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Abstract

Over the years, optical remote sensing technology has restricted the ability to cap-
ture images during harsh weather settings and at night time. However, Synthetic
Aperture Radar (SAR) is independent of solar illumination and thus allows all-
weather continuous earth monitoring capability. A polarimetric synthetic aper-
ture radar (PolSAR) is one type of SAR image which captures different attributes
of the target by combining four different polarization states. Some PolSAR sys-
tems such as E-SAR, AIRSAR, F-SAR, etc., can capture abundant information of
the target by employing multifrequency bands simultaneously providing rich in-
formation of the target. It makes SAR images suitable in wide range of Earth
observation applications such as change detection, object detection, monitoring,
classification, etc. This thesis addresses the classification problem of single fre-
quency and multifrequency PolSAR images. PolSAR image classification is pri-
marily a pixel based classification problem where our goal is to assign a label to
each pixel of the image. Unlike optical images, PolSAR images are complex in
nature which limits our ability of direct visual interpretation. Due to its active
imaging nature, SAR images suffers from speckle noise which hinders the perfor-
mance of pixel based classification.

To address the classification problem, five contributions related to improving
classification time and accuracy are discussed. We will begin with the introduc-
tion of Optimized Wishart Network (OWN) which is an improvement over the
existing Wishart Network (WN) for the classification of single frequency PolSAR
images. We propose methods to improve the classification time by reducing the
computation overhead in WN and improve classification accuracy by proposing
a better weight initialization method. Next, we propose the extended OWN (e-
OWN) for classification of multifrequency PolSAR data. We show that the pro-
posed method is able to combine different band information effectively and pro-
duces better classification accuracy. One of the big challenge for pixel based Pol-
SAR image classification method is the presence of speckle noise in the image. To
tackle that, we propose the superpixel driven OWN which uses both pixel and
superpixel information to handle the noisy pixels. Finally, we present an stacked

vi



autoencoder based classification of multifrequency PolSAR images. All the pro-
posed approaches are tested on variety of single frequency and multifrequency
PolSAR datasets.
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CHAPTER 1

Introduction

Humankind has been fascinated by Earth Observation (EO) since the first photo-
graph of the Earth from the space [37]. The Blue Marble is still one of the most
reproduced images in the history [103]. High-resolution wide-area images are
required in the diverse fields of EO, ranging from urban planning and disaster
management to agriculture and geology. It would be difficult to capture images
of large areas from the ground. To do so, photographs are required to be taken
from an altitude. It led to development of the remote sensing field. Remote sens-
ing is the field of obtaining information about an object from a distance. It is
achieved by mounting imaging sensors on a remote controlled balloon, an air-
craft or a satellite. Remote sensing has given us the ability to capture the entire
Earth’s surface and gather tremendous amount of information in a short span of
time. Since manual processing of such huge volume of data is not possible, we re-
quire computer systems that can extract meaningful information to help us better
understand Earth’s surface.

Typically, there are two types of imaging sensors, namely, passive sensors and
active sensors. Passive sensors depend on the external illumination source, such
as sunlight, to capture the image. Optical sensors like normal camera and hyper-
spectral sensors are examples of passive sensors. Under certain conditions such
as cloud, fog, rain, or at night-time, passive sensors can not capture images due to
either lack of illumination source or obstacle in the path from the sensor to the ob-
ject. Thus we require active sensors which have their own source of illumination.
Synthetic Aperture Radar (SAR) uses microwave signals with a long-range propa-
gation characteristic that facilitates such imaging. Depending upon the combina-
tion of transmitters and receivers of such satellites, different types of SAR images
are generated. One such type of SAR image is called full polarimetric SAR image
(PolSAR). In case of a PolSAR image we receive data from four different channels,
data from each channel represent different features of the same object. Some SAR
systems are capable of capturing SAR images using multiple frequency bands,
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Table 1.1: Notable application of SAR images
Fields Applications

Agriculture crop classification, soil moisture estimation [51],
growth monitoring [85], penology estimation [98]

Urban urban density estimation [65], change detection [92],
urbanization [117], subsidence monitoring [35]

Disaster Management
disaster monitoring [125],
landslide detection [112], volcano monitoring [122],
earthquake damage estimation [71]

Oceanography ocean wave monitoring [110], ship detection [84],
oil spill detection [99]

Cryosphere iceberg detection [26], snow cover mapping [101],
glacier monitoring [114]

Forestry
forest height estimation [74], forest biomass
estimation [76], forest fire monitoring [46],
forest classification [97]

simultaneously resulting in a multitude of information compared to the optical
images received from ordinary satellites. Therefore SAR images are gaining pop-
ularity for solving problems in various research domains, some of which are listed
in Table 1.1. The massive size and complex nature of the SAR image limits our
ability of manual interpretation. Thus, we require automated systems which can
analyze these images to provide useful information. In the following sections we
briefly discuss the process of PolSAR image acquisition and its representation.
After that the PolSAR image classification problem is elaborated.

Table 1.2: Different frequency bands used in SAR
Band Frequency (GHz) Wavelength (cm)

P 0.3-1 30-100

L 1-2 15-30

S 2-4 7.5-15

C 4-8 3.8-7.5

X 8-12.5 2.4-3.8

Ku 12.5-18 1.7-2.4

K 18-26.5 1.1-1.7

Ka 26.5-40 0.75-1.1

2



1.1 SAR Image Acquisition

A SAR can be mounted on air-borne, say airplanes, space-borne platforms such
as satellites or ground-based system. It operates at frequency band ranging from
P to Ka in the microwave spectrum, as shown in Table 1.2. High wavelength
bands such as P and L bands have high penetration capability which allows them
to obtain even below ground information. It makes them suitable for forestry
and agriculture applications. On the other hand, S and C bands have medium
penetration capability which allow them to penetrate upper canopy layers of the
vegetation area. They are also sensitive to ocean and ice surfaces which make
them suitable for oceanography and cryosphere applications. Low wavelength
bands such as X to Ku bands have low penetration capability but they provide
high resolution images due to their high frequency. It makes them suitable for
high resolution applications such as land target recognition and change detection.
Table 1.3 shows SAR systems developed by different organizations whose data are
freely available.

Table 1.3: List of SAR systems whose dataset is openly available
System Band Polarization Resolution Year Organization

SEASAT [2] L HH 25m 1978 NASA

AIRSAR [1] C,P,L Full 1,8m-7.5m 1990-2004 NASA

ERS-1/2 [3] C VV 26m 1991-2011 ESA

JERS-1 [4] L HH 18m 1992-1998 JAXA

ALOS PALSAR [5] L Full 5m-10m 2002 JAXA

RADARSAT-1 [6] C HH 8m 1995 CSA

Sentinel-1a/1b [7] C Dual 5m-40m 2014-present ESA

SMAP [8] L VV, HV, HV 2015-present NASA

UAVSAR [9] L Full 1.0m-1.8m 2008-present NASA

SAR transmits horizontal (H) or vertical (V) polarized electromagnetic waves
towards the Earth’s surface. Upon hitting the Earth’s surface, these waves get
scattered in all directions. Some of them are intercepted by SAR receivers. The
SAR receiver measures the amplitude and phase of the backscattered wave. As
shown in Figure 1.1, there are four possible combinations of the backscattered
waves, namely, HH, HV, VH, VV. Here,

• HH - Transmitted H polarized wave and received H polarized wave,

• HV - Transmitted H polarized wave and received V polarized wave,
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Figure 1.1: Illustration of four different polarization states of scattered waves,
namely, HH, HV, VH and VV.

• VH - Transmitted V polarized wave and received H polarized wave,

• VV - Transmitted V polarized wave and received V polarized wave.

SAR typically works in three acquisition modes, i.e., single-pol, dual-pol, and
full-pol. In single-pol, radar transmits only one wave (H or V) and receives only
one backscattered wave (HH, HV, VH, or VV). Examples of single-pol satellites
are SEASAT, ERS-1/2, RADARSAT-1, etc. In dual-pol mode, radar transmits one
or two waves (H, V, or H&V) and receives two backscattered waves (HH and HV,
VV and VH, or HH and VV). The examples of dual-pol satellites are ENVISAT,
RISAT-1, SRTM, etc. In full-pol, also known as quad-pol or PolSAR, radar trans-
mits two polarized waves and receives four backscattered signals. Examples of
full-pol satellites are ALOS-PALSAR, RADARSAT-2, TerraSAR-X, etc. There is
a trade-off between the amount of information and spatial/temporal resolution.
Single-pol system has high spatial/temporal resolution but it provides less infor-
mation. On the other hand, full-pol SAR provides load of information but has
lower spatial/temporal resolution.

Figure 1.2: Different SAR imaging modes (a) Stripmap. (b) ScanSAR. (c) Spotlight
[100].
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Another critical aspect of data acquisition is imaging mode. The resolution of
the SAR image also depends on the imaging mode of the radar. There are mainly
three imaging modes, namely, Stripmap, Spotlight, and ScanSAR mode, as shown
in Figure 1.2. In Stripmap mode, the antenna is fixed at a single position, and the
area is scanned alongside the flight direction. It results in one continuous strip of
the image. In ScanSAR mode, the radar beam is electronically steered at different
elevations to obtain multiple swaths. It provides a larger coverage area compared
to the Stripmap mode, but it has lower azimuth resolution. ScanSAR mode is typ-
ically used in applications where large area monitoring is required. For example,
ice monitoring, ocean surface monitoring, flood mapping, etc. In Spotlight mode,
we keep the object of interest under the radar beam by electronically steering the
beam in the azimuth direction. The advantage of the Spotlight mode is that we
get higher azimuth resolution. And the disadvantage is that we get less spatial
coverage. Spotlight mode is typically used for high-resolution applications such
as target detection and change detection.

1.2 Data Representation

In case of polarimetric synthetic aperture radar (PolSAR), horizontal (H) and ver-
tical (V) polarized microwave signals are transmitted to be received in four com-
binations, i.e., HH, HV, VV, and VH. Hence a scattering matrix S for each pixel of
the PolSAR image can be expressed as follows:

S =

[
SHH SHV

SVH SVV

]
. (1.1)

Each element of this scattering matrix is a complex number representing ampli-
tude and phase of a specific type of backscattered wave. In the case of diagonal
terms of the scattering matrix, the polarization of transmitted and backscattered
waves are the same. Hence, they are called co-polarized terms. The off-diagonal
terms of the scattering matrix are called cross-polarized terms because they corre-
spond to the opposite polarization of transmitted and backscattered waves. By na-
ture scattering matrix S can only describe coherent targets, also known as a point
or pure targets. To characterize incoherent or distributed targets, the second order
descriptors can be used. Covariance and coherency matrices are examples of such
second order descriptors. Under the reciprocity condition, it can be assumed that
SHV = SVH. Hence S matrix can be represented in terms of lexicographic vector
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kl as:
kl = [SHH,

√
2SHV , SVV ]

T. (1.2)

Here, T is a transpose operation. Using lexicographic vector a second order de-
scriptor, namely, covariance matrix can then be generated as:

〈C〉 =
n

∑
i=1

klikl
†
i =

 |SHH|2
√

2SHHS†
HV SHHS†

VV√
2SHVS†

HH 2|SHV |2
√

2SHVS†
VV

SVVS†
HH

√
2SVVS†

HV |SVV |2

 . (1.3)

The ‘†’ is a complex conjugate operation and 〈〉 indicates that the covariance ma-
trix is multilook processed with a window of size n. Multilook processing is done
by taking an average of covariance matrices in a window of size n centered at each
pixel of a PolSAR image. n is also known as the number of looks.

1.2.1 Pauli decomposition

An alternate and more intuitive representation of scattering matrix S is obtained
by Pauli decomposition [104]. According to Pauli decomposition, S can be ex-
pressed as:

S = α
1√
2

[
1 0
0 1

]
+ β

1√
2

[
1 0
0 −1

]
+ γ

1√
2

[
0 1
1 0

]
, (1.4)

where
α = (SHH + SVV)/

√
2, (1.5)

β = (SHH − SVV)/
√

2, (1.6)

γ =
√

2SHV . (1.7)

Using eq. (1.4), scattering matrix S can be represented as a complex Pauli vector
kp:

kp =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T. (1.8)

Each element of this Pauli vector kp is associated with one elementary scattering
surface, namely, single bounce, double bounce, and volume scattering, as shown
in Figure 1.3. Typically we observe single bounce from flat surfaces such as water
or open field. In the case of single bounce scattering, both H and V waves observe
180◦ phase shift, so, |α|2 will be high. Double bounce is observed from dihedral
structures such as buildings or the trunk of a tree. In the case of double bounce, the
H wave observes a 360◦ phase shift while V wave observes a 180◦ phase shift. So,

6



(a) (b) (c)

Figure 1.3: Elementary scattering surfaces, namely, (a) single bounce scattering
occurring due to flat surface, such as, pain field or water, (b) double bounce scat-
tering occurring from the dihedral structure, such as, buildings or tree trunk, and
(c) volume scattering occurring from complex structures, such as, tree canopy.

|β|2 will be high. Finally, volume scattering is observed from a complex structure
such as a vegetation area where the incident wave is scattered multiple times from
the branches of the tree. In the case of volume scattering, both H and V waves will
be depolarized due to the large number of bounces observed by both waves. So,
|γ|2 will be high. Now, the PolSAR image can be visualized as a color image by
assigning blue color to |α|2, red color to |β|2 and green color to |γ|2. It is called as
a Pauli decomposition image or PauliRGB image.

Pauli vector kp can be used to form a complex coherency matrix 〈T〉 for each
pixel of the PolSAR image in the following way:

〈T〉 =
n

∑
i=1

kpi k
†
pi
=

T11 T12 T13

T†
12 T22 T23

T†
13 T†

23 T33

 . (1.9)

The elements of matrix 〈T〉 are related to that of S matrix in the following way:

T11 =
1
2
|SHH + SVV |2,

T12 =
1
2
(SHH + SVV)(SHH − SVV)

†,

T13 = (SHH + SVV)S†
HV ,

T22 =
1
2
|SHH − SVV |2,

T23 = (SHH − SVV)S†
HV , and

T33 = 2|SHV |2.

(1.10)

The coherency matrix 〈T〉 and the covariance matrix 〈C〉 contain same informa-
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tion. 〈C〉 can be easily converted into 〈T〉 as follows:

〈T〉 =

1 0 1
1 0 −1
0
√

2 0

 〈C〉
1 1 0

0 0
√

2
1 −1 0

 . (1.11)

We note that the diagonal elements of a coherency matrix 〈T〉 are real-valued,
and off-diagonal elements are complex conjugates of each other. It is a Hermitian
positive semidefinite matrix. It means that its eigenvalues and determinant are
always positive and real-valued [131].

1.3 Target Decomposition (TD) Theorem

There are mainly two types of TD theorem, (i) Coherent decomposition and (ii) In-
coherent decomposition. The coherent decomposition uses the scattering matrix
to extract the polarimetric features and incoherent decomposition uses the covari-
ance or coherency matrix for the feature extraction. The following two subsections
describe both types of TD theorems.

1.3.1 Coherent Decomposition

Coherent decomposition decomposes scattering matrix S in a combination of the
scattering responses from a simple target such as plane, dihedral, helix, etc.

S =
k

∑
i=1

αiSi. (1.12)

Here Si is a scattering response from a target, k is a number of elementary scat-
terers, and αi is the weight coefficient of each scatterer. Pauli decomposition dis-
cussed in Chapter 1 is one type of coherent decomposition method in which the
scattering matrix is decomposed into three basic scattering mechanisms, namely,
single bounce, double bounce, and volume scattering. The Krogager decomposi-
tion [73] is another example of coherent decomposition. Here scattering matrix is
decomposed into scattering from a sphere, oriented diplane and left or right he-
lix. The coherent decomposition techniques are useful in characterizing coherent
or point targets, but they can not describe incoherent or distributed targets. To
describe the incoherent targets, we have to use second-order descriptors, namely,
covariance or coherency matrix.
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1.3.2 Incoherent Decomposition

To characterize the incoherent or distributed targets, we use second order descrip-
tors such as 3× 3 complex covariance matrix 〈C〉 or coherency matrix 〈T〉. Both of
these representations contain the same information. Mathematically, incoherent
decomposition can be described as:

〈T〉 =
K

∑
i=1

αi〈Ti〉. (1.13)

Here αi denotes the weight coefficient of a different component. The Freeman-
Durden [38] decomposition method uses coherency matrix 〈T〉 to model it as a
three-component scattering mechanism, namely, volume scattering, double bounce
scattering, and surface scattering.

〈T〉 = Fodd ∗ 〈Tsur f ace〉+ Fdbl ∗ 〈Tdouble〉+ Fvol ∗ 〈Tvolume〉 (1.14)

Here Fodd, Fdbl, and Fvol correspond to weights associated with the surface, double
bounce, and volume scattering respectively. The Yamaguchi decomposition [126]
adds a helix scattering component too to the Freeman decomposition to model
complicated human-made structures.

〈T〉 = Podd ∗ 〈Tsur f ace〉+ Pdbl ∗ 〈Tdouble〉+ Pvol ∗ 〈Tvolume〉+ Phlx ∗ 〈Thelix〉 (1.15)

Here Podd, Pdbl, Pvol and Phlx correspond to weights associated with surface, dou-
ble bounce, volume and helix scattering respectively. The Huynen decompo-
sition [59] aims to parameterize the coherency matrix as nine independent in-
terpretable parameters. The Cloude-Pottier decomposition [20], also known as
H/A/α decomposition, has used different approach for extracting polarimetric
features from the coherency matrix. It uses the eigenvalue-eigenvector analy-
sis of the coherency matrix to obtain seven polarimetric features. Three features
are extracted from the eigenvalues of the coherency matrix, namely, Entropy (H),
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Anisotropy (A) and mean magnitude (λ), as shown below:

H = −
3

∑
i=1

pilog3(pi),

A =
λ2 − λ3

λ2 + λ3
,

λ =
3

∑
i=1

piλi.

where, pi =
λi

∑3
k=1 λk

,

(1.16)

Here, λ1, λ2 and λ3 are the eigenvalues of the coherency matrix. Entropy mea-
sures the degree of randomness in the observed scattering process. When the
dominant scattering process is not present, meaning entropy is high, anisotropy
gives relative importance of second and third eigenvalues. The next parameters
of the Cloude-Pottier decomposition are extracted from the eigenvectors of the
coherency matrix. The eigenvector of the coherency matrix is defined as:

ui = [cos(αi), sin(αi)cos(βi)ejδi , sin(αi)cos(βi)ejγi ]T. (1.17)

Here α, β, γ and δ are the parameters that completely describe the eigenvectors.
Mean of these angles is useful in discriminating different types of the scattering
processes. The mean angles are defined in the following equation:

α =
3

∑
i=1

piαi,

β =
3

∑
i=1

piβi,

γ =
3

∑
i=1

piγi, and

δ =
3

∑
i=1

piδi.

(1.18)

1.4 Classification Problem

Classification is a problem where we intend to divide data into different categories
or classes based on given criteria. A simple example of a classification problem is
spam mail detection. Here we intend to classify the given mail into two classes,
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namely, spam and not spam. To teach the machine how to do classification, we
require data consisting of samples with known classes, called dataset. The dataset
with N samples is described as D = {(x1, y1), (x2, y2), . . . , (xN, yN)}. Here xi is
ith sample and yi is its corresponding class, known as label. There are mainly two
methods for classification: supervised and unsupervised. In the case of a super-
vised classification, we have a labelled dataset, which means label information of
all samples are known. In the unsupervised case, we have an unlabelled dataset,
meaning no information regarding the sample’s label is given. The dataset is typ-
ically divided into three parts with varying proportions of samples, e.g., training
set, validation set, and test set. The training set is used to train the machine for
the given task. The validation set is used to validate the performance of the model
during training. Once the training is done, the test set is used to measure the al-
gorithm’s performance to classify the unseen data based on the training. The
performance of the given classification algorithm can be measured using metrics
such as Overall Accuracy (OA) or Average Accuracy (AA) [25]. Let li

m be the true
label of the ith test sample of class m and let ˆlı

m be the predicted label of ith test
sample of class m. Then the OA and AA are calculated as below:

Classwise Accuracy (am) =
1

nm

nm

∑
i=0

I(li
m = ˆli

m),

Average Accuracy (AA) =
1
M

M

∑
i=0

am,

Overall Accuracy (OA) =
M

∑
i=0

(nm

N
am

)
.

(1.19)

Here, I() is an indicator function with I(li
m = ˆli

m) = 1 when li
m = ˆli

m, else 0. nm

is the number of test samples in class m. N = ∑M
i=1 nm is the total number of test

samples. M is the number of classes. As we can see from the eq. (1.19), class-wise
accuracy (am) calculates percentage of test samples identified correctly in class m.
AA is simply an average of class-wise accuracies. On the other hand OA is the
weighted average of class-wise accuracies where weight of a particular class is
determined by the number of test samples in that class. OA might be misleading
with highly imbalanced classes. The other important classification metrices are
precision (P), recall (R) and f1 score. A precision score of a class m says that out of
all samples labelled as m by the algorithm, how many indeed belong to class m.
But it does not say anthing about the number of samples from class m that were
not labelled correctly. On the other hand recall score of class m says that how
may samples of class m were correctly labelled as m by the algorithm. But it does
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not say nothing about how many samples from other classes were incorrectly also
labelled as m. The F1 score is the harmonic mean which combines precision and
recall into one measure [17]. Precision, recall and F1 score for each class can be
computed as below:

Pm =
TPm

TPm + FPm
,

Rm =
TPm

TPm + FNm
,

F1 = 2
Pm ∗ Rm

Pm + Pm
.

(1.20)

. Here,

• True Positive (TPm): Number of samples predicted as m where true label is
also m.

• False Positive (TPm): Number of samples predicted as m but true label is not
m.

• False Negative (FNm): Number of samples not predicted as m but true label
is m.

PolSAR image classification is a pixel-wise classification problem where we
intend to assign a label to each pixel of the given PolSAR image. In the case
of the supervised classification, we require training samples with known labels.
Such training samples can be obtained by field survey, during which parameters
such as type of crop, height, biomass, water content, etc., are collected at different
points over the area of interest synchronous with satellite pass. A GPS location of
such a sample is also collected, which allows us to register the surface observation
with the image’s pixel. A ground truth map can be generated from the field survey
data or by combining it with visual and statistical analysis of the SAR image data
or the optical image data. Such a ground truth map allows us to map the pixel of
the image with the ground reality (label of a pixel). Mathemetically ground truth
map is defiend as g : S→ Σ where S is a grid and Σ is a set of classes [10].

Over the years, different methods for PolSAR image classification have been
proposed. In the early days, parametric classifiers that model the probability dis-
tribution of the data were popular. Recently, due to advancements in the field
of machine learning, neural network based methods have come to fore. In the
following sections, we briefly describe different approaches used for the PolSAR
image classification.
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1.4.1 Parametric Classifiers

One of the very early approaches of PolSAR image classification was presented
by Kong et al. [70]. It modeled the lexicographic vector kl as a complex Gaussian
distribution with probability density function given below:

p(kl) =
1

πn|〈Cm〉|
exp{−k†

l |〈Cm〉|−1kl}. (1.21)

Using maximum likelihood ratio test the optimum classifier was derived with
following distance measure:

d(kl, 〈Cm〉) = k†
l 〈Cm〉−1 + ln |〈Cm〉|. (1.22)

Here 〈Cm〉 is the mean coherency matrix of class m. Lee et al. extended this idea
by using the second order descriptor [78], namely, coherency matrix or covariance
matrix. Let v1, v2, . . . , vn be n independent d× 1 multivariate gaussian random
variable with zero mean and Σ covariance matrix. Let us define,

X =
n

∑
i=1

viv†
i . (1.23)

Then, X has a Wishart distribution with n degrees of freedom [47]. Assuming that
the lexicographic vectors kl or Pauli vector kp are independent and identically
distributed complex Gaussian random vectors, n〈T〉 follows complex Wishart dis-
tribution. The probability density function of Wishart distribution is given as fol-
lows:

p(〈T〉|〈Cm〉) =
nnd|〈T〉|(n−d)

Γp(n)|〈Cm〉|n
exp(−trace(〈Cm〉−1〈T〉)),

where,

Γp(n) = π
p(p−1)

2

p

∏
j=1

Γ(n− j + 1).

(1.24)

Here 〈T〉 is the coherency matrix of a PolSAR pixel. Using this probability den-
sity function, Lee et al. derived a distance measure using Maximum Likelihood
Estimation (MLE) called Wishart distance [78]. Wishart distance between any two
coherency matrices is defined as:

DWishart(〈T〉, 〈Cm〉) = trace(〈Cm〉−1〈T〉) + ln |〈Cm〉|. (1.25)
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To understand how classification is performed using these distance measures, let’s
assume we have a PolSAR image of a vast agriculture farm. Let’s consider four
types of cultivated crops. Each of these crops represents one class. Each class
might have thousands or millions of pixels in the PolSAR image. The mean of
certified coherency matrices of a class is known as a class or cluster center. A
cluster is defined as a set of samples that are closely related to each other. Now, to
classify a pixel with an unknown label, we need to find out how distant it is from
all those four class centers. The pixel will belong to the class for which its distance
is found to be the minimum. If we use Wishart distance, then this classification is
called the Wishart classification.

Wishart distance is widely used for both supervised and unsupervised classi-
fication of PolSAR images [78, 80, 124]. Wishart classifier assumes that each class
of the PolSAR image is homogeneous. In that case each class is described as one
cluster center only. But practically this does not happen. A class is usually hetero-
geneous. If the class is heterogeneous, then there can be multiple cluster centers in
each class. To handle such heterogeneous classes, Gao et al. [43] proposed Wishart
mixture model where each class is modelled as a mixture of Wishart distributions.
The Wishart mixture model parameters were estimated using the Expectation-
Maximization (EM) algorithm. The coherency matrix can also be modelled as
multivariate K-distribution [130], G-distribution [39], Scale mixture of Gaussian
(SMoG) [30], etc. Higher order statistics are also proven to be useful for analysis
and interpretation of PolSAR images [24].

1.4.2 Artificial Neural Networks

Artificial Neural Network (ANN) based algorithms are inspired by the human
brain. An ANN is a layered network of processing units call neurons which
perform elementary mathematical operations. These neurons are connected with
each other, and each connection carries a weight. Collectively, these weights rep-
resent the information learned by the ANN. Figure 1.4 shows a typical architec-
ture of an ANN. An ANN typically consists of three types of layers, namely, input
layer, hidden layer, and output layer. Through the input layer, we feed our train-
ing samples x to the ANN. It will be multiplied by the weights of the connections
and will become the input to the next layer. The task of the hidden layer is to per-
form a nonlinear transformation on the input. It is achieved by using an activation
function. The activation function gives the ANN the ability to learn nonlinear re-
lationships between samples and labels. Training of ANN is done in two parts,
namely, forward pass and backward pass. During forward, we feed out training
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Figure 1.4: Architecture of an ANN containing 3 fully connected layers.

samples to the ANN, after passing through multiple hidden layers, the ANN pro-
duces its predicted label through the output layer. The forward pass of ANN with
n layers can readily be described as eq. (1.26) mathematically.

h1 = g
(

WT
1 x + b1

)
,

...

hk = g
(

WT
k hk−1 + bk

)
,

...

ȳ =
(

WT
n hn−1 + bn

)
.

(1.26)

Here h1 is the output of the first hidden layer, hk is the output of the kth hidden
layer and ȳ is the label predicted by the ANN. θ = {W1, . . . , Wn, b1, . . . , bn} are
the parameters of the ANN. These parameters are randomly initialized. g() is an
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Figure 1.5: Illustrating different activation functions, namely, (a) sigmoid, (b) tanh,
and (c) ReLU.

activation function. Some popular activation functions such as sigmoid, tanh and
ReLU are shown below:

sigmoid(x) =
1

1 + e−x ,

tanh(x) =
ex + e−x

ex − e−x ,

ReLU(x) = max (0, x) .

(1.27)

Figure 1.5 depicts activation functions given in eq. (1.27). Once the forward pass is
complete, we measure the difference between the predicted labels and true labels
of all training samples. This difference is represented in the form of a function
called loss function or cost function. The ANN’s goal is to reduce the value of this
cost function, such as Mean Squared Error (MSE) as shown below:

J(θ) =
1
N

N

∑
i=0
‖yi − ȳi‖2, (1.28)

where yi is the true label of ith training sample and ŷi is the predicted label of the
ith training sample. During the backward pass, parameters of the network are up-
dated using gradient decent based learning algorithms. Some popular algorithms
are: Stochastic Gradient Decent (SDG) [67], Adaptive Gradient (AdaGrad) [31],
Root Mean Square Propagation (RMSprop) [118], Adam [68]. The flexible struc-
ture of ANN allows to model complex functions which is difficult to do by para-
metric classifiers.

Pottier and Saillard presented [105] one of the first neural network based su-
pervised PolSAR image classification approach. It uses a single hidden layer ANN
with a sigmoid activation function and MSE loss function. The elements of the
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Muller matrix were used as an input to the ANN. Muller matrix is defined as:

M =
1
2


T11 + T12 + T13 T12 + T†

12 T13 + T†
13 −i(T23 − T†

23)

T12 + T†
12 T11 + T22 − T33 T23 + T†

23 −i(T13 − T†
13)

T13 + T†
13 T23 + T†

23 T11 − T22 + T33 −i(T12 − T†
12)

−i(T23 − T†
23) −i(T13 − T†

13) −i(T12 − T†
12) −T11 + T22 + T33

 .

(1.29)
Next, ANN was applied for unsupervised classification [53] and it was found

to be better than the conventional approaches including k-means algorithm. Over
the years, ANN rose in popularity [18, 54, 61, 120] but the limited computational
power of early computers prohibited training of large ANNs with multiple hid-
den layers. Due to the recent advancements in the CPU and GPU technology,
training of large neural networks has become easy. Many deep neural network
based architectures containing multiple hidden layers have been proposed, such
as Convolutional Neural Networks (CNN) [137], Autoencoder (AE) [55], Recur-
rent Neural Networks (RNN), Generative Adversarial Networks (GAN) [87,115],
etc.

In a different approach for ANN based classification of a PolSAR image, Jiao
and Liu have recently proposed Wishart Network (WN) and Wishart Deep Stack-
ing Network (W-DSN) [63]. In these methods, the weights of the network are
initialized using the statistical properties of the PolSAR image. Unlike other deep
learning architectures, WN and W-DSN both have a fast convergence rate due to
better initialized weights. As the name suggests, WN and W-DSN pick Wishart
distance [78] in order to initialize the desired weights of the network.

1.4.3 Convolutional Neural Networks

A multilayer neural network described in the previous section can be used for
computer vision applications. But it has some limitations. Considering a typi-
cal image size of 1024× 1024, the input vector size will be 1048576× 1, which is
extremely large. Also, natural signals such as audio, image and text exhibit prop-
erties of stationarity and locality. In case of images, locality means that only pixels
in a small neighborhood are related, and stationarity means that same patterns in
the image are repeated. Due to fully connected layers of ANN, it is not able to
capture these properties of a natural signal. Thus, it can not achieve invariance
in translation, rotation, and scale of an object in the image. CNN can solve these
problems by employing two critical operations, namely, convolution and pool-
ing. Because of that, CNN based architectures have achieved remarkable results
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(a)

(b)

Figure 1.6: (a) Convolution operation and (b) Pooling operation.

in the field of computer vision [60, 95, 107, 116]. Kunihiko Fukushima proposed
one of the first CNN based architectures in 1980 [40]. The network was inspired
by the experiments of Hubel and Wiesel on receptive fields in the visual cortex
of cats [58]. In 1989, Yann LeCun successfully trained parameters of CNN using
back-propagation and applied it to Zip Code recognition [77]. The advancement
in the field of Graphical Processing Unit (GPU) made the training of large CNN
based architecture possible. In 2012 AlexNet was proposed by Alex Krizhevsky
et al. [72]. It won the ImageNet competition [23] by achieving 10% lower error
than the second best model.

Figure 1.6(a) shows how a convolution operation works. We slide the weight
matrix called kernel over the input image, and at each step, we multiply elements
of the kernel with the overlapping pixels on the input image and sum the prod-
ucts. The output of the convolution operation is called a feature map. As we can
see, compared to the fully connected layer, a convolution operation needs a very
small number of weights, which are shared among the input image. The con-

18



Figure 1.7: A typical CNN architecture containing two modules of convolution
and pooling operations followed by two fully connected layers.

volution operation allows us to exploit the locality and stationary properties of
the image. Figure 1.6(b) describes the max-pooling operation. We slide the fixed-
sized window over the feature map, and at each step, we select the largest value
from the overlapping elements of the feature map. To some degree, max-pooling
operations make CNN translation invariant. A typical CNN, as shown in Figure
1.7, contains multiple modules of the convolution and pooling stacked together.
The lower level modules typically learn the low level features from the image,
and the higher level module builds on top of the low level features to learn the
high level features.

To use CNN for PolSAR image classification problem, the input image is di-
vided into small patches centered at each pixel. The patch is typically of size
12× 12. These patches are then used for training the CNN. One of the first CNN
based architecture for PolSAR images was proposed by Zhou et al. in 2016 [137].
It uses normalized elements of the coherency matrix as an input to the network.
Sun et al. then extended it to a dual-branch CNN by adding a Pauli decompo-
sition image as a second branch [42]. Both of these networks use real numbers
as an input, but PolSAR images are represented by complex-numbers to incorpo-
rate phase information. To use phase information, a complex-valued CNN was
proposed [136] where both inputs and weights of the network are represented
as complex numbers. Compared to real-valued CNN, complex-valued CNN was
able to achieve higher classification accuracy while using less number of param-
eters. In an another approach Liu et al. proposed a Polarimetric Convolutional
Network (PCN) [94] to incorporate phase information. It uses sparse scattering
coding to represent a complex number as a 2× 2 real number matrix. To further
improve the performance of CNN, handcrafted features that describe the physical
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scattering property of the target can be used. These types of features are typically
difficult to learn by the network itself. A polarimetric-feature-driven CNN was
proposed which used roll-invariant and rotational features extracted from the co-
herency matrix [19]. It showed that CNN trained using handcrafted features could
achieve better classification accuracy in comparison with CNN trained only using
elements of coherency matrix. Yang et al. extended this idea by extracting 70
handcrafted features from the coherency matrix and used CNN to identify useful
features [127].

1.4.4 Autoencoders

An Autoencoder (AE) is an unsupervised learning method for efficient data rep-
resentation. Typically AE is used for dimensionality reduction. When the input
vector’s dimension is very large, AE can first be used to represent input into lower
dimension and then to do the classification. AE consists of two modules, namely,
encoder and decoder. The job of encoder is to map the input to the lower di-
mension representation vector. The job of a decoder is to reconstruct the original
input vector from the representation vector. Many variants of AE are reported in
the literature for different applications such as Denoising AE (DAE) [121] which
is used to remove noise from the input, sparse AE (SAE) [57] which is used to
represent input into sparse higher dimension, Contractive AE (CAE) which adds
contractive term in the cost function of AE to enforce minimal variance in the rep-
resentation vector [108], Variational AE (VAE) [69], Convolutional AE (ConvAE)
etc. Figure 1.8 shows an architecture of a typical AE module. Input to the AE is
our sample, and the output of the AE is the reconstructed sample. The goal of
the AE is to minimize the error between the input sample and the reconstructed
sample.

Hou et al. [55] presented one of the earliest multilayer AE based network for
PolSAR image classification. The elements of the coherency matrix were used as
an input to the two layer AE based network. To clean the prediction of the net-
work, the image was divided into superpixels. Prediction of the network was then
used to run a K Nearest Neighbors (KNN) algorithm in each superpixel to deter-
mine the class of the complete superpixels. A superpixel is an over-segmentation
technique that divides an image into multiple homogeneous regions. Geng et al.
proposed a different approach of using superpixels with AE by introducing a su-
perpixel restrained term in the cost function of the network. It allows AE to use
the spatial information from the superpixels to reduce the effect of speckle noise.
The autoencoder network was also used where superpixel retained error term
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Figure 1.8: A typical AE architecture.

forced the network to consider homogeneous nature of superpixels [45]. Zhang
et al. [132] proposed stack sparse autoencoder based network which incorporates
local information to reduce the effect of speckle noise. The local information is
extracted from the neighboring pixels located in the window centered at each
pixel. The distance of the neighboring pixel to the center pixel of the window
is used to weight the influence. If the pixel is heavily infected by the speckle
noise then the local information may lead to misclassification [62]. To address this
issue, Yuanyuan et al. [57] extended this idea by introducing adaptive nonlocal
approach for extracting spatial information.

1.5 Challenges in SAR Image Classification

SAR images heavily suffer from the speckle noise. Speckle is a granular noise-like
artifact that exists in the images taken by active imaging sensors such as SAR.
Theoretically, speckle is not noise; it arises from the constructive and destructive
interference of scattered waves in a resolution cell. Scattering matrix of a Pol-
SAR pixel is observed from a resolution cell containing multiple scatterers. As
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Figure 1.9: A PolSAR image suffering from the speckle noise. Constructive scat-
tering is seen as bright spots and destructive scattering is seen as dark spots in the
image.

shown in Figure 1.9, if the interference in the resolution cell is constructive, that
PolSAR pixel appears bright. If the interference is destructive, then the pixel ap-
pears dark. Since it is an undesired phenomenon, speckle is considered as noise.
Speckle noise can make the classification task difficult due to its multiplicative
nature [96]. Since we are doing a pixel-wise classification, pixel suffering from
a speckle noise may easily be misclassified. To reduce the effect of speckle on
classification, it is necessary to filter the SAR image. The ideal speckle reduction
filter reduces speckle with minimum loss of information and protects the image’s
structural features. Some notable speckle noise reduction methods can be found
in the literature [29, 79, 91, 111, 129].

As discussed in section 1.2, each pixel of a PolSAR image is represented by a
3× 3 complex-valued matrix. Typical operations required to classify each pixel
using parametric classifier include matrix inverse, multiplication, determinant,
etc. These operations are computationally expensive and considering the large
size of remote sensing images, pixel-wise classification becomes a time consuming
process. Some efforts to reduce the computational complexity are being made by
either reducing the number of pixels that need to be classified [49, 89, 113] or by
representing coherency matrix as a complex-valued vector [32, 63, 135].

Phase contains very useful information in PolSAR image [102]. The shift in
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a phase of vertically polarized waves allows us to differentiate between a single
bounce and double bounce scattering. How to effectively utilize the phase infor-
mation is a challenging task for deep learning based architectures. A complex-
valued neural network based architectures is required to use the phase informa-
tion [16, 50, 136].

1.6 Our Proposed Approaches

• Optimized Wishart Network (OWN): Assuming that the lexicographic vec-
tors kl or Pauli vector kp are independent and identically distributed com-
plex Gaussian random vectors, the coherency matrix and covariance matrix
follows a complex Wishart distribution. The calculation of Wishart distance,
mathematically, is primarily the calculation of complex matrix inversion and
multiplication. The linearization model suggested by Jiao and Liu [63] con-
verts a matrix multiplication into a vector dot product. Hence it saves com-
putational time. But it is to be noted that even this vector dot product cal-
culation requires multiplication and addition of complex quantities. First,
we propose a real-valued vector representation for each PolSAR pixel. Our
proposal retains phase information while reducing computational time sig-
nificantly as now multiplication and addition are not of complex quantities
but of real numbers. Therefore it improves the response time of Wishart
distance calculation and hence of classification efficiency. Next, we propose
a better parameter selection for increasing the number of hidden units in
the Wishart network introduced in [63]. We will show that it will result
in considerable improvement in classification accuracy. Combining it with
real-valued vector representation, we show that our proposed OWN is more
efficient in terms of classification time and accuracy.

• Extended OWN (e-OWN): We propose Extended Optimized Wishart Net-
work for classification of multifrequency PolSAR images. The proposed net-
work has three layers: the input layer, hidden layer, and output layer. The
hidden layer and output layer are fully connected, while the input layer and
the hidden layer are partially connected. We choose partial connections be-
cause we observe that a fully connected input-hidden layer does not provide
any additional advantage in terms of classification accuracy. After all, co-
herency matrices of two different frequency bands are uncorrelated [78]. On
the other hand partially connected input-hidden layer will reduce the num-
ber of parameters to learn. Hence it reduces computation overhead without
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sacrificing classification accuracy.

• Superpixel Driven OWN: We propose a fast PolSAR image classification
algorithm that uses pixel-based features and spatial features around each
pixel. This is achieved by introducing a superpixel driven optimized Wishart
network. The first improvement suggested is to take advantage of a fast
global k-means algorithm for obtaining optimal cluster centers within each
class. It uses a real-valued vector representation of the coherency matrix
along with fast matrix inverse and determinant algorithms to reduce com-
putational overhead. Our method then exploits the information of neigh-
boring pixels by forming a superpixel, so that even a noisy pixel may not
be assigned a wrong class label. The proposed network uses dual branch
architecture to combine pixel and superpixel features efficiently.

• Finally, we are proposing deep learning based classification algorithm for
multifrequency PolSAR image. Using PolSAR image decomposition algo-
rithms, 33 features are extracted from each frequency band of the given Pol-
SAR image. Then, a two-layer autoencoder is used to reduce the dimension-
ality of the input feature vector while retaining useful features of the image.
This reduced dimensional feature vector is then applied to generate super-
pixels using a simple linear iterative clustering algorithm. Next, a robust
feature representation is constructed using both pixels as well as superpixel
information. Finally, a softmax classifier is used to perform the classification
task.

1.7 Organization of Thesis Chapters

We discuss each of our above mentioned contributory works in separate chapters.
Chapter 2 discusses the real-valued vector representation of the PolSAR pixel co-
herency matrix followed by our proposed optimized Wishart network. We discuss
extended-OWN for classification of multifrequency PolSAR data in Chapter 3. In
Chapter 4 we propose faster calculation of inverse and determinant of a coherency
matrix along with fast global k-means algorithm for the PolSAR data. Chapter 5
describes superpixel driven OWN, which uses superpixels to incorporate spatial
information into the classification process. In Chapter 6 we elaborate stacked au-
toencoder based feature extraction and superpixel generation for multifrequency
PolSAR image classification. Finally the thesis is concluded in Chapter 7.
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CHAPTER 2

Optimized Wishart Network (OWN)

2.1 Background

Lee et al. showed that assuming the lexicographic vectors kl or Pauli vector kp

are independent and identically distributed complex Gaussian random vectors,
the coherency matrix and covariance matrix has a complex Wishart distribution.
Using this we can derive a distance measure using MLE called Wishart distance
[78]. The Wishart distance between any two coherency matrices is defined as:

DWishart(〈T〉, 〈Cm〉) = trace(〈Cm〉−1〈T〉) + ln |〈Cm〉|. (2.1)

Here 〈Cm〉 is the cluster center of class m and 〈T〉 is a coherency matrix of a test
pixel. This equation says that to know the Wishart distance of a pixel from a
cluster center, one is supposed to do the following:

• Calculate the inverse of the coherency matrix 〈Cm〉

• Do a matrix multiplication of 〈Cm〉−1 with the coherency matrix 〈T〉

• Calculate the determinant of 〈Cm〉.

This is to note that the both matrices are complex in general. Hence the multi-
plication of the two may become computationally expensive. Jiao and Liu [63]
observed that the calculation of Wishart distance, mathematically, is primarily the
calculation of the trace of the two matrices. Using this fact, a linearization model
is suggested which converts a matrix multiplication into a vector dot product.
Hence it saves computational time. With help of this linear implementation, they
designed the Wishart Network (WN). WN is a single hidden layer neural net-
work. Weights of WN are initialized using the linearization of coherency matrix
such that during the forward pass, WN calculates Wishart distance of all training
samples with all cluster centers. In the next section, we will describe WN includ-
ing some of its limitations.
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2.2 Wishart Network

Let 〈Ti〉 be the coherency matrix of ith pixel of a PolSAR image and 〈Cm〉 be the
mean coherency matrix of class m. To perform Wishart classification, we have to
calculate Wishart distance shown in eq. (2.1) between every PolSAR pixel 〈Ti〉
and every cluster center 〈Cm〉. A single Wishart distance calculation requires a
3× 3 complex matrix inverse, multiplication, and determinant operation. A sin-
gle 3× 3 complex matrix multiplication requires 27 complex number multiplica-
tions and 20 complex number additions. Since we require trace of the 〈Cm〉−1〈T〉,
the number of computations can be reduced by only calculating the diagonal en-
tries of the resultant matrix. Let σ = f (Σ) be a function which transforms any
coherency matrix 〈T〉 into a 9× 1 complex vector in the following way:

f (〈T〉) = [T11, T†
12, T†

13, T12, T22, T†
23, T13, T23, T33]

T. (2.2)

Σ = f−1(σ) is a inverse function which transforms 9× 1 complex vector back to
3 × 3 complex coherency matrix. The trace operation can now be calculated in
terms of a vector dot product as trace(〈Cm〉−1〈T〉) = 〈 f (〈Cm〉−1), f (〈T〉)〉. Here
〈x, y〉 is a dot product of two vectors x and y. Now this operation only requires 9
complex number multiplications and 8 complex number additions. Let,

X = [t1, t2, . . . , tN], ∀n ∈ {1, . . . , N} tn = f (〈Tn〉),
W = [c1, c2, . . . , cM], ∀m ∈ {1, . . . , M} cm = f ((〈Cm〉−1)T),

b = [ln(|〈C1〉|), ln(|〈C2〉|), . . . , ln(|〈CM〉|)].

(2.3)

Here X is a matrix whose ith column contains the vector representation of co-
herency matrix of ith training pixel 〈Ti〉. N is the total number of training pixels.
So, the size of the matrix X will be 9× N. Similarly, W is a matrix whose ith col-
umn contains the vector representation of mean coherency matrix of ith class. M
is the total number of class of the PolSAR image. So, the size of matrix W will be
9×M. Finally, b is a vector whose ith element is a log of the determinant of mean
coherency matrix of the class i. Hence the size of the vector b will be M× 1. Using
the linearization technique shown in eq. (2.3), the Wishart distance between every
PolSAR pixel 〈Ti〉 and every cluster center 〈Cm〉 can be calculated as one matrix
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multiplication as shown below.

D = WTX + b

=


DWishart(〈T1〉, 〈C1〉) DWishart(〈T1〉, 〈C1〉) . . . DWishart(〈TN〉, 〈C1〉)
DWishart(〈T1〉, 〈C2〉) DWishart(〈T2〉, 〈C2〉) . . . DWishart(〈TN〉, 〈C2〉)

...
... . . . ...

DWishart(〈T1〉, 〈CM〉) DWishart(〈T2〉, 〈CM〉) . . . DWishart(〈TN〉, 〈CM〉)

 .

(2.4)
The D(i, j) entry contains the Wishart distance between jth cluster center and ith

pixel of the PolSAR image. We will now incorporate this linearization technique
into the Wishart network.

Let Ω = {(〈T1〉, y1), (〈T2〉, y2), . . . , (〈TN〉, yN)} be a set of N labeled training
samples where yi is the one-hot-encoding representation of the label of ith training
sample 〈Ti〉. Using these training samples, matrices X, W and b can be obtained
using eq. (2.3). Figure 2.1 shows the architecture of Wishart network. It has three

Figure 2.1: Architecture of Wishart network.

layers, weights of input-hidden layer is initialized using W matrix. Bias of input-
hidden layer is initialized with the vector b. We feed matrix X whose columns
are vector representation of all training samples as an input to the network. As
shown in eq. (2.4), the input-hidden layer calculates the Wishart distance of every
training sample with the mean coherency matrices of all classes. Hidden-output
layer then uses these distances and maps it to the correct class label. The output
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of the network is given as follows:

hi = sigmoid
(

WTti + b
)

,

ŷi = UThi + c = ÛTĥi.
(2.5)

Here, Û = [U; c] and ĥi = [hi; 1]. To train the WN, MSE loss function is used. The
loss function is given as follows:

L(θ) =
1
N

N

∑
i=1

(
‖yi − ŷi‖2

)
. (2.6)

Here θ = {W, U, b, c} is a set of parameters of WN. Since the loss function
shown in eq. (2.6) is convex, the least-square estimation of Û can be obtained as:

Û =
K

∑
i=1

(
ĥiĥi

T
)−1

ĥiyi, (2.7)

where yi is the one-hot-encoding representation of true class label of ith training
sample. It is understood that by increasing number of hidden units, we can im-
prove the representation capability of a neural network. Hence it improves clas-
sification accuracy. In the case of WN, the number of hidden units depends on
the number of classes. To increase the number of hidden units in a WN, weights
associated with each new hidden unit have to be initialized. In a WN, weights of
the first M hidden units are initialized using the inverse of class mean coherency
matrix. The weights of additional hidden units are initialized using the inverse of
the coherency matrix of randomly selected samples.

There are two main limitations of WN. First, WN still requires complex-valued
matrix multiplication since matrices X and W are complex-valued, leading to ex-
cessive computational overhead. Second, to increase the number of hidden units,
WN randomly selects pixels from the given PolSAR image, thereby ignores the
heterogeneous nature of a class of the PolSAR image.

2.3 Optimized Wishart Network

We propose two significant changes in a Wishart network. First, we propose a
method of representing the coherency matrix as a real-valued vector without los-
ing the phase information. It will help reduce computational time significantly as
now multiplication and addition are not of complex quantities but of real num-

28



bers. Therefore it improves the response time of Wishart distance calculation and
hence of classification.

Next, we propose a better weight initialization method to increase the number
of hidden units by considering the heterogeneous nature of a PolSAR image class.
We show that it results in considerable improvement in classification accuracy.
Combining the two, we show that our proposed approach is more efficient in
terms of classification time and accuracy.

2.3.1 Real-valued vector representation

In section 2.2 we referred to a linear implementation [63] of Wishart distance for
faster calculation, where trace(〈Cm〉−1〈T〉) is linearized by exploiting the fact that
trace of any matrix is just a summation of diagonal elements of that matrix. The
linearization showed that the trace could be calculated by multiplying two 9× 1
complex-valued vectors, which included 9 complex numbers multiplication and
8 complex numbers addition. If we have to multiply two complex numbers a+ib
and c+id, it is (ac-bd+iad+ibc) = (ac-bd + i(ad+bc)), so single complex numbers
multiplication requires 4 multiplications and 2 additions of real numbers. Simi-
larly, single complex numbers addition requires 2 real numbers addition. Hence
internally multiplying two 9× 1 complex-valued vectors requires 36 real number
multiplications and 34 real number additions.

The first improvement in the WN is made by representing coherency matrix
as a real-valued vector by exploiting Hermitian nature of a coherency matrix. We
recall that diagonal elements of the coherency matrix are real-valued, and off-
diagonal elements are complex conjugate to each other. So, the coherency matrix
can be represented in terms of 9 unique real values, as shown in the equation
below.

〈T〉 = kpk†
p =

T11 T12 T13

T†
12 T22 T23

T†
13 T†

23 T33

 =

 a b + ic d + ie
b− ic f g + ih
d− ie g− ih j

 . (2.8)

Let 〈A〉 be a coherency matrix of a pixel of a PolSAR image and 〈B〉 be a coherency
matrix of any one of the cluster centers of the same PolSAR image. Using the
property that inverse of a Hermitian matrix is also Hermitian, it can readily be
shown that if 〈B〉 is a Hermitian matrix, then 〈B〉−1 will also be the Hermitian
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matrix. Therefore, from eq. (2.8), 〈A〉 and 〈B〉−1 have the following forms:

〈A〉 =

 a1 b1 + ic1 d1 + ie1

b1 − ic1 f1 g1 + ih1

d1 − ie1 g1 − ih1 j1



〈B〉−1 =

 a2 b2 + ic2 d2 + ie2

b2 − ic2 f2 g2 + ih2

d2 − ie2 g2 − ih2 j2


. (2.9)

Following eq. (2.1), we are only interested in the trace of matrix multiplication
of two such matrices shown in eq. (2.9). It readily turns out that during matrix
multiplication, imaginary parts cancel out each other, leaving with a relatively
pure form of multiplication of 9 real numbers, as shown below.

trace
(
〈B〉−1〈A〉

)
= a1a2 + 2b1b2 + 2c1c2 + 2d1d2 + 2e1e2

+ f1 f2 + 2g1g2 + 2h1h2 + j1 j2.
(2.10)

Recalling eq. (2.2), let σ be a function on coherency matrix which transforms 3× 3
complex matrix into 9× 1 real-valued vector

σ = f
(
〈T〉
)
= [a, b, c, d, e, f , g, h, j]T, (2.11)

such that 〈T〉 = f−1(σ), an inverse function which transforms 9× 1 real-valued
vector back into 3× 3 coherency matrix. Considering these two functions trace
part of Wishart distance can be calculated as:

trace
(
〈B〉−1〈A〉

)
=
〈

f
(
〈A〉

)
� p, f

(
〈B〉−1

)〉
,

p = [1, 2, 2, 2, 2, 1, 2, 2, 1]T.
(2.12)

Here, p is a constant vector arising from eq. (2.10). It has to be multiplied only
ones. ‘�’ is element-wise multiplier and 〈x, y〉 is a vector dot product of two 9× 1
real-valued vectors x and y. It is to note that in our proposed method f (〈A〉) and
f (〈B〉−1) are both 9× 1 real-valued vectors. Therefore, trace operation can effec-
tively be calculated using just 9 real numbers multiplications and 8 real numbers
additions. We call it Optimized Wishart Network (OWN). Here, the term opti-
mized is used in the sense that it improves on classification time as well as overall
accuracy of WN. Using eqs. (2.11) and (2.12), linear implementation of Wishart
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distance is defined as follows:

X = [t1 � p, t2 � p, . . . , tN � p] , ∀n ∈ {1, . . . , N} tn = f (〈Tn〉),
W = [c1, c2, . . . , cM] , ∀m ∈ {1, . . . , M} cm = f (〈Cm〉−1),

b = [ln(|〈C1〉|), ln(|〈C2〉|), . . . , ln(|〈CM〉|)] ,

D = WTX + b.

(2.13)

This process consumes at most one-fourth of the time, compared to the method
of Jiao and Liu [63]. It should be noted that the use of real-valued feature vector
representation does not result in loss of information because we are not discard-
ing the complex counterpart of the coherency matrix. We are encoding complex
coherency matrix in the form of the real-valued vector in such a way that we can
still calculate the exact Wishart distance.

2.3.2 Expanding Network

Then we attempt on second limitation of a WN, i.e., it considers a class completely
homogeneous. The second improvement in the performance of the network is
attempted by increasing the number of hidden units in the proposed network. The
existing WN adopted an approach where they initialized weights associated with
additional hidden units with randomly selected pixels (coherency matrix) from
any class. There are two issues with this approach. First is the assumption that
pixels within the same class are homogeneous so that they can be modeled as a
single cluster. It is understood that pixels within the same class are not necessarily
homogeneous [43]. Keeping this in mind, Gao et al. [43] proposed to model each
class as a mixture of Wishart probability distribution functions rather than a single
Wishart probability distribution function. So modeling heterogeneity within a
class as a single cluster may not be an accurate representation. Second, additional
hidden units are only helpful in improving accuracy if they provide additional
information to the already available information. Let’s say we have selected a
random pixel ‘t’ from a class ‘m’. If we use a random approach, then ‘t’ may be
very close to the cluster center of class ‘m’. In such a case, we gain very little
information from ‘t’ because Wishart distances of any unknown sample with ‘t’
and cluster center of ‘m’ are almost similar.

To solve these two issues, we adopted a different method to increase the num-
ber of hidden units. Let’s assume we have M classes, we represent each class
using P hidden units to get PM total hidden units. To do so, we apply the k-
means algorithm with k = P on training samples of each class. In other words,
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we propose to find P cluster centers using the k-means algorithm instead of just
one from each class. Then we use these cluster centers to initialize weights asso-
ciated with all hidden units. This method assumes that pixels within the same
class are in general heterogeneous, so it solves the first issue. If pixels from the
same class are heterogeneous, then cluster centers found by k-means are going
to be sufficiently different from each other, which solves the second issue. We are
using the k-means algorithm to find approximate cluster centers with an objective
of getting results fast.

2.3.3 Training Optimized Wishart Network

Real-valued vector representation developed in the section 2.3.1 can now be used
for the classification problem of a PolSAR image. We have used a fully con-
nected single hidden layer network. The input layer of the proposed network
takes 9 × 1 real-valued vector representation of the coherency matrix as an in-
put; input-hidden layer weights are initialized using the inverse coherency ma-
trix of cluster centers obtained by k-means algorithm. So, during forward pass,
the input-hidden layer calculates Wishart distance of training PolSAR pixel with
different class means, while hidden to output layer tries to map those distances
to its correct label. Once the forward pass is complete, training error is calculated
using MSE loss function described in eq. (2.6). During backward pass, parameters
of OWN are updated using the back-propagation algorithm. Algorithm-1 shows
the training steps of the proposed network. Once the training of the OWN is
complete we can measure its generalization capability by testing its performance
on unseen test data. The generalization capability of any learning algorithm indi-
cates how well the algorithm performs on the data that it has not seen previously.
For all test samples we do the forward pass on OWN and obtain their prediction.
Having the prediction obtained we assign label to each test samples for which its
prediction value is largest. Algorithm 2 shows the steps of assigning labels to test
samples.

2.4 Experiments and results

To evaluate the performance of OWN, we have used two datasets. The first
dataset is the L band Flevoland dataset [11] acquired by AIRSAR aircraft. It has
15 classes, namely, Stembeans, Peas, Forest, Lucerne, Wheat, Beat, Potatoes, Bare
soil, Grasses, Rapeseed, Barley, Wheat 2, Wheat 3, Water and Buildings. Its size is
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Algorithm 1 Training Algorithm of OWN
M = Number of classes, P= number of cluster in each class, K = size of training
set, iter = Number of iterations to perform, λ = Learning rate

Y =
[
y1, y2, . . . , yK

]
, where yi is a M× 1 vector whose non-zero entry indicates

true class label of ith training sample.

X =
[
t1, t2, . . . , tk

]
� p where ti = f (〈Ti〉), 〈Ti〉 is coherency matrix of ith train-

ing sample.
for m = 1, 2, ..., M do

Apply k-means algorithm on training sample of class m to find P cluster mean
wm

1 , wm
2 , ..., wm

P .
end for
W =

[
f ((w1

1)
−1), f ((w1

2)
−1), . . . , f ((wM

P )−1)
]

b =
[
|w1

1|, |w1
2|, . . . , |w1

P|, . . . , |wM
1 |, . . . , |wM

P |
]T

for i = 1, 2, . . . , iter do
H = sigmoid

(
WTX + b

)
H =

[
H; 1

]
U =

(
HHT

)−1(
HYT

)
W = W− λ δE

δW
for i = 1, 2, . . . , P ∗M do

b[i] =
∣∣∣[ f−1(W[:, i])]−1

∣∣∣
end for

end for
return W, U, b

Algorithm 2 Predict Algorithm
L = Number of test samples, obtain W, U and b from Algorithm 1.

X =
[
t1, t2, ..., tL

]
� p Where ti is ith test sample.

X =
[
X; 1

]
H = sigmoid

(
WTX

)
H =

[
H; 1

]
predition =

(
UTH

)
return arg max

(
prediction

)
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750× 1024. Figure 2.2 shows Pauli decomposition of the Flevoland dataset along
with the ground truth image. The second dataset is the C band San Francisco
dataset [93] obtained by RADARSAT-2 satellite. It contains 5 classes: Water, Veg-
etation, Developed Area, High-Density Urban and Low-Density Urban.

Figure 2.2: (a) Pauli Decomposition of Flevoland dataset containing 15 classes, (b)
Ground Truth.

2.4.1 Comparison with Wishart network

Flevoland dataset

The Flevoland dataset contains 768000 total pixels. Of them 157296 are labeled
pixels which belong to 15 classes. For fair comparison, we have followed a simi-
lar evaluation process as used by WN. From the total labeled pixels, we randomly
select 5% pixels from each class as training data and the remaining 95% pixels as
test data. Number of iteration was set to 100 and learning rate λ was set to 0.2.
The size of the hidden layer was set as 2M, 3M and 4M. Here, M is total number
of classes. For example, in case of 4M size, OWN selects four cluster centers from
each class using k-means algorithm, resulting in a total of 4M cluster centers. On
the other hand WN selects one cluster center from each class, resulting in a M
cluster centers. Remaining 3M cluster centers are selected randomly from the im-
age. Classification results of WN and OWN are shown in Table 2.1. As we can see,
OWN achieves 3.31%, 2.23% and 2.06% better accuracy than WN in case of 2M,
3M and 4M hidden units respectively. It shows the superiority of the proposed
weight initialization method. In the same Table 2.1, the second row of each net-
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Table 2.1: Classification Accuracy and Time Comparison
Method 2M 3M 4M

WN [63] 87.02 89.55 90.18

9.37 sec 13.53 sec 17.93 sec

OWN (Proposed) 90.33 91.78 92.24

4.23 sec 6.08 sec 8.00 sec

work is showing time comparison of training plus testing for each network. One
can see that OWN is also more than 2 times faster than WN. This is because of the
proposed real-valued feature representation.

Table 2.2 shows class-wise accuracy comparison of WC, WN and OWN with
4M hidden units and Figures 2.3 show corresponding classification maps. As we
can see, in comparison with WN, OWN was able to achieve better accuracy in
12 of the 15 classes. Steambeans is most improved class where the accuracy im-
proved 11.19% as compared with WN. The other notable improvement was ob-

Table 2.2: Class-wise Classification Accuracy Comparison
Class Samples WC WN (4M) OWN (4M)

Stembeans 6103 95.18 85.19 96.38

Peas 9111 96.00 95.55 95.93

Forest 14944 90.66 89.46 90.77

Lucerne 9477 92.60 96.13 96.34

Wheat 17283 85.28 94.48 93.00

Beat 10050 94.64 96.06 95.80

Potatoes 15292 86.69 88.53 89.62

Bare soil 3078 98.70 98.33 98.72

Grasses 6269 75.29 78.17 80.52

Rapeseed 12690 74.34 77.23 83.34

Barley 7156 94.13 97.23 98.20

Wheat 2 10591 84.34 72.08 81.13

Wheat 3 21300 89.86 94.55 95.68

Water 13476 46.94 98.39 98.97

Buildings 476 82.56 84.55 77.88

OA - 84.64 90.18 92.24

AA - 85.81 89.72 91.48
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Classification maps along with its mask (overlapping with ground
truth) obtained using (a)-(b) Wishart classifier [78], (c)-(d) Wishart network [63]
and (e)-(f) proposed optimized Wishart network.
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Figure 2.4: Comparison of training error between OWN and WN with different
number of hidden units. Here, OWN-2 shows training error obtained by OWN
with 2*M hidden units. Same is followed by other 5 methods.

served in classes of Wheat 2, Rapeseed and Grasses where the accuracy improved
by 9.05%, 6.11% and 2.35% respectively. We observe decline in accuracy in case
of the class Buildings. The accuracy was 6.67% lower as compared with WN. It
maybe attributed to very small number of labelled samples (476 only) in that class.
Therefore we had over 20 pixels for training.

Next, we compare the training error of WN and OWN. Figure 2.4 shows the
training error of WN and OWN with different numbers of hidden units plotted
on the x-axis. On the y-axis, we show the number of iterations. For example,
OWN-4 means training error of OWN with 4M hidden units. As we can see,
for the same number of hidden units, OWN starts with smaller training error in
comparison to WN in all three cases. It shows the superiority of the proposed
weight initialization method. This leads to a better convergence and improved
classification accuracy of OWN.
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San Francisco dataset

Similarly, we perform experiments on San Francisco dataset. Figure 2.5 shows
Pauli decomposition of San Francisco dataset along with the ground truth image.
It contains 2484000 total pixels out of which 1804087 are labeled. Due to large
number of labeled pixels (almost 75% of total pixels) we used only 1% of them as
training data and remaining as testing data. Table 2.3 shows class-wise classifica-
tion accuracy obtained by WC, WN (4M) and OWN (4M) on San Francisco dataset.
Figure 2.6 shows corresponding classification maps. Similar to Flevoland dataset,
OWN achieves 3.13% better OA compared to WN and 5.49 % better OA than WC.
The maximum improvement was observed for Low-Density Urban class with
11.68% better accuracy than WN. For Developed and High-Density Urban classes,
accuracy was improved by 9.24% and 0.80% respectively. For Vegetation class, ac-
curacy of OWN is 2.02% better than WN but 5.17% lower than Wishart classifier.
In case of Wishart classifier, there is a confusion between the Low-Density Urban
and High-Density Urban due to similar nature of scattering of both classes and
the assumption of homogeneity in each class. Similar confusion is observed in
case of WN also. Due to the consideration of heterogeneity of classes, we find less

(a) (b)

Figure 2.5: (a) Pauli Decomposition of San Francisco dataset containing 5 classes,
(b) Ground Truth.
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(a) (b) (c)

Figure 2.6: Classification map obtained using (a) Wishart classifier [78], (b)
Wishart network [63] and (c) Proposed optimized Wishart network.

Table 2.3: Class-wise accuracies of San Francisco dataset
Class Samples WC WN (4M) OWN (4M)

Developed 80616 56.99 51.97 61.21

Water 852078 97.18 99.83 99.95

Vegetation 237237 92.92 85.73 87.75

High-Density Urban 282975 51.30 68.98 69.78

Low-Density Urban 351181 69.00 66.45 78.13

OA - 82.14 84.50 87.63

AA - 73.48 74.59 79.36

confusion between Low-Density and High-Density classes in case of OWN.

2.4.2 Comparison with other Wishart distribution based meth-

ods

In literature, we find multiple ways to use Wishart distribution in the learning
process of the neural network. In this section, we compare our proposed method
with other neural network based methods such as Wishart Autoencoder (WAE)
[124] and Wishart Deep Belief Network (W-DBN) [86] that use Wishart distribu-
tion of the PolSAR pixel. For this experiment, the hidden layer’s size for OWN
was set to 15M.

As discussed in section 1.4.4 of Chapter 1, autoencoder based networks are
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Table 2.4: Class-wise accuracy comparison of Flevoland dataset
Class OWN WAE [124] W-DBN [86]

Stembeans 97.48 94.91 96.60

Peas 96.76 95.95 96.80

Forest 91.93 91.01 91.41

Lucerne 97.22 94.59 96.11

Wheat 94.14 91.19 92.32

Beat 97.04 95.21 95.81

Potatoes 89.45 89.33 88.80

Bare soil 99.06 92.48 96.99

Grasses 89.47 84.88 90.93

Rapeseed 83.60 84.37 86.71

Barley 96.65 95.01 98.06

Wheat 2 84.58 80.46 88.17

Wheat 3 96.57 94.99 93.77

Water 99.81 96.50 99.60

Buildings 76.89 83.79 85.26

OA 93.42 91.41 93.08

AA 92.71 90.97 93.15

unsupervised methods of extracting useful features by mapping inputs to lower
dimension space and minimizing the reconstruction error. The WAE [124] is a
pixel based classifier which uses elements of the coherency matrix as an input to
a single hidden layer network. The reconstruction loss function of WAE is shown
in eq. (2.14). It uses Wishart distance to measure the similarity between the input
coherency matrix and the reconstructed coherency matrix.

J(X, Y) =
1

2N

N

∑
i=1

DWishart

(
f−1(xi), f−1(yi)

)
+

λ

2

2

∑
j=1

n

∑
p=1

m

∑
q=1

∥∥∥W(j)
pq

∥∥∥2

F

+
β

2

m

∑
k=1

KL(ρ||ρ̂j).

(2.14)

Here DWishart( f−1(xi), f−1(yi)) is a Wishart distance between input coherency
matrix f−1(xi) and reconstructed coherency matrix f−1(yi). ρ is the sparsity
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Table 2.5: Class-wise accuracy comparison of San Francisco dataset
Class Samples OWN WAE [124] W-DBN [86]

Developed 80616 62.68 65.99 62.88

Water 852078 99.92 99.83 99.92

Vegetation 237237 88.41 83.57 77.59

High-Density Urban 282975 70.38 65.44 51.01

Low-Density Urban 351181 80.93 80.27 89.86

OA - 88.57 87.44 86.11

AA - 80.46 79.02 76.25

parameter and ρ̂j is the average activation of the jth hidden unit. KL(ρ||ρ̂j) is a
Kullback-Leibler (KL) divergence. It measures the difference between two proba-
bility distributions but it is not a distance metric, because it is not symmetric. KL
divergence is defined as:

KL(ρ||ρ̂j) = ρlog
ρ

ρ̂j
+ (1− ρ)log

(1− ρ)

(1− ρ̂j)
. (2.15)

Once the features are extracted, classification is performed using softmax classi-
fier.

Deep Belief Network (DBN) [86] is a type of multilayer neural network which
learns to model the probability distribution of the data in an unsupervised man-
ner. W-DBN is the extension of DBN designed for PolSAR data whose visible
layer models the Wishart distribution. Once the W-DBN is trained, classification
is performed using softmax classifier.

Table 2.4 compares classification accuracy of the proposed OWN to WAE [124]
and W-DBN [86] on Flevoland dataset. As we can see OWN achieves better accu-
racy in 9 out of 15 classes. Similar experiment was also conducted on San Fran-
cisco dataset and shown in Table 2.5. Here, OWN was able to achieve better ac-
curacy in three out of five classes. From experiment on both dataset, it is evident
that the proposed shallow neural network with small number of weights achieves
comparable results to deep neural networks with large number of weights.

2.5 Conclusion

Classification of PolSAR images has been a major area of research in the field of
remote sensing. Wishart Network (WN) is the way of incorporating the statisti-
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cal property of the PolSAR image into the learning process of a neural network.
During the training of WN, forward pass leads to the calculation of Wishart dis-
tance and then mapping of these distance values to the predicted class label is
done. Inherently, WN assumes that each class of a PolSAR data is homogeneous.
Therefore it models each class as a single Wishart distribution. It is shown [43]
that the homogeneity assumption is not always valid. So, considering each class
as a single Wishart distribution may lead to reduced performance of the classifier.

We proposed an Optimized Wishart Network (OWN), which incorporates two
novel steps to improve the performance of the WN. First, we proposed a novel lin-
earization method of calculating Wishart distance, which uses only real numbers.
It leads to a much faster training and classification time. We then also proposed
a better technique of initializing weights of hidden units by considering hetero-
geneous nature of PolSAR pixels of same class. It led to improved classification
accuracy. To test the performance of OWN, we performed experiments on the
Flevoland dataset containing 15 classes and San Francisco dataset with 5 classes.
We showed that proposed OWN was faster by at least 2 times and achieved better
classification accuracy compared to the WN.

In OWN, we used the k-means algorithm to find the cluster centers, which is
a very fast algorithm. But, its disadvantage is that cluster centers are not guaran-
teed to be optimal, and Euclidean distance used in k-means is not an appropriate
approach for PolSAR data. In Chapter 4, we present a fast global k-means based
algorithm that uses revised Wishart distance to get optimal cluster centers. The
above is done for classification of single frequency or single band PolSAR image.
In the next chapter, we will extend the proposed optimized Wishart network for
the classification of a multifrequency dataset. It utilizes the fact that the pixels of
different frequencies are statistically independent.
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CHAPTER 3

Extended OWN (e-OWN) for Multifrequency
PolSAR Data

3.1 Introduction

In the previous Chapter, we presented the Optimized Wishart Network (OWN)
for the classification of single frequency PolSAR data. OWN was able to achieve
better classification accuracy not only than WN but also in comparison with deep
learning based architectures such as WAE and W-DBN. In this chapter, we explore
the potential of OWN for multifrequency PolSAR data.

Some PolSAR systems, such as AIRSAR, EMISAR, F-SAR, etc., are capable of
capturing PolSAR images in multifrequency bands simultaneously. The advan-
tage of this multifrequency bands data is that it results in a multitude of infor-
mation in comparison to the single frequency PolSAR data. Since the penetration
capability of each frequency band is different, each band provides a different set
of information of the same terrain target. Due to this, combining different bands
information can improve classification accuracy [34, 36, 64]. In chapter 2 we saw
how a novel linear implementation of the Wishart distance just by using the real
numbers and by using k-means algorithm to take care of the heterogeneity in the
pixels distribution in the image improved the classification efficiency for a single
frequency PolSAR image. In this Chapter we would explore if the same could be
extended for multifrequency PolSAR images too. We call it the “extended Opti-
mized Wishart Network (e-OWN)”.

The proposed network has multiple input branches, one for each frequency
band. Each input branch has its respective weight matrix. It is initialized by a
real-valued vector representation of the inverse of cluster center matrices. Then
we stack the output of each input branch which allows us to compare the features
of each pixel at different frequency bands. This stacked feature vector is then used
to perform classification.
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This Chapter is organized as follows. In section 3.2, we first present the linear
implementation of Wishart distance for multifrequency PolSAR data thereby we
introduce the formulation of the proposed e-OWN. In section 3.3, we discuss ex-
periments performed on the Flevoland and Landes dataset for C, P, and L bands.
Then we compare our results with the ensemble of OWN trained on different fre-
quency bands and with stacked autoencoder based deep learning architecture [22]
to evaluate the classification efficiency and accuracy.

3.2 Extended Optimized Wishart Network (e-OWN)

The basis of OWN was a Wishart classifier that used a Wishart distance measure to
compare two coherency matrices. We know that the scattered signal collected by
the PolSAR satellite’s antenna are coming from different parts of the same terrain,
such as from the leaf canopy, from the trunk of the tree and from the soil (in case
of an agriculture land). Due to different penetration depths of different frequency
bands, the data from each frequency band is assumed to be statistically indepen-
dent [78]. Using this fact, Wishart classifier can be extended to accommodate
the classification of multifrequency PolSAR data by expanding the dimension of
cluster center 〈Cm〉 and PolSAR pixel 〈T〉. Assuming that the data of different
frequency bands are independent, the joint probability density function of a pixel
over all frequency bands can be given as follows [78]:

p
(
〈T〉|〈Cm〉

)
= ∏

q

nnd|〈T〉(q)|(n−d)

Γp(n)|〈Cm〉(q)|n
exp

(
− trace

(
〈Cm〉−1

(q)〈T〉(q)
))

where,

Γp(n) = π
d(d−1)

2

d

∏
j=1

Γ
(

n− j + 1
)

.

(3.1)

Here 〈Cm〉(q) is the mean coherency matrix of the mth class of the q-band PolSAR
image. 〈T〉(q) is a single pixel’s coherency matrix from the q-band PolSAR image.
From the joint probability distribution function, the Wishart distance for multi-
frequency data can be obtained by using maximum likelihood estimator in the
following way:

DWishart

(
〈T〉|〈Cm〉

)
= ∑

q
ln |〈Cm〉(q)|+ ∑

q
trace

(
〈Cm〉−1

(q)〈T〉(q)
)

. (3.2)
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Using eq. (3.2) the linearization model of the Wishart classifier developed for
single frequency PolSAR data can be extended for multifrequency data. Let 〈T〉i(q)
be a coherency matrix of the ith pixel of the q-band PolSAR image where i =

1, 2, ..., N and q ∈ {q1, q2, . . . qn}. N is the total number of pixels in an image and
q1, q2, . . . , qn are the microwave frequency bands.

Let ti
q be a 9× 1 real-valued vector representation of coherency matrix of ith

pixel of q-band image such that ti
q = f (〈T〉i(q)). Here ti

q is the extension of ti vector
discussed in Chapter 2 for the multifrequency data. Let, cm

q = f (〈Cm〉(q)). Refer-
ring to eq. (2.13) of Chapter 2, in order to define a linearization model of Wishart
classifier for multifrequency PolSAR data, the mathematical steps are shown in
eq. (3.3). For each frequency band q, we first construct Xq matrix. Its columns
contain real-valued vector representation of coherency matrices of training sam-
ples multiplied by constant vector p. Similarly, we construct Wq matrix for each
frequency band q. Each column of matrix Wq contains a real-valued vector rep-
resentation of inverse of mean coherency matrix of some classes. Finally, vector
bq is constructed for each frequency band q. Its elements contain determinants of
mean coherency matrices of all classes.

Xq =
[
t1
q � p, t2

q � p, . . . , tN
q � p

]
, ∀q ∈ {q1, . . . qn},

Wq =
[
c1

q, c2
q, . . . , cM

q

]
, ∀q ∈ {q1, . . . qn},

bq =
[
ln(|〈C1〉(q)|), ln(|〈C2〉(q)|), . . . , ln(|〈CM〉(q)|)

]
, ∀q ∈ {q1, . . . qn}.

(3.3)

Here � is an element-wise multiplication operation. Using eq. (3.3), the Wishart
distance between every PolSAR pixel 〈T〉i(q) of all bands in q and every cluster
center 〈Cm〉(q) of all bands in q can be calculated as n matrix multiplication as
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shown below, where n is the total number of bands:

D = ∑
q

WT
q Xq + bq

=


DWishart(〈T1〉(q1)

, 〈C1〉(q1)
) . . . DWishart(〈TN〉(q1)

, 〈C1〉(q1)
)

DWishart(〈T1〉(q1)
, 〈C2〉(q1)

) . . . DWishart(〈TN〉(q1)
, 〈C2〉(q1)

)
... . . . ...

DWishart(〈T1〉(q1)
, 〈CM〉(q1)

) . . . DWishart(〈TN〉(q1)
, 〈CM〉(q1)

)


+ . . .

+


DWishart(〈T1〉(qn), 〈C1〉(qn)) . . . DWishart(〈TN〉(qn), 〈C1〉(qn))

DWishart(〈T1〉(qn), 〈C2〉(qn)) . . . DWishart(〈TN〉(qn), 〈C2〉(qn))
... . . . ...

DWishart(〈T1〉(qn), 〈CM〉(qn)) . . . DWishart(〈TN〉(qn), 〈CM〉(qn))

 .

(3.4)

3.2.1 Network Architecture of e-OWN

Figure 3.1 shows proposed network architecture. It has three layers: the input
layer, the hidden layer, and the output layer. The hidden layer and the output
layer are fully connected, while the input layer and the hidden layer are partially
connected. As shown in Figure 1.4 of Chapter 1, in a fully connected layer, each
neuron of the current layer is connected with the next layer. It means that there
is a weight associated with each neuron of the current layer to each neuron of the
next layer. In case of e-OWN, the weights of input-hidden layer represent cluster
centers of all classes of all frequency bands. Since different frequency bands are
statistically independent [78], the Wishart distance between a pixel from band q1

to a cluster center of band q2 does not provide any advantage in terms of classi-
fication accuracy. Hence, we chose partially connected input-hidden layer where
neurons related to input of some band q1 is only connected with neurons of hid-
den layers that are related with cluster centers of band q1. Therefore, it reduces
number of weights and in turn reduces computational overhead without compro-
mising on classification accuracy.

3.2.2 Training of e-OWN

For training and testing of the proposed e-OWN, we divide our dataset into two
parts, namely, training set and test set. Let Im(m = 1, 2, ..., M) be the set of ran-
domly selected indices of PolSAR image pixels from class m, then I = I1 ∪ I2 ∪
...∪ IM will be the set of randomly selected indices of all training pixels. Let’s say
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Figure 3.1: Network architecture of proposed e-OWN for multifrequency data.

we have 3 bands, L, P and C in our dataset. To train the proposed network we
have used Mean Squared Error (MSE). The loss function of the proposed network
is as follows:

J(θ) =
1
N

N

∑
i=1

∥∥∥yi − ŷi

∥∥∥2
(3.5)

Here yi is one-hot-encoding of true label of ith training sample and ŷi is the predic-
tion of the network for ith training sample. θ is a set of parameters of the proposed
network. During forward pass, e-OWN will calculate Wishart distance between
all training samples of q-band with all cluster centers of q-band found by k-means
algorithm. We then apply non-linearity activation function sigmoid on these dis-
tances. The outputs of the non-linearity function are then stacked vertically as
shown in eq. (3.6). 

HL = sigmoid
(

WT
L XL + bL

)
HP = sigmoid

(
WT

PXP + bP

)
HC = sigmoid

(
WT

CXC + bC

)

H =


HL

HP

HC

1


(3.6)

During the backward pass, we update the weights of the network. Given the
weights of the input-hidden layer, the loss function of the proposed network is
convex. So the optimal solution of matrix U can be obtained by the least square
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estimation. After that, gradient at the output and hidden layers can be computed
as under. 

[
U
c

]
=
(

YHT
) (

HHT
)−1

δout = U

HL

HP

HC

+ c− Y

δmid =

HL

HP

HC

�
1−

HL

HP

HC


� (UTδout

)
. (3.7)

Here � is an element-wise matrix multiplication operation, and matrix Y con-
tains correct class labels of all training samples in the form of one-hot-encoding
representation. Input-hidden layer is not fully connected and contains multiple
branches. So weights of the input-hidden layer can be updated by spiting gradi-
ents obtained at the hidden layer in the following manner:

Wnew
L = Wold

L − λXLδmid[0 : KM, :]T,

Wnew
P = Wold

P − λXPδmid[KM : 2KM, :]T,

Wnew
C = Wold

C − λXCδmid[2KM : 3KM, :]T,

bnew
L = det

(
inv (Wnew

L )
)

,

bnew
P = det

(
inv (Wnew

P )
)

,

bnew
C = det

(
inv (Wnew

C )
)

.

(3.8)

Here λ is a , det and inv compute respectively the determinant and the inverse of
coherency matrix represented as real-valued vector in each column of the input
matrix.

Algorithm 3 and 4 show training and testing steps of the proposed e-OWN for
the classification of multifrequency data. Once the training of the e-OWN is com-
plete we can measure its generalization capability by testing its performance on
unseen test data. The generalization capability of any learning based algorithm
indicates how well the algorithm performs on the data that it has not seen pre-
viously. For all test samples we do the forward pass on e-OWN and obtain their
prediction. Once the prediction is obtained we assign labels to each test sample
for which its prediction value is largest. Algorithm 4 shows the steps of assigning
labels to the test samples.
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Algorithm 3 Training Algorithm for e-OWN
N = Number of training samples, M = Number of classes, PM = Size of hidden
layer, iter = Number of iterations, λ = Learning rate

Y =
[
yl

1, yl
2, ..., yl

N

]
, where non-zero entry in yl

i indicates true class label of tI(i)
q .

for each frequancy band q ∈
{

q1, q2, . . . , qn

}
do

T =
[
tI(1)
q , tI(2)

q , . . . , tI(N)
q

]
� p Where I(i) is ith value of set I which represents

the index of ith training sample.

Tq =
[
T; 1

]
for m = 1, 2, ..., M do

Let Ωm
t = {〈T〉i(q)|∀i ∈ Im} be a set of training samples of class m.

From training set Ωm
t find P cluster center wm

1 , wm
2 , . . . , wm

P using k-means
algorithm.

end for
Wq =

[
f ((w1

1)
−1), f ((w1

2)
−1), . . . , f ((wM

P )−1)
]

bq =
[
ln|w1

1|, ln|w1
2|, . . . , ln|w1

P|, ln|wM
1 |, . . . , ln|wM

P |
]

end for
for i = 1, 2, ..., iter do

for each frequancy band q ∈
{

q1, q2, . . . , qn

}
do

Hq = sigmoid
(

WT
q Tq + bq

)
end for
H =

[
Hq1 ; Hq2 ; . . . ; Hqn ; 1

]
[U; c] =

(
HHT

)−1(
HYT

)
for each frequancy band q ∈

{
q1, q2, . . . , qn

}
do

Wq = Wq − λ δE
δWq

for i = 1, 2, ..., PM do
bq[i] = ln

(∣∣∣( f−1(Wq[i]))−1
∣∣∣)

end for
end for

end for

3.3 Experiments and results

To evaluate the performance of e-OWN for multifrequency data classification,
we have used Flevoland [11] and Landes datasets [1] obtained with L, P, and
C frequency bands on July 3, 1991 and June 20, 1991 respectively. Figure 3.2
shows Pauli decomposition of all bands of the Flevoland dataset. It has 16 classes,
namely, Oats, Grass, Lucerne, Flax, Barley, Peas, Fruit, Potato, Beans, Beet, Build-

49



Algorithm 4 Predict Algorithm
L = Number of test samples
Obtain matrices Wq1 , Wq2 , . . . Wqn , bq1 , bq2 , . . . bqn , U and c from Algorithm 3.
for each frequancy band q ∈ {q1, q2, . . . , qn} do

Tq =
[
t1
q, t2

q, . . . , tL
q

]
� p Where ti

q is ith test sample of band q.

Hq = sigmoid
(

WT
q Tq + bq

)
end for
H =

[
Hq1 ; Hq2 ; . . . ; Hqn ; 1

]
predition =

(
UTH + c

)
return arg max

(
prediction

)

ing, Onions, Wheat, Road, Rapeseed and Maize. Let’s call it Flevoland16 dataset.
Figure 3.7 shows Pauli decomposition of all bands of Landes dataset. It is of a
forest area with trees of different ages, whose ground truth map was also ob-
tained [22].

3.3.1 Performance evaluation of e-OWN

Figure 3.3 shows classification maps of individual bands and different band fu-
sions. Table 3.1 shows corresponding classwise accuracies. Among the three
bands, the P band has the longest wavelength and has very good penetration
capability. But because of its long wavelength, it faces difficulty in differentiating
similar crops. C band has a short wavelength with limited penetration capability,
so the volume scattering mechanism is not fully exploited [43]. Wavelength of L
band is higher than the C band but lower than the P band, so it has an advantage
of reasonable penetration and discrimination. The same is evident from Table 3.1.

(a) (b) (c) (d)

Figure 3.2: Pauli Decomposition of (a) C band, (b) P band, (c) L band and (d)
ground truth of Flevoland16 dataset.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.3: (a)-(c) are classification maps of C, P and L band individually. (d)-(f)
classification maps of different band fusions obtained using proposed e-OWN,
namely, CP, CL and PL, (g) classification map of CPL bands obtained using ma-
jority voting (CPL†). (h) classification map of CPL bands obtained using e-OWN
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Table 3.1: Class-wise accuracies for different band fusion
Class/Band C P L CPL† CP CL PL CPL
Oats 99.35 98.37 99.40 100 100 99.84 100 100
Grass 72.20 66.19 80.33 88.08 86.55 83.55 85.27 90.85
Lucerne 63.83 0.945 99.68 99.89 99.46 99.93 99.88 99.98
Flax 99.29 89.76 98.57 99.55 99.14 99.55 98.85 99.40
Barley 80.69 94.82 96.78 99.28 97.97 99.14 98.85 99.00
Peas 83.78 75.62 93.86 96.94 91.29 98.07 96.92 98.00
Fruit 73.94 90.24 96.33 98.79 95.37 94.03 95.38 96.16
Potato 90.24 93.43 95.43 99.90 98.55 98.33 98.48 98.96
Beans 99.60 85.97 98.79 96.77 99.75 99.75 98.79 99.80
Beet 44.95 54.44 76.39 78.77 83.93 91.36 91.37 95.70
Building 32.33 74.75 54.88 86.83 73.71 72.79 86.22 89.65
Onions 95.24 77.61 98.32 98.77 97.82 98.55 98.87 98.69
Wheat 85.20 94.45 94.42 99.09 97.27 97.06 98.02 98.94
Road 39.56 55.37 60.99 75.96 75.68 76.52 81.63 83.47
Rapseed 99.74 98.56 99.64 99.94 99.76 99.80 99.76 99.84
Maize 63.22 69.14 91.52 95.92 92.58 96.46 95.60 98.70
OA 76.43 84.17 89.62 94.79 93.53 94.40 95.26 96.71
AA 76.45 82.08 89.71 94.65 93.05 94.05 95.24 96.70

The first three columns of Table 3.1 compare class-wise accuracies obtained using
individual bands. For that, we have used OWN proposed in the previous Chap-
ter. As one can see, the L band achieved the highest overall accuracy of 89.62%
in individual bands. The worst overall accuracy of 76.43% was obtained by the C
band due to its low penetration capability. Performance on P band was in between
C and L bands with 84.17%.

Combining multiple bands information can further improve classification ac-
curacy since data of different bands are statistically independent [78]. Meaning,
the Wishart distance of some pixel t of class m to cluster center of m is going to
be different and unrelated for different bands. So different bands information is
going to be complementary to each other. This leads to improved classification ac-
curacy. One way to utilize different bands information is to do ensemble learning
of OWN trained on different frequency data.

In the context of machine learning ensemble learning is a supervise learning
method of combining finite set of classifiers to produce one strong classifier whose
performance is better than all classifiers in the set [27]. Majority voting classi-
fier [14] is one type of ensemble learning method where we train each classifier
in a set individually. After that, to obtain the label of any test sample, we obtain
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.4: (a)-(c) are error maps of C, P and L band individually. (d)-(f) error
maps of different band fusions obtained using proposed e-OWN, namely, CP, CL
and PL, (g) error map of CPL bands obtained using majority voting (CPL†). (h)
error map of CPL bands obtained using e-OWN. Here black pixel indicates cor-
rectly classified pixel and colored pixel indicated incorrectly classified pixel. Color
of the pixel indicates true class label.
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the prediction for that sample from all classifiers in the set. Then we take the
average of all predictions to produce the final label for the test sample. In our ex-
periment we tried to see what ensemble learning method would result. Let CPL†

be the ensemble of three OWN trained on C, P, and L bands respectively. Result
is shown in the fourth column of the Table 3.1. It was found that the ensemble
learning improved the overall accuracy from 89.62% to 94.79%. But still we found
many pixels misclassified as shown in the Figure 3.4(g). The last four columns of
Table 3.1 show class-wise accuracies obtained by combining different bands infor-
mation using the proposed e-OWN. As one can see, e-OWN is able to efficiently
combine various bands information to achieve better accuracy compared to that of
the individual bands as well as ensemble learning. Figure 3.3 shows classification
maps of individual bands and different band fusions.

To further investigate the efficiency of e-OWN, we look at the error maps of
individual bands and different bands fusion as shown in Figure 3.4. Here a black
pixel indicates that the pixel was classified correctly and a different colored pixel
indicates that the pixel was incorrectly classified, the color indicates true class la-
bel of that pixel. From Figures 3.4(a)-(c), we can observe some overlap between
misclassified pixels in individual bands highlighted within white box. We can
also observe areas where pixels misclassified in one band are correctly classified
in another. Figures 3.4(g) and 3.4(h) show error maps of combining all three bands
using ensemble learning and by proposed e-OWN respectively. As we can see, en-
semble learning is able to improve the classification result by combining different
bands, but it fails in some region when a pixel is misclassified in all three bands
(highlighted by the white box), in Figure 3.4(g). In case of ensemble learning,
network was trained independently on each band, so it does not have the ability
of combining different bands features. On the other hand e-OWN gives much
improved classification result shown in Figure 3.4(h).

3.3.2 Generalization capability of e-OWN

Generalization capability of an algorithm indicates how the algorithm performs
on an unseen data. To test the generalization capability of e-OWN with various
size of training data, we experiment with the number of samples used for training,
namely, sampling rate versus classification accuracy. The results for the same are
shown in Figure 3.5. We vary the sampling rate from 0.05% to 10% on the x-axis.
For each sampling rate, we train e-OWN using all three frequency bands (CPL)
data and report the classification accuracy on the y-axis. As we can see, even with
using only 0.05% samples, we achieve 95.8% accuracy. It shows that the proposed
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Figure 3.5: Classification accuracy on Flevoland16 dataset at different sampling
rate (from 0.05% to 10% of total labeled pixels).

e-OWN requires very few training samples. As we increase the sampling rate,
classification accuracy increases until around 3%. At 3% sampling rate the overall
classification accuracy reaches to 97.1%. After 3%, the increase in classification
accuracy does not remain that sharp. Figure 3.5 shows that at 10% sampling rate
the classification accuracy reaches to 97.3%.

3.3.3 Comparison with ANN [22]

In this section, we compare the proposed e-OWN with autoencoder based ANN
architecture proposed in [22]. For comparison, we have used two dataset. First
dataset is a subset of the Flevoland16 dataset shown in Figure 3.6, let us call this
subset Flevoland7. Second is Landes dataset shown in Figure 3.7. Table 3.2 com-
pares the performance of e-OWN and ANN [22] on single as well as multifre-
quency data. It should be noted that for the single frequency data, e-OWN will
have only one input branch. So, its architecture will be same as that of the OWN
discussed in Chapter 2.

For the Flevoland7 dataset, in a single-band case, e-OWN achieves higher ac-
curacy for the L band but fails to show better results in C and P bands. In case
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(a) (b) (c) (d)

Figure 3.6: Pauli Decomposition of (a) C band, (b) P band, (c) L band and (d)
Ground Truth of Flevoland7 dataset.

(a) (b) (c) (d)

Figure 3.7: Pauli Decomposition of (a) C band, (b) P band, (c) L band and (d)
Ground Truth of Landes dataset.

of P band it achieves above 90% accuracy for Wheat and Rapeseed while poor
performance is observed for Lucerne which is misclassified as Beat. In case of C
band it fails to differentiate between Beat, Peas and Lucerne classes but achieves
good result in case of Rapeseed where we observe 95.68% accuracy. For C band
worst performance is observed in case of Peas which is misclassified as Potato. In
case of L band, we observe over 90% accuracy for Wheat, Rapeseed, Potato and
Barley. Worst performance is observed in case of Beat with 80.87% accuracy. It is
misclassified as Wheat. One can see that e-OWN achieves higher accuracy in most
of the band fusions (CL, PL, and CPL) cases. For CP band fusion case accuracy of
e-OWN is lower, only 93.72%. It may be attributed to even lower accuracies of C
(73.62%) and P (87.79%) bands.

In the case of Landes dataset, ANN [22] results are available from the C and
L band. The Landes dataset contains trees of different ages. In case of individual
bands we observed similar pattern as that of Flevoland7. L band achieved best
accuracy of 93.26% followed by P band with 87.33% accuracy. Performance of
C band was worst with 78.52% accuracy due to its lower penetration capability.
Combining all three bands, e-OWN was able to achieve 97.28% overall classifica-
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Table 3.2: Classification Accuracy Comparison for e-OWN

Band
Flevoland7 Landes

ANN [22] OWN ANN [22] OWN

C 89.78 73.62 77.42 78.52

L 90.86 92.17 89.73 93.26

P 90.75 87.79 - 87.33

Bands ANN [22] e-OWN ANN [22] e-OWN

CP 96.59 93.72 - 93.24

CL 95.58 96.40 96.23 96.18

PL 96.40 97.70 - 96.58

CPL 98.23 98.65 - 97.28

(a) (b) (c)

(d) (e) (f) (g)

Figure 3.8: Classification results of (a) C band, (b) P band, (c) L band, (d) Combin-
ing C and P band, (e) Combining C and L band, (f) Combining L and P band and
(g) Combining C, L and P band of Flevoland7 dataset.

tion accuracy.
From the experiments on both datasets, it is evident that even with only a

single hidden layer, e-OWN can combine multiple band information more effi-
ciently than ANN [22] with multiple hidden layers. The explanation for this is the
fact that e-OWN considers polarization information of PolSAR data [63], while
ANN [22] does not. Also, e-OWN starts with relatively high classification accu-
racy, because the first iteration of e-OWN achieves classification accuracy as high
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.9: Classification results of (a) C band, (b) P band, (c) L band, (d) Combin-
ing C and P band, (e) Combining C and L band, (f) Combining L and P band and
(g) Combining C, L and P band of Landes dataset.

as Wishart classifier. This helps e-OWN to converge quickly with high accuracy.
Figures 3.8 and 3.9 show classification maps of C, L, P, CP, CL, PL, and CPL bands
combination for Flevoland7 and Landes datasets. For individual bands, in both
datasets L band performs best which shows the superiority of L band PolSAR
image for crop classification. Out of all possible band fusions, the highest classifi-
cation accuracy was observed in the case of CPL.

3.4 Conclusion

In this chapter, we defined and used a new network named e-OWN (Extended
Optimized Wishart Network) for the classification of multifrequency PolSAR data.
We started with proposing linearization model of Wishart classifier for multifre-
quency PolSAR data. Using this model, we developed single hidden layer, multi
input branch neural network called e-OWN. Input layer of e-OWN has multi-
ple branches, one for each frequency band of a PolSAR image. During forward
pass, the input-hidden layer calculates Wishart distance of each training pixel of
each frequency band with all cluster centers of its respective frequency band. At
the hidden layer, we stack these distance values to obtain a combined feature
vector for each pixel. Hidden-output layer uses this feature vector to perform
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classification. We performed experiments on Flevoland and Landes dataset and
demonstrated that proposed e-OWN could efficiently combine multiple bands in-
formation in comparison with ensemble training and ANN [22].

Currently, both OWN and e-OWN use a k-means algorithm to find multiple
cluster centers from each class. However, the k-means algorithm has a limita-
tion: since it starts with randomly initialized cluster centers, its convergence to
optimal clusters is not guaranteed. Global k-means can solve this problem of con-
vergence [82]. Given the value of K, the global k-means always finds optimal
clusters for every class. The second advantage of the global k-means is that to
find a solution for K clusters, it iteratively solves the problem for k = 1, 2, . . . , K.
This characteristic may help in estimating the correct value of K. On this logic, in
the next chapter, we will discuss the global k-means algorithm for PolSAR data.
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CHAPTER 4

Global k-means for a PolSAR Image

4.1 Introduction

In Chapter 2, we discussed OWN for single frequency data, and in Chapter 3, we
introduced e-OWN for multifrequency data. Both OWN and e-OWN used the
k-means algorithm to find multiple cluster centers from each class of each fre-
quency band. To increase the number of hidden units, we showed that coherency
matrices found by k-means outperformed randomly selected coherency matrices.
We showed that both OWN and e-OWN resulted in better classification efficiency.
However it has some limitations too. The first disadvantage of this approach is
that the cluster centers located by k-means are not guaranteed to be optimal. The
second drawback is that Euclidean distance is used in k-means to compare two
PolSAR pixels, which is not appropriate for PolSAR data since the PolSAR pixel
follows Wishart distribution. To solve these problems, we propose to use global
k-means, which guarantees optimal convergence of cluster centers. And instead
of Euclidean distance, we recommend using Revised Wishart Distance (RWD),
which considers the probability distribution of PolSAR data [66, 106, 135]. One
thing here to note is that the computation of RWD is more expensive than Wishart
distance. RWD requires to compute determinants of all training samples as well
as test samples. So we have to find out way to calculate determinant fast. In sec-
tion 4.2, we present fast coherency matrix inversion and determinant calculation
using real-valued vector representation proposed in Chapter 2. In section 4.3, we
present a fast variant of the global k-means algorithm designed for PolSAR data.
It utilizes the proposed real-valued vector representation to perform all coherency
matrix related computations.

60



4.2 Fast Matrix Inversion and Determinant Computa-

tion

In Chapters 2 and 3, the fast calculation of Wishart distance demonstrated the
effectiveness of the real-valued vector representation, which resulted in outper-
forming the existing methods. In this section, we will show that real-valued vec-
tor representation is also useful for fast inverse and determinant computation of
a coherency matrix. Coelho et al. [21] proposed an algorithm for fast matrix in-
version and determinant computation. It used 6 elements of complex coherency
matrix for this calculation. The authors proved that it was two times faster than
the usual Cholesky factorization. The real-valued representation shown in eq.
(2.11) of Chapter 2 can directly be used to calculate the real-valued representa-
tion of the inverse of a matrix and determinant of a matrix. We have modified
the algorithm proposed by Coelho et al. [21] to directly work on the real-valued
vector representation shown in eq. (2.11). Algorithm 5 calculates the real-valued
representation of the inverse of the input matrix and the determinant of the input
matrix directly from the real-valued vector representation of any PolSAR pixel.

Algorithm 5 Fast Matrix Inversion and Determinant
Input v = f (A) = [a, b, c, d, e, f , g, h, j] real-valued vector representation of ma-
trix A.

ai = f ∗ j− g2 − h2 bi = e ∗ h + d ∗ g− b ∗ j
ci = e ∗ g− h ∗ d− c ∗ j di = b ∗ g− c ∗ h− f ∗ d
ei = b ∗ h + c ∗ g− f ∗ e fi = a ∗ j− d2 − e2

gi = e ∗ c + d ∗ b− a ∗ g hi = e ∗ b− d ∗ c− a ∗ h
ji = a ∗ f − b2 − c2

det(v) = a ∗ ai + b ∗ bi + c ∗ ci + d ∗ di + e ∗ ei
inv(v) = [ai, bi, ci, di, ei, fi, gi, hi, ji]/det(v)

Output inv(v) real-valued vector representation of A−1 and det(v) determinant
of A.

4.3 Fast Global k-means for a PolSAR Image

PolSAR imaging may not necessarily have homogeneity in the distribution of all
the pixels within even the same class [43]. Keeping this in mind OWN [41] was
proposed which considered k-means algorithm to quickly find multiple cluster
centers within each class. But, k-means algorithm has a limitation: since it starts
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with randomly initialized cluster centers, its convergence to optimal clusters is not
guaranteed. This problem of convergence may be solved by global k-means [82].
Given the value of K, global k-means always finds optimal cluster centers. Second
advantage of global k-means is that in order to find a solution for K clusters, it
iteratively solves the problem for k = 1, 2, . . . , K. This characteristic may help in
estimating the correct value of K.

Let X = {〈T1〉, 〈T2〉, . . . , 〈TN〉} be N coherency matrices of a class m. We want
to find K clusters such that it partitions these coherency matrices into K disjoint
subsets whose centroids are represented as 〈C1〉, 〈C2〉, . . . , 〈CK〉. In this case, clus-
tering error function E is expressed as follows:

E =
N

∑
i=1

K

∑
k=1

I(〈Ti〉 ∈ 〈Ck〉) ∗ d(〈Ti〉, 〈Ck〉). (4.1)

Here I(〈Ti〉 ∈ 〈Ck〉) = 1 if d(〈Ti〉, 〈Ck〉) is minimum ∀k = 1, 2, . . . , K and 0 oth-
erwise. Clustering error (E) measures on an average how distant every sample is
from their respective closest cluster center. Lower value of E indicates better clus-
ter centers. Global k-means algorithm [82] starts from single cluster and iteratively
solves the problem for k = 2, 3, . . . , K. Solving for k = 1 is easy, it can be done by
taking mean of all points, i.e., centroid of all the coherency matrices. Next, to solve
problem with more than one cluster, i.e., k > 1, we retain k− 1 cluster centers from
previous stage and perform N executions of the k-means algorithm. During each
execution we consider one of the N pixels along with previous k− 1 solutions as
initial cluster centers and run the k-means until it converges. After the N execu-
tions we select the solution which achieves minimum clustering error shown in
eq. (4.1). We repeat this process until K cluster centers are obtained. As we can see,
to find each cluster center we have to perform N executions of k-means algorithm,
the complete operation becomes computationally costly. To reduce the computa-
tional cost, a fast variant of global k-means has also been suggested [82]. Instead
of running k-means algorithm for each N pixels, the upper bound En ≤ E− bn of
the clustering error function shown in eq. (4.1) for all samples is calculated with

bn =
N

∑
j=1

max(dj
k−1 − d(〈Tn〉, 〈Tj〉), 0). (4.2)

Here dj
k−1 denotes the distance between 〈Tj〉 and the closest mean coherency ma-

trix among all the k− 1 cluster centers obtained so far. The value of bn represents
the assured reduction in the error measure obtained if we consider 〈Tn〉 as a new
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initial cluster center.
It has been reported that instead of Euclidean distance, a revised Wishart dis-

tance (RWD) is more suitable to a PolSAR data as a distance measure [52, 135].
Unlike Wishart distance, RWD is always positive and it has a minimum constant
distance value of 0. RWD between two PolSAR coherency matrices 〈Tj〉 and 〈Tn〉
is given as

DRWD(〈Tn〉, 〈Tj〉) = trace(〈Tj〉−1〈Tn〉) + ln
( |〈Tj〉|
|〈Tn〉|

)
− n. (4.3)

For each value of k = 1, 2, . . . , K, we have to calculate bn for all N samples which
is still a computationally costly operation. To reduce the computational overhead
we use real-valued vector representation for a coherency matrix along with fast
determinant and inverse computation algorithm discussed in section 4.2.

Algorithm 6 Fast Global k-means for PolSAR data
K = Number of cluster, N = Number of PolSAR pixels, {〈T1〉, 〈T2〉, . . . , 〈TN〉} coherency
matrices of N PolSAR pixels, ti = f (〈Ti〉).
X = [t1, t2, . . . , tN ]
Xinv = [inv(t1), inv(t2), . . . , inv(tN)]

b = [det(t1), det(t2), . . . , det(tN)]
T

B = ln( b
bT )

D = (X� p)TXinv + B
C1 = mean(X)
Let CloseClusterDistance be a vector where ith entry corresponds to RWD of Ti pixel
to its closest cluster center.
for k = 2, . . . , K do

ErrorReduction = add(CloseClusterDistance,−D)
bn = sum(max(ErrorReduction, 0))
Ck = X[arg max(bn)]
for j = 1, . . . , number o f iterartion do

Cinv = [inv(C1), inv(C2), . . . , inv(Ck)]
Cd = [det(C1), det(C2), . . . , det(Ck)]
B = ln( d

bT )

distance = (Cinv � p)TX + B
closecluster = arg min(distance)
for i = 2, . . . , k do

Ci = ∑l=N
l=1 I(closecluster[l] = i)tl

end for
end for
Update CloseClusterDistance

end for

For this, we first calculate RWD between each sample to every other sample.
Let ti = f (〈Ti〉) and X = [t1, t2, . . . , tN] be a matrix containing vector repre-
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sentation of all samples, ith column of X is a vector representation of 〈Ti〉. Let
Xinv = [inv(t1), inv(t2), . . . , inv(tN)], then the ith column of Xinv is a vector repre-
sentation of 〈Ti〉−1. Let b = [det(t1), det(t2), . . . , det(tN)]

T. Now, RWD between
each sample and every other sample can simultaneously be calculated using eq.
(4.4), which is

D = (X� p)TXinv + ln(b/bT). (4.4)

Here ith row of D contains RWD between 〈Ti〉 and 〈Tj〉 ∀j ∈ 1, 2, . . . , N. Al-
gorithm 6 lists steps involved in fast global k-means algorithm designed for the
PolSAR data. Here, mean is the row-wise mean operation, add(x, y) adds vector
x to each row of matrix y, sum is row-wise summation operation and arg max(x)
returns the index of largest value in vector x.

4.4 Experiments and results

Experiments are conducted on the following four different real PolSAR image
datasets:

• An L-band PolSAR image of the Flevoland Region in The Netherlands ob-
tained using AIRSAR satellite on 16 Aug, 1989. The ground truth [136] of
this image is used for discussion of classification accuracy. It contains 15
different classes, such as, Baresoil, Barley, Beet, Buildings, Forest, Grasses,
Lucerne, Peas, Potatoes, Rapeseed, Steambeans, Water, Wheat 1, Wheat 2
and Wheat 3. This image is of 750× 1024 size. Let us call it Flevoland15
dataset.

• An L-band PolSAR image of the Landes Region in France obtained by AIR-
SAR satellite on 19 June, 1991. The ground truth [22] of this image is used
for discussion of classification accuracy. It comprises of 6 classes of trees of
differing ages. It is of 1050× 1000 size.

• An L-band PolSAR image of Flevoland region in The Netherlands obtained
by AIRSAR satellite on some other date i.e., 16 June, 1991. Its ground truth
[22] is used for discussion of classification accuracy. It has 7 different classes,
such as, Barley, Beet, Lucerne, Peas, Potato, Rapeseed and Wheat. Its size is
750× 700. Let us call it Flevoland7 dataset.

• An C-band PolSAR image of the San Francisco obtained using RADARSAT
on 2008. The ground truth for this image is obtained from [93]. It contains
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5 classes, namely, Water, Vegetation, Developed, High-density Urban and
Low-density Urban. It is of size 1800 × 1380.

4.4.1 Effectiveness of global k-means

To measure the effectiveness of global k-means we have compared our method
with OWN [41] based on k-means. OWN is a single hidden layer network that
uses k-means algorithm to initialize weights of the input-hidden layer. During
forward pass OWN calculates Wishart distance of all training samples with re-
spect to the cluster centers found by k-means.

To establish effectiveness of global k-means we kept all parameters of OWN
same except we replaced k-means algorithm with global k-means algorithm. Let
us call this modified method Gk-OWN. During forward pass, Gk-OWN will cal-
culate RWD of all training samples with respect to all cluster centers obtained by
the proposed fast global k-means algorithm as explained in section 4.3. Gk-OWN
has thus two advantages over OWN. First, it uses global k-means algorithm which
gives optimal cluster centers. Second, it finds RWD in fast global k-means which is
more appropriate for a PolSAR data than an Euclidean distance used by k-means
in OWN.

Parameters of both the networks are kept same for true comparison. We kept
value of K=4, number of iterations as 100 and learning rate λ as 0.2. Experiments
were repeated 50 times. Each time we took randomly selected 5% pixels as train-
ing samples for both the methods. The test accuracies are reported on remain-
ing 95%. Figure 4.1 shows comparison of overall accuracies obtained using both
methods. As one can infer from Figure 4.1, the overall accuracy (OA) for the
Flevoland15 dataset has improved from 92.24% to 93.20%, for Landes dataset OA
improved from 91.09% to 93.19% and for Flevoland7 dataset OA improved from

Figure 4.1: Classification accuracies obtained over repeated execution of OWN
using k-means and Gk-OWN using global k-means for (a) Flevoland15 dataset,
(b) Landes dataset and (c) Flevoland7 dataset.
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89.85% to 92.17% on use of proposed fast global k-means algorithm.

4.4.2 Experiments on Flevoland15 dataset

We compare the training error of WN, OWN and proposed Gk-OWN with 4M
hidden units. Figure 4.2 shows the training error of WN, OWN and Gk-OWN on
the x-axis. On the y-axis, we show the number of iterations. As we can see, Gk-
OWN starts with smaller training error in comparison to both WN and OWN due
to a better initialization method. These lead to a faster convergence and improved
classification accuracy of Gk-OWN. Next, we compare class-wise classification
accuracies of WC [78], WN [63], OWN and Gk-OWN in Table 4.1. Figure 4.3
shows the corresponding classification maps. As we can see, Gk-OWN achieves
better classification accuracy in 11 out of 15 classes compared to the remaining
three methods. In comparison to OWN, Gk-OWN achieves better accuracy in
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Figure 4.2: Comparison of training error between WN, OWN and Gk-OWN with
4M hidden units.

12 out of 15 classes. The three most improved classes in comparison to OWN
were Grasses, Wheat 2 and Buildings. In case of Grasses, accuracy was improved
from 80.52% to 88.05%. In case of Wheat 2, accuracy was increased from 81.13%
to 84.91% and in case of Buildings, accuracy improved from 77.88% to 80.25%.
The three classes where accuracy of Gk-OWN was lower compared to OWN were
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Table 4.1: Class-wise Classification Accuracy Comparison
Class Samples WC [78] WN [63] OWN Gk-OWN

Stembeans 6103 95.08 85.19 96.38 97.98

Peas 9111 96.28 95.55 95.93 96.67

Forest 14944 87.91 89.46 90.77 91.97

Lucerne 9477 92.93 96.13 96.34 97.67

Wheat 1 17283 86.22 94.48 93.00 92.67

Beat 10050 95.13 96.06 95.80 97.64

Potatoes 15292 87.75 88.53 89.62 88.66

Bare soil 3078 99.20 98.33 98.72 99.19

Grasses 6269 72.46 78.17 80.52 88.05

Rapeseed 12690 74.84 77.23 83.34 85.00

Barley 7156 95.26 97.23 98.20 96.52

Wheat 2 10591 82.72 72.08 81.13 84.91

Wheat 3 21300 88.64 94.55 95.68 95.71

Water 13476 51.75 98.39 98.97 99.93

Buildings 476 83.40 84.55 77.88 80.25

OA 85.04 90.18 92.24 93.32

Wheat, Potatoes and Barley. In these classes the accuracy was reduced by 0.33%,
0.96% and 1.68% respectively, which was not so noticeable.

4.4.3 Experiments on San Francisco dataset

We perform experiments on San Francisco dataset. It is of size 1800× 1380. It con-
tains 2484000 total pixels out of which 1804087 are labeled. Due to large number
of labeled pixels we only used 1% of them as a training data and remaining as
testing data. Table 2.3 shows class-wise classification accuracy obtained by WN
(4M), OWN (4M) and Gk-OWN (4M) on San Francisco dataset. Figure 2.6 shows
corresponding classification maps. Similar to Flevoland15 dataset, OWN achieves
3.68% better OA compare to WN and 0.55% better OA than OWN. In comparison
with OWN, the highest improvement was observed for High-Density Urban class
with 2.73% better accuracy. For Developed and Vegetation class accuracy was im-
proved 2.04% and 0.29% respectively. For Low-Density Urban class, accuracy of
Gk-OWN was 11.61% better than WN but only 0.07% lower than OWN.
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(a) (b)

(c) (d)

Figure 4.3: Classification map obtained using (a) WN [63], (b) OWN and (c) Pro-
posed Gk-OWN.

Table 4.2: Class-wise accuracies of San Francisco dataset
Class Samples WN OWN Gk-OWN

Developed 80616 51.97 61.21 63.25

Water 852078 99.83 99.95 99.95

Vegetation 237237 85.73 87.75 88.04

High-Density Urban 282975 68.98 69.78 72.51

Low-Density Urban 351181 66.45 78.13 78.06

OA - 84.50 87.63 88.18

AA - 74.59 79.36 80.36
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(a) (b) (c)

Figure 4.4: Classification map obtained using (a) Wishart network [63], (b) OWN
and (c) Gk-OWN.

4.5 Conclusion

In this chapter, we presented the fast global k-means algorithm for PolSAR im-
ages. Our proposal addressed two issues associated with k-means algorithm used
in OWN and e-OWN discussed in chapter 2 and 3 respectively. First, instead
of Euclidean distance, we used the revised Wishart distance in global k-means
which considered the probability distribution of the PolSAR data. Second, unlike
k-means algorithm, global k-means guarantees the optimal cluster centers. Since
the revised Wishart distance calculation is computationally costly, to compensate
that we also proposed fast determinant and inverse calculation of coherency ma-
trix using its real-valued vector representation discussed in chapter 2. We showed
that global k-means was able to achieve higher classification accuracy as com-
pared to k-means algorithm.

Till now we presented three different algorithms, namely, OWN, e-OWN and
Gk-OWN, for classification of single frequency and multifrequency PolSAR im-
ages. All three methods are pixel-based classifiers, meaning we classify each pixel
independently. Also, PolSAR images suffer from speckle noise. In this case if
a pixel is noisy, then it may result into misclassification. To reduce the effect of
speckle noise on classification we can use spatial information present in the image.
In the next chapter we propose a superpixel driven OWN which uses superpixels
to capture the spatial information in the PolSAR images.
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CHAPTER 5

Superpixel Driven Optimized Wishart Network

5.1 Introduction

Generally, we find two types of algorithms to address PolSAR image classifica-
tion problem. One exploits spatial information to perform classification and other
uses pixel based classification technique. It has been observed that spatial infor-
mation based classification algorithm results in better accuracy in comparison to
pixel based techniques [55, 86, 88, 124, 133, 134]. Different techniques for incor-
porating spatial information have been proposed in the literature. One of the
approaches is to use deep learning based neural networks such as convolutional
neural network (CNN) [19, 28, 94, 109, 123, 136, 137] or convolutional autoencoder
(CAE) [44, 81, 124]. A complex-valued CNN [136] uses a 12×12 window centered
at each pixel for extracting its spatial information. In another work a polarimetric
convolutional network was proposed [94] that needed a polarimetric scattering
coding to extract features from scattering matrix followed by a CNN to use spa-
tial information. These methods are able to produce better results than pixel based
classifiers. But the problem with convolutional neural network based method is
that it uses a fixed square shape filter to capture the spatial information. Since the
shape of the filter is fixed, it is likely to fail to effectively capture spatial informa-
tion at boundaries of the image.

Recently, superpixel algorithm in conjunction with deep neural networks has
gained popularity for capturing spatial information of a PolSAR image [15,33,48,
49, 55, 83, 88, 90]. Superpixel is an over segmentation technique which divides an
image into multiple homogeneous regions. One of the methods [55] proposed two
layer autoencoder network followed by softmax layer for classification. The result
obtained by the autoencoder network was then cleaned using superpixels. In an-
other work a fuzzy superpixel algorithm was proposed [49] for a PolSAR image
to clean the classification results. The autoencoder network was also used where
superpixel retained error term forced the network to consider homogeneous na-

70



ture of superpixels [45]. Although these methods are able to achieve good results,
training of such networks is found to be a time consuming process. In this chapter,
we have proposed superpixel driven optimized Wishart network which combines
fast convergence rate of Optimized Wishart Network (OWN) presented in Chap-
ter 2 and spatial information of superpixels to achieve high classification accuracy.

5.2 Superpixel Driven OWN

In literature we find Wishart classifier being widely used for multilook PolSAR
image classification which is a pixel based classifier, wherein each pixel is classi-
fied independently. It might be a possibility that a pixel is noisy and hence the
direct application of this classifier may relate that pixel to some incorrect class. In
such cases the classification becomes inaccurate. To solve this problem we suggest
that each pixel not only be classified independently but also be seen with respect
to a superpixel located around it. To implement this we compute two things: i)
RWD of an individual pixel with respect to all cluster centers and ii) RWD of cor-
responding superpixel mean of each pixel to all cluster centers. Hence, ultimately
that pixel is assigned a class label by considering both of these distance values.
We have used Pauli decomposition of a PolSAR image as an input to simple lin-
ear iterative clustering (SLIC) algorithm [13] to generate superpixels. Figure 5.1
shows an example of superpixel generation on Flevoland15 dataset using SLIC
algorithm.

(a) (b)

Figure 5.1: (a) PauliRGB image of Flevoland dataset, (b) superpixel generated
using SLIC [13] algorithm. Here, red lines indicates boundaries of different su-
perpixels.

Let SPx be the set which contains all PolSAR pixels belonging to the xth super-
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pixel. Let Sx be the mean of the set SPx. Then

〈Sx〉 =
1
|SPx|

i=N

∑
i=1

I(〈Ti〉 ∈ SPx)〈Ti〉. (5.1)

Here I(〈Ti〉 ∈ SPx) = 1 if 〈Ti〉 ∈ SPx and 0 if 〈Ti〉 /∈ SPx. |SPx| is the size of the
set SPx. We explored two primary ways of extracting spatial information. First,
we assigned a class label to each pixel based on a cluster center which minimized
the summation of these two distances. Let us denote this method as S+P(Gk−OWN).
Second, we proposed dual branch OWN which would learn to combine pixel and
superpixel information with help of these two distances. We denote this method
by SP(Gk−OWN). Both methods are explained in the following sections.

5.3 S+P(Gk−OWN)

To incorporate spatial information for ith pixel of the given PolSAR image we
consider an additive distance measure. It uses coherency matrix of ith pixel of the
given PolSAR image along with mean coherency matrix 〈Sx〉 of xth superpixel.
Here it is to be noted that 〈Ti〉 ∈ SPx. Therefore the additive distance measure
corresponding to ith pixel with respect to jth cluster center of class m has two parts
as shown in eq. (5.2).

d(〈Ti〉, 〈C
j
m〉) =

1
2

[
trace(〈Cj

m〉
−1
〈Ti〉) + ln

(
|〈Cj

m〉|
|〈Ti〉|

)
− n

]

+
1
2

[
trace(〈Cj

m〉
−1
〈Sx〉) + ln

(
|〈Cj

m〉|
|〈Sx〉|

)
− n

]
.

(5.2)

Eq. (5.2) can readily be modified as follows:

d(〈Ti〉, 〈C
j
m〉) =

1
2

[
trace(〈Cj

m〉
−1
〈Ti〉) + trace(〈Cj

m〉
−1
〈Sx〉)

]
+

1
2

[
ln
(
|〈Cj

m〉|2
|〈Ti〉||〈Sx〉|

)]
− n.

(5.3)

Since we are only interested in trace, first part of eq. (5.3) can be executed ef-
ficiently using the function f proposed in Chapter 2. Let cj

m = f (〈Cj
m〉), ti =

f (〈Ti〉) and sx = f (〈Sx〉). Using the function f and Algorithm 5 as proposed in
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Chapter 4, eq. (5.3) can now mathematically be simplified as follows:

d(〈Ti〉, 〈C
j
m〉) =

p
2
�
[

inv(cj
m)

T
ti + inv(cj

m)
T

sx

]
+

1
2

[
ln
(

det(cj
m)

2

det(ti)det(sx)

)]
− n.

(5.4)

Here p = [1, 2, 2, 2, 2, 1, 2, 2, 1] is a constant vector which has to be multiplied to
get the correct value of RWD. Eq. (5.4) is required to be solved for all pairs of
training samples and cluster means. It can be calculated simultaneously, hence
assuring quite low computational overhead.

Let X and Z be two matrices in which ith columns of these matrices contain
vector representation of ith PolSAR pixel coherency matrix and corresponding su-
perpixel mean coherency matrix. Let W be a matrix whose columns contain vector
representation of inverse of cluster centers. Let b be a vector where jth element is
determinant of jth cluster of class m. Let dt and ds be two vectors such that ith val-
ues in vector dt and ds are determinants of ith PolSAR pixel and corresponding
superpixel mean coherency matrix. Now we can calculate these distances simul-
taneously by constructing a matrix D, which is elaborated as follows:

X = [t1 � p, t2 � p, . . . , tK � p],

Z = [s1 � p, s2 � p, . . . , sK � p],

W = [inv(c1
1), inv(c2

1), . . . , inv(cK
M)],

b = [det(c1
1), det(c2

1), . . . , det(cM
K )]T,

dt = [det(t1), det(t2), . . . , det(tN)]
T,

ds = [det(s1), det(s2), . . . , det(sN)]
T,

B = ln(b2/(dt � ds)
T),

D = WTX + WTZ + B.

(5.5)

All matrices shown on right hand side are known to us. To train S+P(Gk−OWN) we
have used single hidden layer network which is similar to OWN. During forward
pass, input-hidden layer computes the D matrix shown in eq. (5.5) to get the RWD
values at the hidden layer. Then hidden-output layer maps it to the correct class
label.
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Figure 5.2: Network architecture of proposed SP(Gk−OWN)

5.4 SP(Gk−OWN)

In the above section we suggested an additive distance measure which used equal
influence of both pixel and superpixel information. In this section we discuss
dual branch OWN which learns to combine pixel and superpixel information.
SP(Gk−OWN) is a single hidden layer dual branch feed forward neural network. It
has total of three layers. The input layer contains two branches, one for the Pol-
SAR pixel and other for its corresponding superpixel mean. The weights of this
input-hidden layer are initialized using cluster centers obtained by fast global k-
means algorithm. Let Wt and Ws be the weight matrices associated with pixel and
superpixel branch. Hidden-output layer is fully connected layer and its weight is
calculated using pseudo-inverse method [63]. Loss function of a proposed net-
work is stated in eq. (5.6).

L =
1
N

i=N

∑
i=1

∥∥∥∥∥UT

[
tanh(WT

t (ti � p) + ln(bt/dti))

tanh(WT
s (si � p) + ln(bs/dsi))

]
+ c− yi

∥∥∥∥∥
2

(5.6)

where Wt, Ws, bt and bs are the parameters of input-hidden layer, U and c are the
parameters of hidden-output layer, yi is a one-hot-encoding representation of true
class label of ith training sample and tanh(x) = ex−e−x

ex+e−x is an activation function.
During forward pass we feed all training samples along with its corresponding
superpixel mean to the input layer. Initially we set Wt = Ws = W. Since weights
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of input-hidden layer are initialized as inverse cluster centers, network calculates
two things, i) RWD between every training pixel and every cluster center, ii) RWD
between superpixel mean of every training pixel and every cluster center. These
two distance vectors are then stacked to get the final hidden layer values. Steps
shown in eq. (5.7) illustrate this forward pass mathematically.

Ht = tanh(WT
t X + Bt),

Hs = tanh(WT
s Z + Bs),

H =

Ht

Hs

1

 .

(5.7)

Once the forward pass is completed, total error is calculated by eq. (5.6). We have
used gradient decent algorithm to learn parameters of the network. Let δout and
δmid be gradients for output and hidden layers respectively. It can be computed as
follows: 

[
U
c

]
= (HHT+αI)−1(YHT),

δout = U

[
Ht

Hs

]
+ c− Y,

δmid =

1−
[

Ht

Hs

]2
� (UTδout).

(5.8)

Here � is an element-wise matrix multiplication operation and matrix Y contains
true class labels of training samples in the form of one hot encoding. Input-hidden
layer is not fully connected, so the gradients obtained at hidden layer have to
be distributed accordingly. Weights of the input-hidden layer can be updated as
shown in eq. (5.9). 

Wnew
t = Wold

t − λXδmid[0 : KM, :]T,

Wnew
s = Wold

s − λZδmid[KM : 2KM, :]T,

bnew
t = det(inv(Wnew

t )),

bnew
s = det(inv(Wnew

s )),

Bt = ln(bnew
t � dT

t ),

Bs = ln(bnew
s � dT

s ).

(5.9)

Here λ is a learning rate whose value is set between 0 and 1.
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5.5 Experiment

This section starts with the details of five datasets that are used for our experi-
ments. Based on the observations of the experiments discussed in Chapter 4, we
showed that the proposed fast global k-means algorithm improved effectiveness
of the classification. Now we will discuss the classification results using the pro-
posed methods in comparison to other deep learning based methods available in
the literature. We will also examine how number of cluster centers belonging to
one class, may impact the classification accuracy.

5.5.1 Datasets

Experiments are conducted on the following five different real PolSAR image
datasets:

• An L-band PolSAR image of the Flevoland Region in The Netherlands ob-
tained using AIRSAR satellite on 16 Aug, 1989. The ground truth [136] of
this image is used for discussion of classification accuracy. It contains 15
different classes, that are, Baresoil, Barley, Beet, Buildings, Forest, Grasses,
Lucerne, Peas, Potatoes, Rapeseed, Steambeans, Water, Wheat 1, Wheat 2
and Wheat 3. This image is of 750× 1024 size. Let us call it Flevoland15
dataset.

• An L-band PolSAR image of the Landes Region in France obtained by AIR-
SAR satellite on 19 June, 1991. The ground truth [22] of this image is used
for discussion of classification accuracy. It comprises of 6 classes of trees of
differing ages. It is of 1050× 1000 size.

• An L-band PolSAR image of Flevoland region in The Netherlands obtained
by AIRSAR satellite on 16 June, 1991. Its ground truth [22] is used for dis-
cussion of classification accuracy. It has 7 different classes, such as, Barley,
Beet, Lucerne, Peas, Potato, Rapeseed and Wheat. Its size is 750× 700. Let
us call it Flevoland7 dataset.

• An L-band PolSAR image of Oberpfaffenhofen Region in Germany obtained
by E-SAR satellite. The corresponding ground truth [136] of this image is
used for discussion of classification accuracy. It contains 3 different terrain
classes, Open Area, Built-up Area and Wood Land. It has a size 1300× 1200.
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Table 5.1: List of datasets used for the experiments
Name Radar Band Year Resolution Size Classes

Flevoland15 AIRSAR L 1989 10× 10m 750× 1024 15

Landes AIRSAR L 1991 10× 10m 1050× 1000 6

Flevoland7 AIRSAR L 1991 10× 10m 750× 700 7

Oberpfaffenhofen E-SAR L 1991 3× 2.2m 1300× 1200 3

San Francisco RADARSAT-2 C 2008 10× 5m 1800× 1380 5

• An C-band PolSAR image of the San Francisco Bay Area in USA obtained
using RADARSAT-2 satellite in 2008. It has 5 different classes, namely, Vege-
tation, Developed, Ocean, Low-density Urban and High-density Urban. Its
size is 1800× 1380.

Table 5.1 summarizes the details of dataset used for the experiments. It is to
note that the first three datasets involve classes of almost similar pattern, mostly
dealing with different types of crops. One may say that the surface scattering
properties of these classes are more or less alike. So an algorithm working effec-
tively on such classes may behave poorly on a complex terrain. Therefore, dataset
(iv) and (v) are selected as examples of complex terrain. Results of the experi-
ments corresponding to each dataset are reported in the following sections.

5.5.2 Results on Flevoland15 Dataset

Flevoland15 dataset is considered to be the benchmark dataset in the field of Pol-
SAR image classification. To evaluate performance of the proposed algorithms we
compared the classification accuracy obtained by our method with 9 other algo-
rithms, namely, Wishart classifier (WC) [78], optimized Wishart network (OWN)
[41], support vector machine (SVM) [75], deep sparse filtering network (DSFN)
[88], Wishart deep stacking network (W-DSN) [63], superpixel retained deep neu-
ral network (SRDNN) [45], polarimetric convolutional network [94], Wishart deep
belief network [86] and complex-valued CNN [136].

Comparison of classification map obtained by each method is shown in Fig-
ures 5.3(a)-(l). The class-wise accuracies are listed in Table 5.2. Results of our
proposed algorithms are shown in the last three rows of the Table 5.2. The best re-
sults are shown in bold. One can readily see that except for one class, i.e., Wheat
2, our proposed algorithms are showing best results. This leads to a significant
improvement in overall accuracy for this dataset.

WC, OWN, SVM and W-DSN are pixel-wise classification methods which do
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.3: Classification map obtained using different methods. (a) Wishart clas-
sifier [78], (b) Optimized Wishart classifier [41], (c) SVM classifier [75], (d) Deep
sparse filtering network [88], (e) Wishart deep stacking network [63], (f) Super-
pixel restrained DNN [45], (g) Polarimetric CNN [94], (h) Deep belief network
[86], (i) complex-valued CNN [136], (j) S(GK−OWN) where superpixels were used
during post-processing to clean the results, (k) S+P(Gk−OWN) which uses additive
distance measure to combine pixel and superpixel information, (l) SP(Gk−OWN)
which uses dual branch OWN to efficiently combine pixel and superpixel infor-
mation. note that (j), (k) and (l) are results of our proposed methods of this chapter.
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Table 5.2: Class-wise Classification Accuracy Comparison on Flevoland15 dataset
Method/Class Stembeans Peas Forest Lucerne Wheat 1 Beet Potatoes Baresoil

WC [78] 96.15 96.51 90.14 91.74 85.53 94.73 86.89 98.77

OWN [41] 96.38 95.93 90.77 96.34 93.00 95.80 89.62 98.72

SVM [75] 63.55 78.94 93.82 96.04 90.79 90.91 53.97 96.58

DSFN [88] 97.19 92.15 97.37 94.05 97.98 90.05 96.78 94.68

W-DSN [63] 96.00 96.81 90.85 96.05 93.22 96.22 87.63 99.26

SRDNN [45] 97.08 94.52 97.31 95.55 95.52 92.38 94.19 93.92

PCN [94] 96.44 95.29 95.00 93.51 95.20 97.59 95.89 96.45

W-DBN [86] 96.71 98.68 96.45 98.47 97.67 98.14 98.08 97.34

CV-CNN [136] 98.80 98.70 96.80 98.10 95.00 97.60 96.70 98.80

S(Gk−OWN) 96.74 95.98 98.29 97.83 98.70 97.55 99.12 99.71

S+P(Gk−OWN) 98.93 99.31 98.00 99.45 98.02 99.49 97.67 99.59

SP(Gk−OWN) 99.71 99.32 99.73 99.58 99.09 98.77 99.38 99.69

Method/Class Grasses Rapeseed Barley Wheat 2 Wheat 3 Water Buildings OA

WC [78] 74.37 73.14 94.10 85.31 90.23 47.98 82.35 84.71

OWN [41] 80.52 83.34 98.20 81.13 95.68 98.97 77.88 92.24

SVM [75] 87.59 81.28 97.17 81.15 95.48 97.82 43.00 85.87

DSFN [88] 96.53 97.06 93.06 89.11 92.40 97.53 95.29 94.86

W-DSN [63] 90.13 86.18 97.05 81.20 95.79 98.88 84.12 92.68

SRDNN [45] 87.26 91.81 97.54 89.65 97.60 99.53 81.74 94.66

PCN [94] 94.33 93.98 94.51 95.03 95.43 99.50 95.58 96.94

W-DBN [86] 95.39 95.90 99.49 94.79 98.55 99.90 88.56 97.57

CV-CNN [136] 90.00 92.00 94.50 97.20 95.60 98.50 80.00 97.70

S(Gk−OWN) 98.17 87.95 100 92.33 97.05 96.94 82.35 96.68

S+P(Gk−OWN) 97.77 93.62 99.60 94.33 99.65 99.98 92.05 98.13

SP(Gk−OWN) 99.78 97.13 100 96.28 99.92 99.97 99.34 99.15
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Table 5.3: Time Analysis
Methods Preprocessing Training Testing Total

SRDNN - 721.15 6.89 728.04

W-DBN - 103.16 92.21 195.37

PCN - 341 35 376

W-DSN - 41.48 8.28 49.77

S(Gk−OWN) 1.43s 12.47s 2.68s 16.58s

S+P(Gk−OWN) 1.43s 14.18s 3.21s 18.82s

SP(Gk−OWN) 1.43s 18.83s 4.17s 24.43s

not use spatial information. Therefore the overall accuracies of these methods
remains generally low. Overall accuracies of WC, OWN, SVM and W-DSN are
84.71%, 92.24%, 85,87% and 92.68% respectively. DSFN, SRDNN, PCN, W-DBN
and CV-CNN use spatial information due to which their accuracies are better in
comparison to pixel-based methods. DSFN and SRDNN use superpixels to in-
clude spatial information. Their overall classification accuracies are 94.86% and
94.66% respectively. On the other hand, PCN and CV-CNN are based on CNN ar-
chitecture to exploit spatial information. Their overall classification accuracies are
96.94% and 97.70%. W-DBN does not use spatial information while training, but
it exploits cleaning algorithm in post-processing stage to correct poorly labeled
pixels. Its overall accuracy is 97.57%.

As we can see, in the case of WC (a pixel-based method) an inaccurate clas-
sification between Water and Baresoil is reported due to almost similar nature of
scattering of both the terrains. In case of OWN and W-DSN there is a trace of
misclassification between Forest and Potato. In case of SVM there is a high mis-
classification in almost all classes. In case of DSFN (a spatial information based
method) there is a confusion between Forest and Potato similar to OWN and W-
DSN. Also there is a minor confusion between Wheat 1 and Rapeseed. From the
classification map of PCN shown in the Figure 5.3(g), we can observe that it over
smooths the boundary region which may lead to misclassification of boundary
pixels.

One may also use superpixel information simply as a post-processing step
to clean the result of classification like it is done in W-DBN. To achieve this we
cleaned the result obtained by Gk-OWN using superpixels. Let us denote this
method as S(Gk−OWN). Figure 5.3(j) shows classification map obtained by S(Gk−OWN).
It uses majority voting to clean the result of the classification, so the pixels be-
longing to the same superpixel acquire the same class label. A disadvantage of

80



this approach is that misclassification may occur if the superpixel itself is poorly
formed.

Figure 5.3(k) shows classification map obtained by S+P(Gk−OWN). In case of
S+P(Gk−OWN), we first combine pixel and superpixel information using additive
distance measure and then present it to the network. Since it uses both pixel and
superpixel information, performance of S+P(Gk−OWN) is better in comparison to
S(Gk−OWN).

Figure 5.3(l) shows the classification map obtained by SP(Gk−OWN) which by
definition takes dual branch OWN to combine pixel and superpixel information.
Since the information of pixels and superpixels are presented separately in dual
branch architecture, network learns to combine them efficiently. This can readily
seen in the performance of SP(Gk−OWN) in comparison to both S(Gk−OWN) and
S+P(Gk−OWN). It gives best results in 12 out of the 15 classes. SP(Gk−OWN) achieves
99.15% overall accuracy and outperforms all 9 methods by 14.44%, 6.91%, 13.28%,
4.29%, 6.47%, 4.49%, 2.21%, 1.58% and 1.45% respectively.

For computational overhead calculation we next compared the time taken
by SRDNN, W-DBN, PCN, W-DSN, S(Gk−OWN), S+P(Gk−OWN) and SP(Gk−OWN)

methods to classify Flevoland15 dataset. We measured three main time require-
ments, e.g., preprocessing time, training time and testing time. SRDNN, W-DBN,
PCN and W-DSN do not employ any preprocessing. In case of our proposed
methods, preprocessing time includes time required to generate the superpixels.
The training time includes both fast global k-means run time as well as the time re-
quired to train the network using 5% training samples. The testing time includes
the time required to test remaining 95% samples. Table 5.3 shows time required
by all methods. SP(Gk−OWN) requires highest training and testing time among all
three proposed methods due to its dual branch architecture. Due to their deep
neural network based architectures SRDNN, W-DBN, PCN and W-DSN require
higher training and testing time in comparison with proposed approaches.

5.5.3 Results on Oberpfaffenhofen dataset

Oberpfaffenhofen dataset [12] is a complex urban terrain containing three classes,
i.e., Open Area, Built-up Area and Wood Land. The ground truth for this dataset
was obtained from [136]. Figure 5.4(a) and (b) show Pauli decomposition of this
dataset and its ground truth map. One can see that classes of this dataset are more
heterogeneous than the previous datasets.

Figure 5.5(a)-(f) show classification map obtained by CV-CNN [136] and SRDNN
[45] besides our proposed algorithms of Gk-OWN, S(Gk−OWN), S+P(Gk−OWN) and
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Figure 5.4: (a) PauliRGB image of Oberpfaffenhofen dataset. (b) Ground truth of
Oberpfaffenhofen dataset [136]. The three classes of this dataset are represented
by three colours.

SP(Gk−OWN). Table 5.4 shows class-wise accuracies obtained by all six methods
for the Oberpfaffenhofen dataset. Gk-OWN achieves the lowest classification ac-
curacy because it is a pixel-wise classifier and does not use spatial information.
As we can see, the performance of Gk-OWN improves after incorporating spatial
information. In case of S(Gk−OWN) we observe 3.28% improvement in compari-
son to Gk-OWN. Majority of this improvement came from Build-up Area class.
In case of S + P(Gk−OWN) and SP(Gk−OWN), the accuracy of Built-up Areas and
Wood land improved significantly. In the Open Areas class, the added spatial in-
formation did not lead to much improvement, because it was well classified by
Gk-OWN itself due to less complexity in the terrain type. It is evident from Ta-
ble 5.4 that the proposed SPGk−OWN achieves highest overall accuracy of 95.09%
among all five methods.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Classification map of Oberpfaffenhofen dataset obtained using (a) CV-
CNN [136] (b) SRDNN [45], (c) Gk-OWN, (d) S(Gk−OWN), (e) S+P(Gk−OWN) and (f)
SP(Gk−OWN).

Table 5.4: Class-wise Classification Accuracy Comparison on Oberpfaffenhofen
dataset

Methods Open Areas Built-up Areas Wood Land OA AA

Samples 766504 339784 268010 - -

CV-CNN [136] 94.60 91.30 92.20 93.40 92.70

SRDNN [45] 93.92 89.90 94.53 93.09 92.78

Gk-OWN 96.28 71.83 86.08 88.47 84.71

S(Gk−OWN) 97.59 80.83 88.87 91.75 89.09

S+P(Gk−OWN) 95.67 85.82 93.04 92.72 91.51

SP(Gk−OWN) 96.37 92.81 94.30 95.09 94.49
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5.5.4 Results on San Francisco Bay Area dataset

The San Francisco dataset [93] is of size 1800 × 1380. It contains 2484000 total
pixels out of which 1804087 are labeled. Due to large number of labeled pixels we
used only 1% of them as training data and remaining 99% as testing data. Table 5.5
shows class-wise classification accuracy obtained by OWN, Gk-OWN, SGk−OWN,
S + PGk−OWN and SPGk−OWN. Here, C1-C5 indicate five classes of San Francisco
dataset, namely, Developed, Water, Vegetation, High-Density Urban and Low-
Density Urban respectively. Figure 5.6 shows corresponding classification maps.

As we can see, performance of Gk-OWN improves significantly in four out of
five classes after incorporating spatial information. In case of Water class perfor-
mance of Gk-OWN itself is excellent due to simplicity of terrain type. The De-
veloped class is worst classified by the Gk-OWN. The Developed class contains
residential buildings which are not aligned to radar line of sight. Because of that
their back scattering appears similar to that of Vegetation. Same is evident from its
Pauli decomposition image. Because of this Developed class, in most cases, was
misclassified as Vegetation class by Gk-OWN. Incorporating the spatial informa-
tion in Gk-OWN significantly improved the accuracy of Developed class. Same
effect was observed in the case of High Density Urban and Low-Density Urban
classes. They were misclassified as each other due to similar nature of scattering
from both classes. The Vegetation class is more complex in terrain type compared
to other four classes. It mainly consists of parks containing trees, roads, buildings,
plain field etc. Because of this, it was misclassified as Developed or Low Density
Urban class.

Table 5.5: Class-wise accuracies of San Francisco dataset
Methods C1 C2 C3 C4 C5 OA AA

Samples 80616 852078 237237 282975 351181 - -

OWN 61.21 99.95 87.75 68.98 78.13 87.63 79.36

Gk-OWN 63.25 99.99 88.04 72.51 78.06 88.18 80.36

SGk−OWN 81.58 99.98 93.89 91.77 97.48 96.68 93.04

S + PGk−OWN 89.39 99.98 90.30 92.05 91.68 95.37 92.68

SPGk−OWN 96.94 99.99 92.42 97.10 96.97 97.75 96.66
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: (a) Ground truth map of San Francisco dataset. Classification map
obtained using (b) OWN, (c) Gk-OWN, (d) S(Gk−OWN), (e) S + P(Gk−OWN) and (f)
SP(Gk−OWN)
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5.5.5 Results on Landes and Flevoland7 Dataset

Figure 5.8(a)-(e) show classification map of Landes dataset and Figure 5.8(f)-(j) of
Flevoland7 obtained by WC [78], Gk-OWN, S(Gk−OWN), S+P(Gk−OWN) and SP(Gk−OWN).
WC and Gk-OWN showed misclassification in both the datasets due to the pres-
ence of noisy pixels in the datasets. In case of S(Gk−OWN), most of the misclas-
sification occurred due to badly formed superpixels. S+P(Gk−OWN) was able to
achieve higher classification accuracy because it used both pixel and superpixel
information. Best overall accuracy was obtained by SP(Gk−OWN) approach. Due
to its dual branch architecture, SP(Gk−OWN) was able to combine both pixel and
superpixel information efficiently. Table 5.6 and 5.7 show class-wise accuracies
obtained by all five methods on Flevoland7 and Landes datasets.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: (a) Ground truth map of Flevoland7 dataset. Classification map
obtained using (b) WC [78], (c) Gk-OWN, (d) S(Gk−OWN), (e) S+P(Gk−OWN), (f)
SP(Gk−OWN).
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Table 5.6: Class-wise Classification Accuracy Comparison on FLevoland7 dataset
Methods Wheat R.seed Barley Lucerne Potato Beet Peas OA

Samples 56060 25994 45497 4935 17035 14974 2055 -

WC 82.13 92.29 89.52 97.97 94.59 20.53 97.37 82.13

Gk-OWN 94.48 95.36 95.94 76.53 92.82 74.78 67.54 92.21

S(Gk−OWN) 97.93 99.49 98.48 100 99.13 94.96 93.77 98.19

S+P(Gk−OWN) 98.30 99.54 99.34 95.52 98.93 93.21 94.45 98.25

SP(Gk−OWN) 99.04 99.90 99.71 99.35 99.45 98.88 97.86 99.38

(a) (b) (c)

(d) (e) (f)

Figure 5.8: (a) Ground truth map of Landes dataset. Classification map obtained
using (b) WC [78] (c) Gk-OWN, (d) S(Gk−OWN), (e) S+P(Gk−OWN), (f) SP(Gk−OWN).
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Table 5.7: Class-wise Classification Accuracy Comparison on Landes dataset
Methods C1 C2 C3 C4 C5 C6 OA

Samples 46079 7182 7874 83692 8410 18963 -

WC 35.13 84.13 99.58 84.01 81.63 39.23 66.60

Gk-OWN 84.96 92.43 99.77 97.41 95.90 90.11 93.10

S(Gk−OWN) 91.08 93.04 100 99.70 99.06 0.959 96.68

S+P(Gk−OWN) 90.66 96.81 100 99.22 99.41 95.74 96.49

SP(Gk−OWN) 95.99 99.40 100 99.57 99.63 98.68 98.53

5.5.6 Effect of number of cluster centers (K) on classification

One of the important parameters of the proposed network is the value of K. It de-
termines how many cluster centers we are selecting from each class. Goa et al. [43]
showed that overall accuracy of classification improves while increasing value of
K upto 10. To determine the influence of K, we conducted an experiment on the
three datasets namely, Flevoland15, Landes and San Francisco. We changed the
value of K from 1 to 10 and measured overall classification accuracies and total
time required in training and testing of the network.

Figures 5.9 show effect of value of K on overall accuracy and classification
time. As we can see in the case of Flevoland15 dataset we achieved 93.75% accu-
racy for K = 1. It increased upto 98.52% for K = 5. After that the improvement
slowed down. The classification time for K = 1 was observed to be 12.3s which
linearly increased with value of K. For K = 10, the classification time was 50.6s.
We can observe similar results for Landes and Flevoland7 dataset. In case of Lan-
des dataset, Figure 5.9(c), we obtained 86.27% for K = 1 which rose to 97.28%
for K = 5. Similarly, classification time shown in Figure 5.9(d) linearly increased
from 15.1s to 32.4s. In case of Landes dataset the slope of the line representing the
classification time is lower compared to Flevoland15 dataset. Because the Landes
dataset have less number of classes compared to Flevoland15 dataset while the
size of both datasets are relatively similar. The small number of classes leads to
smaller size of hidden layer and output layer and in turn reduces classification
time. In case of San Francisco dataset we started with 92.54% accuracy for K = 1
which improved to 96.88% for K = 5. The classification time for K = 1 was 38.33s
which is the highest in comparison with other two dataset. The San Francisco
dataset has only five classes but the size of it is very large which leads to higher
training and testing time.
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Figure 5.9: Classification accuracies and time taken with different value of K
for (a) Flevoland15 dataset containing 15 classes, (c) Landes dataset containing
6 classes and (e) San Francisco dataset containing 5 classes. Classification time
required different value of K for (b) Flevoland15 dataset, (d) Landes dataset and
(f) San Francisco dataset. 89



5.6 Conclusion

In this chapter we proposed a superpixel driven optimized Wishart network for
PolSAR image classification. In chapter 4, we showed that the application of fast
global k-means algorithm successfully gave improved classification accuracy. En-
couraged by that result first we used the fast global k-means algorithm for PolSAR
data to obtain optimal cluster centers. Having done so we also addressed the pos-
sibility of a common problem that the pixel based classifier might fail to correctly
classify a noisy pixel. To solve this problem we exploited spatial information of all
individual pixels by using a superpixel algorithm. For this we computed two dis-
tance measures, (i) revised Wishart distance of a pixel from all cluster centers and
(ii) revised Wishart distance of the corresponding superpixel to all cluster centers.
Then we designed a novel network which automatically decided how to exploit
these two distance measures for better classification of each pixel. We primarily
explored two ways of incorporating spatial information, i.e, (i) by using additive
distance measure of both distances named as S+P(Gk−OWN) and (ii) by using dual
branch OWN and called it SP(Gk−OWN). We concluded that the proposed network
can efficiently combine pixel and superpixel information to achieve high classi-
fication accuracy. We also observed that SP(Gk−OWN) exhibited the best overall
accuracy for all the datasets used in the experiment.
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CHAPTER 6

Stacked Autoencoder Based Multifrequency
PolSAR Image Classification

6.1 Introduction

Elements of coherency matrix of a PolSAR pixel are widely used as input to the
deep learning architecture. It is known that the elements of a coherency matrix are
difficult to relate with the physical scattering behavior of an object, due to which
deep learning architecture may not be able to extract polarimetric features [19].
Polarimetric features are features that have physical interpenetration. It has been
shown that polarimetric features extracted from the coherency matrix produce
better classification results than merely by the raw elements of coherency ma-
trix [19, 33, 56, 119]. The goal of Target Decomposition (TD) theorem is to extract
polarimetric features that contain physical scattering information of the observed
scattering matrix or coherency matrix. It can be achieved by decomposing the
scattering matrix or coherency matrix as a combination of elementary scattering
surfaces such as single, double, volume or helix scattering, etc. Each of these scat-
tering surfaces provides an intuitive interpretation of the underlying object. For
example, the single bounce is observed from a flat surface, such as open field or
water body. Double bounce is typically observed from dihedral structures such as
buildings or trunk of a tree. Volume bounce occurs from complex structures such
as branches of trees or crops. There is no single TD algorithm that can accurately
estimate the contribution of various scattering surfaces in a pixel of a PolSAR im-
age [33]. So, to obtain full polarimetric information from a PolSAR pixel, we can
apply multiple TD methods and stack their results to achieve a high-dimensional
polarimetric feature vector [33, 119].

In this chapter, we present an autoencoder based deep neural network for mul-
tifrequency PolSAR image classification. The proposed network consists of two
modules of an autoencoder and a softmax classifier stacked together. First, we
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use the five most popular TD methods and elements of the coherency matrix to
extract polarimetric features from all bands of the multifrequency PolSAR data.
These features are then stacked to get the high-dimensional input feature vector.
Since this feature vector contains some redundant information, we apply the first
module of the stacked autoencoder to reduce the feature vector’s dimensional-
ity. Then, we use this reduced dimensional feature vector to generate superpixels.
After that, the second module of the network combines pixel and the correspond-
ing superpixel information to construct a robust feature vector. Finally, the last
module of the proposed network performs the classification task using a softmax
classifier.

6.2 Proposed Methodology

With this little background of parameter extraction based on coherent and inco-
herent decomposition of a PolSAR image, we used 5 decomposition methods to
get 33 polarimetric features from one frequency band of a PolSAR image. Hence,
combining information of all three bands we get 99 dimensional feature vector
corresponding to each PolSAR pixel. Table 6.1 lists all 33 features. Each TD algo-
rithm tries to estimate the scattering contribution of various scatterers in a differ-
ent way. So, the constructed polarimetric feature vector contains some redundant
information. Figure 6.1 shows our proposed network architecture consisting of

Table 6.1: List of extracted features
Features Description

|T13|/
√

T11T33, |T23|/
√

T33T22, T22/S, T33/S, 10log10(S), |T12|/
√

T11T22 6 features of Coherency matrix [137]

Fdbl, Fodd, Fvol 3 features of Freeman decomposition [38]

Kd, Kh, Ks, Kt 4 features of Krogager decomposition [73]

Pdbl, Phlx, Podd, Pvol 4 features of Yamaguchi decomposition [126]

A, B0, B, C, D, E, F, G, H 9 features of Huynen decomposition [59]

α, β, δ, γ, λ, Entropy, Anisotropy 7 features of Cloude decomposition [20]

three modules. The first module is a two layer autoencoder network. The pur-
pose of this module is to reduce the dimensionality of the input feature vector by
learning efficient representation of combined PolSAR frequency bands informa-
tion.

Let Xi be the input feature vector of ith training sample. Let W11 and W12 be the
weights and b11 and b12 be the biases of the two encoder layers of first module. A
hidden representation of input feature vector Xi can be calculated as:

hi = g
(

WT
12g
(

WT
11Xi + b11

)
+ b12

)
, (6.1)
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where g is a ReLU activation function. Let W21, W22, b21 and b22 be weights and
biases of two decoder layers. A reconstructed input vector can be calculated as:

X
′
i = g

(
WT

22g
(

WT
21hi + b21

)
+ b22

)
. (6.2)

We have used mean square error to train the autoencoder. The cost function of
first module of the proposed network is given as follows:

J1 = β
(
‖W11‖2 + ‖W12‖2 + ‖W21‖2 + ‖W22‖2

)
+ α

1
N

N

∑
i=1
‖Xi − X

′
i‖2.

(6.3)

Here β is a weight decay parameter used for regularization, α is the learning rate
and N is total number of training samples. The module is trained using Adam
optimizer [68] with 0.01 learning rate and weight decay of 10−5. Once the training
of the first module is complete we disconnect the decoder layers.

Next, we feed the entire PolSAR image as an input to this network to obtain
hidden representations of all pixels of the PolSAR image. We use this hidden
representation of all pixels of the PolSAR image to generate superpixels. This
process has two advantages: (i) it contains feature information of all bands and
(ii) its dimensionality is substantially reduced in comparison to the input feature
vector. To generate superpixels we have used simple linear iterative clustering
(SLIC) [13]. Instead of giving an RGB image as an input to the SLIC algorithm, we
give the hidden representation of the PolSAR image obtained from first module
of the proposed network as input. Using SLIC we measure the distance between
any two pixels which is given by eq. (6.4):

Ds =
√
(xi − xj)2 + (yi − yj)2,

Dh = ‖hi − hj‖2,

D =
m
s

Ds + Dh.

(6.4)

Here m is a parameter controlling the relative weight between Ds and Dh and s
is a size of search space [13]. (xi, yi) and (xj, yj) are the positions of ith and jth

PolSAR pixels on Euclidean plane. Ds measures how far two pixels are in a 2D
image plane, pixels that are far from each other are less likely to be related. On the
other hand Dh measures how similar two pixels are, pixels that are highly simi-
lar would probably belong to same class. The SLIC algorithm starts by sampling
K superpixel cluster centers approximately equidistant. At each iteration, the al-
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Figure 6.1: Proposed network architecture.

gorithm finds nearest cluster center of each pixel using distance measure shown
in eq. (6.4). After that, new cluster centers are computed. These two steps are
repeated until convergence.

The second module of our proposed architecture combines each pixel and cor-
responding superpixel information to construct robust feature vector. This is done
by letting Sj be the jth superpixel and hi ∈ Sj. Let cj be the cluster center of Sj.
To extract robust feature using both pixel and superpixel information input for
second autoencoder Hi can be constructed as Hi = [hi; cj] [132]. Since the di-
mensionality of the hidden representation hi is low, a single layer autoencoder is
sufficient for an effective reconstruction. Let ri = g(WT

13Hi + b13) be the activa-
tion value obtained at hidden layer of second autoencoder. We may then define
H
′
i as the reconstructed input given as:

H
′
i = g(WT

23ri + b23) (6.5)
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The cost function for the second autoencoder can now readily be described by:

J2 = β(‖W13‖2
2 + ‖W23‖2

2) + λ
1
N

N

∑
i=1
‖Hi −H

′
i‖2. (6.6)

Once the training of the second module of the autoencoder is complete we again
disconnect the decoder layer. From what we described above it is clear that the
output of the second module of autoencoder contains both pixel and superpixel
information. Therefore we expect better classification efficiency as we have seen
in Chapter 5. We use softmax classifier to obtain predicted probability.

6.3 Experiments and Results

With this theoretical model we conduct the following experiments. We start with
the details of dataset chosen for our experiments. After that we analyze the per-
formance of the proposed network for different band combinations.

Experiments have been conducted on a dataset of Flevoland [1], an agricul-
tural tract in the Netherlands, whose data was captured by the NASA/Jet Propul-
sion Laboratory on 15 June, 1991. This dataset has often been viewed as the bench-
mark dataset for PolSAR applications. The intensities after Pauli decomposition
of the dataset have been used to form an RGB image as shown in Figures 6.2(a-
c). The ground truth of the data set shown in Figure 6.2(d) identifies a total of 15
classes of land cover.

We have evaluated the accuracy of each class with respect to all possible com-
binations of the data acquired in the three frequency bands. From Table 6.2 it can
be observed that in case of individual bands, the network with just the C band
information recognizes Onions and Lucerne with better accuracy in comparison
with L and P bands, but, it fails in the case of classes such as Beet or Oats. In case
of P band, we observe higher accuracy in Beet and Fruit in comparison to C and
L band, but, fails to accurately identify Onions and Peas. It can also be observed
that the L band performs better in majority of the classes than the C or the P band.
It performs poorly in case of Oats and Onions. Finally we also observe that com-
bining different bands information produces even better classification results. The
best overall accuracy of 99.59% was observed by combining all three bands (LPC).

A total of six PolSAR decomposition methods have been applied to the Pol-
SAR data and their features have been given as input to the proposed network.
The significance of each decomposition technique is evident from the Table 6.3. It
can be seen that the Krogager and Freeman decompositions fail to provide enough
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(a) (b)

(c) (d)

Figure 6.2: Pauli decomposition of (a) L band, (b) P band and (c) C band Flevoland
dataset [1]. (d) Ground truth map of Flevoland dataset

96



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.3: (a) Ground truth map, Classification map of Flevoland dataset ob-
tained using (b) L band, (c) P band, (d) C band, (e) P and C bands , (f) L and C
bands, (g) L and P bands and (h) L, P and C bands.
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Table 6.2: Class-wise accuracies for different band combinations
Class/Bands L P C LP LC PC LPC
Potato 99.12 96.36 98.90 99.77 99.61 99.31 99.75
Maize 98.59 97.45 92.92 99.63 99.32 99.17 99.79
Grass 93.39 82.82 85.85 97.41 94.57 96.08 97.73
Barley 97.57 97.58 88.48 99.60 99.30 98.57 99.79
Lucerne 95.06 81.48 95.73 97.98 98.79 96.38 98.69
Oats 46.41 17.71 00.00 89.16 62.75 74.66 87.18
Peas 96.42 00.24 89.75 99.52 98.27 98.07 99.52
Beet 80.24 94.90 16.67 96.08 95.45 96.27 97.72
Wheat 87.56 69.40 47.92 93.75 93.28 86.33 95.38
Fruit 95.05 98.19 75.91 99.31 96.74 99.06 99.44
Beans 89.54 49.90 87.84 94.10 97.67 95.34 98.50
Flax 98.56 94.09 67.49 99.84 98.60 97.18 99.66
Onions 23.53 00.00 88.93 47.06 92.73 29.07 92.75
Rapeseed 99.52 99.51 99.82 99.86 99.94 99.88 99.94
Water 99.79 99.64 99.97 99.75 99.83 99.83 99.95
OA 97.84 95.08 92.11 99.38 99.00 98.69 99.59

information to recognize Beet and Onions. On the other hand Cloude decompo-
sition and Huynen decomposition provide sufficient information for these crops
respectively.

The proposed method for classification of multifrequency PolSAR image is
also compared with other methods available in the literature. Comparison of
overall accuracies is reported in Table 6.4. ANN [22] and e-OWN [41] have used
small subset of Flevoland dataset containing 7 classes. On the other hand Stein-
SRC [128] used ground truth with 14 classes. For parity in comparison we have
calculated the overall accuracy of the proposed method using ground truth of 7,
14 as well as 15 classes. For the brevity of comparison these are listed in Table
6.4. One can readily see that our proposed method outperforms all the other three
methods [22, 41, 128].
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Table 6.3: Class-wise accuracies for different features
/ YamaguchiCoherencyKrogager Freeman Huynen Cloude
Potato 0.9820 0.9860 0.9879 0.9721 0.9933 0.9941
Maize 0.9672 0.9696 0.9880 0.9465 0.9904 0.9884
Grass 0.9243 0.8898 0.8490 0.6757 0.9256 0.9555
Barley 0.9653 0.9516 0.9814 0.9554 0.9920 0.9846
Lucerne 0.6690 0.8568 0.4815 0.4820 0.9695 0.9522
Oats 0.0626 0.0031 0.2168 0.0000 0.3420 0.7252
Peas 0.9779 0.8686 0.7440 0.5245 0.9546 0.9904
Beet 0.1658 0.6794 0.0000 0.0000 0.8834 0.9244
Wheat 0.1460 0.7210 0.6841 0.0000 0.8916 0.9428
Fruit 0.9618 0.9661 0.9827 0.9027 0.9790 0.9874
Beans 0.7831 0.9265 0.8758 0.0160 0.9767 0.9167
Flax 0.9346 0.9636 0.7162 0.7470 0.9790 0.9688
Onions 0.0000 0.2561 0.0000 0.0000 0.8720 0.1246
R.seed 0.9921 0.9949 0.9976 0.9786 0.9976 0.9986
Water 0.9889 0.9957 0.9958 0.9926 0.9981 0.9968
OA 0.9509 0.9609 0.9562 0.9105 0.9859 0.9856

Table 6.4: Classification’s overall accuracy (OA) comparison of Flevoland dataset
Method Number of classes Accuracy
ANN [22] 7 98.23
e-OWN [41] 7 98.56
Stein-SRC [128] 14 99.00
Proposed Method 7 99.93
Proposed Method 14 99.69
Proposed Method 15 99.59
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6.4 Conclusion

In this Chapter a stacked autoencoder based classification network for multifre-
quency PolSAR data is proposed to exploit maximum features extracted from the
scattered waves using different available decomposition techniques in the litera-
ture. We could collect 33 features from five decomposition techniques per band
giving 99 features in total following this approach. Then we proposed a network
which involved three modules. First module reduced the dimensionality of the
input feature vector. To ensure best classification result we also took care of the
speckle noise in the PolSAR images. For this we recalled the superpixels formu-
lation as we did in Chapter 5. Output of the first module was used to generate
superpixels. The second module constructed robust feature vector using each
pixel and its corresponding superpixel information. Finally the last module of the
proposed network conducted classification using softmax classifier. It is observed
that combining multiple frequency bands information improved overall classifi-
cation accuracy. We validated our proposed network on Flevoland dataset that
resulted in 99.59% overall classification accuracy. Experimental result showed
that this proposed network outperformed other reported methods available in
the literature.
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CHAPTER 7

Thesis Summary

In this thesis we have addressed the problem of classification of single frequency
and multifrequency PolSAR images by providing novel neural network based
techniques. The problem of classification is a classic problem of literature. We
described in Chapter 1 that one of the most popular technique was to measure
Wishart distance. We began with the proposal of an Optimized Wishart Network
(OWN) for single frequency PolSAR data. It uses a novel real-valued vector rep-
resentation of a complex-valued coherency matrix that substantially reduces the
computational overhead yet retains the phase information of the coherency ma-
trix. Next, a better technique of initializing weights was introduced for increasing
number of hidden units. The basic premises of a Wishart Network is that it as-
sumes each class of a PolSAR image as a homogeneous. But in true and practical
terms this is not the case. It means we have to consider heterogeneity within each
class of a PolSAR image. To address this issue we proposed to use k-means algo-
rithm to find multiple cluster centers within each class. These cluster centers are
then used to initialize the weights of input-hidden layer of the OWN. We showed
that proposed OWN was faster by at least two times than the WN due to real-
valued vector representation of the coherency matrix. We also achieved better
classification accuracy compared to the WN by including heterogeneity in each
class through the weight initialization of input-hidden layer.

Having done so it was natural to examine the same for multifrequency bands
of a given PolSAR image. For that we proposed an extended Optimized Wishart
Network (e-OWN) for the classification of multifrequency PolSAR data. It is
known that the different frequency bands of a PolSAR image provide different in-
formation of the target. Each band has different wavelength, hence has different
penetration capability, so it interacts with different part of the target. Therefore in
this proposal we combine information of multiple frequencies that resulted into
improved overall classification accuracy. To effectively combine information from
multiple frequencies, we proposed multi input branch single hidden layer neural
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network called e-OWN. Input layer of e-OWN has multiple branches, one for each
frequency band of a PolSAR image. Hidden layer stacks the output of all input
branches. Hence, it represents combined information of all frequency bands. We
showed that proposed approach was able to combine different bands information
effectively and produced better classification in comparison to the ensemble learn-
ing of OWN. We also showed that even with only one hidden layer e-OWN was
able to outperform deep learning based architecture containing multiple hidden
layers.

Next, we explored fast global k-means algorithm to extract optimal cluster
centers from the PolSAR image. Our proposal addressed two issues associated
with k-means algorithm used in OWN and e-OWN. First, k-means uses Euclidean
distance to determine the similarity between two PolSAR pixel. Since coherency
matrix of a PolSAR pixel follows Wishart distribution, the Euclidean distance is
not a valid distance metric. Hence, we propose the use of revised Wishart dis-
tance which considers the underlining probability distribution of the coherency
matrix. Second, k-means algorithm does not guarantee the optimal cluster center
because it starts with the randomly initialized cluster centers. To mitigate that we
propose to use the fast global k-means algorithm which guarantees the optimal
cluster centers. Combining the two proposal we designed the fast global k-means
algorithm for PolSAR image. Our proposal reduces the computational overhead
by employing fast determent and inverse calculation of coherency matrix using
its real-valued vector representation. Using the proposed fast global k-means we
developed Gk-OWN. We showed that Gk-OWN converges faster and achieves
better classification accuracy in comparison with OWN.

Till now we discussed pixel based classification methods where each pixel was
classified independently ignoring the spatial information present in the image.
We also know that the PolSAR image suffers heavily from the speckle noise aris-
ing from the constructive and destructive interference of the scattered wave. The
speckle noise affects the classification performance of the pixel-wise classifiers.
To address this issue we proposed to use the spatial information in the image to
reduce the effect of the speckle noise. To do so, we used SLIC algorithm to di-
vide the PolSAR image into small homogeneous regions called superpixels. To
incorporate superpixel information into the classification process we computed
two distance measures: (i) revised Wishart distance of a pixel from all cluster cen-
ters and (ii) revised Wishart distance of the corresponding superpixel to all cluster
centers. To use these distance measures, we primarily explored two ways , e.g., (i)
by using additive distance measure of both distances explained as S+P(Gk−OWN)
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and (ii) by using dual branch OWN explained in SP(Gk−OWN). We concluded that
the proposed network could efficiently combine pixel and superpixel information
to achieve high classification accuracy.

Finally, we proposed deep learning based classification network for multifre-
quency PolSAR data. Proposed network involved three modules. In order to
do so, 33 polarimetric features were extracted from each band of the PolSAR im-
age using six standard decomposition techniques. Since this high dimensional
feature vector contains some redundant information, the first module of the pro-
posed network reduces the dimensionality of the input feature vector. Next, the
output of the first module was used to generate superpixels. The second module
constructs robust feature vector using each pixel and its corresponding superpixel
information. Finally, the last module of the proposed network conducts classifi-
cation using softmax classifier. It is observed that combining multiple frequency
bands information improves overall classification accuracy. We validated our pro-
posed network on Flevoland dataset resulted in 99.59% overall classification ac-
curacy. Experimental result shows that this proposed network outperforms other
reported methods available in the literature.

7.1 Future Scope of the Work

In case of traditional multilayer neural network, weights of all layers are initial-
ized randomly. So, increasing or decreasing size of any hidden layer is straightfor-
ward. But, in case of OWN based networks, the size of hidden layer is dependent
of the number of classes. Because weights associated with all hidden units are not
random, but, are initialized as a cluster centers from all classes. So, increasing the
size of hidden layer indefinitely is not possible.

In this thesis, we proposed two different approaches for initializing weights of
the OWN based networks, namely, k-means with Euclidean distance and global
k-means with RWD. Both of these methods uses training samples along with its
label information in order to find the cluster centers. Typically, number of training
samples used in PolSAR image classification are small. In future, one can develop
method of using unlabeled samples to find more effective initialization of weights
in an unsupervised manner.

Proposed OWN based networks are single hidden-layer networks. We showed
that even with shallow architecture, proposed approaches are comparable and in
some case outperforms deep architectures. In future, OWN based networks can
be extended to deep architectures by stacking modules of such networks. This
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may lead to better generalization capability then the current shallow network.
Currently, the number of cluster centers selected from each class are set as

same. In reality each class can have different number of clusters. In future this
problem can be addressed by finding optimal number of clusters from each class.
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