−W)T(I−W)
4: Find v1 by solving XMXTv1 = λ1XXTv1
5: for k = 2 to d

V(k−1) = [v1, v2, ...vk−1]

U(k−1) = [V(k−1)]T[XXT]−1[V(k−1)]

A = [XXT]−1[V(k−1)][U(k−1)]−1[V(k−1)]T

solve for vk by solving {I−A}[XXT]−1[XMXT]vk = λkvk
6: Project Data X on projection matrix V to achieve d-dimensional

embeddings Y

1D vector, thus losing inter-pixel similarity in at-least one direction of the image,

while in 2-dimensional methods keeps inter-pixel dependency in image as it is

[5]. Moreover, 2D approaches overcome the hurdle of under-sampled size prob-

lem which indicates that the number of samples is less than dimensions of data.

In 1D methods, dimensional of data is mn which is less than number of samples

N available for finding subspace, thus requires PCA to obtain initial subspace,

whereas data in 2D approaches is arranged in such a way that it takes care of

small-sampled size problem and do not require any pre-processing.

In 2D approaches, instead of rearranging m × n image into mn-dimensional

vector, images are rearranged side by side as a matrix, resulting in data matrix

X = [X1, X2, ...XN] ∈ Rmn×N, where Xi is ith image. The goal is to find a subspace

with a set of orthogonal basis vectors V ∈ Rm×d to get normalized embedding

Y = [Y1, Y2, ...YN] ∈ Rd×nN.

The cost function for 2D-ONPP will be the same as Eq. (4.1) with only a differ-

ent arrangement for 2D data,

arg minF (V) = arg min tr[VTX[(I−W)T(I−W)]⊗ In]XTV]

= arg min tr[VTX(M⊗ In)XTV] (4.14)
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First basis vector can be computed using generalized eigenvalue problem

X(M⊗ In)XTv1 = λ1XXTv1 (4.15)

The rest of the basis vectors can be found by iteratively solving ordinary eigen-

value problem using the equation

{I−A}[XXT]−1[X(M⊗ In)XT]vk = λkvk (4.16)

where, A = [XXT]−1[V(k−1)][U(k−1)]−1[V(k−1)]T

Table 4.2: Comparison between the optimization problems of NPP, ONPP and
ONPPn and its 2-dimensional variants. Here, X ∈ Rmn×N is data matrix for one-
dimensional methods and X2 ∈ Rm×nN is data matrix for two-dimensional meth-
ods, where N is number of images and m× n is image size.

Method Cost Function (min) Constraints Eigenvalue Problem

NPP Tr[VTXMXTV] VTXXTV = Id generalized

ONPP Tr[VTXMXTV] VTV = Id ordinary
ONPPn Tr[VTXMXTV] VTV = Id and iterative-

vT
i XXTvi = 1, ∀i solution (both)

2D-NPP Tr[VTX2(M⊗ In)X2
TV] VTX2X2

TV = Id generalized
2D-ONPP Tr[VTX2(M⊗ In)X2

TV] VTV = Id ordinary
2D-ONPPn Tr[VTX2(M⊗ In)X2

TV] VTV = Id and iterative-
vT

i X2X2
Tvi = 1, ∀i solution (both)

4.3 Experiments and Results

The performance of proposed algorithm ONPPn and its 2-dimensional variant

are tested under two different applications - recognition and reconstruction. This

section reports results of experiments performed using conventional method of

weighing neighbors and the modified weights proposed in chapter 2. This ar-

ticle also compares these algorithm with NPP with modified weighing scheme

now onward named as Modified NPP (MNPP), Modified ONPP (MONPP) and

Modified ONPPn (MONPPn). This study has included extensive experiments on

various well-known face database and handwritten numerals databases. The ex-
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periments are performed in supervised settings and NN is used as a classifier for

its simplicity.

4.3.1 Face Recognition

Recognition experiment is performed for all six methods discussed here on four

widely used face databases. To maintain uniformity among databases images

were resized to 32× 32. To avoid any bias due to random selection of training set,

20 iterations were performed, average results and best results for all approaches

are reported in Table 4.3. Nearest Neighbor (NN) is used as a classifier for its

simplicity.

ORL: The ORL database [87] contains gray scale face images of 40 individu-

als, 10 images each with variations in facial details (with or without glasses), fa-

cial expressions (open/closed eyes smiling/not smiling) and poses. Fig. 4.1 (a)

shows one sample subject from ORL database. 200 images from 40 individuals

(i.e. 5 from each) are selected randomly for training and the remaining 200 im-

ages are used as test set to evaluate the proposed technique in comparison with

existing methods. Fig. 4.1 (b) shows recognition rates using varying number of

dimensions (d) for all six methods. NPP and MNPP start with low recognition

rates with a small number of dimensions and recognition accuracy increases with

increasing number of dimensions. ONPP, MONPP, ONPPn and MONPPn have

respectable recognition rates, but the proposed methods ONPPn and MONPPn

outperform the other four methods with a huge margin, and methods with modi-

fied weights perform comparatively better than the conventional methods having

linear weights.

AR: AR face database [86] contains nearly 4000 color face images corresponding

to 126 people including 70 men and 56 women. Images feature frontal view faces

with variations in facial expressions, illumination conditions, and occlusions such

as glasses and scarves. The pictures were taken in two sessions, separated by two

weeks time. The same pictures were taken in both sessions. We have chosen 20
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Figure 4.1: ORL face data: (a) Sample images of one sample having variations in
pose and facial expressions. (b) Recognition accuracy (%) with varying number
of dimensions (d)

images from each class for experiments (not considering 6 images occluded with

scarves) and resized them to 32× 32, as shown in Fig. 4.2 (a), out of which 50%

images were used as a training set and remaining images were used for testing.

The recognition rates with varying number of dimensions (d) is shown in Fig. 4.2

(b). Performance of ONPPn and MONPPn surpasses other methods. Average and

Best recognition rates are reported in Table 4.3. Unlike ORL data, for AR database,

MNPP lags the performance of NPP, but MONPP and MONPPn performs as good

as ONPP and ONPPn, respectively.
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Figure 4.2: AR face database: (a) Sample images of two samples with variations
from left to right: natural expression, smile, anger, scream, left light on, right light
on, all lights on, wearing sunglasses, wearing sunglasses and left light on, wearing
sunglasses and right light on. (b) Recognition Accuracy (%) with varying number
of dimensions (d)
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Figure 4.3: UMIST face database: (a) Sample images of a person with varying
poses (b) Recognition Accuracy (%) with varying number of dimensions (d)
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Figure 4.4: Extended Yale-B database: (a) Sample images of frontal faces from
YaleB database. YaleB database has wide variation in illumination directions. (b)
Recognition Accuracy (%) with varying number of dimensions (d)

UMIST: UMIST database [88] have images of 20 people, with varying samples

from 19 to 48, having different poses. For experiments, first 20 images from each

class are taken as shown in Fig. 4.3 (a), out of which 50% are used for training and

the rest for the testing. Fig. 4.3 (b) shows the recognition rates for all six methods

with varying dimensions (d). Recognition rate of NPP is poor compared to the

other five methods for UMIST database, but recognition rates using ONPPn and

MONPPn outperforms MNPP, ONPP and MONPP with a good margin. Average

and best recognition rates for UMIST database are reported in Table 4.3.
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The extended Yale-B: The extended Yale-B database [94] have face images of 28

subjects with 9 poses and 64 varying illumination conditions. For experiments

2432 frontal face images are chosen and resized to 32× 32. Randomly 50% images

from each subject were taken as a training set, remaining images were used as

a test set. Fig. 4.4 shows randomly chosen sample images of a person from Ex-

tended Yale-B database. Recognition accuracy achieved with varying number of

dimensions (d) is shown in Fig. 4.4. Table 4.3 reports average and best recognition

achieved with all methods. Bold letters in the Table indicate best performance

among six methods compared. MONPPn outperforms other methods with con-

siderable margin.

Table 4.3: Comparison of performance of NPP, MNPP, ONPP, MONPP, ONPPn
and MONPPn on popular face databases in terms of recognition accuracy (in %)
with corresponding subspace dimensions (d)

Data Method NPP MNPP ONPP MONPPONPPn MONPPn

AR
Average 85.53 92.60 92.77 94.47 98.07 98.67

Best 87.2 89.33 94.00 96.41 98.60 99.20
(at dim d) (110) (160) (120) (130) (120) (110)

ORL
Average 86.50 87.00 94.20 94.37 96.93 98.91

Best 89.00 89.50 95.20 96.70 98.20 99.00
(at dim d) (155) (145) (155) (155) (40) (40)

UMIST
Average 97.33 86.53 96.50 97.16 99.00 99.00

Best 98.00 87.50 98.00 98.50 99.50 100.00
(at dim d) (170) (140) (165) (150) (45) (50)

Ex.YaleB
Average 80.42 81.58 84.80 87.01 92.41 94.20

Best 81.85 82.38 86.04 87.20 93.54 95.57
(at dim d) (140) (60) (160) (170) (120) (130)

Recognition in 2D-variants : Fig. 4.5 shows the recognition accuracy achieved

with 2D variants of NPP, as proved in [64] 2D orthogonal variants fails at recog-

nition tasks, compared to its 1D variant and normalized variants. Proposed tech-

nique tries to overcome the limitation of 2D orthogonal variant. As shown in Fig.

4.5 the recognition accuracy achieved with 2D-ONPPn and 2D-MONPPn is im-

proved greatly as compared to 2D-ONPP and 2D-MONPP, but the performance is

still inferior to 2D-NPP and 2D-MNPP. The similar behavior is observed on other

face and handwritten numerals databases. Hence, only results on AR database is
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reported here.
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Figure 4.5: Recognition accuracy (%) achieved using 2D variants on AR face
database

4.3.2 Text Recognition

To compare performance of ONPPn and MONPPn with other four methods, hand-

written numeral databases in English and three different Indian languages wiz

Gujarati, Bangla and Devnagari are used. To maintain uniformity across all databases,

images in each database is resized to 20× 20. Average and best recognition rates

are reported in Table 4.4.

MNIST Digit Database : The MNIST digit database [83] contains nearly 68,000

images of digits of size 28× 28. For this experiment, images are resized to 20× 20

and nearly 100 images out of each class were selected randomly as training set and

remaining images are used for testing. Recognition accuracy with varying num-

ber of dimensions (d) is shown in Fig. 4.6 (a). Due to the presence of huge vari-

ation in the data, it is expected that methods with modified weight will perform

better than methods with linear weights. For handwritten numerals data NPP

and MNPP fails at recognition with very poor performance. ONPP and MONPP

performs better than NPP and MNPP but proposed methods outperform all the

four existing methods with large margin.

Gujarati Numerals Database : The Gujarati Numerals database [84] has nearly

1300 images for each class, out of which 100 were randomly selected for training
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Figure 4.6: Recognition accuracy with respect to reduced number of dimen-
sions(d) for handwritten numerals databases (a) English MNIST (b) Gujarati (c)
Devnagari (d) Bangla

and the remaining were used for testing. Recognition rate of all methods with

varying number of dimensions d are presented in Fig. 4.6 (b), average and best

results are reported in Table 4.4. As seen in MNIST data, for Gujarati numerals

also NPP and MNPP fail in recognition, whereas recognition rate using ONPP and

MONPP increases with more number of dimensions, but it is still poor compared

to the proposed ONPPn and MONPPn.

Devnagari Numerals Database : Another database for Indian script Devnagari

was used for recognition experiment. Handwritten Devnagari database [85] have

approximately 1800 images for each class. Fig. 4.6 (c) shows average recognition

accuracy with varying number of dimensions (d), best and average results are

recorded in Table 4.4. The performance of all methods are similar to that on the

Gujarati and MNIST data, proposed methods surpasses the performance of other

existing methods used here.
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Bangla Numerals Database : Unlike other three numerals databases used here,

Bangla [85] have small number of samples accounting to 50 for each class. Out

of 50 images of each class 25 images were randomly chosen for training, remain-

ing images were used for testing. Fig. 4.6 (d) shows recognition accuracy for all

methods with varying number of dimensions (d), as it can be noticed that perfor-

mance of NPP and MNPP is slightly better in case of Bangla numerals compared

to other data, but it is still poor compared to other methods. Proposed methods

give higher recognition accuracy compared to other four methods. Table 4.4 re-

ports average and best recognition accuracy along with dimensions for Bangla

numerals.

Table 4.4: Comparison of performance of NPP, MNPP, ONPP, MONPP, ONPPn
and MONPPn on handwritten numerals databases in terms of recognition accu-
racy (in %) with corresponding subspace dimensions (d)

Database Method NPP MNPP ONPP MONPPONPPn MONPPn

English
Average 27.76 31.85 67.41 71.31 79.45 80.73

Best 28.50 33.38 70.24 74.83 83.94 84.99
(at dim d) (20) (25) (380) (380) (270) (215)

Gujarati
Average 27.89 28.78 78.72 81.55 88.37 89.91

Best 29.19 29.01 82.74 84.48 88.95 90.92
(at dim d) (5) (5) (370) (370) (235) (230)

Devnagari
Average 22.17 22.99 69.67 72.12 79.66 80.22

Best 23.19 25.29 71.79 74.05 80.07 80.91
(at dim d) (15) (10) (380) (380) (245) (200)

Bangla
Average 67.20 65.80 77.80 77.20 79.40 82.20

Best 69.40 67.60 79.20 80.40 81.20 85.60
(at dim d) (30) (25) (230) (230) (180) (80)

4.3.3 Image Reconstruction

The neighborhood preserving property of NPP can be quantified as E(vk) =

vT
k XMXTvk

vT
k XXTvk

which is essentially kth eigenvalue for given data. As shown in Fig. 4.7,

eigenvalue of ONPPn is consistently lower than that of NPP and ONPP, thus it

is expected that ONPPn will preserve neighborhood relationship better than NPP

and ONPP. Moreover, proposed method gives an orthogonal subspace which is

beneficial to reconstruct data point after discarding some of the dimensions in the
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Figure 4.7: Eigenvalues of NPP, ONPP and ONPPn. Eigenvalues of ONPPn are
consistently lower than that of NPP, which indicates that ONPPn has more neigh-
borhood preserving power than its non-orthogonal variant NPP. Eigenvalues of
ONPP are larger by nearly inthe order 104 than that of NPP and ONPPn.

projection space, because in case of orthogonal basis V, V† = (VTV)−1VT = VT.

As basis vectors of 2D-NPP are non-orthogonal, reconstruction after discarding

some of the dimensions in projection space involves calculation of Moore-Penrose

(pseudo)-inverse, that makes it computationally complex to reconstruct the data.

2D-ONPP and 2D-ONPPn both gives an orthogonal projection space, so can be

easily used for reconstruction of image data. The quality of reconstruction using d

dimensions can be measured using the reconstruction error Eri =
∥∥∥Xi −Vd(Vd

TXi)
∥∥∥2,

for orthogonal basis and Eri =
∥∥∥Xi −V†

d
T
(Vd

TXi)
∥∥∥2, for non-orthogonal basis. Here, Vd

contains first d eigen-vectors of respective projection matrix. Fig. 4.8 shows recon-

struction error using d = {10, 20, ..., 80(all)} dimensions for 2D-NPP (2D-MNPP),

2D-ONPP (2D-MONPP) and 2D-ONPPn (2D-MONPPn) methods. Fig. 4.9 shows

that 2D-NPP (2D-MNPP) can reconstruct data, but involves huge calculations,

whereas 2D-ONPP (2D-MONPP) can reconstruct an image but with very high er-

ror rates at low dimensions, satisfactory results can not be achieved even at 90%

of dimensions are retained in projection space. In comparison to 2D-ONPP (2D-

MONPP), 2D-ONPPn (2D-MONPPn) excels at reconstruction, as can be seen from

Fig. 4.8, the structure of face is retained only with nearly 60% of dimensions, the

reconstruction error consistently reduces and fall to zero when no dimensions are
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discarded in projection space (refer to Table 4.5).

(a) (b) (c) (d) (e) (f)

Figure 4.8: Reconstruction of a face image from ORL database using (from top
to bottom) 10,20,30,40,50,60,70 and 80 dimensions from projection space using (a)
2D-NPP (b) 2D-MNPP (c) 2D-ONPP (d) 2D-MONPP (e) 2D-ONPPn and (f) 2D-
MONPPn
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Figure 4.9: Reconstruction error calculated for face image shown in Fig. 4.8 with
varying number of dimensions retained in the projection space using 2D-NPP,
2D-MNPP, 2D-ONPP, 2D-MONPP, 2D-ONPPn and 2D-MONPPn

Table 4.5: Reconstruction error of 2D variants 2D-NPP, 2D-MNPP, 2D-ONPP, 2D-
MONPP, 2D-ONPPn and 2D-MONPPn for face image shown in 4.8

dim(d) 10 20 30 40 50 60 70 80
2D-NPP : 61.58 59.49 57.80 56.27 54.55 43.81 24.74 5.07E-12

2D-MNPP : 61.64 60.89 58.08 55.24 53.58 44.66 35.55 4.27E-12
2D-ONPP : 61.72 61.72 61.72 61.71 61.68 61.47 59.81 1.05E-13

2D-MONPP : 61.72 61.72 61.72 61.71 61.68 61.48 60.07 9.31E-14
2D-ONPPn : 61.72 60.49 45.34 41.02 28.18 15.77 11.20 1.34E-18

2D-MONPPn : 61.72 60.49 45.34 41.03 28.18 15.77 11.20 1.14E-18
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4.4 Discussion

• 1D approaches Vs. 2D approaches: NPP gives decent recognition rates but

ONPP is better at recognition task, whereas 2D-ONPP fails at recognition

task [64], which led us to proposing a new method which forces projection

to be normal in an orthogonal subspace. The proposed method drastically

improves recognition rate for 1D approaches. Adding normalization con-

straint increases the recognition rate of 2D-ONPP also, which is comparable

to that of 2D-NPP.

• Normalization and Orthogonality: Reconstructing data with non-orthogonal

subspace involves huge calculations. Orthogonal subspace is necessary for a

meaningful reconstruction of data, but as observed in reconstruction exper-

iments documented in Section 4.3.3 only orthogonal subspace is not enough

to give a good reconstruction with reduced dimensions, but normalized pro-

jection plays an important role in reconstruction, adding normalization con-

straint on projection of data improves reconstruction significantly at lesser

number of dimensions than that of 2D-ONPP.

• computational and time complexity: NPP (MNPP) and ONPP (MONPP)

involve non-iterative closed form solutions in forms of generalized eigen-

value problem and ordinary eigenvalue problem, respectively. On the other

hand, proposed methods ONPPn (MONPPn) and 2D-ONPPn (2D-MONPPn)

involves solving eigenvalue problems iterative manner for a matrix of in-

creasing size (for d = 1 to d = mn for 1D variants and d = 1 to d = m for 2D

variants), thus have higher computational complexity. Table 4.6 lists compu-

tational complexity for all six methods. Table 4.7 reports time taken to find

bases matrix when 1000 images of size is 32 × 32 are considered as train-

ing set. Configuration of machine used is Intel Xeon R© E5-2620 @ 2.40GB, 24

core, 64-bit with 2GB RAM allocation.
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Table 4.6: Computational complexity for calculating basis matrix for all methods
for an image size of m× n

Method NPP/ MNPP ONPP/ MONPP ONPPn/ MONPPn
1D O(m3n3) O(m3n3) O(m4n4)
2D O(m3) O(m3) O(m4)

Table 4.7: Time taken (in ms) for calculating basis matrix for all methods

Method NPP MNPP ONPP MONPP ONPPn MONPPn
1D 2356 612 2148 598 4208 3519
2D 199 43 193 42 330 223

4.5 Conclusion

Linear dimensionality reduction techniques such as PCA, LPP, NPP and ONPP try

to solve an optimization problem with some constraints either on projected data

or on projection space. The present work proposes 1D and 2D variants of NPP

that give normalized projection in an orthogonal projection space simultaneously

- ONPPn and 2D-ONPPn. Recognition experiments were performed using both

the variants on well-known face databases and hand-written numerals databases,

for 1D versions of NPP, ONPP and ONPPn. Experiments were also performed us-

ing a modified weighing scheme namely MNPP, MONPP and MONPPn. ONPPn

(MONPPn) outperforms NPP (MNPP) and ONPP (MONPP) in recognition task.

It is an established fact that 2D variants of dimensionality reduction methods are

computationally helpful, but they do not give competitive recognition results, ex-

periments stated in this article shows that the recognition accuracy of 2D-ONPP

can be increased by adding a normalization constraint with an added computa-

tional cost. On the other hand, methods that seek only normalized projection are

not able to reconstruct the data effectively, an orthogonal subspace is advanta-

geous for reconstruction. 2D-NPP involves huge calculations because of its non-

orthogonality, 2D-ONPP can reconstruct the images but does not provide dimen-

sionality reduction, where as proposed 2D-ONPPn is able to reconstruct an image

with less number of dimensions and gives better result with lower reconstruction

error as compared to 2D-ONPP.
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CHAPTER 5

l1−norm based Orthogonal Neighborhood Pre-

serving Projections (L1-ONPP)

All Dimensionality Reduction (DR) techniques try to optimize an error functions

based on some criteria imposed either on original data points in higher dimen-

sional space and/or on its embedding in lower dimensional space. Most of these

error functions are formulated using l2-norm, which is not robust to the outliers.

In [112], it is proved that LLE is susceptible to the presence of outliers. Being a

linear extension of LLE, ONPP inherits this sensitivity towards outliers present in

the data. However, recently, due to the capability of handling outliers, l1-norm

optimization is drawing the attention of researchers [113]. The work documented

here is the first attempt towards the same goal where Orthogonal Neighborhood

Preserving Projection (ONPP) technique is performed using optimization in terms

of l1-norm to handle data having outliers.

In recent times, many DR techniques involve l1-norm optimization [114, 115,

116, 117]. This chapter proposes a method that uses L1-PCA algorithm given in

[114] to achieve l1-norm based ONPP (now onward denoted as L1-ONPP). This

work firstly documents the experiments performed on synthetic data using L2-

ONPP, showing susceptibility of it towards outliers. Secondly, the relationship

between ONPP and PCA is established and proved theoretically, the experiments

performed on synthetic as well as real data support the claim that ONPP bases

can be obtained using PCA. L1-PCA is used to obtain L1-ONPP and performance

of L2-ONPP and L1-ONPP in the presence of outliers is compared. Experimental

outcomes imply that L1-ONPP outperforms L2-ONPP while dealing with the data
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having outliers.

5.1 l1-norm for Dimensionality Reduction

As discussed, all conventional DR techniques employ optimization of a cost func-

tion expressed using l2-norm. Conventional ONPP proposed in [80] is also based

on l2-norm optimization. Despite the fact that it has been employed successfully

in many problems like face recognition, it is prone to the presence of outliers be-

cause the effect of the outliers with a large norm is magnified by the use of the

l2-norm. In order to mitigate this problem and achieve robustness against out-

liers, research has been performed on dimensionality reduction techniques based

on l1-norm. Many works have been done in PCA and LDA based on the use of

l1-norm [114, 115, 116, 118, 119]. Not many efforts have been put into the use

of l1-norm based methods in recently proposed DR techniques such as LPP and

ONPP.

In [119], instead of assuming that each component of error between the origi-

nal data point and its projection follows a Gaussian distribution, it is assumed to

follow a Laplacian distribution and maximum likelihood estimation was used to

formulate l1-norm PCA (L1- PCA) basis for the given data. In [119], a heuristic

estimation approach for general l1-norm problem was applied to solve L1-PCA

optimization. Whereas in [120], convex programming methods and the weighted

median method were proposed for l1-norm PCA. Despite Being robust, L1-PCA

has several disadvantages, it is computationally expensive because it is based on

linear or quadratic programming. [117] discusses 2D variants of l1-norm PCA. In

[118], proposed R1-PCA, bands together the merits of L2-PCA and those of L1-

PCA. R1-PCA is rotational invariant like L2-PCA and it also overcomes the effect

of outliers as L1-PCA does. However, these methods are highly dependent on the

dimension d of a subspace to be found. For example, the projection vector ob-

tained when d = 1 may not be in a subspace obtained when d = 2. Moreover, as

it is an iterative algorithm so for a large dimensional input space, it takes a lot of

time to achieve convergence. Let us now discuss the work done on l1-norm based
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PCA in [114].

5.1.1 L2-PCA and L1-PCA

Let each data point xi be a column of X such that X = [x1, x2, ...., xN] ∈ Rmn×N be

the given data matrix, where mn denotes dimensions of the original input space

and N denotes number of data samples. Without the loss of generality, data is

assumed to be centered at origin i.e. x̄ = 0. L2-PCA tries to search a d(<mn) di-

mensional linear subspace such that the bases vectors capture the direction of

maximum variances by minimizing the cost function in terms of l2-norm:

arg max E(y) = arg max
y

N

∑
i=1
‖ yi − ȳ ‖2 (5.1)

where, yi = VTxi

Thus, for projection matrix V, cost function can be written as

arg max E(V) = arg max
V

N

∑
i=1
‖ VTxi −VTx̄ ‖2

= arg max
V

N

∑
i=1
‖ VTxi ‖2

arg max E(V) = arg max
V

‖ VTX ‖2 (5.2)

s. t. VTV = Id

where, V ∈ Rmn×d is the projection matrix and its d columns are the bases of

the d dimensional linear subspace. Closed form solution in terms of eigenvalue

problem Cv =λv where C is co-variance matrix of data.

Whereas, in PCA-L1 proposed in [114], instead of finding bases in the origi-

nal data space that capture the direction of maximum variances which is based

on the l2-norm, a method that maximizes the dispersion in terms of l2-norm in

the feature space is presented to achieve robust and rotation invariant PCA. The

approach presented in [114] for l1-norm optimization is iterative and also proven
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to find a locally maximal solution.

Maximizing the dispersion in the feature space using l1-norm can be formu-

lated as

arg max E(V) = arg max
V

‖ VTX ‖1 (5.3)

Since the closed form solution of problems involving l1-norm is not possible,

the basis are sought iteratively as follows:

For d = 1

v1 = arg max
v

‖ vTX ‖1= arg max
v

∑N
i=1|vTxi| (5.4)

s. t. ‖ v ‖2 = 1

For d > 1:

Once the basis in the direction of ith maximum variance vj (v1 for first basis) is

sought by solving Eq. (5.4), the data is projected on this newly found basis vector.

For rest of the basis vectors vj (2 ≤ j ≤ d) the same maximization problem given

in Eq. (5.4) is solved on projected data (Xj = Xj−1 − vj−1(vT
j−1Xj−1)) iteratively,

which essentially means in every iteration, direction of maximum variance in fea-

ture space is sought, until desirable d(d < mn) dimensional space is achieved.

Algorithm to compute bases of PCA-L1[114]:

For d = 1:

1. Initialization:

Pick any v(0)

Set v(0)← v(0)/ ‖ v(0) ‖2

Set t = 0.

2. Polarity Check:

∀i ∈ 1, ..., N,
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if vT(t)xi < 0, pi(t) = −1,

otherwise pi(t) = 1

3. Flipping and maximization:

Set t← t + 1

Set v(t) = ∑N
i=1 pi(t)xi

Set v(t)← v(t)/ ‖ v(t) ‖2

4. Convergence Check:

a. if v(t) 6= v(t− 1), go to Step 2.

b. Else if there exists i such that vT(t)xi = 0,

set v(t)← (v(t) +∆v)/ ‖ v(t) +∆v ‖2 and go to step 2. (Here, ∆v is a small

nonzero random vector.)

c. Otherwise, set v∗ = v(t) and stop.

For d > 1:

For j = 2 to d,

1. Projecting Data:

Xj = Xj−1 − vj−1(vT
j−1Xj−1)

2. Finding L1-PCA basis:

in order to find vj, apply L1-PCA procedure to Xj

end

5.2 L1-ONPP using PCA-L1

As stated in Section 5.1, ONPP [80] is a linear extension of LLE and thus inher-

its the sensitivity of LLE towards outliers. The degradation in manifold learning

when the data have outliers inspired the use of l1-norm minimization in ONPP to

tackle the outliers. In order to use PCA-L1 to achieve L1-ONPP, a relationship be-

tween PCA and ONPP in established in this Section. Firstly ONPP and a modified

variant of ONPP namely MONPP is explained in detail in Section 5.2.1, followed
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by a theoretical explanation of a relation between PCA and ONPP. Section 5.2.3

explains how PCA-L1 can be used to compute L1-ONPP bases.

5.2.1 L2-ONPP and L2-MONPP

ONPP and MONPP both use l2-norm optimization to find projection matrix, thus

inherit the susceptibility of LLE to the presence of the outliers. Optimization prob-

lem of finding ONPP embedding can be posed as a minimization problem with

cost function

arg min E(Y) = arg min
Y

N

∑
i=1
‖ yi −

N

∑
j=1

wijyj ‖2

The projection matrix V can be achieved by solving

arg min E(V) = arg min
V

N

∑
i=1
‖ VTxi −

N

∑
j=1

wijVTxj ‖2

s. t. VTV = Id (5.5)

This optimization problem results in an eigenvalue problem with the closed

form solution. The eigen-vectors corresponding to the smallest d eigen-values of

matrix M = X(I −W)(I −WT)XT constitutes the basis of the low dimensional

ONPP space. ONPP explicitly maps X to Y, which is of the form Y = VTX, where,

each column of V is an eigen-vector of M.
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Figure 5.1: Illustration of data point xi (represented by a blue square), its recon-
struction x

′
i using neighbors (represented by a red circle) Nxi and error vector eri

(represented by a green diamond). ith reconstruction error vector is denoted by
eri

5.2.2 ONPP as a PCA on Reconstruction Error

Rewriting the Eq. (5.5) and Eq. (5.5) in a matrix form, to establish the relationship

between ONPP and PCA:

arg min E(Y) = arg min
Y

‖ Y− YW ‖2 (5.6)

arg min E(V) = arg min
V

‖ VTX−VTXW ‖2

= arg min
V

‖ VT(X− XW) ‖2

arg min E(V) = arg min
V

‖ VTEr ‖2 (5.7)

s. t. VTV = I

Now comparing the optimization problems of PCA (Eq. (5.2)) and the opti-

mization problem of ONPP (Eq. (5.6)), both results into an eigenvalue problems

and have closed form solutions in term of eigen-vectors. Eq. (5.2) is maximization

problem thus the bases vectors of PCA are eigen-vectors corresponding to largest

d eigenvalues, where as Eq. (5.6) is minimization problem thus the desired ONPP

bases are eigen-vectors corresponding to smallest d eigenvalues.

In other words, ONPP can be stated as a PCA of reconstruction errors, con-

ventional ONPP algorithm is essentially finding the basis vectors V such that
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it actually captures the directions of minimum variances of reconstruction error.

Thus, finding the strongest ONPP basis is same as finding the weakest basis of

PCA when performed on the reconstruction errors Er. Each column of Er is a

reconstruction error for ith data point and calculated using its neighbors and cor-

responding weights wij

eri = xi −
N

∑
j=1

wijxj (5.8)

This relationship of PCA and ONPP bases is verified in experiments performed

on the synthetic data and it is observed that the ONPP bases obtained using the

conventional L2-ONPP algorithm and ONPP bases obtained using L2-PCA on re-

construction error are same. Details of this experiment are documented in Section

5.3.

5.2.3 L1-ONPP using PCA on Reconstruction Error

Once the relationship between L2-PCA bases and L2-ONPP bases is in place, it is

evident that PCA algorithm can also be used to find ONPP bases. This led to the

use of existing l1-norm based PCA algorithms to solve L1-ONPP optimization

problem. Rewriting L2-ONPP optimization problem in Eq. (5.5) using l1-norm

minimization, we have

arg minF (Y) = arg min
Y

N

∑
i=1
‖ yi −

N

∑
j=1

wijyj ‖1

s. t., VTV = I (5.9)

In matrix form,
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arg minF (Y) = arg min
Y

‖ Y− YW ‖1

arg minF (V) = arg min
V

‖ VTX−VTXW ‖1

= arg min
V

‖ VT(X− XW) ‖1

= arg min
V

‖ VTEr ‖1 (5.10)

The problem stated in Eq. (5.10) is similar to problem stated in PCA-L1 (Eq.

(5.4)), thus the solution of Eq. (5.4)) can be used to solve Eq.(5.10). L1-ONPP

bases can be found using any l1-norm based PCA algorithm when performed

on reconstruction error matrix Er. As discussed in Section 5.1 many l1-norm

based PCA methods have been developed which find bases vectors through lin-

ear or quadratic programming. These methods are computationally expensive.

The PCA-L1 algorithm [114] used here is a robust as well as fast l1-norm based

method. PCA-L1 converts the l1-norm variance into a direct sum of signed train-

ing points into projection space. The bases vectors are updated by the sum of

signed training points. As a result, the convergence procedure is fast. Refer to

[114] for the proof.

L2-ONPP involves the closed form solution which involves eigenvalue prob-

lem of matrix size mn × mn. L1-ONPP is computationally costly because it in-

volves an iterative procedure, each basis vector vk starts from a random mn di-

mensional vector and polarity check, flipping and maximization is performed it-

eratively until vk converges.

Comparing Eq. (5.10) of L1-ONPP with Eq. (5.4) of L1-PCA, we can intuitively

state that the component in the direction of minimum variance gives the strongest

ONPP basis. Considering reconstruction error between a data point xi and its

approximation x
′
i as a vector eri, which is also a point in mn-dimensional space

(as shown in Fig. 5.1) PCA-L1 can be performed on the reconstruction errors to

search for the d-dimensional space such that the bases vectors are in the direction

of minimum variances of these reconstruction errors. Such bases can be computed

using proposed algorithm given in Table 5.1.
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Table 5.1: L1-ONPP Algorithm

Input: Dataset X ∈ Rmn×Nand number of reduced dimension d

Output: Lower dimension projection Y ∈ Rd×N

1: Compute NN with class label information (in supervised mode) or using

k-NN algorithm (in unsupervised mode).

2: Compute the weight wij for each neighbor of xi data point xj ∈ Nxi

3: Compute reconstruction error matrix Er using equation (5.8)

4: Set v0 = 0, Er0 = Er

5: for (j = 1, j ≤ d,++ j) do

6: Set Erj = Erj−1 − vj−1(vT
j−1Erj−1)

7: Initialize v(0)

8: Set t = 0

9: for(i = 1; i ≤ N;++ i) do

10: if v(t)Teri
j < 0 then

11: pi(t) = −1

12: else

13: pi(t) = 1

14: end if

15: end for

16: Set t = t + 1

17: Set v(t) = ∑N
i=1 pi(t)eri

j

18: Set v(t)← v(t)/ ‖ v(t) ‖2

19: if v(t) 6= v(t− 1) then

20: Go to Step 9.

21: else if There exists i such that vT(t)eri
j = 0 then

22: Set v(t)← (v(t) + ∆v)/ ‖ v(t) + ∆v ‖2 and go to step 9.

(Here, ∆v is a small nonzero random vector.)

23: else

24: Set vj = v(t)

25: end if

26: end for

27: Project X on L1-ONPP space using V to get embeddings Y = VTX.
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5.3 Experiments

To validate the theoretical conclusion on the relationship between ONPP and

PCA, experiments were performed on the synthetic as well as real data as doc-

umented in this Section.

5.3.1 A small problem with Swiss role data

(a)

(b)

Figure 5.2: L2-ONPP performed on Swiss role data (a) Continuous manifold (left),
sampled 3D data (middle) and its 2D representation using strongest 2 basis of
ONPP (right) (b) Continuous manifold (left), sampled 3D data corrupted with
additional outliers from uniform distribution (middle) and its 2D representation
using strongest 2 basis of ONPP (right)

In literature, the definition of an outlier is given as a data point that seems to

be taken from an entirely different distribution. To observe the effect of outliers on

L2-ONPP algorithm, an experiment was performed on Swissrole data. Over 2000
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3-dimensional data points were randomly sampled from a continuous Swissrole

manifold. 2-dimensional embedding of clean data were found using L2-ONPP

as shown in Fig. 5.2(a-right). Now 50 data points (nearly 2.5% of clean data)

from a normal distribution are added to these 2000 clean data point as outliers,

2-dimensional embedding of this data are also found using L2-ONPP as shown in

Fig. 5.2(b-right).

Comparing embedding from clean data (Fig. 5.2(a)) and embedding from data

having outliers (Fig. 5.2(b)), it can be observed that global structure, as well as lo-

cal geometry is well preserved in case of clean data. Whereas in case of noisy data

(Fig. 5.2(b)), 2-dimensional representation is distorted. The reason is all neighbors

of the clean data point may not lie on a locally linear patch of a manifold in the

presence of outliers, which leads to the biased reconstruction. On the other hand,

the neighborhood patch of the outlier will be comparatively very large and thus

does not capture local geometry very well, as the effect of large distance is exag-

gerated by the use of l2-norm. It has been known that l2-norm based techniques

are not robust, in the sense that the presence of outliers can arbitrarily skew the

solution from the desired solution.

Another experiment was performed to analyze the effectiveness of proposed

algorithm in the presence of varying numbers of outliers. As shown in Fig. 5.3(b),

1000 3D clean data points were sampled from continuous S-shaped manifold

shown in Fig. 5.3(a). Fig. 5.3(c) and Fig. 5.3(h) show the 2D representation of

clean data using L2-ONPP and L1-ONPP respectively. The clean data was cor-

rupted with 100, 200, 300 and 400 outliers sampled from a uniform distribution.

Fig. 5.3(d) to (g) shows the 2D representation of noisy data using L2-ONPP and

Fig. 5.3(i) to (l) shows the 2D representation of noisy data using L1-ONPP. As

it can be seen from this experiment L1-ONPP very well handles outliers by pre-

serving intrinsic neighborhood relations as well as global geometry of data. On

the contrary, increasing density of outliers distorts the learned manifold using L2-

ONPP in increasing manner, the presence of outliers even affects the orientation

of data as can be seen from Fig. 5.3 (d) and (e).
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(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 5.3: Manifold learning on S-Curve data (a) Continuous manifold (b) Sam-
pled clean 3D data points. Its 2D representation using strongest 2 basis of L2-
ONPP starting with (c) to (g) with clean data, 100, 200, 300 and 400 outliers re-
spectively. Its 2D representation using strongest 2 basis of L1-ONPP starting with
(h) to (l) with clean data, 100, 200, 300 and 400 outliers respectively.

5.3.2 Comparing Bases of L2-PCA, L2-ONPP and L1-ONPP

To validate the relationship between PCA and ONPP as described in Section 5.2.1

the experiment was performed on synthetically generated data. 2D data was ran-

domly generated to form 7 clusters with 100 data point each resulting in 700 data

points. The clusters are closely placed and slightly overlapping, 2 out of 7 were

slightly separated as shown in Fig. 5.4(a). L2-ONPP bases were found using the

conventional algorithm and another set of bases vectors were computed by per-

forming L2-PCA on reconstruction error. The bases found using both methods are

same.
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L2-norm ONPP basis [Fig. 5.4(a)]

1st basis : [0.6361, 0.7716]T 2nd basis: [−0.7716, 0.6361]T

PCA basis on Reconstruction errors [Figure 5.4(b)]

1st basis : [0.6360, 0.7717]T 2nd basis: [−0.7717, 0.6360]T

Figure 5.4(c) shows that L2-ONPP bases are essentially pointing the direction

in which the variance of reconstruction error is minimum. Note that the recon-

struction error of all data point is centered at origin (same as the assumption in

PCA that the data points are mean centered) For this data, L1-ONPP bases were

computed using PCA-L1 algorithm. As it can be seen from Figure 5.4(d) the pro-

jection basis are tilted towards the outlier data.

L1-norm ONPP basis [Figure 5.4(b)]

1st basis : [0.4741, 0.8805]T 2nd basis: [−0.8805, 0.4741]T

In this experiment, the residual error was observed for both, L2-ONPP and L1-

ONPP. The residual error is a measure of how well the information is preserved

while projecting data on lower dimensional space using few strongest bases while

discarding other dimensions. In this case, the data was projected using only 1

dimension using the strongest basis vector. The average residual error was calcu-

lated using

eavg =
1
N

N

∑
i=1

xi − v1(vT
1 xi) (5.11)

The average residual errors of L2-ONPP and L1-ONPP are 2.3221 and 0.7894, re-

spectively. Thus. it can be concluded that L1-ONPP is less susceptible to outliers

compared to L2-ONPP. The same behavior related to residual error is observed

with real data also as stated in the following experiment.
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(a) (b)

(c) (d)

Figure 5.4: A toy example with 700 data samples from 7 clusters. Solid line rep-
resents first projection basis and dotted line represents second projection basis (a)
Projection basis using conventional L2-ONPP (b) Projection basis using L2-PCA
on reconstruction basis (c) Projection basis overlapped on reconstruction errors
(d) Projection basis using proposed L1-ONPP

5.3.3 Experiment with IRIS dataset

To further compare the behavior of L2-ONPP and L1-ONPP regarding residual

error and performance in classification task, IRIS data from UCI Machine Learn-

ing Repository [121] is used. The data-set contains 150 instances of 4-dimensional

data belonging to three different classes. The residual error obtained while recon-

structing the data using a varying number of dimensions is shown in Fig. 5.5.

Table 5.2 lists the residual errors using the different number of dimensions, as

it can be seen, the residual error is less in L1-ONPP as compared to L2-ONPP

which significantly improves classification error at lower dimensions. When in

86



case of all 4 dimensions are used in projection space, the projection of data spans

entire original space, thus the residual error drops to almost zero for both meth-

ods, L2-ONPP and L1-ONPP. Similar behaviors expected for classification also at

4 dimensions, as can be seen from Table 5.2 the classification error at 4 dimen-

sions yields greater than the lower dimension representation because it includes

the redundant details present in higher dimensions. The same behavior at higher

dimensions can be observed in all DR techniques. Here, Nearest Neighbor (NN)

is used as a classifier.

Table 5.2: Comparison of performance in terms of residual error and classification
error (in %) of L2-ONPP and L1-ONPP with varying number of dimensions on
IRIS data

Residual Error Classification Error (%)
Dim L2-ONPP L1-ONPP L2-ONPP L1-ONPP

1 7.8614 7.8546 16.00 13.00
2 7.7450 7.6730 6.67 4.00
3 7.0055 5.6545 5.33 2.67
4 1.44e-15 1.45e-15 6.67 6.67

(a) (b)

Figure 5.5: Performance comparison of L2-ONPP and L1-ONPP with respect to
varying number of dimensions used to reconstruct the IRIS data in terms of (a)
Residual Error (b) Classification Error(%)

5.3.4 Experiment with Handwritten Numerals

Handwritten text or numerals have huge variations in terms of shape, stroke

width, orientations and pattern, thus makes an ideal data to test the capacity of

L1-ONPP to handle outliers. To compare the performance of L1-ONPP and L2-

ONPP with real-world data having outliers, three handwritten numeral databases,
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one English and two different Indian scripts Gujarati and Devanagari are used.

The images in each database are resized to 30× 30 to maintain uniformity across

all three databases.

(a) (b) (c)

Figure 5.6: (a) Examples of 2s in the MNIST database first 100 examples.
(b)Examples of 7s in the Gujarati database first 100 examples. (c) Examples of 4s
in the Devnagari Numerals database first 100 examples. Notice the very diverse
shape, stroke width, orientation and pattern of different digits.

English Numerals

The MNIST database [83] is a large database of handwritten English digits which

contains nearly 68,000 images of each digit. Some of the examples of digit ′2′ are

shown in Figure 5.6(a). 1000 samples were selected randomly such that each digit

is equally present in the training, while remaining samples were used for test-

ing. Average recognition accuracy of 20 randomizations are reported here. Per-

formance of L2-ONPP, L2-MONPP are compared with L1-ONPP and L1-MONPP

with varying number of dimensions as shown in Figure 5.7. As it can be seen

L1-ONPP and L1-MONPP outperforms its L2-norm counterparts with a large dif-

ference. Best average recognition accuracy of L1-ONPP and L1-MONPP are al-

most same, nearly 87.52% achieved at 210 dimensions. As it can be seen from

Figure 5.7, the performance of L2-ONPP and L2-MONPP is poor compared to its

L1-norm counterparts.

Gujarati Numerals

The Gujarati Handwritten numeral dataset [84] have nearly 1300 samples for each

digit. Some of the examples of digit ′7′ are given in Figure 5.6 (b) to show the

large variations in the dataset. Randomly 1000 samples were selected such that
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Figure 5.7: Performance comparision in terms of recognition accuracy for L2-
ONPP, L1-ONPP, L2-MONPP and L1-MONPP for MNIST Handwritten numerals
database

each digit is well represented in training data and the remaining samples were

used as testing data. Recognition accuracy of L2-ONPP, L2-MONPP, L1-ONPP,

and L1-MONPP with varying number of dimensions are compared in Fig. 5.8.

Average recognition accuracy achieved by L1-ONPP and L1-MONPP is 75.20%

and 67.32% nearly at 20 dimensions, whereas that of L2-ONPP and L2-MONPP is

67.16% and 61.28% nearly at 290 dimensions. As it can be seen the performance

of L1-ONPP and L1-MONPP stabilizes nearly at 30 dimensions, but the perfor-

mance of L2-ONPP and L2-MONPP deteriorates after 300 dimensions due to the

presence of redundant information present at higher dimensions, but the use all

dimensions again leads to almost similar recognition as that of L1-norm counter-

parts as observed with IRIS data.

Devnagari Numerals

The Devnagari Hand-written Numerals Database [85] have approximately 1800

sample of each digit. Randomly selected samples of digit ’4’ are shown in Fig.

5.6(c). Randomly 900 samples are used for training data and the remaining are

used for testing. As it can be seen from Figure 5.9 L1-ONPP and L1-MONPP

achieves nearly 50% and 60% recognition accuracy at 30 dimensions, whereas the

performance of L2-ONPP and L2-MONPP is consistently poor compared to L1-

norm counter-part.

With a larger number of training data, L1-ONPP proves to be better at recog-
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Figure 5.8: Performance comparison in terms of recognition accuracy for L2-
ONPP, L1-ONPP, L2-MONPP and L1-MONPP for Gujarati Handwritten numer-
als

Figure 5.9: Performance comparison in terms of recognition accuracy for L2-
ONPP, L1-ONPP, L2-MONPP and L1-MONPP for Devnagari Handwritten nu-
merals database
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nizing digits compared to L2-ONPP. L2-MONPP and L1-MONPP also perform at

par with L2-ONPP and L1-ONPP. Here, Nearest Neighbor (NN) is used for clas-

sification, the use of sophisticated classifier like SVM etc. can lead to improved

recognition accuracy. The proposed L2-ONPP algorithm converges in about 16

iterations for a single basis vector when nearly 1000 sample of images having size

30× 30 are used for training and the procedure of learning L1-ONPP bases took

average 3 min. On the other hand, having a closed form solution, L2-ONPP takes

on an average 7 sec to learn the bases. The configuration of the machine used is as

follows: Intel Xeon R© E5-2620 @ 2.40GB, 24 core, 64-bit with 2GB RAM allocation.

5.4 Conclusion

Linear dimensionality reduction techniques such as PCA, LDA, LPP, and ONPP

solve an optimization problem based on some criteria. Usually, the optimiza-

tion problem is defined using l2-norm. However, use of l2-norm makes these

techniques susceptible to outliers present in the data. The present work is first

attempt to compute bases vectors for ONPP using l1-norm. In particular, a rela-

tion is established to show that ONPP bases can be obtained by performing PCA

on reconstruction error. This phenomenon is established both theoretically and

experimentally. An existing algorithm of finding PCA bases using l1-norm op-

timization is applied to compute the L1-ONPP bases. It has also been proved

experimentally that the residual error calculated after discarding few dimension

in projection space and reconstructing data with less number of dimension is

comparatively low in case of L1-ONPP than that of L2-ONPP. Experiments are

performed for synthetic as well as real data, and the same conclusion as men-

tioned above is observed. Performance of L1-ONPP is compared with L2-ONPP

on numeral recognition task, it is observed that with a larger number of training

data, L1-ONPP outperforms L2-ONPP with huge margin, but being an iterative

method, L1-ONPP is computationally expensive compared to L2-ONPP.
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CHAPTER 6

Conclusions and Future Work

Advancement in image capturing sensors and storage devices led us to the a huge

amount of high-definition images and pose a challenge in the form of image recog-

nition in high-dimensional space. It is proved that natural images, even though

represented as a very high-dimensional data point, lies on or near a linear or non-

linear manifold. Such subspace or manifolds based methods for image recogni-

tion have been a major area of research and already proven to be more efficient.

Work presented in this thesis, addresses few concerns with one such technique

ONPP and provides solution for the issues addressed. Basically, this thesis sug-

gests an improvement of each stage of ONPP to handle various problems faced by

conventional technique to make it more robust for image recognition and image

reconstruction task.

6.1 Overall Conclusion

Orthogonal Neighborhood Preserving Projection (ONPP) is assumed to handle

the intrinsic non-linearity of the data manifold. The second step of ONPP deals

with a linear model building within local neighborhoods. In this thesis, it is shown

that the linearity assumption may not be valid for a moderately large neighbor-

hood. This linear model is thus replaced by a notion of non-linearity in the pro-

posed method MONPP, where a piece-wise non-linear model (z-shaped) is used

instead. The suitability of the proposal is tested on non-linear synthetic data as

well as a few benchmark face databases. Significant and consistent improvement

in data compactness is observed for synthetic data like swissrole and Scurve where
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manifold is surely nonlinear. This signifies the suitability of the present proposal

to handle non-linear manifold of the data. Lower-dimensional visualization us-

ing MONPP on handwritten numerals data is also seen to be more compact than

that of ONPP. On the other hand, noticeable improvement is obtained for the

face recognition problem performed on benchmark databases like ORL, AR and

UMIST. The modification suggested over existing ONPP though very simple but

overall improvement in face recognition results is very encouraging.

Handling illumination variations present in face images captured under un-

controlled environment while face recognition task is paramount, thus a robust

pre-processing technique is highly sought. This thesis contributes to adopt Lo-

cally Tuned Inverse Sine Nonlinear (LTISN) transformation for gray-scale face im-

ages to nullify the illumination variations present in the face database to improve

recognition rate. The result of recognition along with LTISN as pre-processing

is compared with that of another pre-processing technique called Difference of

Gaussian (DoG). The classifier used in all technique is nearest neighbor applied on

the coefficient obtained using ONPP and MONPP. Image recognition experiments

were performed on two well-known face database having illumination variations,

namely The Extended Yale-B and CMU-PIE. It is observed that LTISN based en-

hancement followed by MONPP outperforms ONPP with or without both DoG

and LTISN enhancement techniques.

For image recognition tasks, dimensionality reduction techniques are usually

implemented in supervised settings. Conventional supervised ONPP algorithm,

in the first step selects neighbors based on the knowledge of class label, which

may not be the best way to select when data distribution is highly overlapping.

In this thesis, we propose a new neighborhood selection rule based on class sim-

ilarity of all data points. The proposed Class-Similarity based ONPP (CS-ONPP)

takes advantage of pre-processing PCA, the lower dimensional projections on

PCA space is used to find a class probability vector for each data-point to be-

longing into a particular class and class similarity of two neighboring data-points

using Logistic Discriminator (LD). Class Similarity is computed based on this

probability vector and a new distance measure is defined based on the class simi-
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larity between two data points. Neighbors are selected using this new distance

measure. Experiments performed on well-known Face data like ORL, UMIST

and CMU-PIE, it is observed that CS-ONPP achieves same performance as ONPP

with comparatively a very less number of subspace dimensions. The same per-

formance is observed on handwritten numerals databases like MNIST, Devnagari

and Gujarati.

Linear DR techniques such as PCA, LPP, NPP and ONPP try to solve an opti-

mization problem with some constraints either on projected data or on projec-

tion space. This thesis proposes 1D and 2D variant of ONPP that gives nor-

malized projection in an orthogonal projection space - ONPPn and 2D-ONPPn.

Recognition experiments were performed using both the variants on well-known

face databases and hand-written numerals databases, for 1D versions of NPP,

ONPP and ONPPn. Experiments were also performed using a modified weighing

scheme namely MNPP, MONPP and MONPPn. ONPPn (MONPPn) outperforms

NPP (MNPP) and ONPP (MONPP) in image recognition task performed on face

databases like AR, ORL, UMIST, The Extended Yale-B and hand-written numer-

als databases like MNIST, Gujarati, Devnagari and Bangla. It is an established fact

that 2D variants of dimensionality reduction methods are computationally helpful

because they involve eigenvalue problem of order m3 instead of (mn)3, but they

do not give competitive recognition results. Experiments stated in this thesis show

that the recognition accuracy of 2D-ONPP can be increased by adding a normal-

ization constraint with an added computational complexity. On the other hand,

methods that seek only normalized projection are not able to reconstruct the data,

an orthogonal subspace is desired for reconstruction. Experiment shows that 2D-

NPP is computationally costly at reconstruction because of its non-orthogonality,

2D-ONPP can reconstruct the images but does not provide dimensionality reduc-

tion, 2D-ONPPn is able to reconstruct an image with retaining less number of

subspace dimensions and gives better result with lower reconstruction error as

compared to 2D-ONPP.

Most DR techniques such as PCA, LDA, LPP and ONPP solve an optimization

problem which is usually defined using l2-norm. However, use of l2-norm makes
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these techniques susceptible to outliers present in the data. The presented work

is first attempt to compute bases vectors for ONPP using l1-norm. In particular,

a relation is established to show that ONPP bases can be obtained by performing

PCA on reconstruction error. These phenomenon is established both theoretically

and experimentally. An existing algorithm of finding PCA bases using l1-norm

optimization is applied to compute the L1-ONPP bases. It has also been proved

experimentally that the residual error calculated after discarding few dimension

in projection space and reconstructing data with less number of subspace dimen-

sion is comparatively low in case of L1-ONPP than that of L2-ONPP. Experiments

are performed for synthetic as well as real data, and the same conclusion as men-

tioned above is observed. Performance of L1-ONPP is compared with L2-ONPP

on numeral recognition task, it is observed that with larger number of training

data, L1-ONPP outperforms L2-ONPP with huge margin, but being an iterative

method, L1-ONPP is computationally expensive compared to L2-ONPP but easy

to implement.

Over all conclusion is that the thesis addresses some of the issues in conven-

tional ONPP and implemented those successfully for image recognition and im-

age reconstruction. All the new proposal are tested on benchmark databases of

face recognition and handwritten numerals recognition. In all cases, the new

proposals outperforms the conventional method in terms of recognition accuracy

with reduced subspace dimensions.

6.2 Contributions

Summary of contributions of the thesis is listed below:

• A variant of ONPP namely Modified ONPP (MONPP) that handles local

non-linearity that comes with a varying number of neighbors. MONPP em-

ploys a modified technique for calculating reconstruction weights for neigh-

bors of a data point.

• Locally adaptable pre-processing technique to handle illumination varia-

tions in gray-scale face images
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• Class similarity based Orthogonal Neighborhood Preserving Projections: A

new approach to find neighbors instead of relying on only Euclidean dis-

tance or Class label knowledge proposed method uses both the information

to define a new distance measure.

• Orthogonal Neighborhood Preserving Projection with Normalization that

brings normalization and orthogonality constraint together in ONPP and

its 2D variant. Normalized projections increased the image recognition ac-

curacy, and adding normalization constraint to the orthogonality constraint

enabled 2D-ONPP to reconstruct an image using less number of subspace

dimensions.

• A L1-norm based ONPP technique to handle data having wide variations.

To achieve L1-ONPP bases, a relationship between PCA and ONPP is estab-

lished and PCA-L1 is used to compute L1-ONPP subspace that is invariant

to the presence of outliers.

6.3 Future Work

The scope of the thesis lies in the proposing a robust neighborhood preserving

dimensionality reduction technique that can be used in image recognition appli-

cation. Though the variants proposed during the course of this thesis is used

in face recognition and handwritten numerals recognition task, their application

is not limited to the image recognition. As shown in [122, 123], applicability of

neighborhood preserving DR is not limited on image data only. The usefulness

of proposed methods can be explored for various other applications involving

high-dimensional data too.

The thesis defined neighborhood based on the pairwise distances between two

images, or class label of the images or some combination of the both. Euclidean

distance is proved to be a good measure for image data. While dealing with other

type of high-dimensional data for example text document or Hyperspectral Im-

ages (HSI), it will be a good choice to explore the distance measure suitable for

the mentioned problem and data at hand.
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The data in its raw form, does not necessorily lie on a linear manifold, thus

non-linear DR methods try to learn local neighborhoods and patches them up in

low-dimensional manifold to get to the global geometry of data, but may fail if the

underlying structure contains complex non-linearities. One way to handle such

data is to project them on even high-dimensional non-linear feature space and

followed by application of DR technique. This technique is known as a Kernels

trick. One possible direction of work can include defining new kernels to better

suit the given data and application.

In this thesis, images are considered as a gray-scale images and treated as

either mn-dimensional vector or m × n matrix, but for color images tensor rep-

resentation can be exploited using tensor variants of dimensionality reduction

methods that can handle 3 or higher dimensional data. One possible direction

of work can be exploiting L1-ONPP for face image reconstruction where a part

of face is occluded. As occluded faces can be considered the outliers in the face

image database. It will be an interesting work to see if a 2D variant of ONPP with

l1-norm can handle problem of reconstructing such outlying face images.

Deep learning has emerged as a very interesting of research with widely ap-

plicable area nowadays, due to the availability of huge unlabeled data, patterns

can be learned from unlabeled data from a related task domain and the learning

can be transferred to target domain where the labeled data is available. In recent

time, deep neural networks are used to learn underlying low dimensional repre-

sentations of data [79]. It will be an interesting investigation to see if we can take

advantage of unlabeled data to learn underlying low-dimensional manifold using

deep neural networks. Auto-encoders and Generalized auto encoders can be used

to with a cost function that immitate the optimization problem of well-known di-

mensionality reduction methods and instead of solving a generalised eigenvalue

problem the bases can be trained using DNN.
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