
by

HARDIK GAJERA
201421004

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

March, 2021

Privacy and Accountability in Cloud
Computation and Storage

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Doctor of
Philosophy at Dhirubhai Ambani Institute of Information and Communica-
tion Technology and has not been submitted elsewhere for a degree,

ii) due acknowledgment has been made in the text to all the reference material
used.

Hardik Gajera

Certificate

This is to certify that the thesis work entitled PRIVACY AND ACCOUNTABILITY
IN CLOUD COMPUTATION AND STORAGE has been carried out by HARDIK
GAJERA for the degree of Doctor of Philosophy at Dhirubhai Ambani Institute of
Information and Communication Technology under my supervision.

Prof. Manik Lal Das
Thesis Supervisor

i

Administrator
Stamp

Acknowledgments

The completion of this thesis would not have been possible without the support

and encouragement of several special people. Hence, I would like to take this

opportunity to show my gratitude to those who have assisted me in a myriad of

ways.

The journey of a Ph.D. requires guidance and assistance from many people.

I am grateful to my advisor and mentor, Prof. Manik Lal Das, who guided me

and believed in me throughout the journey. In spite of his busy schedule and

responsibilities, he was always there to support me and guide me at every step

patiently. Without his continuous optimism concerning, encouragement and sup-

port, it would not be easy to complete this journey. His attitude to achieving

excellence has helped me to achieve optimal results.

I like to thank the whole team of DA-IICT, who directly or indirectly supported

me throughout this journey. I especially want to thank Prof. Anish Mathuria, Prof.

Prasanjeet Majumdar, and Prof. Saurish Dasgupta, who provided their valuable

suggestions to strengthen my research work.

Further, I would like to thank Prof. Pascal Lafourcade, Dr. David Gérault,

Dr. Matthieu Giraud, and Dr. Xavier Bultel at Université Clermont Auvergne,

CNRS, LIMOS, Clermont-Ferrand, France, for their fruitful discussion through

collaboration. I am also grateful to Prof. Pascal Lafourcade and Dr. Matthieu

Giraud for making me comfortable during my stay in Clermont-Ferrand, France.

A special thanks to my friends and roommates, Prathmesh Madhu, Ketul

Parikh, Ainish Dave, and Moiz Palitanawala, for their much-needed support

during the initial days of the journey. I thank all my co-researchers in DA-IICT,

especially Dr. Sarita Agarwal, Nidhi Desai, Rishikant Rajdeepak, Dr. Parth

ii

Mehta, and Pranav Verma, who helped me directly or indirectly in fulfilling my

dream.

Finally, I would like to thank my family who always supported throughout

my Ph.D. journey. To my late brother thank you for taking care of all the family

responsibilities and allowing me to focus on my Ph.D. work. To my parents thank

you for your love and support throughout my life. To my wife thank you for your

support and encouragement during final stage of this journey.

iii

Contents

Abstract viii

List of Principal Symbols and Acronyms xi

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Outsourced Computation . 2

1.1.1 Verifiable Computation . 4

1.1.2 Oblivious Polynomial Evaluation 6

1.2 Outsourced Storage . 8

1.2.1 Data Dedupliaction and Proof of Storage 9

1.3 Contribution of the thesis . 11

2 Background and Preliminaries 14

2.1 Mathematical Notion . 14

2.2 Public Key Encryption . 15

2.2.1 Paillier Cryptosystem . 15

2.3 Homomorphic Encryption . 17

2.3.1 DGHV scheme . 18

2.4 Zero-Knowledge Proof . 18

2.5 Cryptographic Assumptions . 20

2.6 Feldman’s Verifiable Secret Sharing 21

2.7 Conclusion . 22

iv

3 Inherent Limitations of Polynomial Evaluation 23

3.1 Introduction . 23

3.2 PHR Computation and Verification 25

3.2.1 System Setup . 26

3.2.2 Privacy-preserving Identity Verification 26

3.2.3 Verifiable PHR Computation 28

3.3 Security Weaknesses . 29

3.3.1 Insider Attack . 30

3.3.2 Outsider Attack . 31

3.4 Proposed Improvements . 33

3.4.1 Prevention of Insider Attack 33

3.4.2 Prevention of Outsider Attack 34

3.4.3 Performance Analysis . 37

3.5 Inherent Limitation . 37

3.6 Single Query Attack . 38

3.7 Conclusion . 42

4 Verifiable Private Polynomial Evaluation 44

4.1 Introduction . 44

4.2 System Model for PPE . 46

4.2.1 Polynomial Protection . 48

4.2.2 Chosen Function Attack . 50

4.2.3 Unforgeability . 56

4.2.4 Security Against Collusion Attacks 57

4.3 Verifiable Private Polynomial Evaluation 57

4.3.1 Construction of PIPE . 58

4.3.2 Security Analysis . 60

4.4 Conclusion . 62

5 Verifiable and Private Oblivious Polynomial Evaluation 64

5.1 Introduction . 64

5.2 Security Models for VPOPE . 65

v

5.2.1 Client’s Privacy - Indistinguishability 66

5.2.2 Chosen Function Attack . 67

5.2.3 Unforgeability . 68

5.2.4 Query Soundness . 69

5.3 PPE for Encrypted data . 69

5.3.1 Intuition . 70

5.3.2 Construction of VIP− POPE 71

5.3.3 Security Analysis . 74

5.3.4 Experimental Results . 78

5.4 conclusion . 80

6 Privacy-Preserving Verifiable Computation 82

6.1 Introduction . 82

6.1.1 Adversarial Assumptions . 85

6.2 Construction of the PriVC . 87

6.3 Security Analysis . 90

6.3.1 IND-CFA security . 90

6.3.2 Unforgeability . 91

6.4 Experimental Results . 93

6.5 Conclusion . 95

7 DeDuplication with Cross-server Ownership 96

7.1 Introduction . 96

7.2 Preliminaries . 98

7.3 Scheme Description . 100

7.3.1 Assumptions . 101

7.3.2 Security Model . 102

7.4 The proposed scheme, DeDOP . 103

7.5 Security Analysis . 105

7.6 Conclusions . 106

8 Data accountability in cloud storage 107

8.1 Introduction . 107

vi

8.2 System Model and Assumptions . 109

8.2.1 System Model . 109

8.2.2 Assumptions . 110

8.2.3 Security Model . 112

8.3 Construction of DPoS . 113

8.4 Security Analysis . 117

8.5 Performance Analysis . 120

8.5.1 Experimental Results . 122

8.6 Conclusion . 125

9 Conclusion and Future Work 126

References 128

Appendix A : PolyCommitPed Scheme 139

Appendix B : Publications from the thesis 140

vii

Abstract

Cloud computing is a cost-effective computing paradigm for convenient, on-

demand data access to a shared pool of configurable computing resources such

as networks, servers, storage, applications, and services. While providing pay-

per-use on-demand service to the service consumer, the cloud service provider

should minimize computation error on data stored in a cloud storage server. If

there is any error, one can recompute or restore the data, but a user cannot detect

an error. There have been some approaches like verifiable computation, secure

computation, and multi-party computation, which may find a useful application

in cloud storage/computation services; however, most of these approaches

assume that the computation’s logic on data is public. The problem becomes

challenging when the logic of computation is hidden to clients. In this thesis, the

notion of Private Polynomial Evaluation (PPE) is defined along with a new security

model “indistinguishability against chosen function attack" (IND-CFA), where an

adversary tries to guess which polynomial is used among two polynomials of

his/her choice. The existing schemes on verifiable computation with hidden

polynomial are not IND-CFA secure. The proposed scheme, Private IND-CFA

Polynomial Evaluation (PIPE), is the first IND-CFA secure PPE. It is IND-CFA

secure under the decisional Diffie-Hellman (DDH) assumption in the random

oracle model.

In a public cloud system, the cloud requires to verify a user’s identity before

providing any service. Depending on the nature of applications, the cloud

server’s computation may require to preserve the user’s identity from the cloud.

For example, in healthcare applications, it is advisable to preserve the privacy of

users and the privacy of the data. Another proposed scheme Verifiable Obliv-

viii

ious IND-CFA Polynomial Evaluation scheme (VIP-POPE), in which the server

computes over encrypted data, and provides proof of computation, preserve

the privacy of the user’s data. The proposed scheme VIP-POPE preserves the

user’s data privacy and is shown secure against IND-CFA adversary and Client’s

Privacy-Indistiguishability (CPI) security under standard security models. The

user’s identity verification with the cloud is not considered in the VIP-POPE

scheme. In the proposed privacy-preserving verifiable computation (PriVC)

scheme, the server can compute on the user’s encrypted data and provide the

proof of computation that can be verified by the user. The PriVC preserves

the user’s privacy and ensures the undeniability of the service offered and the

service consumed. The PriVC scheme is secure under IND-CFA, and the proof of

computation is non-repudiable and unforgeable in the standard model.

Verification of the integrity of the data stored on the public cloud is another

important aspect of cloud services. Users generally do not keep a local copy of

the data after uploading it over the cloud, and it is hard to remember whole data.

In such a scenario, modification or deletion of a small part of the data may go

unnoticed. Even though public clouds put lots of effort into maintaining and se-

curing their storage server to ensure an efficient and error-free storage service, one

can not rule out the possibility of corruption in data due to human or machine er-

ror. Many schemes, like proof of storage (POS), proof of data possession (PDP),

proof of retrievability (POR), have been introduced in the literature to address

the storage issue. Although there are a few proof of storage with data dedupli-

cation (POSD) schemes exist, these schemes are inefficient for real-world applica-

tions. In data deduplication, the cloud keeps only one copy of multiple duplicate

copies of data that ensures an efficient storage system, and therefore, one cannot

ignore it in the cloud storage system. The existing schemes consider only file-

level deduplication, which does not improve storage efficiency much compared

to block-level data deduplication. Using the idea of VIP-POPE scheme, a new ef-

ficient scheme, Data Deduplication with Proof of Storage DPoS, is proposed for

proof of storage scheme with data deduplication at the block-level. Imagine a file

as a polynomial by breaking the file in fixed-sized blocks and considering each

ix

block as a polynomial coefficient. With file as a polynomial, one can use the idea

of VIP− POPE scheme for proof of storage verification. The unforgeability secu-

rity of the proposed scheme is proven under the discrete logarithm assumption.

The DPoS scheme is efficient in comparison to other related schemes.

x

List of Principal Symbols and Acronyms

A Adversary

VPOPE Verifiable and Private Oblivious Polynomial Evaluation

IND-CFA Indistinguishable against Chosen Function Attack

IND-CPA Indistingushable against Chosen Plaintext Attack

POLY(η) Polynomial in η

$← Randomly selected

Advabc
Π,A Advantage of adversary A against the experiment abc for scheme Π

t-SDDH t-Strong Decisional Diffie-Hellman

CPI Client’s Privacy Indistinguishability

CSP Cloud Service Provider

MLE Message Locked Encryption

NIZKP Non-interactive ZKP

OPE Oblivious Polynomial Evaluation

PDP Provable Data Possession

PHR Patient’s Health Record

PKE Public Key Encryption

POR Proof of Retrievability

xi

POSD Proof of Storage with Deduplication

PP Polynomial Protection

PPE Private Polynomial Evaluation

PPT Probabilistic Polynomial Time

PRV-CDA Privacy against Chosen Distribution Attack

QAP Quadratic Arithmetic Programs

QS Query Soundness

RCE Randomized Convergent Encryption

STC Strong Tag Consistency

TA Trusted Authority

TC Tag Consistency

TTP Trusted Third Party

UNF Unforgeability

VIP-POPE Verifiable IND-CFA Paillier based Private Oblivious Polynomial Eval-

uation

vk Verification Key

WPP Weak Polynomial Protection

ZKP Zero-Knowledge Proof

xii

List of Tables

3.1 Comparison of Guo et al’s scheme and the improved scheme 37

5.1 Comparison of VIP− POPE with other PPE schemes. 78

6.1 Performance level for various test instances 93

6.2 Parameters used for various test instances 94

8.1 Theoretical comparison of proposed scheme with existing schemes 118

xiii

List of Figures

1.1 General system architecture for cloud services. 3

1.2 The architecture of a PPE scheme. 6

1.3 The architecture of a VPOPE scheme. 7

2.1 IND-CPA experiment [3]. 15

3.1 A basic Model for mobile healthcare system 24

3.2 Prevention of Insider attack: Changes between Original and Modi-

fied schemes . 33

3.3 Prevention of Outsider attack: Changes shown in Blind signature . 35

3.4 Prevention of Outsider attack: Changes shown for Identity Verifi-

cation . 36

4.1 System model of a PPE scheme. 47

4.2 Security experiments and oracles definitions. 49

4.3 Security relations. 56

4.4 Illustration of the PIPE scheme. 59

5.1 CPI experiment. 66

5.2 IND-CFA experiment. 67

5.3 Server oracle for IND-CFA. 68

5.4 UNF experiment. 68

5.5 QS experiment. 69

5.6 Illustration of the VIP− POPE scheme. 71

5.7 Verification cost comparison. 79

6.1 PriVC scheme for monitoring system 84

xiv

7.1 Illustration of deduplication and cross-server Ownership 99

8.1 The proposed DPoS scheme DPoS . 111

8.2 Tag generation cost vs number of blocks 120

8.3 Proof generation cost vs number of blocks 121

8.4 Verification cost vs number of blocks 121

8.5 Tag generation cost vs block size . 122

8.6 Proof generation cost vs block size 123

8.7 Verification cost vs block size . 123

xv

CHAPTER 1

Introduction

Cloud infrastructure has been widely used for managing data and services of ap-

plications owned by industries, organizations and individuals. The main advan-

tages of storing data on public cloud are data availability, reliability and ease of

data sharing at a reasonable price [61]. Storing data, in particular sensitive data,

on public cloud storage become a potential target of attacker, which if gets leaked

or copromized then data owner and service provider will not be able to protect

user’s data from malicious intention. Even though cloud services have certain

advantages mainly in terms of implementation cost, there is a trust issue regard-

ing the services as the service provider is a third party [62]. Cloud services often

do not compromise on security of their services. If there is a breach of any kind

for any cloud service, then it will affect their reputation and business. However,

what happens if there is a small breach at user level and cannot be detected by the

user? Clearly, this will not affect the cloud service provider but it may affect the

user. Recently, a freelance photographer Dave Cooper lost around 100, 000 video

clips due to a bug in Adobe Premiere Pro [52]. Fortunately, he was able to detect

deleted files as it is significant in numbers. Now imagine only one of the 100, 000

clips gets deleted due to a bug. Will Dave be able to detect it? Clients (People or

organizations) store their data on the cloud without keeping any local copy of it.

After some time, the client cannot detect a slight modification or deletion in the

data as it is hard to remember complete data. It is beneficial for the cloud service

provider to hide data damages if the client cannot detect it. There is a similar is-

sue regarding cloud computing as well. In their Terms and Conditions, all cloud

service providers specify that they do not warrant that access to cloud computing

1

service will be error-free or uninterrupted [53]. Here is the excerpt from Amazon

Web Services(AWS) customer agreement: “NO REPRESENTATIONS OR WAR-

RANTIES OF ANY KIND ... THAT THE SERVICE OFFERINGS OR THIRD-PARTY

CONTENT WILL BE UNINTERRUPTED, ERROR-FREE OR FREE OF HARMFUL

COMPONENTS, AND (IV) THAT ANY CONTENT WILL BE SECURE OR NOT

OTHERWISE LOST OR ALTERED” [63].

1.1 Outsourced Computation

Typically, user trust the cloud server with computed result and makes personal

or business related decision based on the computed result. An error in the result

may force the user to make wrong decision. Based on the application or scenario,

a wrong decision can affect the user or organization. For example, in healthcare

related application, a result computed by the cloud server may be a vital compo-

nent of a decision making process. If there is the slightest chance of error in the

computation and the client cannot detect it then it may affect profoundly. In such

scenario, the client should be able to verify the computed results.

Mathematical models are powerful tools that are used to make predictions

about a system’s behavior, for instance, climate or stock exchange. The idea is

to collect a large set of data for a while and use it to build a function that allows

predicting the evolution of the system in the future. This topic has practical appli-

cations in many disciplines such as physics, biology, earth science, meteorology,

artificial intelligence, economics, sociology or political science. For example, it can

be used to predict global warming in climatology, or the stock exchange behavior

for economists. There are many approaches for mathematical modeling: different

models can produce different prediction functions for the same system. Consider

a company that collects and stores a massive set of data, for example about the

state of the soil, such as humidity, acidity, temperature and mineral amount. Us-

ing it, it computes some function that predicts the state of the soil for next years.

The clients are farmers who want to anticipate the state of the soil during the sow-

ing periods to determine how much seeds to buy and when to plant them. The

2

company gives its client access to the prediction function through a cloud server.

A client can then interact with the server to evaluate the function on his data. For

economic or property reasons, the company does not want the clients to be able to

recover the prediction function nor the mathematical model. Figure 1.1 illustrates

a general system model for delegation of prediction function to the cloud.

Figure 1.1: General system architecture for cloud services.

In recent times, several mobile health services have been proposed [54, 55, 56,

57, 74]. MediNet [54] discussed a mobile healthcare system that can personalize

the self-care process for patients with both diabetes and cardiovascular disease.

MediNet uses a reasoning engine to make recommendations to a patient based on

current and previous readings from monitoring devices connected to the patient

and on information that is known about the patient. HealthKiosk [55] proposed

a family-based healthcare system that considers contextual information and alert-

ing mechanisms for continuous monitoring of health conditions, where the sys-

tem design of HealthKiosk has an important entity known as sensor proxy that acts

as a bridge between the raw data sensed from the sensing device and the kiosk

controller, and also acts as a data processing unit. In [56], a taxonomy of the strate-

gies and types of health interventions have been discussed and implemented with

3

mobile phones. Lin et al [74] proposed cloud-assisted privacy-preserving mobile

health monitoring system to protect the privacy of users. Their scheme uses the

key private proxy re-encryption technique by which the computational cost of

the users is primarily done in the cloud server. The underlying problem is how

to delegate the computation on a polynomial function to a server with following

conditions:

1. The polynomial f remains secret;

2. The user can verify the computation done by the server.

To solve this problem, a new primitive PPE , for private polynomial evaluation,

is proposed, which ensures the above two conditions. Figure 1.2 illustrates a PPE

scheme, where x is the user data and f (x) is the evaluation of the data x by the

function f of the company. Moreover, the proof send by the server, and the verifi-

cation key vk send by the company allow the user to verify the correctness of the

delegated computations.

1.1.1 Verifiable Computation

The second part of the above mentioned problem is widely known as Verifiable

Computation (VC). The Verifiable Computation (VC) is introduced by Gennaro et

al. [13]. The aim of VC is to delegate a too costly computation to an untrusted third

party. This third party returns the result of the computation and a proof of cor-

rectness which is easier to verify. The VC scheme proposed by Gennaro et al. is a

non-interective fully homomorphic encryption based, publicly not verifiable and

requires expensive offline setup work. Primitives where everyone can check the

correctness of the computation are said to be publicly verifiable [20]. Parno et al. [20]

proposed a non-interective publicly verifiable VC scheme called Pinocchio. Pinoc-

chio is based on Quadratic Arithmetic Programs (QAP) and it is nearly practical

as it supports both boolean and arithmetyic circuits. However, it requires expen-

sive offline setup work. VC has given rise to a bunch of protocols [5, 10, 6, 19, 18].

In 2012, authors of [5] proposed a formal security model for VC. In [10], the au-

thors propose a scheme for generic polynomials evaluations and generic matrix

4

computations. Unlike our scheme, all these works consider that the algorithm (or

the polynomial) used by the server is public and available to the verifier.

We found some earlier papers which consider keeping the function secret

along with verifying computation [49, 14]. Kate et al. [14] propose a commitments

to polynomials (CTP) where a user publishes some points (x, y) for a committed

hidden polynomial f . The user can open the commitment a posteriori to reveal

the polynomial. CTP is close to PPE: the verification key in a PPE scheme can

be viewed as a commitment in a CTP scheme, the main difference is that this

verification key is computed by a trusted party (the company) and the points

are evaluated by an untrusted party (the server). The authors formalise the

hardness of guessing the polynomial knowing less than k points. In this model,

the polynomial is randomly chosen, then they does not consider the case where

the adversary tries to distinguish the committed polynomial between two chosen

polynomials as in our IND-CFA model. Moreover, Kate et al. design two CTP

schemes in [14]. The first one is not IND-CFA since the commitment algorithm

is deterministic. Moreover, our scheme Private IND-CFA Polynomial Evaluation

(PIPE) can be used as a CTP scheme. Our scheme solves an open problem

described by Kate et al. [14]: designing a scheme that is secure under a weaker

assumption than t-SDDH .

Guo et al. [49] propose a scheme with similar security properties to delegate the

computation of a secret health related function on the users’ health record. The

polynomials are explicitly assumed to have low coefficients and degree, which

greatly reduces their randomness. However, the authors give neither security

models nor proof. Later, we et al. [51] show that any user can guess the polyno-

mial using the Lagrange’s interpolation on several points. We propose a scheme

where the degree k is hidden and claim that it does not suffer from this kind of

attack. Clearly, hiding the degree k is useless and that no scheme can be secure

when user query more than k points to the server. Moreover, the attack on these

both schemes requires only one query to the server to gain the knowledge of the

hidden polynomial. To the best of our knowledge, the security notion for Indis-

tinguishability Against Chosen Function Attack (IND-CFA) is not defined in earlier

5

Client

Server

Company

x

(f (x), π)
f (·)

vk

Figure 1.2: The architecture of a PPE scheme.

literature.

Consider the following scenario. A company uses a PPE for prediction func-

tions as in the previous example. An attacker wants to guess which mathematical

model is used by the company. Suppose this attacker gains access to some of the

data used to build the prediction function, for instance by corrupting a technician.

The attacker can build several prediction functions by using different mathemat-

ical models and the data he collected and then try to distinguish which of these

functions is the one used by the company. Intuitively, in a secure PPE, this task

should be as hard for the attacker as if the server only returned f (x) and no ad-

ditional information for verification. There is no formal security model which

considers the above attack scenario. This notion is formalized as IND-CFA and the

proposed scheme PIPE (Private IND-CFA Polynomial Evaluation) is secure under

the new security notion.

1.1.2 Oblivious Polynomial Evaluation

In PPE schemes, clients send their data x in a plain form which can be very crit-

ical for the privacy of clients data. Moreover, in cloud based service application,

the cloud is required to verify the identity of users before providing services. In

6

Client

Server

Company

(Epk(f (x)), π)

Epk(x)
f (·)

vk

Figure 1.3: The architecture of a VPOPE scheme.

medical field, the system needs to preserve the privacy of users and user’s data.

Medical applications require that client send data concerning their health status.

In a world, where insurers offer insurance at prices that depend on the health of

customers, this can be problematic. Moreover, clients may not trust the server and

do not want to send confidential data to it. In another point of view, clients do not

know the security guarantees of the server infrastructure, and then it is legitimate

to be concerned about computer attacks and data theft that the server may ex-

perience. To address this, a new primitive, called Verifiable and Private Oblivious

Polynomial Evaluation (VPOPE) , is proposed. A VPOPE scheme allows the client

to send their data to the server in an encrypted way. Hence, the server has no in-

formation on the client’s data. As for PPE schemes, the server provides along with

the encrypted evaluation Epk(f (x)), a proof π allowing the client to verify the cor-

rectness of the result with the help the verification key vk. The new primitive is

illustrated in Fig. 1.3.

VPOPE schemes are related to Oblivious Polynomial Evaluation (OPE) intro-

duced by Naor and Pinkas [16]. In OPE, there are two parties. The first party,

A, knows a secret function f (·) and the other one, B has a secret element x. The

aim of OPE is that B receives f (x) in such a way A learns nothing about the

7

value x sent by B and that B learns nothing about the function f (·). OPE are

used to solve different cryptographic problems as set membership, oblivious

keyword search, and set intersection [15, 12, 11]. Although OPE and VPOPE

are very similar, their difference lies in the fact that OPE does not consider the

verifiability of the computation of f (x), whereas it is a crucial point in VPOPE

since the client does not trust the server. The proposed scheme Verifiable IND-CFA

Paillier based Private Oblivious Polynomial Evaluation (VIP-POPE) scheme is

IND-CFA secure and has efficient computation verification. The verification of

the computed result is done by the client. The cost of verification must be as

low as possible as client may have resource constrained device. The proposed

VIP-POPE scheme takes less time for verification of the computed result as

compared to other existing PPE schemes. Further, a Privacy preserving Verifiable

Computation (PriVC) scheme is designed to preserve both, user’s privacy and

data privacy, along with verification of computation. The scheme further ensures

undeniability of user in a successful transaction. This means once a user takes

service of the cloud, it cannot deny it later. The PriVC scheme is IND-CFA secure

and existentially unforgeable. The efficiency of PriVC is tested using realistic

parameters in Sage 8.1.

The term Formal Verification looks similar to Verifiable Computation, but both

are nor related. Formal Verification [79] techniques are used to check the cor-

rectness of a protocol or an algorithm concerning a specific property using either

formal methods of mathematics or tools (like ProVerif [81], CryptoVerif [80], etc.).

1.2 Outsourced Storage

Similar to computation, users have to trust the cloud with our data that it will

not be modified later. It is possible that specific data get deleted intentionally

or unintentionally from the cloud due to very less frequency of usage. If you

don’t have a local copy of the data, then how will you make sure that the data

stored on the cloud is still the same as the data stored initially? The proposed

PPE and VIP-POPE schemes solves the problem of verification of computation

8

over plain/encrypted data. However, clients of a healthcare company may want

to keep a history of all their data by storing it on the cloud without keeping any

local copy. Decision making process in medical field also depends on past data

of a patient. A partial or full modification or deletion of past data stored on the

cloud may affect a health related decision making process of the patient. It is

necessary to have a certain mechanism to verify the integrity of the data stored on

the cloud. Once you upload your data on the cloud storage, will it remain as it is

over time? Without storing the whole data locally, how do you make sure that the

file is not modified? There are several schemes in the literatures which provides

integrity proof for the data stored in the cloud [32, 33, 34, 35, 36, 37]. However,

most of them doesnot consider data deduplication. Along with the proof of stored

data, the data deduplicaiton is also an important aspect in storage services. In

data deduplicaiton process, the cloud keeps only one copy of multiple identical

data for an efficient storage system. There are several data deduplication schemes

proposed in the literatures for both at file level deduplicaiton and at block-level

deduplication [24, 25, 26, 28, 27, 29, 31]. In literature, both these research areas,

proof of storage and data deduplication, are running separately.

1.2.1 Data Dedupliaction and Proof of Storage

The data deduplication is an integral part of the cloud storage system. It is nec-

essary to have data deduplicaiton in a proof of storage scheme. There are few

schemes in literature which considers data deduplication along with proof of stor-

age [38, 39, 40]. These schemes are studied thoroughly and found that all these

schemes considers data deduplication at file level and are inefficient for practical

implementation as it uses elliptic curve group and/or pairing operations for tag

generation and challenge process. Moreover, none of these schemes provides se-

curity against duplicate faking attacks. As block-level data deuplication provides

more efficient storage system as compared to file level data deduplication, it is

necessary to have an efficient and secure proof of storage scheme which considers

block-level data deduplication.

In 2007, Ateniese et al. [32] introduced Provable Data Possession (PDP) scheme

9

which allows cloud storage server to provide probabilistic proof of stored data to

its clients. After this, several PDP schemes were proposed focusing on the data

integrity [33, 34, 35]. As PDP does not provide any recovery option for corrupted

data, Juels et al. [43] introduced Proof of Retrievability (POR) scheme which al-

lows recovery for corrupted data by using error correcting codes along with PDP.

There is a challenge to design lightweight PoR scheme for resource constrained

devices like smart phones and Internet of Things (IoT) devices. In 2015, Li et

al. [36] proposed a lightweight scheme for data auditing but it is less efficient in

terms of storage requirement and communication cost. To provide data integrity,

PoR/PDP schemes are required to use additional data (tag) and this makes it vul-

nerable to several malicious threats like tag forgery attack, deletion attack, replace

attack etc. In tag forgery attack, malicious server tries to hide corruption in the

stored data by forging the proof using corrupted data [37]. The schemes which

require only tag as proof for replacing or deleting data are vulnerable to deletion

and replace attack. The main issue of existing PoR scheme is that very few of them

considers data deduplication [38, 39, 40, 41, 42]. Data deduplication is a process

of storing only one copy of data by removing redundant copies of the data.

In 2012, Zheng et al. [38] introduced Proof of Storage with Deduplication

(POSD) scheme by combining PoR scheme with deduplication. Zheng et al.

focused only on deduplication at file level and not at the block-level. Moreover,

the cloud server does not verify the tag corresponding to the file and this leads

to possible duplicate faking attacks. In 2017, Shin et al. [39] finds a week key

attack in Zheng’s scheme and proposed a fix for it. However, the fix still does not

consider verifying tag and files at the time of file upload process. In 2013, Yuan et

al. [40] proposed a new POSD scheme and their construction is similar Zheng’s

scheme. Yuan’s scheme lacks tag consistency and focus on deduplication at file

level. As per our knowledge there isn’t any scheme which considers block-level

data deduplication with tag consistency.

One can observe that verification of computation and proof of storage schemes

are very similar. In verification of computation, user verify the computation of a

polynomial over the challenge input and in proof of storage, user verify the data

10

by verifying the computation of the data over the challenge input. Imagine the

data stored on the cloud as a polynomial by considering each data block as a co-

efficient of the polynomial. If we use this polynomial in PPE scheme then one can

verify the integrity of the data by verifying computation over the challenge input

as an error in the data will result in the error in the computed result. Using the

idea of VIP-POPE scheme, a new efficient scheme, Data Deduplication at block-

level with proof of storage DPoS, is proposed. In our proposed scheme DPoS,

The data is divided in fixed size blocks and treat each block as a coefficient of a

polynomial. In challenge process, the cloud server provides the computed result

of corresponding polynomial over the challenge input along with the proof. The

user can verify the integrity of the data by verifying the computed result along

with the proof. The proposed scheme provides security against duplicate faking

attacks and proof forgery attacks. Our scheme is efficient as compared to existing

proof of storage with data deduplication schemes.

1.3 Contribution of the thesis

The thesis addresses problem of verifying polynomial computation done by the

cloud over plain as well as encrypted data. It addresses the problem of data in-

tegrity along with data deduplication in the cloud storage. The thesis also con-

siders the issue related to cross-server ownership and privacy preserving identity

verification between the client and the cloud server. The contribution of the thesis

is as follows:

1. Verification of the service is essential as there is no reason to trust a pub-

lic cloud. There are various schemes in the literature which focuses on

the verification of computation of a polynomial, but they assume that the

polynomial is public. We studied existing verifiable polynomial evaluation

schemes, where polynomial is private. In chapter 3, we thoroughly anal-

yse Guo et. al’ verification scheme for healthcare system and provide details

of single query attack. We further note that none of the existing scheme

provides formal security models and we also found an attack which breaks

11

polynomial secrecy. In chapter 4, we formally define a new primitive PPE

along with a new formal security model IND-CFA along with Polynomial

Protection (PP) and Unforgeability for verification of computation with a

hidden polynomial. We also define a primitive VPOPE for verifiable and

oblivious polynomial evaluation. We define formal security models Client’s

Privacy - Indistinguishability (CPI) and Query Soundness (QS) for VPOPE.

2. In Chapter 5, we design a first secure PPE scheme called Private IND-CFA

Polynomial Evaluation (PIPE). We prove security of PIPE with respect to se-

curity models indistinguishability against chosen function attack (IND-CFA),

Polynomial Protection (PP), and Unforgeability. We also design an efficient

and secure Verifiable Oblivious Polynomial Evaluation (VPOPE) scheme

called VIP− POPE (for Verifiable oblivious IND-CFA Polynomial Evaluation)

which requires only fixed number of exponentiation for verification of

the computation. This scheme used homomorphic properties of Paillier’s

encryption scheme [17] to achieve encrypted polynomial evaluation. We

implement VIP− POPE along with existing PPE scheme in Sage 8.1 and

observe that VIP− POPE takes less time for verification of computation as

compared to existing schemes.

3. In applications involving PPE scheme, the cloud verifies user’s identity be-

fore providing services. In healthcare application, identity verification of a

user by the cloud must preserve user’s privacy. In chapter 6.2, we propose

a scheme, PriVC, which considers verifiable computation over encrypted

data along with privacy preserving identity verification. The pri scheme

is IND-CFA secure and provides user’s privacy, data privacy, verification of

computation and user’s non-repudiation properties.

4. In chapter 7, we discuss requirement for cross-server ownership. Using con-

vergent encryption scheme with deterministic tags, we design a scheme, De-

DOP, to tackle data deduplication and cross-server ownership issue in multi-

ple storage server scenario. We considered user side encryption of data. We

prove that the scheme DeDOP provides tag consistency at the client level.

12

5. In chapter 8, we present an efficient proof of storage with data deduplication

at block-level scheme. We use the idea of VIP− POPE to design a proof of

storage scheme. The meta data used in proof of storage part helps during

data deduplication process without any additional storage. The proposed

scheme is secure against duplicate faking attacks and proof forgery attacks.

We show that our scheme is efficient for practical implementation by im-

plementing the proposed scheme along with existing POSD schemes with

realistic parameters.

We have analyzed security of all proposed schemes with respect to corre-

sponding standard security models. We have shown that our schemes are effi-

cient for practical implementation by implementing all related schemes on same

platform. The proposed schemes provide efficient and practical solution for veri-

fication of computation by secret polynomial and data integrity in public cloud.

13

CHAPTER 2

Background and Preliminaries

In this chapter, we provide some basic definitions [76] for making the remaining

thesis self content. Most of these definitions are being used in security analysis,

designing and correctness of the proposed constructions. The probabilistic poly-

nomial time (PPT), negligible function and zero-knowledge proof (ZKP) are the

notions used in the security analysis of the proposed schemes. The cryptanalysis

of Guo et al.’s [49] scheme used Lagrange interpolation.

2.1 Mathematical Notion

Definition 1 (Probabilistic Polynomial Time (PPT) algorithm). A probabilistic algo-

rithm A is called PPT algorithm if there exist a polynomial p(·) such that the running

time of A on input x ∈ {0, 1}∗ is at most p(|x|). The set of all PPT algorithms with

respect to the security parameter η is denoted by POLY(η).

Definition 2 (Negligible function [77]). A function ε : N → R+ is negligible in η if

for every positive polynomial p(·) and sufficiently large η, ε(η) < p(η)−1.

Lagrange’s interpolation formula is used to find the single polynomial f of

degree at most k from k + 1 points (xi, yi) such that f (xi) = yi.

Definition 3 (Lagrange’s interpolation). Let k be an integer and F be a field. For all

i ∈ {0, . . . , k}, let (xi, yi) ∈ F2 such that for all i1, i2 ∈ {0, . . . , k}, xi1 6= xi2 . There

exists one and only one polynomial f (·) of degree at most k such that for all i ∈ {0, . . . , k},

f (xi) = yi. This polynomial is given by Lagrange’s interpolation formula 2.1:

14

f (x) =
k

∑
i=0

(
yi ·

k

∏
j=0,j 6=i

x− xj

xi − xj

)
(2.1)

In the following, we provide definition and security requirements of public

key cryptosystems.

2.2 Public Key Encryption

Definition 4 (Public Key Encryption). A Public Key Encryption (PKE) scheme is de-

fined by three algorithms (G, E ,D) such that:

G(η) It returns a public/private key pair (pk, sk).

Epk(m) It returns the ciphertext c of the message m.

Dsk(c) It returns the plaintext m from the ciphertext c.

A PKE scheme Π = (G, E ,D) is indistinguishable under chosen-plaintext attack

(IND-CPA) if for any probalistic polynomial time adversary A, the difference be-

tween 1
2 and the probability thatAwins the IND-CPA experiment in Fig. 2.1 is neg-

ligible, where the oracle Epk(LRb(·, ·)) takes (m0, m1) as input and returns Epk(mb).

The standard definition of IND-CPA experiment allows the adversary to call this

oracle only one time. However, in [3] authors prove that the two definitions of

IND-CPA security are equivalent using an hybrid argument.

ExpIND-CPAΠ,A (η):

b $← {0, 1} ;
(pk, sk)← G(η) ;
b∗ ← AEpk(LRb(·,·))(pk) ;
return (b = b∗) .

Figure 2.1: IND-CPA experiment [3].

2.2.1 Paillier Cryptosystem

We now recall the generation, the encryption and decryption algorithms of the

Paillier’s public key encryption scheme [17] used in our scheme.

15

Key Generation. We denote by Zn, the ring of integers modulo n and by Z?
n the

set of invertible elements of Zn. The public key pk of Paillier’s encryption scheme

is (n, g), where g ∈ Z?
n2 and n = pq is the product of two prime numbers.

The corresponding secret key sk is (λ, µ), where λ is the least common multi-

ple of p− 1 and q− 1 and µ = (L(gλ mod n2))−1 mod n, where L(x) = x−1
n .

Encryption Algorithm. Let m be a message such that m ∈ Zn. Let g be an ele-

ment of Z?
n2 and r be a random element of Z?

n. We denote by Epk the encryption

algorithm that produces the ciphertext c from a given plaintext m with the public

key pk = (n, g) as follows: c = gmrn mod n2.

Decryption Algorithm. Let c be the ciphertext such that c ∈ Zn2 . We denote

by Dsk the decryption function of the plaintext c with the secret key sk = (λ, µ)

defined as follows: m = L
(
cλ mod n2) · µ mod n.

Paillier’s cryptosystem is a partial homomorphic encryption scheme. We

present these properties used in our scheme.

Homomorphic Addition of Plaintexts. Let m1 and m2 be two plaintexts

in Zn. The product of the two associated ciphertexts with the public key

pk = (n, g), denoted c1 = Epk(m1) = gm1rn
1 mod n2 and c2 = Epk(m2) = gm2rn

2

mod n2, is the encryption of the sum of m1 and m2. We also remark that:

Epk(m1) · Epk(m2)
−1 = Epk(m1 −m2).

Epk(m1)× Epk(m2) = c1 × c2 mod n2

= (gm1 × rn
1)× (gm2 × rn

2) mod n2

=
(

gm1+m2 × (r1 × r2)
n) mod n2

= Epk(m1 + m2 mod n) .

Specific Homomorphic Multiplication of Plaintexts. Let m1 and m2 be two plain-

16

texts in Zn and c1 ∈ Z∗n2 be the ciphertext of m1 with the public key pk (c1 =

Epk(m1)). With Paillier’s scheme, c1 raised to the power of m2 is the encryption of

the product of the two plaintexts m1 and m2.

Epk(m1)
m2 = cm2

1 mod n2

= (gm1 × rn
1)

m2 mod n2

=
(

gm1·m2 × (rm2
1)n) mod n2

= Epk(m1 ×m2 mod n) .

Theorem 1. Paillier’s cryptosystem is IND-CPA-secure if and only if the Decisional Com-

posite Residuosity Assumption holds.

Proof. The proof of Theorem 1 is given in Section 4 of [17].

To present our scheme, we first need to prove the following property on Pail-

lier ciphertexts.

Property 1. Let n be the product of two prime numbers, x ∈ Zn, and g ∈ Z?
n2 . We set

pk = (n, g) a Paillier public key. Let {ti}k
i=1 such that for all i ∈ {1, . . . , k}, we have

ti = tx
i−1 · rn

i with t0 = g, and ri ∈ Z?
n2 . Then for all i ∈ {1, . . . , k}, ti = Epk(xi).

Proof. Considering the public key pk = (n, g). First, we remark that t1 = gxrn
1 , i.e.,

t1 = Epk(x). We assume there exists i ∈N? such that ti = Epk(xi) = gxi · rn
i . Then,

we prove that ti+1 = Epk(xi+1) as shown in the equation 2.2:

ti+1 = tx
i · rn

i+1 =
(

gxi · rn
i

)x
· rn

i+1 = gxi+1 · (rx
i · ri+1)

n = Epk(xi+1) (2.2)

Since rx
i · ri+1 ∈ Z?

n2 , ti+1 is a Paillier ciphertext of xi+1.

2.3 Homomorphic Encryption

Definition 5 (Homomorphic Encryption). Any scheme ε = (KeyGenε, Encryptε,

Decryptε) is said to be homomorphic with respect to a circuit C if and only if for any

17

plaintexts π1, π2, . . . , πn and ciphertexts ψ1, ψ2, . . . , ψn where ψi = Encryptε(sk, πi)

the following equation holds true:

C(π1, π2, . . . , πn) = Decryptε(sk,Evaluate(C, ψ)).

2.3.1 DGHV scheme

Pisa et al. [58] proposed a somewhat homomorphic encryption scheme over large

integers. Their scheme is an extension of DGHV scheme over bit operations [72].

Definition 6 (Extended DGHV scheme [58]). The extended DGHV scheme contains

following three algorithms: KeyGen, Encryption, Decryption.

• KeyGen(λ): The B is base parameter and the private key Kpriv is a coprime to B in

[2η−1, 2η) where η = O(λ2).

• Encryption(Kpriv, m): For encrypting m ∈ [0, B), it takes a random r ∈ (−2ρ, 2ρ)

and s ∈ (0, 2γ/Kpriv). The parameters γ = O(λ5) and ρ = O(λ) as originally

proposed in DGHV scheme [72]. It then compute ciphertext as follows:

ψ = m + B× r + s× Kpriv.

• Decryption(Kpriv, ψ): Using private key Kpriv, it decrypts ψ as follows:

m = (ψ mod Kpriv) mod B.

2.4 Zero-Knowledge Proof

A zero-knowledge proof (ZKP) allows a prover knowing a witness to convince a

verifier that a statement s is in a given language without leaking any information

except s.

Definition 7 (NIZKP [9]). A non-interactive ZKP (NIZKP) for a language L is a

couple of algorithms (Prove,Verify) such that:

Prove(s, w): It outputs a proof π that s ∈ L using the witness w.

18

Verify(s, π): It checks whether π is a valid proof that s ∈ L and outputs a bit.

A NIZKP proof verifies the following properties:

Completeness: For any statement s ∈ L and the corresponding witness w, we

have that Verify(s,Prove(s, w)) = 1.

Soundness: There is no polynomial time adversary A such that A(L) outputs

(s, π) such that Verify(s, π) = 1 and s 6∈ L with non-negligible probability.

Zero-knowledge: A proof π leaks no information, i.e. there exists a probabilistic

polynomial time algorithm Sim (called the simulator) such that outputs of

Prove(s, w) and the outputs of Sim(s) follow the same probability distribu-

tion.

We use the ZKP given by Baudron et al. [2] to prove the plaintexts equality

of k ∈ N Paillier ciphertexts. Let Z?
n2 be a multiplicative group, where n is the

product of two prime numbers p and q, and t0 = g ∈ Z?
n2 . The language is the set

of all statements {(ti, ti−1) ∈ Z?
n2 ×Z?

n2}k
i=1 such that it satisfies equation 2.3:

L(tλ
i mod n2)× (L(tλ

i−1 mod n2))−1 mod n = m , (2.3)

with m ∈ Zn, λ = lcm(p− 1, q− 1), and L(x) = x−1
n for all i ∈ {1, . . . , k}.

We use the ZKP given by Baudron et al. [2] to prove the plaintexts equality

of k ∈ N Paillier ciphertexts. Let Z?
n2 be a multiplicative group where n is the

product of two prime numbers p and q. The language is the set of all statements

(t1, . . . , tk) ∈ (Z?
n2)

k for k ∈ Z≥2 such that for all i ∈ {1, . . . , k}, ti = tx
i−1 · rn

i

mod n2 where t0 ∈ Z?
n2 and ri ∈ Z?

n2 .

Since the ZKP given by Baudron et al. [2] is a sigma protocol, we can use the

Fiat-Shamir Transformation [9] to obtain a NIZKP. We formally define this NIZKP

called DecPaillierEq.

Definition 8 (DecPaillierEq [2]). Let n be the product of two prime numbers p and q

and H be a hash function, L be the set of all (t1, . . . , tk) ∈ (Z?
n2)

k such that for all

i ∈ {1, . . . , k}, ti = tx
i−1 · rn

i mod n2 where t0 ∈ Z?
n2 and ri ∈ Z?

n2 . We define the

NIZKP DecPaillierEq = (Prove,Verify) for L as follow:

19

• Prove((t1, . . . , tk), ω): Using the witness ω = (x, t0, {ri}k
i=1), it picks ρ

$←

[0, 2log(n)] and si ∈ Z∗n for 1 ≤ i ≤ k, and computes ui = tρ
i−1 · s

n
i mod n2

for 1 ≤ i ≤ k. Moreover, it computes w = ρ + x · H(t) and sets vi = si · r
H(t)
i

mod n for 1 ≤ i ≤ k. Finally, it outputs πt = (w, {ui}k
i=1, {vi}k

i=1).

• Verify((t1, . . . , tk), πt): Using πt = (w, {ui}k
i=1, {vi}k

i=1), it verifies if w ∈

[0, 2log(n)], and if tw
i−1 · vn

i = ui · t
H(t)
i mod n2 for 1 ≤ i ≤ k. Then it outputs 1,

else 0.

Moreover, Baudron et al. [2] prove the following theorem.

Theorem 2. DecPaillierEq is unconditionally complete, sound and zero-knowledge in the

random oracle model.

Definition 9 (LogEq [78]). Let G be a multiplicative group of prime order p and H be a

hash function, L be the set of all (g1, h1, g2, h2) ∈ G4 where logg1
(h1) = logg2

(h2). We

define the NIZKP LogEq = (Prove,Verify) for L by:

Prove((g1, h1, g2, h2), w). Using the witness w = logg1
(h1), this algorithm picks r $←

Z∗p, computes A = gr
1, B = gr

2, z = H(A, B) and ω = r + w · z. It outputs

π = (A, B, ω).

Verify((g1, h1, g2, h2), π). Using π = (A, B, ω), this algorithm computes z = H(A, B).

If gω
1 = A · hz

1 and gω
2 = B · hz

2 then it outputs 1; else, it outputs 0.

LogEq is unconditionally complete, sound and zero-knowledge in the ROM.

2.5 Cryptographic Assumptions

Definition 10 (Discret Logarithm assumption). Let p be a prime number generated

according to a security parameter η ∈ Z+. Let G be a multiplicative group of order p,

and g ∈ G be a generator. The discrete logarithm (DL) assumption in (G, p, g) states

that there exists a negligible function ε such that for all x $← Z∗p and A ∈ POLY(λ):

Pr
[
x′ ← A(gx) : x = x′

]
≤ ε(λ) .

20

Definition 11 (Decisional Composite Residuosity assumption). Let p and q be two

prime numbers generated according to a security parameter η ∈ N. The decisional

composite residuosity assumption (DCR) states that there exists no adversary A ∈

POLY(η) which can distinguish n-th residues modulo n2.

Definition 12 (Approximate GCD (A-GCD) Problem). Given a set of k integers of the

form xi = qi p + ri where qi, p, ri ∈ Z with qi, ri are randomly chosen, the approximate

GCD problem is to find p.

There is no known probabilistic polynomial time algorithm in literature which

can solve this problem in polynomial time.

2.6 Feldman’s Verifiable Secret Sharing

Verifiable Secret Sharing (VSS) [8] based on the Shamir Secret Sharing [9], where

each share is a point (x, y) of a secret polynomial f of degree k. Knowing more

than k shares, one can guess the polynomial f and can compute the secret s =

f (0). In Feldman’s VSS, there is a public value that allows anybody to check the

validity of a share. For any point (x, y), anybody can check if y is f (x) or not. This

scheme works as follows. Let G be a multiplicative group of prime order p, where

DL is hard. Let f ∈ Z∗p[X] be the secret polynomial and ai ∈ F be a coefficient for

all 0 ≤ i ≤ k such that:

f (x) =
k

∑
i=0

ai · xi

Let g ∈ G be a generator of G. For all i ∈ {0, . . . , k}, we set hi = gai . Values g and

{hi}0≤i≤k are public, however, the coefficients ai are hidden under DL hypothesis.

We remark that f (x) = y if and only if gy = ∏k
i=0 hxi

i :

k

∏
i=0

hxi

i =
k

∏
i=0

gai·xi = g∑k
i=0 ai·xi = g f (x) (2.4)

Then, we can use equation 2.4 to check that (x, y) is a valid share.

21

2.7 Conclusion

This chapter presented mathematical notions like probabilistic polynomial time,

negligible function, and Lagrange interpolation. We then discussed the Paillier

cryptosystem and its homomorphic properties. We note that the Paillier cryp-

tosystem has one unique feature, proof of plaintext equality. We briefly discussed

Zero-Knowledge Proof and DecPaillierEq NIZKP, which proves that k ciphertexts

of the same message decrypt to the same plaintext without decrypting each ci-

phertext. This property is useful in our proposed scheme, VIP− POPE. In the

end, we discussed Feldman’s Verifiable Secret Sharing (VSS), which is based on

Shamir’s secret sharing.

22

CHAPTER 3

Inherent Limitations of Polynomial Evalua-

tion

3.1 Introduction

Broadly, there are three types of entities in cloud computing – Cloud server as

service provider, Merchant (Data Owner) as service consumer, and Customer as

service consumer. Cloud server facilitates storage and services in which mer-

chant stores the application data and all eligible customers of the merchant get

on-demand services from the cloud infrastructure. Data owner hires the cloud in-

frastructure for storing application data in the cloud storage. While resource out-

sourcing provides significant advantages to data owners as well as to service con-

sumers, there are some important concerns such as security, privacy, ownership

and trust that have been discussed substantially over past decade [49, 74, 73, 75].

For example, the company can delegate the health monitoring systems to the

cloud, where a patient can directly communicate with the cloud. However, upon

receiving the patient request the cloud can generate a fabricated report for some

malicious intent. Therefore, there is a possibility that cloud server can manipulate

the data without data owner’s knowledge. In order to avoid such scenarios, data

owner can prefers to store data in cloud server in a controlled manner so that the

cloud server cannot manipulate the data while consumer getting services from it.

Verifiable computation (VC) refers to the cryptographic primitives, where an

untrusted computation server can prove the soundness of its computations and it

was introduced in [13]. The aim of such a primitive is to allow a weak client to

23

Data owner User

Registration

Figure 3.1: A basic Model for mobile healthcare system

delegate difficult computations. Primitives, where anybody can check the sound-

ness of the computation, are said publicly verifiable [20]. This subject has led to a

very dense literature [18, 5, 10, 6, 19]. In 2012, authors of [5] proposed a formal

security model for VC. In [10], the authors propose a scheme for generic polyno-

mials evaluations and generic matrix computations. Unlike our scheme, all these

works consider that the algorithm (or the polynomial) used by the server is public

and available to the verifier.

A similar scenario was studied by Guo et al. [49], where a server receives med-

ical data collected by sensors worn the users and provides the users with an eval-

uation of their health status. More precisely, the company defines a polynomial

f which returns meaningful information, such as potential diseases. Then, it up-

loads this polynomial to the server and sells to the end users the ability to query

that function with their medical data.

We found that the Guo et al.’s scheme [49] suffers from major security weak-

nesses, in particular, the scheme does not provide privacy-preserving services,

which is the main claim of the scheme. We provide a mitigation for the weak-

nesses by modifying the scheme.

24

3.2 PHR Computation and Verification

Guo et al. [49] proposed a scheme, appeared in INFOCOM 2015, that claims veri-

fiable privacy-preserving service in healthcare systems. The scheme has two main

objectives - (i) privacy-preserving identity verification, and (ii) verifiable PHR

computation. The former provides secure identity verification on cloud without

revealing identity of user while later guarantees the correctness of generated PHR.

The scheme consists of four entities as follows.

• Trust Authority(TA): TA performs issuance and distributing secret and pub-

lic parameters to other entities of the scheme.

• Cloud Service Provider(CSP): CSP verifies user identity and computes

health record computation using the monitoring program f (~x) provided by

the company.

• Company: Company provides health record computation to users with the

help of CSP.

• Users: Users are the consumers for their health services/records.

The scheme works as follows. A user receives a private certificate σ from TA.

After receiving σ user asks for a blind signature ψ on σ from the company. After

that the user is a registered entity for the monitoring program f (~x) and the blind

signature ψ is issued for the user. Here, f (~x) is a confidential polynomial function

and~x is the user’s data generated by the user as~x = (x1, x2, x3, · · · , xN), xi ∈ Z∗n. To

access the health records the user encrypts the vector and then sends an encrypted

vector with ψ to the CSP. User computes~c = E(~m), where ~m is monitored raw data

and E(·) is a secure encryption scheme. User then generates proofs on σ which are

used for authentication. If public verification of given ψ is done by the CSP then it

computes f (~x) on given ~c. After that the CSP computes the monitoring function

and gives results f (E(~m)) and signature δ to the user. User now decrypts using

his secret key and checks for correctness of f (E(~m)) and δ based on monitored

data ~m. The detailed construction of the scheme works with the following phases.

25

3.2.1 System Setup

TA sets up the system by choosing the security parameters and the corresponding

public parameters.

1. General Setup: TA chooses a security parameter ξ and generates public pa-

rameters param = (n, G, G1, e), where n = pq is the order of group G, p and q

are large primes, and e is a bilinear pairing mapping.

2. Partially Blind Signature Setup: TA issues domain public parameter (g, gs)

∈ G2, where s is a master secret key. TA selects two hash functions H :

{0, 1}∗ → G and H0 : {0, 1}∗ → Z∗n. A signing key pair (pk, sk), where

pk = H(idc) ∈ G and sk = H(idc)s is generated by TA for the company.

3. Monitoring System Setup: TA chooses g0 ∈ G and publishes h, where h =

gp
0 ∈R Gq. TA issues σ after providing ID idA for user, where σ = g

1
s+idA . TA

gives the private key sk = q to the user.

3.2.2 Privacy-preserving Identity Verification

This phase is composed of the following four sub-protocols.

1. Signature Request.

(θ, φ) ← Request(g, pk, idA, w): User asks for some parameters to company

for partially blind signature ψ on σ. Before the request is sent, user and

company agree on string l ∈ {0, 1}n. Then, the company selects t ∈R Z∗n,

calculates θ = gt, φ = H(idc)t and sends (θ, φ) to the user.

2. Partially Blind Signature Generation Process.

ε′ ← BlindSign(θ, gs, φ, l, σ): User randomly chooses α, β, γ ∈R Z?
n and calcu-

lates θ′ = θα ·
(

gs)γ
= gαt+γs, φ′ = H(idc)α(β+t)H(l)−γ and u = α−1H0(σ ‖

φ′) + β, and sends these to the company. Then, the company calculates

ε = H(idc)
s(t+u)H(l)t

26

and sends it back to the user, who unblinds ε by calculating ε′ = εα.

3. Commitment and Proof Generation Process.

(comi, π) ← ProveGen(θ′, φ′, ε′, σ, l). CSP verifies user’s identity by using

the blind signature ψ = (θ′, φ′, ε′, σ, w) as shown in equation 3.1.

e(e′, g)e(X, σ)e(Y, g−s)e(H(l)−1, θ′)
?
= e(g, g) (3.1)

where X = gidA gs and Y = φ′ · H(idc)H0(σ‖φ′).

Note that the verification of the above equation requires the identity idA

of the user along with the blind signature ψ. Therefore, if the user directly

sends the blind signature ψ to the CSP, then it reveals the correlation of idA

and the partially blind signature ε′.

Now user generates proofs for the signature and the certificate. For genera-

tion of commitments, user chooses µi, νi ∈R Zn, i = 1, 2, 3, 4.

com1 = ε′hµ1 = H(idc)αs(t+u)H(l)αthµ1 , com′1 = ghν1

com2 = gidA+shµ2 , com′2 = σhν2 = g
1

s+idA hν2

com3 = φ′ · H(idc)H0(σ‖φ′)hµ3 , com′3 = g−shν3

com4 = H(l)−1hµ4 , com′4 = θ′hν4 = gαt+γshν4

After calculating commitment set, user builds the proof

π = Π4
1(comih−µi)νi(com′i)

µi

and then sends ({comi, com′i}4
i=1, π) to the CSP for verification.

4. Identity Verification Process.

(0,1)← Verify({comi, com′i}4
i=1, π, h, e(g, g)). CSP checks the equation 3.2 and

returns 1 for successful verification, 0 for unsuccessful verification.

4

∏
i=1

e(comi, com′i) = e(g, g)e(π, h) (3.2)

27

3.2.3 Verifiable PHR Computation

After identity verification, user uploads PHR by the following steps.

1. Monitoring Program Delegation: The company delegates the monitoring

program to the cloud and then user’s PHR is computed by the cloud. The

company sends the coefficient vector~a = (a0, a1, · · · , ak) and string l to the

cloud, where l is used for identifying correlation program.

2. PHR Encryption: Let PHR m be an entry from data vector ~m =

(m1, m2, · · · , mN), mi ∈ Zn. User chooses a set of random numbers

~r = (r0, r1, · · · , rk), ri ∈ Zn. Then, the user sends~r to the company. After

getting ~r, the company calculates ~r′ = ~r ·~a = (a0r0, a1r1, · · · , akrk). Then,

company sends hr̄ = h∑k
i=0 r′i and gr̄ to the user, and r̄ to the CSP, where

r̄ = ∑k
i=0 airi. User picks d ∈R Zn and generates the ciphertext of PHR as

c =
(

ghd·r0 , gmhd·r1 , gm2
hd·r2 , · · · , gmk

hd·rk
)

where each entry is computed as ci = gmi · (hri)d. Now, user sends

{c, λ, H(l)} to the CSP, where λ = 1
(x−m)·d mod n. User also requests the

company to compute a public parameter g f (x), which later the company

sends to the CSP.

3. Verifiable PHR Computation: PHR is computed as follows.

υ =
k

∏
i=0

(
gmi · (hri)d

)−ai

=
k

∏
i=0

g−ai·mi · h−airid

= g∑k
i=0−ai·mi · h∑k

i=0−airid

= g− f (m) · h−d ∑k
i=0 r′i

CSP computes λ′ = λ
r̄ = 1

(x−m)·d·r̄ and signature δ using g f (x) as,

28

delta =
(

g f (x) · υ
)λ′

=
(

g f (x)− f (m) · h−d ∑k
i=0 r′i

) 1
(x−m)·d·r̄

= g
f (x)− f (m)
(x−m)

· 1
dr̄ · h−

1
(x−m)

=
(

gw(x) · h−
dr̄

(x−m)

) 1
dr̄

where w(x) is a (k − 1)-degree polynomial function. If f (m) is the value

based on m, then only it satisfies this condition w(x) ≡ f (x)− f (m)
(x−m)

. Then, CSP

sends {υ, δ} to the user.

4. PHR Result Decryption and Verification: Using the private key sk = q the

user decrypts υ as in equation 3.3

(
1
υ

)q

=
(

g f (m)hdr̄)q
=
(

gq) f (m)hdr̄q =
(

gq) f (m) ∈ Gp (3.3)

User can recover f (m) by computing the discrete log of
(

1
υ

)q

with base gq.

Here, f (m) is bounded by M where M is very small compared to p,q and

therefore, it is feasible to compute the discrete log of
(

1
υ

)q

.

For getting the proof on f (m), the user sends encrypted (x, f (m)) to the

company. Then, the company constructs coefficient vector w(x) as ~w =

(w0, w1, · · · , wk−1) and proves W = gZ, where Z = ∑k−1
i=0 wixi and responds

to the user. Now, the user calculates (gr̄)d = gdr̄ and η = (hr̄)−d/(x−m). Fi-

nally, the user verifies the equation 3.4 to see whether the CSP has computed

correct results or not.

e(W · η, g) ?
= e(θ, gdr̄) (3.4)

3.3 Security Weaknesses

We show two security flaws in Guo et al’s scheme [49]. The company’s goal is the

confidentiality of the monitoring program f (x). If a malicious user obtain f (x)

29

then he can use it for free and he can even sell it to someone else. We note that the

company delegates the monitoring program f (x) to the CSP, with the assump-

tion that the computation of f (x) on patients’ PHR can be done by the CSP with-

out loosing the confidentiality of the monitoring program f (x). In other words,

the monitoring program f (x) should not be known to any other party except the

Company and the CSP. Furthermore, anyone can pass the identity verification

process without even communicating with the TA or company and therefore, if a

malicious user leaks H(l) to a non-user (attacker), then the attacker can use the

system with all credentials.

3.3.1 Insider Attack

The monitoring program is a polynomial of degree k and hence, it can be repre-

sented as a k + 1 length vector,~a = (a0, a1, a2, . . . , ak), where ai is the coefficient of

xi in the polynomial.

f (x) =
k

∑
i=0

aixi = a0 + a1x + a2x2 + · · ·+ akxk.

The company wants to keep this vector~a secret from everyone except the cloud.

Therefore, there are total k + 1 unknowns and it is easy to find values for these

unknowns if we have k + 1 linearly independent equations involving the coeffi-

cients {ai}k
i=0. An authenticated user(insider) can use the service for k + 1 times

and get PHR report f (mi), where mi is the PHR sent by the user on ith time use

of the service. Using the set {(mi, f (mi))}k
i=0, the user can create the system of

equations in k + 1 variable and solve it for the vector~a. More concretely, assume

that the user has the set {(mi, f (mi))}k
i=0. Then for each i ∈ {0, 1, 2, . . . , k}, we

have

a0 + a1mi + a2m2
i + · · ·+ akmk

i = f (mi)

Without loss of generality, we assume that these (k + 1) equations are linearly

independent (if not, then the user can always use the service until it is true). We

can represent this system of equation in terms of matrices as follows.

30

A =

1 m1 . . . mk

1

1 m2 . . . mk
2

...
...

. . .
...

1 mk+1 . . . mk
k+1

 X =

a0

a1
...

ak

 B =

f (m1)

f (m2)
...

f (mk)

AX = B

Solution of the above system of equations is given by

X = A−1B.

Now, the user can easily solve the above system of equation for the vector X =

(a0, a1, . . . , ak) and the user can use it to compute f (m) = ∑k
i=0 aimi for any PHR m.

In the scheme[49], it is assumed that the degree of the polynomial is around 10 and

that makes this attack more easy. Although this attack does not violate privacy

of other users, it reveals the confidential monitoring program f (x) of all users

pertaining to the company who owns the monitoring program. In this attack, the

user obtains f (x) and thereby, computes the result of f (x) without contacting the

CSP or the Company, which reveals the confidentiality of the monitoring program

f (x).

3.3.2 Outsider Attack

We note that the cloud does not use any extra information other than the commit-

ments sent by the user and the public parameters published by TA. This makes

the process vulnerable to unauthenticated identity verification. The attacker can

choose commitments as follows.

com1 = g, com′1 = g

com2 = g, com′2 = g−2

com3 = g, com′3 = g2

com4 = π, com′4 = h, where π ∈R G

31

Since g and h are public parameters, the attacker does not have any trouble

in choosing these commitments and π can be any random element of the group

G. The attacker sends π and ({comi, com′i}4
i=1) to the cloud for verification. Upon

receiving the commitments from the user, the cloud verifies the equality of the

equation 3.5
4

∏
i=1

e(comi, com′i) = e(g, g)e(π, h) (3.5)

Proof. We prove the equality of the equation 3.5.

4

∏
i=1

e(comi, com′i) = e(g, g)e(g, g−2)e(g, g2)e(π, h)

= e(g, g)e(g, g)−2e(g, g)2e(π, h)

= e(g, g)1−2+2e(π, h)

= e(g, g)e(π, h)

Therefore, anyone can pass through the identity verification process. Once the

verification is successful, the cloud allows the attacker to use the service. Here,

we assume that the attacker already has H(l) and k. The attacker follows the rest

of the process same as an authenticated user described in the previous section and

gets (υ, δ) in response from the cloud, where

υ = g− f (m)h−dr

The υ contains information about f (m) and the attacker’s aim is to get the the

PHR report f (m) for the PHR m. Note that the attacker is not an authenticated

user and he does not have the secret key q and hence, can not decrypt υ. However,

the attacker can find f (m) using brute force because size of f (m) is small. Since

the attacker follows the rest of the process after identity verification, the attacker

32

 Original

 Modified

Patient Company

Figure 3.2: Prevention of Insider attack: Changes between Original and Modified
schemes

will have d and hr. The attacker computes

υ′ = υhdr = g− f (m).

In [49], the authors have considered that values of m and f (m) are not more than

1000. Therefore, the attacker can simply check whether υ′ is equal to g−j for every

j ∈ {0, 1, 2, . . . , 1000}. By using only 1000 iterations, the attacker can successfully

get f (m).

3.4 Proposed Improvements

3.4.1 Prevention of Insider Attack

The insider attack is possible because the attacker knows the degree k of the poly-

nomial. We provide a way to keep the polynomial f (x) secure by keeping the

degree of the polynomial secret.

Let m be the PHR value and user wants to get a report f (m) for it. User chooses

two random numbers r0, d ∈ Zn and a random prime p1 ∈ Zn. User computes

m′ = m+ p1 and sends (r0, d, m′) to the company. The Figure 2 reflects the changes

suggested for preventing the observed insider attack in Guo et al’s scheme.

33

After receiving (r0, d, m′), the company generates k random integers r1, r2, . . . , rk ∈

Zn using r0. Company calculates

~r′ =~r.~a = (a0r0, a1r1, . . . , akrk)

and

c = (ghdr0 , gm′hdr1 , gm′2 hdr2 , . . . , gm′k hdrk).

Company sends (hr̄, gr̄) to the user and (r̄, c) to the cloud, where r̄ = ∑k
i=0 airi.

User selects a random point x ∈ Zn and computes λ = 1
x−m′ d. User sends x to the

company and (λ, H(l)) to the cloud. Company computes g f (x) and sends it to the

cloud. Upon receiving (λ, H(l)) from user and (r̄, c, g f (x)) from the company, the

cloud computes υ and δ. Everything remains same except that c is encryption of

m′ instead of m. After decrypting υ, user gets f (m′) = f (m + p1). For sufficiently

large value of p1, we have f (m + p1) mod p1 = f (m). The verification process

remains same. Since the user does not know the degree k, the user can not retrieve

coefficients of the polynomial f (x).

3.4.2 Prevention of Outsider Attack

We modify the scheme in such a way that only registered user can use the service

to get PHR report f (m) for a given PHR m. Note that the cloud computes f (m)

only after successful identity verification process. After generation of the blind

signature, the company and the cloud agree on some random number z ∈R Zp∗

and a timestamp tm. Then, the company computes g1 = gH(tm‖z) and sends g1

with ε to the user. The Figures 3 and 4 reflect the changes suggested for preventing

the observed outsider attack in Guo et al’s scheme.

After receiving {g1, ε} the user computes commitments. Except com2 all other

commitments remain same. We modify com2 as follows:

com2 = gidA+s
1 hµ2

34

Blind Signature

 Original

 Modified

Patient Company

Figure 3.3: Prevention of Outsider attack: Changes shown in Blind signature

Now, based on this modification, user computes the proof

π =
4

∏
i=1

(comih−µi)νi(com′i)
µi

and sends ({comi, com′i}4
i=1, π) to the cloud for verification. During the identity

verification process, the cloud verifies the equality of the equation 3.6 and returns

1 for successful verification and 0 for unsuccessful verification.

4

∏
i=1

e(comi, com′i) = e(g1, g)e(π, h) (3.6)

Correctness:

4
∏
i=1

e(comi, com′i)

= e(ε′hµ1 , ghν1)e(φ′ · H(idc)H0(σ‖φ′)hµ3 , g−shν3)

·e(H(l)−1hµ4 , gαt+γshν4)e(gidA+s
1 hµ2 , g

1
s+idA hν2)

= e(H(idc)αs(t+u)H(l)αt, g)e(φ′ · H(idc)H0(σ‖φ′), g−s)

·e(H(l)−1, gαt+γs)e(hµ1 , g)e(ε′hµ1 , hν1)e(hµ3 , g−s)

35

Identity Verification

 Original

 Modified

Patient Cloud

Figure 3.4: Prevention of Outsider attack: Changes shown for Identity Verification

·e(φ′ · H(idc)H0(σ‖φ′)hµ3 , hν3)e(hµ4 , gαt+γs)

·e(H(l)−1hµ4), hν4)e(gidA+s
1 hµ2 , g

1
s+idA hν2)

= e(H(idc)αs(t+u), g)e(H(idc)α(β+t)+H0(σ‖φ′), g−s)

·e(H(l)αt, g)e(H(l), g)γs−αt−γse(hµ1 , g)e((ε′hµ1)ν1 , h)

·e(g−sµ3 , h)e((φ′ · H(idc)H0(σ‖φ′)hµ3)ν3 , h)e(gµ4(αt+γs), h)

·e(H(l)−1(hµ4)ν4 , h)e(g1, g)e(g
(idA+s)ν2+

µ2
s+idA

1 , h)e(hµ2ν2 , h)

= e(g1, g)
4

∏
i=1

e((comih−µi)νi(com′i)
µi , h) = e(g1, g)e(π, h)

Here, the attacker does not have g1, so he can not pass the identity verifica-

tion process. Without passing the verification process, the attacker can not

compute f (m) for any PHR m. We note that after the identity verification there

is also a need for message authentication (to avoid user impersonation attack)

between the company and the user in the PHR computation phase of the scheme.

36

Guo et al’s scheme [49] Improved scheme
Computational
cost

((3k + M + 40)log(n) + 2k +
25)G + 6(k + 1)M + 8E

((3k + M + 40)log(n) + k +
25)G + (5k + 7)M + 8E

Storage cost Public: 7log(n) bits
Private: (k + 6)log(n) bits

Public: 7log(n) bits
Private: (k + 7)log(n) bits

Communication
cost

(3k + 33)log(n) bits (k + 35)log(n) bits

Table 3.1: Comparison of Guo et al’s scheme and the improved scheme

3.4.3 Performance Analysis

We compare the Guo et al’s scheme and the proposed improved scheme with re-

spect to the computational, storage and communication costs requirement in the

schemes. In the table 1, k is the degree of the monitoring program f (x), n is a pub-

lic parameter, and M is the size of the message space. The table 1 provides com-

putational complexity of both schemes in terms of the number of group multipli-

cations (G), the number of integer multiplications (M) and the number of bilinear

pairing computations (E). For exponentiation of a group element, we consider the

square and multiply algorithm to count the number of group multiplications. The

improved scheme is comparable with Guo et al’s scheme in terms of computation

and storage costs and provides better efficiency in terms of communication cost.

3.5 Inherent Limitation

In the scheme [49], the degree k of the polynomial is public. However, even if

k is secret, any user can guess k and f after k + 1 interactions with the server as

follows. The user chooses an input x0 and sends it to the server. He receives y0

and computes the polynomial f0 of degree 0 using Lagrange’s interpolation on

(x0, y0). Next, the attacker chooses a second input x1 and asks y1 = f (x1) to the

server. He computes the polynomial f1 of degree 1 using Lagrange’s interpolation

on {(x0, y0), (x1, y1)}. At each iteration i, he compares fi−1 and fi. If fi−1 = fi, he

returns k = i− 1 and f = fi−1. Indeed, when i > k, the attacker uses Lagrange’s

interpolation with more than k points of f . Since the degree of f is k, the inter-

polation on i > k points always returns f . By repeating this process until the

37

interpolation returns the same polynomial fi = fi+1 for two consecutive itera-

tions, he recovers both the degree and the polynomial. There is no way to prevent

it, as it is an inherent limitation of PPE. Note that this limitation was already con-

sidered in the security model of Kate et al. [14]. Thus, to preserve the protection

of the polynomial, the server must refuse to evaluate more than k points for each

client. It is assume that the clients do not collude to collect more than k points.

3.6 Single Query Attack

In addition to the protection of f , the scheme [49] requires that the user’s data is

encrypted for the server. More formally, the user uses an encryption algorithm

to compute x′ = Enck(x) and sends this cipher to the server which returns y′.

Then, the user computes y = Deck(y′) such that y = f (x) where f is the secret

polynomial. The encryption scheme is based on the discrete logarithm assump-

tion. The decryption algorithm works in two steps: First the user computes a

value h such that h = g f (x) where g is a generator of a multiplicative group of

large prime order n, next he computes the discrete logarithm of h in base g using

Pollard’s lambda method [50]. The authors assume that the size of f (x) is reason-

able: more formally, they define a set of possible inputs X and M ∈ N such that

∀x ∈ X , 0 ≤ f (x) < M. The authors suppose that users can compute Pollard’s

lambda algorithm on any h = gy where y < M. Actually, for practical reasons,

since h = g f (x) mod n and logg(h) = f (x), we suppose that 0 ≤ f (x) < n for

any input x of reasonable size (i.e. x << n). Hence, we consider f as a positive

polynomial in Z with sufficiently small coefficients.

It is easy to evaluate a “small” M′ such that M′ > M. It is suffisent to choose M′

such that Pollard’s lambda algorithm on gM′ is easily computable by a powerfull

server but is too slow for a practical application. For example, if Pollard’s lambda

algorithm takes less than one minute for the server but more than one hour for the

user’s computer, we can suppose that M′ > M and attacks that are polynomial in

M′ are practical. To sum up, the user has the following tools:

• M′ ∈ N such that ∀x ∈ X , 0 ≤ f (x) < M′ and such that algorithms that

38

require p(M′) operations (where p is a polynomial) are easily computable.

• A server which returns y = f (x) for any input x. This server can be used at

most k times where k is the degree of the polynomial.

The authors assume that the size of f (x) is reasonable: more formally, they define

a set of possible inputs X and M ∈ N such that ∀x ∈ X , 0 ≤ f (x) < M. The

authors also assume that f (x) ≥ 0 for any x and that X ⊂ N. We show that any

user can guess the secret polynomial during his first interaction with the server.

We first prove the following two properties.

Property 2. For any polynomial f ∈ Z[X] and any integers x and y, there exists P ∈ Z

such that

f (x + y) = f (x) + y · P .

Proof. We show by induction that for any integers x, y and k there exists Pk ∈ Z

such that (x + y)k = xk + y · Pk. For k = 0, we set P0 = 0 because (x + y)0 = 1 =

x0 = x0 + y · P0 when P0 = 0. We assume that the property is true for k, we show

that for any integers x and y there exists:

Pk+1 = Pk · x + xk + Pk · y

such that Pk+1 ∈ Z and:

(x + y)k+1 = xk+1 + y · Pk+1

We verify that:

(x + y)k+1 = (x + y) · (x + y)k

= (x + y) · (xk + y · Pk)

= xk+1 + x · y · Pk + y · xk + y · Pk · y

= xk+1 + y · (Pk · x + xk + Pk · y)

= xk+1 + y · Pk+1

39

Then for any polynomial f (x) =
k
∑

i=0
ai · xi of degree k, we can set P =

k
∑

i=0
ai · Pi

such that:

f (x + y) =
k

∑
i=0

ai · (x + y)i

=
k

∑
i=0

ai · (xi + y · Pi)

=
k

∑
i=0

ai · xi +
k

∑
i=0

ai · y · Pi

= f (x) + y ·
k

∑
i=0

ai · Pi

= f (x) + y · P

Note that for any positive integers a and b such that a < b, we have a mod b =

a. Then, we can deduce the following property from Property 2.

Property 3. For any polynomial f ∈ Z[X] and any integers x and y such that y >

f (x) ≥ 0 and f (x + y) ≥ 0, it holds that:

f (x + y) mod y = f (x) .

Proof. From the previous property, we have f (x + y) = f (x) + y · P, where P is an

integer. Assume P < 0, we define P′ = −P > 0, then f (x + y) = f (x)− y · P′ ≥ 0.

Hence we have f (x) ≥ y · P′ > f (x) · P′.

• If f (x) > 0 then we deduce 1 = f (x)/ f (x) > P′ and 1 > P′.

• Else, if f (x) = 0 then 0 ≥ y · P′ > 0.

In both cases, we obtain a contradiction. We conclude that P ≥ 0. Finally, we

deduce

f (x + y) mod y = f (x) + y · P mod y = f (x) .

40

Our attack on [49] works as follows. The attacker chooses a vector of k integers

(x1, x2, . . . , xk) ∈Nk such that, for all 0 < i ≤ k:

x′i =

(
i

∑
j=1

xj

)
∈ X .

For the sake of clarity, we show the attack in the case where {1, . . . , k} ⊂ X .

Thus the attacker chooses the vector (x1, x2, . . . , xk) = (1, 1, . . . , 1) and sends x =

k + M′ to the server that returns the encryption of y = f (x). Pollard’s lambda

algorithm complexity on M′ is O(M′1/2). We consider that k << M′, k ≈ 10 as

in [49], thus x < 2 · M′, the complexity of the decryption with Pollard’s lambda

algorithm is O(f (2M′)1/2) ≈ O(M′k/2). For all 1 ≤ i ≤ k, the attacker computes:

M′i = k− i + M′;

yi = y mod M′i .

Since for all a ∈ X , M′ > f (a), we have for all 1 ≤ i ≤ k:

M′i = k− i + M′ ≥ M′ > f (a) .

Using Property 3, since i ∈ X , we deduce that

yi = f (x) mod M′i

= f (k + M′) mod M′i

= f (k− i + i + M′) mod M′i

= f
(
i + M′i

)
mod M′i

= f (i) .

41

y′i = y mod

[(
j=k

∑
j=i+1

xj

)
+ M′

]

= f (x) mod M′i

= f

((
j=k

∑
j=1

xj

)
+ M′

)
mod M′i

= f

((
j=i

∑
j=1

xj

)
+

(
j=k

∑
j=i+1

xj

)
+ M′

)
mod M′i

= f
(
x′i + M′i

)
mod M′i = f (x′i)

Hence, the attacker practically obtains k + 1 points from one single queried point.

He then uses Lagrange’s interpolation on ((1, y1), (2, y2) . . . (k, yk), (x, y)) to guess

f . Finally, after only one query, an attacker can compute f with reasonable com-

putation time.

It is possible to attack the modified scheme [51] in a similar way. Indeed, as

in [49], the user knows a value M such that ∀x ∈ X , f (x) < M. A simple coun-

termeasure could be to not allow the user to evaluate inputs that are not in X .

Unfortunately, this is not possible in these two schemes since the user encrypts

his data x, then the server does not know if x ∈ X or not.

3.7 Conclusion

In this chapter, we presented a recent privacy-preserving verifiable scheme

in the context of the healthcare system. The scheme has two main parts:

Privacy-preserving identity verification and Verifiable PHR computation. In

Privacy-preserving identity verification, the user can authenticate itself with

the cloud server without leaking any information related to the identity. We

later show that any unregistered user can generate valid parameters for the

verification. The user can get unauthorized access to the cloud service. In another

attack, we show that the user can obtain the monitoring program, which is secret

and only known to the company and the cloud. We provide a quick fix to each of

these attacks.

42

Later, we show that there is a generic inherent limitation to any verifiable poly-

nomial evaluation scheme. For a polynomial of degree k, if a user has at least

(k + 1) many evaluations of the polynomial, the user can obtain the polynomial

using Lagrange interpolation. Therefore, if a user can obtain the polynomial with

less than (k + 1) many evaluations, then only it can be called an attack. We revisit

the PHR computation scheme and show that it is possible to obtain the scheme’s

polynomial using a single query.

The leakage of the monitoring program in a single query is a significant issue.

First, the user will stop using cloud service after obtaining the polynomial. Sec-

ond, there is not a standard security notion that considers leakage of the monitor-

ing program. In the next chapter, we further discuss the leakage issue for general

verifiable polynomial evaluation, and we propose standard security models that

capture leakage of the polynomial.

43

CHAPTER 4

Verifiable Private Polynomial Evaluation

4.1 Introduction

From harmless smart gardening [86] to critical applications such as forest fire de-

tection [87], data monitoring through sensors is becoming pervasive. In particu-

lar, sensors for monitoring health related data are more and more widely adopted,

be it through smart watches that track the heart rate, or sensors implemented in

the patient’s body [67]. This medical data can sometimes be used to assess the

health status of an individual, by applying a single variable polynomial predic-

tion function on it [68]. However, when it comes to medical data, extreme care

must be taken in order to avoid any leakage. Recently, the leak of medical data

of 1.5 million SingHealth users in Singapore strongly incentivised to improve the

security and privacy surrounding medical data [69]. In this context, we consider

the following problem:

How can a company use medical data recorded by clients to give them predictions

about their health status in a privacy way?

For instance, this company may collect fitbit data from its customers, and use

it to predict things such as a risk factor for certain diseases.

For economic reasons, this company keeps the polynomial secret: it invested

time to build it, and required to collect lots of data. Its economic model is based on

the secrecy of the polynomial: the clients pay the company to obtain the polyno-

mial’s output on their medical data. If the polynomial was public, then the clients

would directly compute it, and the company would cease to exist. However, as

the company grows, it becomes difficult to treat all the computation requests, so

44

that the company needs to delegate this computation to a cloud service. The com-

pany trusts the cloud service provider and gives the secret polynomial; however,

the clients may not trust the server to produce correct results, so that the company

would like the server to be able to prove the correctness of each prediction to the

client, i.e, prove that its output is correct with regards to the secret prediction

function.

In this scenario, the problem is how to delegate computations on a secret poly-

nomial function to an external server in a verifiable way. In a Private Polynomial

Evaluation (PPE) scheme, the company outsources the secret polynomial function

f (·) to an external server. Moreover, the company provides some public informa-

tion vk called verification key. This verification key is used with the proof π gen-

erated by the server during the delegated computation of f (x) to allow clients to

verify the correctness of the result returned by the server.

The underlying problem is how to delegate the computation on a secret poly-

nomial function to a server, in a verifiable way. By secret we mean that no user

should be able to retrieve the polynomial used by the server, and by verifiable we

mean that the delegate must be able to prove his computation is correct. To solve

this challenging problem, we propose a new primitive PPE, for private polyno-

mial evaluation, which ensures that:

1. The polynomial f is protected from users as much as possible;

2. The user can verify the result given by the server.

We revisit formal security models for PPE schemes for two main reasons:

• In [14] the authors propose some models, where the secret polynomial is

randomly chosen. However, they present several applications, where the

polynomial is not random. Their models are clearly not sufficient for ana-

lyzing the security of this kind of applications.

• The schemes presented in [49] and [51] consider polynomials that are not

randomly chosen. For example, it is possible to use polynomials that have

small coefficients without loss of security. The authors give neither security

45

models nor security proofs. The next section presents a practical attack on

these two schemes, where a user exploits some public information. To avoid

such attacks, a model is required, where public information does not give

significant advantage.

Our goal is to design a model, where the public parameters and the server

proofs of soundness give no advantage to an attacker. Ideally, we would like

the attacker has no more chance of success than if he only had access to a server

reliably returning polynomial evaluations with no proof of soundness. we would

like an attacker that has no more chance to succeed his attack than if the server

is trusted and does not give any proof together with the evaluated point Our security

model considers an attacker that tries to determine which polynomial is used by a

PPE among two polynomials of his choice. This model is inspired by the IND-CPA

model used in public key cryptography.

4.2 System Model for PPE

We first give brief introduction of our proposed health-care system. The system

mainly consists of three entities: cloud service provider (CSP), the company and

users.

• Cloud Service Provider (CSP): CSP verifies evaluates a function f (x) over a

user input m. The CSP also computes a proof of computation for f (m).

• Users: Users are consumers of the company.

• Company: The company provide appropriate service in terms of evaluation

of a function f (x) with the help of CSP. The company also generates and

securely distributes public and private parameters to all involved entities.

Figure 4.1 illustrates the process of a PPE scheme, where x is the user data and

f (x) is the evaluation of the data x by the function f of the company. Moreover,

the proof send by the server and the key verification vk send by the company

allow the user to verify the correctness of the delegated computation. The PPE

46

scheme can solve the computational verification objective of the proposed health-

care system.

Alice

Server

Company

x

(f (x), proof)

f (·)

vk

Figure 4.1: System model of a PPE scheme.

Assumptions

In the scheme [49], the degree k of the polynomial is public. However, even if

k is secret, any user can guess k and f after k + 1 interactions with the server as

follows. The user chooses an input x0 and sends it to the server. He receives y0

and computes the polynomial f0 of degree 0 using Lagrange’s interpolation on

(x0, y0). Next, the attacker chooses a second input x1 and asks y1 = f (x1) to the

server. He computes the polynomial f1 of degree 1 using Lagrange’s interpolation

on {(x0, y0), (x1, y1)}. At each iteration i, he compares fi−1 and fi. If fi−1 = fi, he

returns k = i− 1 and f = fi−1. Indeed, when i > k, the attacker uses Lagrange’s

interpolation with more than k points of f . Since the degree of f is k, the inter-

polation on i > k points always returns f . By repeating this process until the

interpolation returns the same polynomial fi = fi+1 for two consecutive itera-

tions, he recovers both the degree and the polynomial. There is no way to prevent

it, as it is an inherent limitation of PPE. Note that this limitation was already con-

sidered in the security model of Kate et al. [14]. Thus, to preserve the protection

of the polynomial, the server must refuse to evaluate more than k points for each

client. We also assume that the clients do not collude to collect more than k points.

47

Consider the following scenario, where PPE is used for prediction function. An

attacker corrupts some technicians of the company who collect and store the data.

The attacker wants to guess what is the secret mathematical model used by the

company. The attacker uses some different models to build some possible predic-

tion functions from the collected data. Its goal is to distinguish which function is

used from the public values given by the company. To prevent such an attack, we

need a security model, where it is hard to distinguish what is the used function

among several possible functions. Then we design a PPE scheme that has this

security property.

In order to be able to define a strong security model, we first need to formally

define a Private Polynomial Evaluation scheme.

Definition 13. Let f be a polynomial, a Private Polynomial Evaluation scheme (PPE)

is a tuple of algorithms (setup, init, compute, verif) such that:

setup(λ): Returns a ring F and a public setup pub.

init(pub, f): Returns a server key sk and a verification key vk.

compute(pub, vk, x, sk, f): Returns y and a proof π that y = f (x).

verif(pub, vk, x, y, π): Returns 1 if the proof π is “accepted”; otherwise 0.

We start by redefining the “weak” security notions that have been presented

in the literature. Then we introduce the notion of chosen function attack and the

natural notion of unforgeability.

4.2.1 Polynomial Protection

We introduce the polynomial protection (PP) security: a PPE is PP secure when

there exists no adversary that guess a new point (not computed by the server)

of the secret polynomial f . In this model, the polynomial is randomly chosen,

and the adversary cannot use the server more than k times, where k is the degree

of f . This security model is similar to the “Hiding” model given in [14] except

that the adversary chooses the evaluated points by himself. We define the weak

48

Expk-PP
Π,A (λ):

(pub, F)← setup(λ);
f $← F[X]k;
Σ← ∅;
c← 0;
(sk, vk)← init(pub, f);
(x∗, y∗)← ACOPP(·)(pub, vk, F, k);
If (x∗, y∗) 6∈ Σ and f (x∗) = y∗:

Then return 1;
Else return 0;

ExpUNFΠ,A (λ):
(pub, F)← setup(λ);
(f , st)← A1(pub, F);
(sk, vk)← init(pub, f);
(x∗, y∗, π∗)← A2(pub, sk, vk, F, f , st);
If f (x∗) 6= y∗ and verif(pub, vk, x∗, y∗, π∗):

Then return 1;
Else return 0;

Expk-IND-CFA
Π,A (λ):

b $← {0, 1}∗;
(pub, F)← setup(λ);
(f0, f1, st)← A1(pub, F, k);
(sk, vk)← init(pub, fb);
b∗ ← ACOCFA(·)

2 (pub, vk, F, k, st);
If f0 6∈ F[X]k or f1 6∈ F[X]k:

Then return 0;
Else return (b = b∗);

COPP(x):
(y, π)← compute(pub, vk, x, sk, f);
c← c + 1;
Σ← Σ ∪ {(x, y)};
If c = k + 1:

Then return ⊥;
Else return (y, π);

COCFA(x):
(y, π)← compute(pub, vk, x, sk, fb);
If f0(x) 6= f1(x):

Then return ⊥;
Else return (y, π);

Figure 4.2: Security experiments and oracles definitions.

polynomial protection (WPP) as the same model than PP except that the adversary

has no access to the server.

Definition 14 (PP and WPP). Let Π be a PPE, A be a probabilistic polynomial time

(PPT) adversary. ∀k ∈ N, the k-Polynomial Protection (k-PP) experiment for A

against Π denoted by Expk-PP
Π,A (λ) is defined in Figure 4.2, where A has access to the

server oracle COPP(·). We define the advantage of the adversary A against the k-PP

experiment by:

Advk-PP
Π,A (λ) = Pr

[
1← Expk-PP

Π,A (λ)
]

A scheme Π is k-PP secure if this advantage is negligible for any A ∈ POLY(λ).

We define the k-Weak Polynomial Protection (k-WPP) experiment as the k-PP ex-

periment except that A does not have access to the oracle COPP(·). In a similar way, we

49

define the WPP advantage and security.

The only difference between PP and WPP is that the adversary has no access

to the oracle in WPP. Thus PP security implies the WPP security.

Theorem 3. For any Π and k, if Π is k-PP secure then Π is k-WPP secure.

Proof. Let k be an integer and Π be a PPE. LetA ∈ POLY(λ) such that Advk-WPP
A,Π (λ)

is non-negligible. We observe that A can be used as adversary who does not use

the oracle compute(pub, vk, ·, sk, f) for the k-PP experiment on Π. In this case, we

have Advk-PP
A,Π (λ) = Advk-WPP

A,Π (λ) which is non-negligible. By contraposition, if

Advk-PP
A,Π (λ) is negligible then Advk-WPP

A,Π (λ) is negligible.

4.2.2 Chosen Function Attack

We define a model for indistinguishability against chosen function attack. In this

model, the adversary chooses two polynomials (f0, f1) and tries to guess what

is the polynomial fb used by the server, where b ∈ {0, 1}. The adversary has ac-

cess to the server that evaluates and proves the soundness of y = fb(x), only if

f0(x) = f1(x). This is an inherent limitation, indeed, if the adversary can evalu-

ate another point (x, y) such that f0(x) 6= f1(x) then he can obviously compare y

with f0(x) and f1(x) in order to guess b. In practice, an adversary chooses (f0, f1)

such that f0 6= f1, but with k points (xi, yi) such that f0(xi) = f1(xi). It allows the

adversary to maximize its oracle’s calls in order to increase its chances of success.

We remark that the schemes [49] and [51] are not IND-CFA: users know a value M

and the set of inputs X such that ∀x ∈ X , f (x) < M. An attacker may choose two

polynomials f0 and f1 such that for a chosen a, f0(a) < M and f1(a) > M. Since

X is public, the attacker returns f0 if and only if a ∈ X . Then the attacker chooses

f0 and f1 such that for a chosen a, f0(a) < M and f1(a) > M. Then if a ∈ X it

knows that the polynomial is f0.

Definition 15 (IND-CFA). Let Π be a PPE, A = (A1,A2) be a two-party PPT adver-

sary and k be an integer. The k-Indistinguishability against Chosen Function Attack

(k-IND-CFA) experiment for A against Π is defined in Figure 4.2, where A has access to

50

the server oracle COCFA(·). The advantage of the adversary A against the k-IND-CFA

experiment is given by:

Advk-IND-CFA
Π,A (λ) =

∣∣∣∣12 − Pr
[
1← Expk-IND-CFA

Π,A (λ)
]∣∣∣∣

A scheme Π is k-IND-CFA secure if this advantage is negligible for any A ∈ POLY(λ)2.

In Theorem 4, we prove that the IND-CFA security implies the WPP security: if

there exists an adversary A against the WPP experiment who is able to decrypt a

random polynomial from the public values, then we can use it to guess fb in an

IND-CFA experiment for any chosen polynomials (f0, f1). However, surprisingly

it is not true for the PP security (Theorem 5). The reason is that the oracle of the

IND-CFA experiment has restriction, then it cannot be used to simulate the oracle

of the PP experiment in a security reduction.

Theorem 4. Let Π be an k-IND-CFA secure PPE then it is k-WPP secure.

Proof. Let k be an integer and Π be a PPE. Suppose that there exists A ∈ POLY(λ)

such that δ(λ) = Advk-WPP
Π,A (λ) is non-negligible. We show how to build B =

(B1,B2) ∈ POLY(λ)2 such that Advk-IND-CFA
B,Π (λ) is non-negligible, then we conclude

the proof by contraposition. Algorithm B works as follows:

B1(pub, F, k): B1 picks f0
$← F[X]k and r $← F∗, and builds f1 such that f1(x) =

f0(x) + r. Remark that ∀x, f0(x) 6= f1(x). B1 returns (f0, f1,⊥).

B2(pub, vk, F, k,⊥) It runs (x∗, y∗) ← A(pub, vk, F, k). If ∃ b∗ ∈ {0, 1} such that

y∗ = fb∗(x∗) then it returns b∗; else, it returns b∗
$← {0, 1}.

We evaluate the probability that B wins the experiment, i.e. b∗ = b. First, we

remark that if A wins his experiment, then b∗ = b with probability 1. On the

other hand, if A does not win the experiment, we consider two different cases:

1. A returns (x∗, y∗) such that f1−b(x∗) = y∗. The probability that A returns

such a point is at most 1/|F| and is negligible for sufficiently large ring F.

Indeed, since A has no information about f1−b, his best strategy to guess

a point of f1−b is to randomly pick a point in F2. In this case, B wins the

experiment with probability 0.

51

2. A returns (x∗, y∗) such that f1−b(x∗) 6= y∗. The probability that A returns

such a point is at least 1− 1/|F|. In this case, B wins the experiment with

probability 1/2.

We recall that ε(λ) = Pr[f1−b(x∗) = y∗] ≤ 1/|F|. We have:

Pr[b = b∗] = Pr[fb(x∗) = y∗] · Pr[b = b∗| fb(x∗) = y∗]

+ Pr[fb(x∗) 6= y∗] · Pr[b = b∗| fb(x∗) 6= y∗]

= δ(λ) · 1 + (1− δ(λ)).Pr[b = b∗| fb(x∗) 6= y∗]

= δ(λ) + (1− δ(λ)) · (Pr[f1−b(x∗) = y∗]

· Pr[b = b∗| f1−b(x∗) = y∗] + Pr[f1−b(x∗) 6= y∗]

· Pr[b = b∗| fb(x∗) 6= y∗ and f1−b(x∗) 6= y∗])

= δ(λ) + (1− δ(λ)) ·
(

0 + (1− ε(λ)) · 1
2

)
=

δ(λ)

2
+ ε(λ) · 1− δ(λ)

2
+

1
2

We deduce the advantage of B:

Advk-IND-CFA
B,Π (λ) =

∣∣∣∣Pr[b = b∗]−
1
2

∣∣∣∣ ≥ δ(λ)

2
+

δ(λ)− 1
2|F|

Since δ(λ) is non negligible, then − δ(λ)−1
2|F| is negligible for sufficiently large ring F

and Advk-IND-CFA
B,Π (λ) = δ/2 is non-negligible.

Theorem 5. Let Π be a k-IND-CFA secure PPE, it does not imply that Π is k-PP.

Proof. Let k be an integer and let Π = (setup, init, compute, verif) be a PPE that is

k-PP and k-IND-CFA secure. Let Π′ = (setup′, init′, compute′, verif ′) such that:

setup′(λ): It returns (pub, F)← setup(λ).

init′(pub, f): It runs (sk, vk) ← init(pub, f), picks α in the uniform distribution on

the inputs set of f and returns (sk′, vk′) = (sk, (vk, α)).

compute′(pub, vk′, x, sk′, f): This algorithm runs (y, π)← compute(pub, vk, x, sk, f).

If x 6= α then sets π′ = (π,⊥); else, π′ = (π, f). Returns (y, π′).

52

verif ′(pub, vk′, x, y, π′): It returns b← verif(pub, vk, x, y, π).

To prove the theorem, we show that (i) Π′ is k-IND-CFA secure and (ii) Π′ is not

k-PP secure.

i) We prove it by contraposition. Suppose that there existsA ∈ POLY(λ)2 such

that δ(λ) = Advk-IND-CFA
Π′,A (λ) is non-negligible. We remark that during the

IND-CFA experiment, the adversary A chooses his two polynomials (f0, f1)

before α is chosen. Then the probability that f0(α) = f1(α) is negligible for

sufficiently large set F:

Pr[f0(α) = f1(α)] ≤
k
|F|

When f0(α) 6= f1(α), α is randomly chosen and gives no additional in-

formation to A. A cannot call the oracle COCFA(·) using α as input since

f0(α) 6= f1(α). Thus α is useless, in this case the experiments Expk-IND-CFA
Π,A (λ)

and Expk-IND-CFA
Π′,A (λ) are equivalent. We remark that:

Pr
[
1← ExpIND-CFAΠ′,A (λ)

]
=

Pr [f0(x) = f1(x)] · Pr
[
1← ExpIND-CFAΠ′,A (λ)| f0(x) = f1(x)

]
+ Pr [f0(x) 6= f1(x)] · Pr

[
1← ExpIND-CFAΠ′,A (λ)| f0(x) 6= f1(x)

]
We then evaluate the probability that A breaks π:

Pr[1← ExpIND-CFAΠ′,A (λ)] =
1

Pr[f0(x) 6= f1(x)]
·(

Pr
[
1← ExpIND-CFAΠ′,A (λ)

]
−

Pr [f0(x) = f1(x)] · Pr
[
1← ExpIND-CFAΠ′,A (λ)| f0(x) = f1(x)

])
≥ Pr

[
1← ExpIND-CFAΠ′ (λ)

]
− Pr [f0(x) = f1(x)]

≥ 1
2
± δ(λ)− k

|F|

Hence Advk-IND-CFA
Π,A (λ) ≥ δ(λ)− k

|F| is non-negligible, which contradicts that

Π is k-IND-CFA.

ii) We construct A ∈ POLY(λ) such that Advk-PP
Π′,A(λ) is non-negligible: A re-

53

ceives (pub, (vk, α), F, k) as input and uses α as input for the oracle COCFA(.)

that returns (f (α), (π, f)). A chooses x ∈ F and returns (x, f (x)). Thus,

Advk-PP
Π′,A(λ) = 1.

However, we would like to have a simple and sufficient condition under which

the IND-CFA security implies the PP security. For this, we define the proof inducted

by a PPE which is the NIZKP used by the algorithm compute. We show that if this

NIZKP is zero-knowledge, then the IND-CFA security implies the PP security.

Definition 16. Let Π = (setup, init, compute, verif) be a PPE, the non-interactive

proof inducted by Π, denoted PΠ = (proofΠ, verΠ) is defined as follows. For any

λ, k ∈N, (pub, F)← setup(λ), f ∈ F[X]k and (vk, sk)← init(pub, f):

proofΠ((pub, vk, x, y), (f , sk)): returns π, where (y′, π)← compute(pub, vk, x, sk, f).

verΠ((pub, vk, x, y), π): runs b← verif(pub, vk, x, y, π) and returns it.

We say that Π is Zero-Knowledge (ZK) if PΠ is Zero-Knowledge.

Theorem 6. Let Π be a ZK and k-IND-CFA secure PPE, then Π is k-PP secure.

Proof. Let Π be a PPE which is zero-knowledge. ∀k ∈ N, we assume that there

exists A ∈ POLY(λ) such that δ(λ) = Advk-PP
Π,A (λ) is non negligible and that for

any A ∈ POLY(λ)2, Advk-IND-CFA
Π,A (λ) is negligible. We show that there exists B ∈

POLY(λ)2 such that Advk-IND-CFA
Π,B (λ) is non-negligible. We obtain a contradiction

then we deduce that for any ZK PPE Π such that Advk-IND-CFA
Π,A (λ) is negligible for

any A ∈ POLY(λ)2, then Advk-PP
Π,A (λ) is negligible for any A ∈ POLY(λ).

By hypothesis Π is zero-knowledge then there exists an algorithm Sim such

that the outputs of proofΠ((pub, vk, x, y), (f , sk)) and Sim((pub, vk, x, y)) follow the

same probability distribution for any instance (pub, vk, x, y) and the correspond-

ing secret (f , sk). We build the following adversary B = (B1,B2):

B1(pub, F, k) It picks f0, f1
$← F[X]k and returns (f0, f1,⊥).

B2(pub, vk, F, k,⊥) It picks b′ $← {0, 1}:

54

• It runs (x∗, y∗) ← A(pub, vk, F) and simulates the oracle COPP(·)

as follows: on input x, B2 computes y = fb′(x) and runs π ←

Sim((pub, vk, x, y)). It then returns (y, π) to A.

• If fb′(x∗) = y∗ then B2 returns b∗ = b′; else, it picks b∗
$← {0, 1} and

returns b∗.

We evaluate the probability that B wins the experiment, i.e. b∗ = b where b is the

challenge of B:

• if b′ = b, then the PP experiment is perfectly simulated and A returns

(x∗, y∗) such that fb′(x∗) = y∗ with non negligible probability. Then B wins

the experiment with non-negligible advantage. Remark that in this case, the

probability that b∗ = b is the same as in the proof of Theorem 4:

Pr
[
b∗ = b|b′ = b

]
=

δ(λ)

2
+ ε(λ) · 1− δ(λ)

2
+

1
2

where ε(λ) = Pr[f1−b(x∗) = y∗] ≤ 1/|F|.

• If b′ 6= b, then the probability that A returns (x∗, y∗) such that fb′(x∗) = y∗

is negligible: A knows at most k points of the polynomial fb′ , then his best

strategy to find another point is to pick (x∗, y∗) randomly in F2. Then Bwins

the experiment with negligible advantage. More formally, we have:

Pr
[
b∗ = b|b′ 6= b

]
= Pr[fb(x∗) = y∗] · Pr[b = b∗|b′ 6= b and fb(x∗) = y∗]

+ Pr[fb(x∗) 6= y∗] · Pr[b = b∗|b′ 6= b and fb(x∗) 6= y∗]

= 0 + (1− ε(λ)) · 1
2
=

1
2
− ε(λ)

2

55

Finally, we have:

Pr[b∗ = b] = Pr
[
b′ = b

]
· Pr

[
b∗ = b|b′ = b

]
+ Pr

[
b′ 6= b

]
· Pr

[
b∗ = b|b′ 6= b

]
=

1
2
·
(

δ(λ)

2
+ ε(λ) · 1− δ(λ)

2
+

1
2
+

1
2
− ε(λ)

2

)
=

δ(λ)

4
− ε(λ) · δ(λ)

4
+

1
2

Finally, we show that B have a non-negligible advantage for sufficiently large F:

Advk-IND-CFA
Π,B (λ) =

∣∣∣∣Pr[b∗ = b]− 1
2

∣∣∣∣
=

δ(λ)

4
− ε(λ) · δ(λ)

4

≥ δ(λ)

4
− δ(λ)

4 · |F|

In Figure 4.3, we illustrates all relations between our security properties.

k-IND-CFA k-WPP

andZK k-PP

Figure 4.3: Security relations.

4.2.3 Unforgeability

We define the unforgeability property for a PPE. A PPE is unforgeable when a

dishonest server cannot produce a valid proof on the point (x, y) when f (x) 6= y.

The secret polynomial f is chosen by the server.

Definition 17. Let Π be a PPE, A = (A1,A2) be a two-party PPT adversary. The

Unforgeability (UNF) experiment for A against Π is defined in Figure 4.2. We define

56

the advantage of the adversary A against the UNF experiment by:

AdvUNFΠ,A(λ) = Pr
[
1← ExpUNFΠ,A(λ)

]
A scheme Π is UNF secure if this advantage is negligible for any A ∈ POLY(λ)2.

4.2.4 Security Against Collusion Attacks

There are two possible collusion scenarios: the collusion of a client and the server,

and collusion of two or more clients.

Scenario 1: In a collusion of a client and the server, the server can provide the

secret polynomial to the client. This is an inherent problem and cannot be

prevented. The client can share public parameters and verification keys with

the server but these parameters are already public and known to the server.

The collusion does not give any advantage to the server to forge fake proof

of computation.

Scenario 2: In a collusion of two or more clients, sharing Paillier secret keys with

each other does not provide any information about the secret polynomial.

All the verification keys and public parameters are the same for each client.

The inherent limitation is that the collusion of clients can share their evalu-

ated points and if the total number of points is more than k, where k is the

degree of the secret polynomial, then clients can derive the polynomial. This

problem exists in any polynomial computation and cannot be prevented.

4.3 Verifiable Private Polynomial Evaluation

Feldman’s VSS can be used to design a PPE that is k-PP secure: using the public

values g and {hi}0≤i≤k, any user can check that the point (x, y) computed by the

server is a point of f . However, in a practical use, the polynomial f is not ran-

domly chosen in a large set. An IND-CFA attacker knows that f = f0 or f = f1 for

two known polynomials (f0, f1), since he knows the coefficients {a0,i}0≤i≤k and

57

{a1,i}0≤i≤k of these two polynomials, he can compute the values {ga0,i}0≤i≤k and

{ga1,i}0≤i≤k and he can compare it with the public set {hi}0≤i≤k.

In order to construct our k-IND-CFA PPE, called PIPE, we give an ElGamal key

pair (pk, sk) to the server and we encrypt all the hi. Then for all i ∈ {0, . . . , k},

the users do not know hi = gai but know the ElGamal ciphertext (ci, di) such that

ci = gri and di = pkri · hi, where ri is randomly chosen. Since ElGamal is IND-CPA

secure, an attacker that chooses two polynomials (f0, f1) cannot distinguish, for

0 ≤ i ≤ k, if the ciphertext (ci, di) encrypts a coefficient of f0 or of f1. Thus, the

attacks on the previous scheme are no longer possible.

Moreover, the user can check that f (x) = y for a point (x, y) using the values

{(ci, di)}0≤i≤k. We set r(x) = ∑k
i=0 ri · xi. The user computes:

c =
k

∏
i=0

cxi

i =
k

∏
i=0

gri·xi
= g

k
∑

i=0
ri·xi

= gr(x).

On the other hand, he computes:

d′ =
k

∏
i=0

dxi

i =

(
k

∏
i=0

pkri·xi

)
·
(

k

∏
i=0

gai·xi

)

= pk

k
∑

i=0
ri·xi

· g
k
∑

i=0
ai·xi

= pkr(x) · g f (x).

Finally, (c, d′) = (gr(x), pkr(x) · g f (x)) is an ElGamal ciphertext of g f (x). Then, to

convince the user that (x, y) is a valid point of f , the server proves that (c, d′) is a

ciphertext of gy using a NIZKP of logg(c) = logpk(d
′/gy).

4.3.1 Construction of PIPE

Definition 18. Let PIPE = (setup, init, compute, verif) be a PPE defined by:

setup(λ): Using the security parameter λ, it generates G a group of prime order p and a

generator g ∈ G. It chooses a hash function H : {0, 1}∗ → Z∗p and it sets F = Z∗p.

It sets pub = (G, p, g, H) and returns (pub, F).

58

Client

Server

Company

pub

(d, π)

x
vk = {ci, di}i=k

i=0

vk = {ci, di}i=k
i=0

Figure 4.4: Illustration of the PIPE scheme.

init(pub, f): We set f (x) = ∑k
i=0 ai · xi. This algorithm picks sk

$← Z∗p and computes

pk = gsk. For all i ∈ {0, . . . , k}, it picks ri
$← Z∗p and computes ci = gri and

di = pkri · gai . It sets vk = ({(ci, di)}0≤i≤k, pk) and returns (vk, sk).

compute(pub, vk, x, sk, f): Using vk which is equal to ({(ci, di)}0≤i≤k, pk), this algo-

rithm picks θ
$← Z∗p, computes:

c =
k

∏
i=0

cxi

i and π = (gθ, cθ, θ + H(gθ, cθ) · sk).

It returns (f (x), π).

verif(pub, vk, x, y, π): Using vk = ({(ci, di)}0≤i≤k, pk) and π = (A, B, ω), this algo-

rithm computes

c =
k

∏
i=0

cxi

i and d =

(
∏k

i=0 dxi

i

)
gy .

If gω = A · pkH(A,B) and cω = B · dH(A,B), then the algorithm returns 1; else, it

returns 0.

59

4.3.2 Security Analysis

We first show that PIPE is secure against chosen polynomial attacks under the

DDH assumption [70].

Theorem 7. ∀k ∈N, PIPE is k-IND-CFA under the DDH assumption in the ROM.

Proof. We suppose that there exists A ∈ POLY(λ)2 such that Advk-IND-CFA
PIPE,A (λ) is

non-negligible and we show that there exists an algorithm B ∈ POLY(λ) such that

AdvIND-CPAElGamal,B(λ) is non-negligible. We build B as follows:

• B receives (G, p, g, h) and runs (f0, f1, st)← A1((G, p, g), Z∗p, k).

• For all i ∈ {0, . . . , k}, let (a0,i, a1,i) be the respective kth coefficients of f0 and

f1. B runs the oracle Encpk(LRb(·, ·)) on input (ga0,i , ga1,i) and obtains the

ElGamal ciphertext (ci, di) of gab,i .

• B runs b∗ ← A2((G, p, g), ({(ci, di)}0≤i≤k, h), Z∗p, k, st). To simulate the ora-

cle COCFA(·) on x to A, B computes:

c =
k

∏
i=0

cxi

i and d =

(
k

∏
i=0

dxi

i

)
· 1

g f0(x)
.

In the real experiment, the proof π is computed as in LogEq. Since this proto-

col is ZK, there exists a polynomial time simulator Sim in the ROM such that

the outputs of the simulator come from the same distribution that the out-

puts of the real proof algorithm. Then B computes y = f0(x). If y = f1(x) it

uses Sim((g, h, c, d)) to compute π and returns (y, π) to A; else, it returns ⊥.

• Finally, B outputs b∗.

We observe that:

1. The experiment k-IND-CFA is perfectly simulated for A.

2. B wins the IND-CPA experiment if and only if A wins the k-IND-CPA experi-

ment.

60

Since Advk-IND-CFA
PIPE,A (λ) is non-negligible, then AdvIND-CPAElGamal,B(λ) is non-negligible.

Since ElGamal cryptosystem is IND-CPA secure under the DDH assumption, B

can be used to break the DDH assumption, which contradict our hypothesis and

conclude the proof.

Using Theorem 6, we only need to prove that PIPE is ZK to have that it is k-PP.

Theorem 8. For any k ∈N, PIPE is ZK in the random oracle model.

Proof. Let PPIPE the proof inducted by P. We show that for any λ, k ∈ N,

(pub, F)← setup(λ), f ∈ F[X]k and (vk, sk)← init(pub, f), there exists a simulator

denoted sim(pub, vk, x, y) that outputs values in the same distribution as the

following algorithm proofPIPE((pub, vk, x, y), (f , sk)).

• sim picks (ω, h) $← (Z∗p)
2 and computes:

A = gω/pkh and B =

(
k

∏
i=0

cxi

i

)ω

((
k

∏
i=0

dxi

i

)
· 1

gy

)h .

• It adds the pair of input/output ((A, B), h) to the table of the random oracle

H and it returns (A, B, ω). Since ω and h come from the uniform distribution

on Z∗p, then sim and proofPIPE induct similar distributions.

Theorem 9. PIPE is unconditionally UNF secure in the ROM.

Proof. The proof π is computed as in LogEq (Definition 9). This NIZKP scheme is

unconditionally sound, then there exists no PPT algorithm that forges a valid proof

on a false statement with non-negligible probability, i.e. a statement (g, pk, c, d),

where logg(pk) 6= logc(d). We show that if there exists δ(λ) = A ∈ POLY(λ)2 such

that AdvUNFPIPE,A(λ) is non negligible, then there exists B ∈ POLY(λ) that forges a

valid proof of an instance, where logg(pk) 6= logc(d). It contradicts the soundness

of LogEq which concludes the proof. B works as follows:

61

• It runs (pub, F) ← setup(λ), (f , st) ← A1(pub, F), (sk, vk) ← init(pub, f),

where vk = ({(ci, di)}0≤i≤k, pk) and (x, y, π) ← A2(pub, sk, vk, F, f , st),

where π = (A, B, ω).

• B computes:

c =
k

∏
i=0

cxi

i and d =

(
k

∏
i=0

dxi

i

)
· 1

gy

and builds the statement (g, pk, c, d). It returns the instance (g, pk, c, d) to-

gether with the proof π.

We observe that since AdvUNFPIPE,A(λ) is non negligible then the probability that

f (x) 6= y and 1← verif(pub, vk, x, y, π) is non-negligible. Moreover:

i) f (x) 6= y implies:

d =

(
k

∏
i=0

dxi

i

)
· 1

gy = csk · g f (x)−y

6= csk

Then logg(pk) 6= logc(d).

ii) 1 ← verif(pub, vk, x, y, π) implies gω = A · pkH(A,B) and cω = B · dH(A,B).

Then π is a valid proof.

Then B returns a valid proof of a false instance with non-negligible probability

δ(λ).

4.4 Conclusion

In this chapter, we gave a formal definition for a primitive called PPE, which al-

lows a company to delegate computations on a secret polynomial for users in a

verifiable way. In essence, the user sends x and receives y from the server, along

with a proof that convinces him that y = f (x), even though he does not know the

polynomial f . We then defined security notions for PPE: Polynomial protection,

62

Indistinguishability against Chosen Function Attack (IND-CFA), and unforgeabil-

ity. The IND-CFA notion captures leakage of the polynomial, and the unforgeabil-

ity notion captures forgery of the computation. We further note that there are two

possible collusions in the system. The collusion of a user and the server does not

give any advantage to the server. The collusion of two or more users can share

their evaluations, and it is an inherent limitation that cannot be prevented.

We then presented PIPE, the first IND-CFA secure PPE. We used the Elgamal

encryption scheme along with Verifiable Secret Sharing to achieve IND-CFA se-

curity. We then prove its IND-CFA security under the decisional Diffie-Hellman

(DDH) assumption in the random oracle model (ROM).

63

CHAPTER 5

Verifiable and Private Oblivious Polynomial

Evaluation

5.1 Introduction

PPE schemes do not protect the privacy of the clients: their data is handled in

clear by the server. After the SingHealth hack, the company wants to be sure that

even if an intruder hacks the server, he will not be able to steal the medical data

of its clients. To solve this problem we propose a new primitive called Private

Oblivious Polynomial Evaluation (VPOPE). A VPOPE scheme is a PPE scheme, in

which the data of the client cannot be read by the cloud server. More precisely,

the client sends his encrypted data to the server, and the server, returns encrypted

evaluation of the prediction function Epk(f (x)), as well as a proof π allowing the

client to verify the correctness of the result with the help the verification key vk.

However, during the process, the server never learns anything about x.

We propose a VPOPE scheme which allow a client to send encrypted data for

a private evaluation in a verifiable way. Before we present our security model, we

first formally define a Private Oblivious Polynomial Evaluation scheme.

Definition 19. A Verifiable and Private Oblivious Polynomial Evaluation

(VPOPE) scheme is composed of eight algorithms (setup, init, keyGen, queryGen,

queryDec, compute, decrypt, verif) defined as follows:

• setup(η) : Using the security parameter η, this algorithm generates a ring F, public

parameters pub and secret parameters sec. It returns (pub, F, sec).

64

• init(F, f , sec) : Using F, the secret polynomial f , and parameters sec, this algorithm

returns a verification key vk and a server key sk associated to the secret polynomial

f .

• keyGen(η, pub, k) : Using the security parameter η and public parameters pub, this

algorithm generates and returns a client’s key pair (pkc, skc).

• queryGen(pkc, x) : Using a public key pkc and an input x, this algorithm generates

an encrypted query t associated to x, a proof πt proving that t is a valid encrypted

query, and returns (t, πt).

• queryDec(skc, t) : Using a secret key skc and an encrypted request t, this algorithm

outputs x if t is a valid request of x, ⊥ otherwise.

• compute(t, πt, f , sk, F) : Using t, πt, f , sk, and F, this algorithm returns an en-

crypted value d along with a proof πd proving that d is an encryption of f (x) if the

proof πt is “accepted”. Else it returns ⊥.

• decrypt(skc, d) : Using a secret key skc and the encrypted value d, this algorithm

returns y, the decryption of d.

• verif(x, skc, pub, y, πd, vk) : This algorithm returns 1 if the proof πd is “accepted”,

0 otherwise.

5.2 Security Models for VPOPE

We use security notions of PPE schemes formalized in previous section, namely

Polynomial Protection (PP), Unforgeability (UNF), and Indistinguishability against

Chosen Function Attack (IND-CFA), and adapt them to VPOPE schemes. Since

VPOPE schemes consider encrypted data on client side, we consider the

Client’s Privacy - Indistinguishability (CPI) security property defined by Naor and

Pinkas [16] to include the privacy on data client. Moreover, we define the Query

Correctness (QC) notion in order to prove that a client cannot have other informa-

tion than points that she queried.Since VPOPE schemes consider encrypted data

on the client-side, we recall the Client’s Privacy - Indistinguishability (CPI) security

65

ExpCPIΠ,A(η):

b $← {0, 1} ;
(pub, F, sec)← setup(η) ;
f $← F[X]k ;
(vk, sk)← init(F, f , sec) ;
(pkc, skc)← keyGen(η, pub, k) ;
(x0, x1, st)← A1(pkc, pub, F) ;
(t, πt)← queryGen(pkc, xb) ;
b∗ ← ACOCPI(·)

2 (t, f , sk, F, st) ;
return (b = b∗) .

COCPI(x):
(t, πt)← queryGen(pkc, x) ;
return t .

Figure 5.1: CPI experiment.

property defined by Naor and Pinkas [16] to include the privacy of the client’s

data. Moreover, we define the Query Soundness (QS) notion to prove that a client

cannot have other information than points that she queried. In all the security

models, we denote by F[x]k, the set of all polynomials of degree k over a finite

field F.

5.2.1 Client’s Privacy - Indistinguishability

We first recall the Client’s Privacy - Indistinguishability (CPI) security for

VPOPEschemes introduced by Naor and Pinkas [16]. In this model, the ad-

versary chooses two queries (x0, x1) and tries to guess the evaluation xb asked

by the client. The adversary has access to the ciphertext oracle COCPI(·) taking

x as input and returns the encrypted query t. A VPOPEscheme is CPI-secure if

no adversary can output the query chosen by the client with a better probability

than by guessing.

Definition 20 (Client’s privacy - indistinguishability.). Let Π be a VPOPE, A =

(A1,A2) ∈ POLY(η)2 be a two-party adversary. The client’s privacy - indistinguisha-

bility (CPI) experiment for A against Π is defined in Fig. 5.1, where A has access to the

oracle COCPI(·). The advantage of the adversary A against the CPI experiment is given

66

by:

AdvCPIΠ,A(η) =

∣∣∣∣12 − Pr
[
1← ExpCPIΠ,A(η)

]∣∣∣∣ .

A scheme Π is CPI-secure if this advantage is negligible for any A ∈ POLY(η)2.

5.2.2 Chosen Function Attack

We recall the model for k-Indistingui-shability against Chosen Function Attack (k-

Expk-IND-CFA
Π,A (η):

b $← {0, 1} ;
(pub, F, sec)← setup(η) ;
(pkc, skc)← keyGen(η, pub, k) ;
(f0, f1, st2)← A1(pkc, pub, F, k) ;
(vk, sk)← init(F, fb, sec) ;
b∗ ← ACOCFA(·)

2 (pkc, skcpub, F, vk, k, st) ;
if f0 6∈ F[X]k or f1 6∈ F[X]k:

then return ⊥ ;
else return (b = b∗) .

Figure 5.2: IND-CFA experiment.

IND-CFA). In this model, the adversary chooses two polynomials (f0, f1) and tries

to guess the polynomial fb used by the server, where b ∈ {0, 1}. The adversary has

access to a server oracle COCFA(·) and sends to her an encrypted query t associated

to her data x along with a proof πt. The oracle decrypts the query t and obtains x

if t is valid. If f0(x) = f1(x), the oracle returns d i.e. the encrypted value of fb(x),

along with a proof πd.

If f0(x) 6= f1(x), then the server returns nothing. In practice, an adversary

chooses (f0, f1) such that f0 6= f1, but with k points (xi, yi) such that f0(xi) =

f1(xi). It allows the adversary to maximize his oracle calls in order to increase his

chances of success.

Definition 21. (k-IND-CFA). Let Π be a VPOPE, A = (A1,A2) ∈ POLY(η) be a

two-party adversary and k be an integer. The k-IND-CFA experiment for A against Π is

defined in Fig. 5.2, where A has access to the server oracle COCFA(·). The advantage of

67

COCFA(t, πt):
(d, πd)← compute(t, πt, fb, sk, F) ;
if x ← queryDec(t, skc) and x 6= ⊥ and f0(x) = f1(x):

then return (d, πd) ;
else return ⊥ .

Figure 5.3: Server oracle for IND-CFA.

the adversary A against the k-IND-CFA experiment is given by:

Advk-IND-CFA
Π,A (η) =

∣∣∣∣12 − Pr
[
1← Expk-IND-CFA

Π,A (η)
]∣∣∣∣ .

A scheme Π is k-IND-CFA-secure if this advantage is negligible for any A ∈ POLY(η)2.

5.2.3 Unforgeability

Finally, we recall the unforgeability property. A VPOPEis unforgeable when a

dishonest server cannot produce a valid proof for a point (x, y) such that y 6= f (x).

In this model, the secret polynomial f is chosen by the server.

ExpUNFΠ,A (η):
(pub, F, sec)← setup(η) ;
(pkc, skc)← keyGen(η, pub, k) ;
(f , st)← A1(pkc, sec) ;
(vk, sk)← init(F, f , sec) ;
(x∗, y∗, π∗)← A2(pub, sk, vk, F, f , st) ;
if f (x∗) 6= y∗ and verif(x∗, skc, pub, y∗, π∗, vk) = 1:

then return 1 ;
else return 0 .

Figure 5.4: UNF experiment.

Definition 22. (Unforgeability). Let Π be a VPOPE, A = (A1,A2) ∈ POLY(η) be a

two-party adversary. The unforgeability (UNF) experiment for A against Π is defined

in Fig. 5.4. We define the advantage of the adversary A against the UNF experiment by:

AdvUNFΠ,A(η) = Pr
[
1← ExpUNFΠ,A(η)

]
.

A scheme Π is UNF-secure if this advantage is negligible for any A ∈ POLY(η)2.

68

5.2.4 Query Soundness

ExpQS
Π,A(η):
(pub, F, sec)← setup(η) ;
f $← F[X]k ;
(vk, sk)← init(F, f , sec) ;
(pkc, skc)← keyGen(η, pub, k) ;
(t, πt)← A((pkc, skc), pub, F, vk) ;

vif queryDec(t) 6= ⊥ and compute(t, πt, f , sk, F) 6= ⊥
and f (queryDec(skc, t)) 6= decrypt(skc, d) such that
(d, πd)← compute(t, πt, f , sk, F):

then return 1 ;
else return 0 .

Figure 5.5: QS experiment.

We now define a model for Query Soundness (QS). In this model, the adversary

tries to learn other information than points of the secret polynomial that she

queried by sending a particular query t along with a proof πt to the server.

Definition 23 (Query Soundness). Let Π be a VPOPE, and A ∈ POLY(η) be an

adversary. The Query Soundness (QS) experiment forA against Π is defined in Fig. 5.5.

The advantage of the adversary A against the QS experiment is given by:

AdvQS
Π,A(η) = Pr

[
1← ExpQS

Π,A(η)
]

.

A scheme Π is QS-secure if this advantage is negligible for any A ∈ POLY(η).

5.3 PPE for Encrypted data

We propose a Verifiable Oblivious IND-CFA Polynomial Evaluation scheme

(VIP− POPE) scheme which allow a client to send encrypted data for a private

evaluation in a verifiable way. We have used a Paillier cryptosystem, a homo-

morphic encryption scheme, to encrypt user’s input in the VIP− POPE scheme.

The security of the Paillier cryptosystem is based on the decisional composite

residuocity assumption.

69

We first give the intuition of our scheme VIP− POPE and then give its formal

definition.

5.3.1 Intuition

We use homomorphic properties of Paillier’s cryptosystem to design our VPOPE

scheme called VIP− POPE. The key idea is to use the fact that a client can generate

an encrypted query t = {ti}k
i=1 where ti = Epk(xi) and k is the degree of the secret

polynomial f (·) to allow the server to compute Epk(f (x)). Since the server knows

coefficients {ai}k
i=0 of f (·), it computes Epk(f (x)) as follows:

Epk(a0) ·
i=k

∏
i=1
Epk(xi)ai =

i=k

∏
i=0
Epk(aixi) = Epk

(
i=k

∑
i=0

aixi

)
= Epk(f (x)) .

For instance, assume that f (x) = θ0 + θ1x + θ2x2. Since the degree of f (·) is

2, the client can send two encrypted query. Let t = (t1, t2) be the first encrypted

query associated to x = 3, hence (t1, t2) = (Epk(3), Epk(32)) = (Epk(3), Epk(9))

Then, the server computes Epk(f (3)) = Epk(θ0) · ∏i=2
i=1 tθi

i = Epk(θ0) · Epk(3)θ1 ·

Epk(9)θ2 = Epk(θ0 + θ1 · 3 + θ2 · 9) and sends back the result to the client. Decrypt-

ing the result, the client knows one point to the secret polynomial f (·), namely

P1 = (3, f (3)).

Now assume the client forges an untrustworthy encrypted query t′ = (t′1, t′2)

for the value x = 4 which is equal to (Epk(4), Epk(9)) instead of (Epk(4), Epk(16)).

After the server computation and the decryption, the client obtains the value θ0 +

θ1 · 4 + θ2 · 9 from t′. In this case, the client can deduce information on the secret

polynomial, i.e., value of a coefficient that she should not obtain. The client is able

to compute the value of the coefficient θ1 using P1 = (3, θ0 + θ1 · 3 + θ2 · 9) and

θ0 + θ1 · 4 + θ2 · 9. She computes (θ0 + θ1 · 4 + θ2 · 9)− (θ0 + θ1 · 3 + θ2 · 9) = θ1.

To avoid this kind of attack, the client must provide a proof of validity πt for

each query t = {ti}k
i=1 that she sends to the server, i.e., a proof that ti = Epk(xi) for

all i ∈ {1, . . . , k}. Based on Property 1, such a proof can be built using the NIZKP

DecPaillierEq presented in Definition 8.

70

Client

Server

Company

((pkc, skc), pubc)

(d, πd)

(t, πt)

(f (·), {αi}i=k
i=0)

vk = {γi}i=k
i=0

Figure 5.6: Illustration of the VIP− POPE scheme.

In order to achieve the IND-CFA property of our scheme, we first selects ran-

domly two one-time secrets s1 and s2, and provide to the client the verification

key vk = (hs1 , hs2 , s1s−1
2 ri), where ri are random elements. Since the tuple does not

depend on the secret polynomial, it does not give any useful information to an

adversary that try to guess which polynomial among two is used by the server.

Moreover, random elements ri and the one-time secret s1 are used to hide the

coefficients of f (·) by defining αi = (ai + ri)s1. To prove to the client that the

evaluation is correct.

This leads us to the formal definition of our scheme VIP− POPE.

5.3.2 Construction of VIP− POPE

We give the formal definition of our scheme VIP− POPE.

Definition 24. Let VIP− POPE = (setup, init, keyGen, queryGen, queryDec, compute,

decrypt, verif) be a VPOPEscheme defined by:

• setup(η) : Using the security parameter η, this algorithm first generates a prime

number q. It selects a multiplicative group G of order q and generated by h. It picks

(s1, s2) ← (Z?
q)

2 and sets pub = (hs1 , hs2 , h, q), sec = (s1, s2), and F = Zq.

71

Finally, it outputs pub, F, and sec.

• init(F, f , sec) : We set f (x) = ∑i=k
i=0 ai · xi where ai ∈ Zq. For all i ∈ {0, . . . , k},

it picks ri ∈ Z?
q and computes αi = (ai + ri) · s1 and γi = s1 · s−1

2 · ri. Finally, it

sets vk = {γi}k
i=0, sk = {αi}k

i=0, and returns (vk, sk).

• keyGen(η, pub, k) : For a client c, it picks two primes pc and qc such that (k +

1)q2 < pcqc and pc ≈ qc. It sets nc = pcqc. According to nc, it generates a Paillier

key pair such that pkc = (nc, gc) and skc = (λc, µc) as described in Section 2.2.1.

It outputs (pkc, skc).

• queryGen(pkc, x) : Using x and the Paillier public key pkc, this algorithm com-

putes, for all i ∈ {1, . . . , k}, ti = Epk(xi) and returns the encrypted query t =

(pkc, {ti}k
i=1) along with a proof πt of equality of plaintexts using proofPaillierEq.

• queryDec(skc, t) : First this algorithm parses t as (pkc, {ti}k
i=1). Using the Paillier

secret key skc, this algorithm sets x = Dskc(t1). If Dskc(ti) = xi for 2 ≤ i ≤ k, it

outputs x, ⊥ otherwise.

• compute(t, πt, f , sk, F) : If πt is accepted by verifyPaillierEq, this algorithm uses

{ti}k
i=1 from t, coefficients {ai}k

i=0 of the polynomial function f (·), and {αi}k
i=0

from the server secret key sk to compute:

d = Epkc
(a0) ·

i=k

∏
i=1

tai
i and πd = Epkc

(α0) ·
i=k

∏
i=1

tαi
i ,

and returns (d, πd), else it returns ⊥.

• decrypt(skc, d) : Using the Paillier secret key skc which is equal to (λc, µc), this

algorithm returns y = Dskc(d) mod q.

• verif(x, skc, pub, y, πd, vk) : Using x, skc, vk, and the proof πd, this algorithm com-

putes:

y′ = Dskc(πd) mod q and z =
i=k

∑
i=0

γi · xi .

If (hs1)y · (hs2)z = hy′ , then the algorithm returns 1, else it returns 0.

72

We illustrate VIP− POPE scheme in Fig. 5.6.

Parameter Selection. First, consider the additive group F = Zq of order q. The

size of the prime q must be at least 1024 bits to make the discrete logarithm

problem hard in the group G. We recall that the polynomial f (·) is equal to

∑i=k
i=0 ai · xi where ai ∈ Zq for all i ∈ {0, . . . , k}. Hence, all evaluations are in

Zq; thus we assume that for all i ∈ {0, . . . , k}, we have 0 ≤ xi < q, and that

0 ≤ f (x) < q. Moreover, the client encrypts for all i ∈ {1, . . . , k} the value

xi. The evaluation performed by the server is done over encrypted values, i.e.,

Epkc
(a0) ·∏i=k

i=1 Epkc
(xi)ai = Epkc

(a0 + a1 · x + · · ·+ ak · xk); then, we need to have

∑i=k
i=0 ai · xi < nc = pc · qc for successful decryption due to Paillier cryptosystem

properties, where Znc is the plaintext space of Paillier cryptosystem, pc and qc are

two prime numbers. Since 0 ≤ ai < q and 0 ≤ xi < q, we have ai · xi < q2 for

each i ∈ {0, . . . , k} that gives us a0 + a1 · x + · · ·+ ak · xk < (k + 1) · q2. Hence, we

need to have (k + 1) · q2 < nc to always have successful decryption. Moreover,

we recommend the size of each prime pc and qc to be at least 1024 bits to make

the factorization of nc hard. We show the completeness of our VPOPE scheme,

VIP− POPE. In other words, if the server returns a correct encrypted evaluation

of f (·) using the encrypted data t given by the client, then the equation’s verifi-

cation must be satisfied. In this case, we consider an honest server, then we have

y = ∑k
i=0 aixi, and y′ = ∑k

i=0 αixi. Therefore, the equation 5.1 holds:

i=k

∏
i=0

tti
2ai

1 =
i=k

∏
i=0
Epkc

(α)αixiai =
i=k

∏
i=0
Epkc

(αi+1ai · xi)

=
i=k

∏
i=0
Epkc

(αai · xi)

= Epkc

(
α

i=k

∑
i=0

ai · xi

)
= Epkc

(α f (x))

(5.1)

In the same way, we have equation 5.2:

73

i=k

∏
i=0

tti
2αi

1 =
i=k

∏
i=0
Epkc

(α)αixiαi =
i=k

∏
i=0
Epkc

(αi+1αi · xi)

=
i=k

∏
i=0
Epkc

(ααi · xi)

= Epkc

(
α

i=k

∑
i=0

αi · xi

) (5.2)

Since y = Dskc(d) mod q = Dskc(Epkc
(α f (x))) mod q = f (x) mod q = ∑i=k

i=0 ai ·

xi mod q, therefore, the equation 5.3 holds:

(hs1
c)

y · (hs2
c)

∑i=k
i=0 γi·xi

= hs1·∑i=k
i=0 ai·xi+s2·∑i=k

i=0 s1·s−1
2 ·ri·xi

c

= hs1·∑i=k
i=0 ai·xi+s1·∑i=k

i=0 ri·xi

c

= h∑i=k
i=0(ai+ri)·s1·xi

c

= h∑i=k
i=0 αi·xi

c

= hy′
c

(5.3)

5.3.3 Security Analysis

We first prove that our VPOPE scheme, VIP− POPE, is secure in our security

model. Then we expose some comparisons with PPE schemes of the literature [4,

23].

We present the security proofs of VIP− POPE in our security model.

Theorem 10. VIP− POPE is a CPI-secure VPOPE scheme under the DCR assumption.

Proof. We assume that there exists A ∈ POLY(η)2 such that AdvCPIVIP−POPE,A(η) is

non-negligible and we show that there exists an algorithm B ∈ POLY(η) such that

AdvIND-CPAPaillier,B(η) is non-negligible. We build B as follows:

• B receives pk from setup(η) and runs (x0, x1, st)← A1(pk, pub).

74

• B runs the oracle Epk(LRb(·, ·)) on (xi
0, xi

1) for i ∈ {0, . . . , k} and obtains

t = {ci}k
i=0, Paillier ciphertexts of xi

b.

• B runs b∗ ← A2(t, pk, pub, sk, vk, f , st). To simulate the oracle COCPI(·) on x

to A, B computes t = {Epk(xi)}k
i=0.

• Finally, B outputs b∗.

We remark that:

1. The experiment CPI is perfectly simulated for A.

2. B wins the IND-CPA experiment if and only if A wins the CPI experiment.

Since AdvCPIVIP−POPE,A(η) is non-negligible, then AdvIND-CPAPaillier,B(η) is non-negligible.

However, Paillier cryptosystem is IND-CPA under the DCR assumption, then B

can be used to break the DCR assumption, which contradict our hypothesis and

conclude the proof.

Theorem 11. For any k ∈N, VIP− POPE achieves k-EnPP property.

Proof. Let A ∈ POLY(η) be an adversary. Since A can query the oracle COEnPP(·)

at most k times, A can obtains at most k points {(xi, yi)}k
i=1 such that yi = f (xi).

Without loss of generality, we can assume that the aim ofA is to compute f (xk+1)

for some value xk+1 of her choice, such that xk+1 6= xi for 1 ≤ i ≤ k. We show that

AdvEnPPVIP−POPE,A(η) is negligible.

Since the degree of the secret polynomial f (x) is equal to k, there are k + 1 un-

known coefficients. Obtaining {(xi, f (xi))}k
i=1 such that xi 6= xj if i 6= j only give

k equations with k + 1 unknown coefficients. Hence, none of these coefficients

can be derived. In particular, the constant coefficient a0 = f (0) is in the uniform

distribution of Z?
q . Using the Lagrange interpolation, the value f (xk+1) can be

described as in equation 5.4:

f (xk+1) = f (0)
k

∏
j=1

xk+1

xj
+

k

∑
i=1

f (xi)
k

∏
x

xk+1 − xi

xj − xi
(5.4)

75

We set a = ∏k
j=1

xk+1
xj

, and b = ∑k
i=1 f (xi)∏k

x
xk+1−xi

xj−xi
and we have the equation 5.5:

f (xk+1) = a · a0 + b (5.5)

which is an affine cipher. Since a and b are in Z?
q and a0 is in the uniform distribu-

tion of Z?
q , then f (xk+1) is in the uniform distribution of Z?

q . Hence, we have:

AdvEnPPVIP−POPE,A(η) = 1/q ,

which is negligible with respect to the security parameter η.

Theorem 12. For any k ∈N, VIP− POPE is a k-IND-CFA-secure VPOPE scheme.

Proof. Let A ∈ POLY(η) be an algorithm. We show that there exists an algorithm

B ∈ POLY(η) simulating the experiment Expk-IND-CFA
VIP−POPE,A(η). We build B as follows:

• B picks b $← {0, 1}.

• B generates ((pk, sk), h, Z?
q)← setup(η).

• B runs (f0, f1, st) ← A1(Z
?
q , k). It sets f0(x) = ∑k

i=0 a0,ixi and f1(x) =

∑k
i=0 a1,ixi.

• B picks (s1, s2, r) $← (Z?
q)

3. For all i ∈ {0, . . . , k}, it picks ri
$← Z?

q , and

sets ai = ab,i + r · (a0,i − a1,i), αi = (ai + ri)s1, and γi = s1s−1
2 ri. It sets

f (x) = ∑k
i=0 aixi, f ′(x) = ∑k

i=0 αixi, Z(x) = ∑k
i=0 γixi, and returns vk =

(hs1 , hs2 , {γi}k
i=0).

• B runs b∗ ← A2((pk, sk), h, Z?
q , vk, k, st). To simulate the oracle COCFA(·) to

A on tj = {Epk(xi
j)}k

i=1 (for 1 ≤ j ≤ k), the Paillier encryption of xi for

1 ≤ i ≤ k, B computes:

dj =
k

∏
i=0
Epk(xi

j)
ai and πj =

k

∏
i=0
Epk(xi

j)
αi ,

and returns (dj, πj).

• Finally, B outputs b∗.

76

We remark that since s1, s2, and ri (for 0 ≤ i ≤ k) are chosen in the uniform

distribution of Z?
q , then each element of vk comes from the uniform distribution

on Z?
q . Moreover, if f0(x)− f1(x) 6= 0, the evaluation is in the uniform distribution

of Z?
q for all b ∈ {0, 1} since r comes from the uniform distribution of Z?

q . We have:

(hs1) f (x)(hs2)Z(x) = hs1 ∑k
i=0 aixi+s2 ∑k

i=0 γixi

= hs1 ∑k
i=0 aixi+s2 ∑k

i=0 s1s−1
2 rixi

= hs1 ∑k
i=0 aixi+s1 ∑k

i=0 rixi

= h∑k
i=0(ai+ri)s1xi

= h∑k
i=0 αixi

= h f ′(x)

We deduce that the experiment k-IND-CFA is perfectly simulated for A. Then A

cannot do better than the random to guess the value of the chosen b. Hence, we

have:

Pr[1← Expk-IND-CFA
VIP−POPE,A(η)] = 1/2 ,

and so Advk-IND-CFA
VIP−POPE,A(η) is negligible which conclude the proof.

Theorem 13. For any k ∈N, VIP− POPE is UNF-secure under the DL assumption.

Proof. We assume that there exists A ∈ POLY(η)2 such that AdvUNFVIP−POPE,A(η) is

non-negligible. We show that A can be used to construct an algorithm B that

computes logh(h
s1).

First, we prove by contradiction that if y∗ 6= f (x∗), then we also have y′∗ 6= y′,

where y′ = ∑k
i=0 αixi

∗.

Assume we have y′∗ 6= f (x∗) and y′∗ = y′, then:

(hs1)y∗(hs2)∑k
i=0 γixi

∗ = hy′∗ ,

(hs1) f (x∗)(hs2)∑k
i=0 γixi

∗ = hy′ ,

and (hs1)y∗(hs2)∑k
i=0 γixi

∗ = (hs1) f (x∗)(hs2)∑k
i=0 γixi

∗ . This contradicts the pre-

condition y∗ 6= f (x∗). Hence, the case y∗ 6= f (x∗) and y′∗ = y′ cannot happen.

77

For similar reasons, the case y′∗ 6= y′ and y∗ = f (x∗) cannot happen neither.

Therefore, we must have both inequalities y∗ 6= f (x∗) and y′∗ 6= y′ hold.

Next, we prove that such an adversaryA allows us to compute logh(h
s1). Since

the verification equation (hs1)y∗(hs2)∑k
i=0 γixi

∗ = hy′∗ holds, we have:

 (hs1)y∗(hs2)∑k
i=0 γixi

∗ = hy′∗

(hs1) f (x∗)(hs2)∑k
i=0 γixi

∗ = hy′

⇒ (hs1)(y∗+∑k
i=0 γixi

∗)−(f (x∗)+∑k
i=0 γixi

∗) = hy′∗−y′

⇔ hs1 = h
y′∗−y′

y∗− f (x∗) .

Hence, we have logg(hs1) = y′∗−y′

y∗− f (x∗)
. Since we have proved that y∗ 6= f (x∗), the

discrete logarithm logh(h
s1) can computed with the same probability as A wins

the UNF experiment. Therefore, based on the DL assumption, there cannot exist

an adversary A such that AdvUNFVIP−POPE,A(η) is non-negligible.

5.3.4 Experimental Results

Schemes Setup
size

Key
size

Verif. cost Pairing Assumption Model Privacy

PolyCommitPed [14] O(k) O(1) O(1) Pairing
based

t-SDH Standard No

PIPE [4] O(1) O(k) O(k · log(q)) Paring
free

DDH ROM No

Xia’s scheme [23] O(1) O(k) O(k · log(q)) Pairing
free

DL Standard No

VIP− POPE O(1) O(k) O(3 · log(q) +
k) + D

Pairing
free

DL/DCR Standard Yes

Table 5.1: Comparison of VIP− POPE with other PPE schemes.
**We denote by D the constant cost of one Paillier decryption.

In Table 5.1, we provide comparison of our scheme with PolyCommitPed [14],

PIPE [4] and Xia’s scheme [23]. We observe that the verification key size and ver-

ification cost are constant in PolyCommitPed while in all other schemes it depends

on the degree k. The verification equation in PolyCommitPed involves several bi-

linear pairing which is costly compared to other operations. The verification key

78

size and verification cost are not constant in our scheme but our scheme is pair-

ing free and efficient as compared to other pairing free schemes. Moreover, our

scheme VIP− POPE provides client’s data privacy while other three schemes do

not provide any privacy. To support our claim about efficiency, we implement

all these schemes under same environment and with same parameters. We test

these schemes for different values of degrees with realistic parameters. In our

0

20

40

60

80

100

120

140

160

180

200

220

0 16 40 56 80 96

Ti
m

e
in

m
ill

is
ec

on
ds

Degree of the polyomial f (x)

VIP− POPE

PIPE

Xia’s scheme

PolyCommitped

Figure 5.7: Verification cost comparison.

scheme, the verification of the result obtained from the server is done by a client.

In such a case, the verification cost becomes important aspect of the scheme. We

claim that our scheme is most efficient so far in terms of verification cost. To sup-

port our claim, we implement VIP− POPE, PIPE and Xia’s scheme in SageMath

8.1 on 64-bit PC with Intel Core i5 - 6500 CPU @ 3.2 GHz and 4 GiB RAM. The

new scheme, VIP− POPE, provides privacy of client’s data while the other two

79

schemes, PIPE and Xia’s scheme, do not provide privacy of client’s data. To keep

the comparison as fair as possible, we implement all three schemes with realistic

and same parameters. We compare the cost of only verification equation in all the

three schemes. For our scheme, we choose a 1024 bit prime q and 160 bit prime

q1 such that q′ = 2q1q + 1 is a prime. We choose another 1024 bit prime p and

set n = pq′. The coefficients of the polynomial f (x), the secret values (s1, s2) and

{ri}k
i=0 are all selected uniformly at random from Z?

q . For Xia’s scheme and PIPE,

we keep the value of q, the polynomial f (x) and {ri}k
i=0 same as in VIP− POPE.

For different values of the degree of the polynomial f (x), we ran each scheme

for 100 new instances and each instance for 10 times. We then averaged out the

total time for the verification equation in each scheme. In Fig. 5.7, we observe that

VIP− POPE takes almost constant time while the cost of verification equation in

PIPE and Xia’s scheme increases linearly with respect to the degree k. Moreover,

our scheme takes only around 5− 6 milliseconds for verification equation even

for k = 100 which makes it practically feasible for real applications.

5.4 conclusion

In this chapter, we gave a formal definition of another primitive called VPOPE

(for Verifiable and Private Oblivious Polynomial Evaluation). This primitive al-

lows a company to delegate the computation of a secret polynomial f (·) to an

external server on the client’s encrypted data in a verifiable way. In other terms,

a client sends an encrypted query to a server associated with her secret data x

using her public key pk. Then, the client receives d with proof that d = Epk(f (x)).

We defined the required security properties for VPOPE: Client’s Privacy - Indistin-

guishability (CPI), Indistinguishability against Chosen Function Attack (IND-CFA),

Query Soundness (QS), and Unforgeability. The query soundness notion ensures

that a user cannot send a malicious query to learn more about the polynomial.

The CPI notion ensures that the server does not learn anything about the secret

data x.

In PIPE, the user sends data to the server in plain form and the server compu-

80

tation over plain data. For the delegation of computation over encrypted data,

we designed a scheme called Verifiable IND-CFA Paillier based Private Oblivi-

ous Polynomial Evaluation (VIP− POPE). Using the security properties of Pri-

vate Polynomial Evaluation (PPE) schemes and Oblivious Polynomial Evaluation

(OPE) schemes, we prove that our scheme is proof unforgeability, indistinguisha-

bility against chosen function attack, and client privacy-secure under the Decisional

Composite Residuosity assumption in the random oracle model.

81

CHAPTER 6

Privacy-Preserving Verifiable Computation

6.1 Introduction

The VIP− POPE scheme considers privacy of the user’s data but doesn’t consider

privacy of user’s identity during identity verification. Based on the application,

a system can use any privacy preserving identity verification scheme along with

VIP− POPE to have data privacy as well as user’s privacy. Alternatively, it is good

to have a single scheme which provides both the features. We propose a design

for verifiable polynomial computation scheme along with privacy preserving au-

thentication. In the proposed system model, we assume that the cloud service

provider is a semi-trusted party. We trust the cloud for secrecy of the polyno-

mial, but we do not trust the server for computation on polynomial function. The

system model consists of the following entities.

• Cloud Service Provider (CSP): CSP verifies authenticity of message and evalu-

ates a function f (x) over a user input m. The CSP also computes a proof of

computation for f (m).

• Users: Users are consumers of the company who get services from CSP on

their requests.

• Company: The company provide appropriate service in terms of evaluation

of a function f (x) with the help of CSP. The company also generates and

securely distributes public and private parameters to all involved entities.

The PriVC scheme has following goals - (i) verifiable computation on encrypted

data; (ii) keeping the computation logic on data hidden from the user (secrecy

82

of the prediction function); (iii) not letting the server know for whom the com-

putation is intended (privacy of the user); and (iv) not denying of usage of the

services by the user (undeniability). Once a user sends a message to the CSP, the

user cannot deny the transaction and moreover, the CSP is able to prove that the

transaction was indeed done by that particular user. The PriVC scheme works as

follows. The company possesses a prediction function f (x) and it hires CSP for

computational power. The f (x) is a confidential polynomial function and known

to the company and CSP only. A user first gets registered with the company and

receives a pseudo-identity. To avail the service, the user sends encryption of data

m and the proof of authenticity to the CSP. To encrypt the data, we use a symmetric

version of the extended DGHV scheme [58]. The CSP verifies the authenticity of

the data and then generates an encrypted form of f (m) along with the proof of

computation. The user decrypts and verifies the computation of f (m). Further-

more, a user cannot deny a valid transaction and at the same time, the CSP cannot

generate a valid transaction for any user. The system model of PriVC is depicted

in Figure 6.1.

Any private polynomial evaluation scheme should be designed in such a way

that the proof of computation and other public parameters must not give any ad-

vantage to an attacker. In our proposed PriVC scheme, we use the security notion

of indistinguishability against chosen function attack (IND-CFA) and UNF as de-

fined in chapter 4. We first define the PriVC scheme as follows.

Definition 25 (Privacy-Preserving Verifiable Computation). Let f be a polynomial in

Z+
q [X]. A Privacy - Preserving Verifiable Computation (PriVC) is a 8-tuple of algorithms

(Setup, Init, KeyGen, EvalRequest, VerifyAuth, Eval, VerifyResult, VerifyTrans) defined as:

• Setup(λ): It takes security parameter λ as input and the public parameters pub.

• Init(f , pub): It take polynomial function f and public parameters pub as input and

outputs a secret key for the function, skf , and verification key for individual user u,

vkuf .

• KeyGen(λ, pub): For a user u, it generates extended DGHV private key ku and

parameters ρ, γ.

83

Figure 6.1: PriVC scheme for monitoring system

• EvalRequest(m, ku, pub, vkuf): It takes a message m, user key ku, public parameters

pub, verification key vkuf as input and outputs an encrypted query (c, πa).

• VerifyAuth(c, πa, skf , f , pub): It takes an encrypted query (c, πa), secret key skf , the

polynomial f and public parameters pub as input. It outputs c if (c, πa) is accepted;

else, aborts.

• Eval(c, f , skf , pub): It takes an encrypted message c, secret key skf and public pa-

rameters pub as input. It outputs (y, π) where y = f (c) is an encryption of f (m)

and π is proof of computation for f (m).

• VerifyResult(y, π, vkuf , ku, m, pub): It decrypts (y, π) and verifies the computation

of f (m) using verification key vkuf .

• VerifyTrans(c, πa, ku, vkuf , pub): It takes a transaction (c, πa), user key ku, verifica-

tion key vkuf and public parameters pub as input. It outputs 1 if (c, πa) is a valid

transaction otherwise 0.

84

6.1.1 Adversarial Assumptions

The polynomial f (x) used in the PriVC scheme is a secret polynomial and users

should not be able to learn anything about f (x).

An adversary (we note that a legitimate user can also act as adversary) can

choose two polynomials and then tries to guess which polynomial is used by the

CSP. More concretely, given two polynomial f0 and f1 , the adversary should not

be able to distinguish which polynomial is used by the CSP. We prove that the

PriVC scheme is secure under IND-CFA model.

Definition 26 (Oracle for CFA, OCFA). In this oracle, the adversary has an access

to Eval algorithm. The adversary can query the server at most one time. The input of

each query is an encrypted value c of data m and output of each query is (y, π) where

y = fb(c) + r ∗ (f0(c) − f1(c)), r is a random integer and π is proof of computation.

The oracle returns (y, π).

OCFA (c, b, f0, f1, sk f , pub):

r1, r2 ← {0, 1}∗:

f ′ ← fb + r1 ∗ (f0 − f1):

sk′f ← sk f + r2 ∗ (f0 − f1):

(y, π)← Eval(c, f ′, sk′f , pub);

Return (y, π).

In IND-CFA model, the adversary tries to guess which polynomial is used

by a PriVC scheme. The adversary chooses two polynomials (f0, f1). The server

randomly selects one polynomial fb where b ∈ {0, 1} and random integers r1, r2.

It sets f ′ = fb + r1 ∗ (f0 − f1), sk′ = sk + r2 ∗ (f0 − f1) and evaluates and proves

the computation of y = f ′(c), where c is given by the adversary. Note that if

f0(m) = f1(m), then decryption of y gives fb(m); else, the adversary gets garbage

value after decryption. In the definition of IND-CFA, Z+
q [X]n represents a set of

all polynomials of degree at most n with coefficients in Z+
q .

Definition 27 (IND-CFA). Let Π be a PriVC, A = (A1, A2) be a two-party PPT

adversary and n be an integer. The n-IND-CFA experiment for A against Π is defined as

85

follows:

Expn-IND-CFA
Π,A (λ):

b← {0, 1};

pub← Setup(λ);

(f0, f1, st)← A1(pub, n);

(sk f , vku
f)← Init(fb, pub);

ku ← KeyGen(λ, pub);

(c, πa)← EvalRequest(st, ku, pub, vku
f)

b∗ ← AOCFA(·)2 (ku, vku
f , pub, f0, f1, c);

If f0 6∈ Z+
q [X]n or f1 6∈ Z+

q [X]n:

Then return ⊥;

Else return (b = b∗).

A has access to the server oracle OCFA(·). The advantage of the adversary A against

the n-IND-CFA experiment is defined by:

Advn-IND-CFA
Π,A (λ) =

∣∣∣∣12 − Pr
[
1← Expn-IND-CFA

Π,A (λ)
]∣∣∣∣ .

A scheme Π is n-IND-CFA secure if this advantage is negligible in λ for any

polynomial-time adversary A.

We note that in the above experiment, n is the degree of the polynomial f (x)

and st is a testing point. Using public parameters, the adversary chooses two

functions f0, f1 and a point st.

The second security model is regarding unforgeability property. In verifiable

computation scheme, it is essential to prove the unforgeability. A PriVC scheme

is said to be unforgeable when the server cannot produce valid proof for a wrong

computation.

Definition 28 (Unforgeability). Let Π be a PriVC scheme and A = (A1.A2) be a two-

party adversary. The Unforgeability (UNF) experiment for A against Π is defined as

follows:

86

ExpUNF
Π,A (λ):

pub← Setup(λ);

(f , st)← A1(pub);

(sk f , vku
f)← Init(f , pub);

ku ← KeyGen(λ, pub);

(c, πa)← EvalRequest(st, ku, pub, vku
f)

(y, π)← Eval(c, f , sk f , pub)

(x∗, y∗, π∗)← A2(sk f , f , c, y, π, pub);

If

f (x∗) 6= y∗ and

VerifyResult(y∗, π∗, vku
f , ku, x∗, pub) :

Then return 1;

Else return 0.

The advantage of the adversary A against the UNF experiment is defined by:

AdvUNF
Π,A (λ) = Pr

[
1← ExpUNF

Π,A (λ)
]

.

A scheme Π is UNF secure if the above advantage is negligible for any polynomial-

time adversary A.

6.2 Construction of the PriVC

The Privacy-Preserving Verifiable Computation (PriVC) is a 8-tuple of algorithms

(Setup, Init, KeyGen, EvalRequest, VerifyAuth, Eval, VerifyResult, VerifyTrans) as de-

fined in Section 3 (Definition 6). The detailed working principle of each algorithm

of the PriVC is as follows.

• Setup(λ): This algorithm generates a prime q and a multiplicative group

G of order q. Let g be a generator of the group G. It randomly selects a

secret key skc ∈ Z?
q for the company and sets pkc = gskc . It also selects

87

a cryptographically secure hash function H : {0, 1}? 7−→ Zq. It sets

pub = (q, pkc, G, g, H).

• Init(f , pub): For the polynomial f ∈ Zq[x]n, the company picks (n + 1)

random numbers {γi ∈ Zq}n
i=0 and sets Γ(x) = ∑n

i=0 γixi. For each

user u in the system, it picks a secret sku randomly from Z?
q and sets

Vu(x) = sk−1
u (Γ(x)− skc f (x)). It sends the secret key skf = Γ(x) along with

f to the CSP and the verification key vkuf = (Vu(x), pku = gsku) to user u.

• KeyGen(λ, pub): This algorithm is run by each user separately to generate

extended DGHV private key. This algorithm picks a prime p in [2η−1, 2η]

where η = O(λ2). It sets parameters ρ = O(λ) and γ = O(λ5). The user’s

private key is ku = p.

• EvalRequest(m, ku, pub, vkuf): This algorithm generates an authentic encrypted

ciphertext query for the data m. We assume that the function f is a polyno-

mial of degree n with coefficients 0 ≤ ai ≤ q for 0 ≤ i ≤ n. This algorithm

first computes a tuple c = (c0, c1, . . . , cn) as follows:

ci = (mi mod q) + siq + ti p

where each si ∈ (−2ρ, 2ρ) and ti ∈ (0, 2γ/p) are randomly chosen integers.

It then computes proof of authenticity πa = (R, S) as follows:

θ = H(c)

R = Vu(θ)

S = pku.

The user sends (c, πa) to the CSP.

88

• VerifyAuth(c, πa, skf , f , pub): This algorithm verifies authenticity of c. The

CSP computes f (θ), Γ(θ) where θ = H(c), and checks validity of the equa-

tion 6.1:

SR pk f (θ)
c

?
= gΓ(θ) (6.1)

The algorithm outputs (c, πa) if the above equation holds true; else, aborts.

• Eval(c, f , skf , pub): This algorithm computes f (c) and Γ(c) as follows:

f (c) =
n

∑
i=0

aici , Γ(c) =
n

∑
i=0

γici.

It sends (y = f (c), π = Γ(c)) to the user.

• VerifyResult(y, π, vkuf , ku, m, pub): This algorithm computes f (m) and Γ(m)

from (y, π) as follows:

f (m) = (y mod p) mod q

Γ(m) = (π mod p) mod q.

It then verifies the equation 6.2:

pkVu(m)
u pk f (m)

c
?
= gΓ(m) (6.2)

• VerifyTrans(c, πa, ku, vkuf , pub): Using this algorithm, the user can ver-

ify whether a specific query (c, πa) was sent by him/her. From c and

πa = (R, S), if S = pku, then it computes θ = H(c). The user then verifies

the equation 6.3:

R ?
= Vu(θ) (6.3)

89

Correctness: We provide proof of correctness for equation in VerifyResult.

pkVu(m)
u pk f (m)

c = (gsku)sk−1
u (Γ(m)−skc f (m))(gskc) f (m)

= gΓ(m)−skc f (m)(gskc) f (m)

= gΓ(m).

6.3 Security Analysis

We first show that PriVC is IND-CFA secure. Note that for proof generation, we are

using only one additional polynomial Γ(x) and no other parameter. We show that

this additional polynomial Γ(x) doesn’t leak any additional information about the

polynomial f .

6.3.1 IND-CFA security

Theorem 14. ∀n ∈N, PriVC is unconditionally n-IND-CFA secure.

Proof. LetA be an IND-CFA adversary for PriVC. We show that there exist a poly-

nomial time algorithm B which can simulate the experiment Expn-IND-CFA
PriVC,A (λ) to

A. The algorithm B works as follows:

• B picks b← {0, 1}.

• B generates pub = (q, pkc, G, g, H) ← Setup(λ) where pkc = gskc and skc ∈

Z?
q .

• B runs (f0, f1, st)← A1(pub, n).

• B generates (sk f , vku
f) ← Init(fb, pub) where maths f sk f = Γ(x) = ∑n

i=0 γixi,

vkuf = (Vu(x), pku), pku = gsku and Vu(x) = sk−1
u (Γ(x)− skc fb(x)).

• B generates ku ← KeyGen(λ, pub) where ku = p is extended DGHV encryp-

tion key.

• B generates (c, πa)← EvalRequest(st, ku, pub, vku
f) where c = (c0, c1, ..., cn), ci

is encryption of xi and πa = (Vu(H(c)), pku).

90

• B runs b? ← AOCFA(·)
2 (ku, vkuf , pub, f0, f1, c). To simulate the oracle OCFA(·)

on c to A on c, B picks r1, r2 ← {0, 1}? and set f ′ = fb + r1(f0 − f1) and

sk′f = Γ′(x) = sk f + r2(f0 − f1) and computes y = f ′(c) and π = Γ′(c). It

returns (y, π).

• Finally, B outputs b?.

We note that if f0(st) = f1(st) then we have fb(st) = (f ′(st) mod p)

mod q and Γ(st) = (Γ′(st) mod p) mod q. Finally, pkVu(st)
u pk fb(st)

c =

(gsku)sk−1
u (Γ(st)−skc fb(st))(gskc) fb(st) = gΓ(st).

We conclude that the n-IND-CFA experiment is successfully simulated for A.

Hence, the success of the adversaryA is equal to the randomly guessing the value

b. This gives

Pr
[
1← Expn-IND-CFA

PriVC,A (λ)
]
=

1
2

and the Advn-IND-CFA
PriVC,A (λ) is negligible. Hence, the PriVC scheme is n-IND-CFA

secure.

6.3.2 Unforgeability

We show that our scheme is unforgeable under discrete logarithm assumption.

Theorem 15. The proof of computation in PriVC is UNF-secure under the discrete log-

arithm assumption.

Proof. We show that if an adversary A can successfully forge the proof of compu-

tation then it can break the discrete logarithm assumption by computing logg pkc.

Let (x?, y?, π?) be a forged result with VerifyResult(y?, π?, vku
f , ku, x?, pub) = 1 and

f (x?) 6= y?.

A can compute Γ′ = (π? mod p) mod q. We have

pkVu(x?)
u pky?

c = gΓ′ and pkVu(x?)
u pk f (x?)

c = gΓ(x?).

91

From this, the adversary A can deduce that

pkc = g

Γ′ − Γ(x?)
y? − f (x?) .

Finally, A computes logg pkc =
Γ′ − Γ(x?)
y? − f (x?)

. Based on discrete logarithm assump-

tion, there cannot exist an adversary A such that the advantage AdvUNF
PriVC,A(λ) is

non-negligible.

User non-repudiation: Assume that (c, πa = (R, S)) be a valid query for a user

u and the server creates a fake query (c′, π′a = (R′, S)) for the user u. If H(c) =

H(c′), then the server can set π′a = πa and (c′, π′a) becomes a valid query for

the user u. Since the hash function H is assumed to be a collision resistant, it is

computationally difficult to find c′ such that H(c) = H(c′). For any (c′, R′), the

query (c′, π′a) is valid for the user u if only if Vu(H(c′)) = R′. Since the verification

function Vu(x) is not public and Vu(x) ∈ Zq[x], the probability of Vu(H(c′)) = R′

is 1/q. For sufficient value of q, this probability is negligible.

The algorithm VerifyAuth ensures that an unauthorized user cannot access the

service. Since verification key’s of each user is kept secret, the probability that

an unauthorized user generates a valid query (c, πa) where πa = (R, S) is equal

to the probability of R = Vu(H(c)) for any user u. Since Vu(x) is in Zq[x], the

probability of R = Vu(H(c)) for any random R is 1/q.

Security of Encryption: For encryption of user data, we are using a symmetric

version of the extended DGHV scheme proposed by Pedro et al. [58]. They have

proved that their scheme is semantically secure under the assumption of approx-

imate GCD problem. However, we note that there are two attacks on DGHV

scheme, and we show that the extended DGHV scheme is secure under both the

attacks. First is key recovery attack [59] and another is lattice attack [60].

In the key recovery attack, the adversary has access to the decryption oracle,

and it can successfully find the key p after a few communications with the decryp-

tion oracle. The attack was successful because B is equal to 2 in the DGHV scheme,

and therefore, the adversary was able to reduce the search space in half after every

communication with the decryption oracle. In our scheme, B is a prime q of O(λ)

92

bits. Therefore, the adversary can reduce the search space down to the size of an

order of 2λ, and it still has to do brute force for 2λ many numbers. Therefore, the

extended DGHV scheme is secure under a key recovery attack. In the lattice at-

tack, the adversary considers a vector of several ciphertexts together and reduces

the search space of vectors of plaintexts to the size of B2. For B = 2, this is just 4,

and if the plaintexts are binary, then it is easy to find the correct message out of 4.

We have used B = q where q is O(λ) bit prime. Therefore, the lattice attack can

reduce the search space of vectors of plaintexts to the size of B2 ≈ 22λ. Hence, the

extended DGHV scheme is secure under lattice attack as well.

We note that if a user collude with the CSP, the CSP can provide the polynomial

to the user. This problem is inherent and cannot be prevented. Client can share

verification key with the server but it does not help the server to forge the proof

of computation for other users as each user has different verification key.

6.4 Experimental Results

To check the practicality of the scheme, we have implemented the PriVC scheme

with realistic parameters.

Table 6.1: Performance level for various test instances

Instance EvalRequest VerifyAuth Eval VerifyResult VerifyTrans
Tiny 3.25 0.176 0.169 0.154 0.122

Small 20.8 0.645 0.884 0.739 0.587
Medium 125 3.13 4.92 4.48 3.08

Large 651 14.2 32.3 25.3 14.1
All times in the Table 6.1 are in milliseconds.

In this section, we describe the implementation of PriVC and parameters se-

lection. To prevent key recovery attack and lattice attacks on extended DGHV

scheme, we must have ρ = λ, η = O(λ2), γ = O(λ5). Throughout our exper-

iment, the degree of the polynomial f (x) and Γ(x) is 10. The coefficients of all

three polynomials are randomly selected from Zq where q is a 256 bit integer.

We considered four test instances with different security level as described in

the Table 6.2. We have implemented PriVC scheme using SageMath version 8.1

93

on a quad-core desktop computer with Intel Core i5− 6500 at 3.2 GHz and 4 GB

RAM.

Table 6.2: Parameters used for various test instances

Instance λa ρb ηb γb

Tiny 42 27 1026 150000
Small 52 41 1558 830000

Medium 62 56 2128 4200000
Large 72 71 2698 19350000

aλ denotes security level.
bρ, η and γ denotes bit-size of parameters in extended DGHV.

Table 6.1 summarizes the performance of our implementation of PriVC. We

considered four instances for our experiment, namely Tiny, Small, Medium, and

Large. For each instance, we use parameters as described in the Table 6.2. The

time in the Table 8.5 represents the running time (in milliseconds) of a single query

averaged over 10000 iterations. When we increase the security level, the size of

the encrypted query increases, this leads to more computational cost during query

generation, and function evaluation. The encrypted query generation depends on

the extended DGHV parameters. The size of the parameters for the extended

DGHV scheme increases as we increase the security level. As expected, the query

generation time increases as we increase the security of the underlying encryption

scheme. Even for high-security level, Large instance, the computational cost for

each process is a fraction of a second.

The result verification involves mainly 3 exponentiation and polynomial eval-

uation. The algorithm VerifyResult first decrypts the result and then verify it us-

ing the verification equation. The time for VerifyResult in Table 6.1 is the total

time required for decrypting the result and then verifying it. The time required

for result verification is reasonably small compared to actual polynomial evalua-

tion time. A quick look at the execution times in Table 6.1 shows that our scheme

is efficient and suitable for the practical purpose.

94

6.5 Conclusion

In this chapter, we provide a construction of a privacy-preserving verifiable poly-

nomial evaluation scheme. This scheme allows a company to delegate compu-

tation of a secret polynomial to the CSP so that a user can verify the computa-

tion done by the cloud server. In any delegation of computation schemes, a user

must communicate with the cloud server, and therefore, the cloud server needs

to authenticate the user before providing any service to the user. The proposed

scheme also allows CSP to authenticate the user in a privacy-preserving manner.

Moreover, once the transaction is completed, the user cannot deny it later, as each

query involves a user-specific verification key. Using formal security models for

IND-CFA and UNF, we prove that our scheme PriVC is IND-CFA and UNF secure.

We implemented the proposed scheme using SageMath version 8.1 and observed

that the computation step’s verification takes less time than an actual polynomial

evaluation done by the CSP.

95

CHAPTER 7

DeDuplication with Cross-server Ownership

7.1 Introduction

Cloud infrastructure has been widely used for managing data and services of ap-

plications owned by industries, organizations, and individuals. The cloud-based

storage services like Dropbox[46], Google Drive [47], and NetApp [48] are prime

choices for most of the people for storing data. The advantages of public cloud

services are data availability, reliability, and ease of data sharing at a reasonable

price [61]. It is in the best interest of cloud service providers to utilize the avail-

able limited storage efficiently. The data deduplication is an integral part of the

cloud storage system. If several users upload the same data on the same server,

it is beneficial for the server to detect it and keep only a few copies of the data.

If two users upload the same data on different storage servers, the ownership of

the data remains with the first uploader, and the second server should be able to

detect it inform the first uploader about it. The problem becomes more difficult

when the data are in encrypted form. The users may encrypt their data either to

preserves data privacy or due to company policy or to abide by legal regulations.

If each user uses their own key to encrypt the data, then the same data produce

different ciphertexts when encrypted by different users. In such a case, the cloud

server cannot identify whether two ciphertexts are encryption of the same data,

and hence cross-user deduplication is not possible. At the same time, sharing the

same encryption key among all the clients compromises the whole purpose of

encryption.

There are several data deduplication schemes in the literature which consid-

96

ers ownership issue [83, 84, 85]. In all such schemes, the a user is considered an

owner of the data if the user can prove the possession of the data to the cloud

server. This certainly does not mean that the user is the creator of the data. Con-

sider the scenario where there are several cloud data storage servers. Let user u

creates a file F and uploads it to the cloud storage server CSS1. If another user

obtain this file F somehow and uploads it to CSS1, then the server CSS1 does not

notify about it to the user u as per the existing ownership protocols. Moreover, the

user u does not know if any other user has uploaded similar file to any other cloud

storage servers. To address this ownership issue, we need corroboration among

the servers, which is implausible. Hence we introduced a new entity called the

trusted third party (TTP), which is assumed to be trusted by everyone in the sys-

tem. Each server registers with the TTP and forwards the data to it. The root

server checks for ownership of the data and alerts the server of duplicate data, if

any. Now, as the workload of the TTP is computationally intense, and it would

not be wise to upload the ciphertext to the TTP. Hence, we used the concept of

message locked encryption, which in turn uses tags(which are again message de-

rived hashes) to do the task.

In 2002, Douceur et al. introduced a convergent encryption scheme, which

is a base technique to ensure data deduplication. For any given data M, a user

derives encryption key K = H(M) where H is a cryptographic hash function

and then encrypts data M as C = E(K, M). If two different users encrypt the

same data, then the encryption key still remains the same, and it is easy to check

for deduplication. Convergent encryption is susceptible to an offline brute-force

dictionary attack. If it is known that the ciphertext C is an encryption of one of the

messages from the dictionary of size n, the attacker can use brute-force over the

dictionary and recover the message in the time of n offline encryptions.

In any deterministic scheme, identical plaintexts will be mapped to one ci-

phertext. Bellare et. al[25] introduced message-locked encryption scheme MLE =

(P, K, E, D, T) where P is the public parameter, K is the key generation algorithm

used to compute the message derived key, E is the encryption algorithm, T is

the tag generation algorithm while D is the decryption algorithm. All these are

97

deterministic, and hence same tags imply identical plaintext. They later impro-

vised [25, 26] to make a more efficient method that reduces the number of passes

to just one as well as counters the tag consistency attack. In the standard MLE

hash-and-CE scheme, the user can alter the message to M′ without affecting the

tag generation algorithm and hence get away with a fake upload. This is the

tag consistency attack. In the improvised version, they recomputed the tag at

the decryption algorithm to counter this TC attack. They further randomized the

encryption scheme to ensure all the steps take place in a single pass. This new

scheme, called Randomized Convergent Encryption, is the basis of this project.

Abadi et. al[27] improvised this and provided stronger security measures. Their

scheme avoided tags that are calculated deterministically from the message. The

tags, in addition to the encryption algorithm, were also computed randomly here

as T =(gr, grh(m)) where r is a random number and h is a strong collision-resistant

hash function. This approach is inefficient for operations involving tag search-

ing. Moreover, randomized tags does not provide indistinguishability property

as it is possible to distinguish two data by comparing corresponding tags. For the

proposed scheme, we consider deterministic tags.

In this chapter, we introduce a cross-user data deduplication and cross-server

ownership scheme, DeDOP. The proposed DeDOP scheme achieves the goals of

cross-user data deduplication and cross-server ownership issues using the Ran-

domized Convergent Encryption(RCE). We show that the proposed schemes en-

sure tag consistency, which detects data faking attacks at the client level. We fur-

ther ensure that the scheme is secure against a replay attack.

7.2 Preliminaries

The proposed scheme uses randomized convergent encryption to encrypt the

data. The randomized convergent encryption provides security against chosen

distribution attack where an adversary can identify whether a ciphertext is an

encryption of a message which comes from a chosen distribution.

Definition 29 (Randomized Convergent Encryption). A Randomized Convergent

98

Figure 7.1: Illustration of deduplication and cross-server Ownership

Encryption scheme is a five-tuple of algorithms: parameter generation, key generation,

encryption, decryption, tag generation.

- ParamGen(λ): Given security parameter λ, it generates public parameters P. It

selects a cryptographically secure hash function H and secure symmetric encryption

scheme SE = (E, D).

- KeyGen((m, P)): It returns message derived key K = H(P, m).

- Encrypt(m, K): It picks random L ∈ 0, 1k and computes c1 = E(L, m), c2 = L⊕ K

where E is a symmetric encryption algorithm. The ciphertext is c = c1||c2.

- Decrypt(c, K): It first gets c2 from c = c1||c2 and computes the key L = c2 ⊕ K. It

decrypts c1 using L and returns m = D(L, c1) where D is a symmetric decryption

algorithm.

- Tag(K, P): It returns tag T = H(P, K).

Definition 30 (Tag Consistency (TC)). A MLE scheme is said to be TC secure if a client

can verify correctness of a tag corresponding to a retrieved file.

99

Suppose an adversary uploads a fake file for a new tag T. Later if an honest

user tries to upload the correct file for the tag T, then the server doesn’t upload

the new file as there is already one file for the tag T. The user assumes that a copy

of the file is already stored in the server. When the user retrieves the file using tag

T, he/she will receive a fake file. TC security prevents this as the user can check

tag consistency. The RCE is a TC secure scheme.

7.3 Scheme Description

Our system model for DeDOP scheme mainly contains three entities: Clients,

Cloud Storage servers (CSS) and a trusted third party (TTP).

• Clients: A client is an individual or an organization that has large files and

stores it on the public cloud.

• Cloud Storage Server: Cloud storage server (CSS) is a data storage server

maintained by a cloud service provider who has a vast amount of storage

space. For efficient use of the storage space, the CSS performs data dedu-

plication over the stored data. Each cloud storage server in the system is

registered with the trusted third party, TTP.

• Trusted Third Party: The trusted third party maintains tags for all the data

stored on the cloud storage servers. The TTP is responsible for ownership

and duplicate check at the time of data upload.

Each client and thr storage server receives unique identity from the TTP. For

each data block stored in any of the registered server, the TTP keeps its tag value

and corresponding owner id (id of the user who uploads it first time), server ids

(ids of DBS where it is stored) and user ids (ids of other users who uploaded the

same data). The TTP maintains a hash-map dictionary with tag as key and a set

of owner id, server ids and other users ids as value. A storage server keeps list of

user ids along with tag sequences of files stored by each client. For each tag stored

in the DBS, it keeps corresponding ciphertext. Each storage server maintains two

hash-map dictionaries. First is D1 with client id as key and corresponding list

100

of tag sequences as a value. Second is D2 with tag as key and corresponding

ciphertext as value.

The proposed DeDOP scheme has following goals: (i) cross-user data dedu-

plication for encrypted data; (ii) tackle cross-server ownership issues. The

convergent encryption scheme provides confidentiality of user’s data and cross-

user data deduplication. A convergent encryption with tag consistency allows

cross-user deduplication check and also prevents data faking attacks. The DeDOP

scheme works as follows. Consider that a user uid wants to upload a file F to

the server Sj. It first breaks the file F in fixed sized blocks. Let F = B1B2 . . . Bn.

The user then computes tag for τk for each block Bk and sends the tag sequence

T = τ1τ2τ3 . . . τn to the server Sj. The server forwards it to the TTP along with the

user id, uid. The RS breaks the tag sequence in individual tags and looks up in the

table for duplicate check. The TTP sends a binary sequence b1b2b3 . . . bn to the

server Sj. For each 1 ≤ i ≤ n, bi = 0 if the i-th tag is already stored in the server

Sj else bi = 1. The server forwards the binary sequence to the client and asks for

only those ciphertexts for which bi = 0. At the time of tag search by the TTP,

if more than α fraction of tags are already present in the system, then it checks

whether there is any other user who owns at least α fraction of these tags. It

then informs the corresponding storage server about possible cross-server almost

duplicate file. Once the user uid receives the bit sequence b from the server, it

encrypts only those blocks for which bi = 1 and sends it to the server for storage.

7.3.1 Assumptions

We assume that each cloud storage server is registered with the TTP. Each server

has a private key sks known only to them and corresponding public key pks which

is known to every registered user. Each user is registered with at least one storage

server and has a private key sku known only to them and a public key pku which is

known to all involved parties. Similarly, the trusted third party also has a private

key sktp whose public key pktp is known to every other registered entities.

We also assume that a registered user can be malicious. A registered user may

act as data faking adversary who tries to upload fake data for a valid tag. The

101

cloud storage servers and TTP are trusted entities.

7.3.2 Security Model

Any data deduplication scheme should be secure against duplicate data faking

attacks. In duplicate data faking attacks, an attacker replaces valid data by fake

data without being detected. Consider a scenario where an attacker uploads a

fake data F′ with some tag T. Later, an honest client tries to upload a file F with

the correct tag T on the server. Since the tag T is already stored on the server, the

server keeps only one copy of the data, and it is F′. When the client downloads the

file for tag T, it receives F′ instead of F and cannot check whether it is the original

file. Therefore, it is necessary to check whether the tag and the file are related at

the time of download. To prevent duplicate faking attacks, we consider the Tag

Consistency security model. In TC, we assume that the adversary has access to

public parameters as well as a valid target file and corresponding tags. The goal of

the adversary is to create a fake file that can pass through the file upload process.

Definition 31 (Tag Consistency (STC)). Let Π be a data deduplication scheme and A

be a PPT adversary. The Tag Consistency (TC) experiment of A against Π is defined as

follows:

ExpTCΠ,A(λ):

pub← Setup(λ) ;

(B, B′)← A(pub) ;

(uid, t, signsku
{t})← TagGen(uid, B, pub, sku) ;

K ← KeyGen(B, pub) ;

C ← Encrypt(B, K) ;

If (B 6= B′) and FileCheck(C, t, pub):

return true ;

Else return false.

The advantage of A against the STC experiment is given by:

AdvSTCΠ,A(λ) = Pr
[
ExpSTCΠ,A(λ) = true

]
.

102

A scheme Π is STC secure if this advantage is negligible for anyA ∈ POLY(λ)2.

7.4 The proposed scheme, DeDOP

The DeDOP contains three main phases: Setup phase, Deduplication phase and

File upload and file check phase. At the time of registration, a storage server

receives a server id (sid) from the TTP and a user receives user id (uid) from the

database server. The details of each phase is as follows:

• Setup(λ) : Using the security parameter λ, this algorithm first generates the

public parameters P for the encryption scheme RCE. It also selects a cryp-

tographically secure hash function H, a secure symmetric key encryption

scheme SE = (E, D) and a secure signature algorithm signsk(.). It sets β

as block length and α as threshold fraction for ownership check. Finally, it

outputs pub = (α, β, H, P, SE, signsk(.)).

• Deduplication Phase.

– TagGen(uid, F, pub, sku) : Let F = B1||B2|| . . . ||Bn where each Bi is a

block of a length β. Using RCE, the client computes the tag sequence T

for the file F as follows: For each 1 ≤ i ≤ n, it computes

1. Ki ← H(P, Bi)

2. τi ← H(P, Ki).

The tag sequence for the file F is T = τ1||τ2|| . . . ||τn. The client

signs the tag sequence using secret key and sends (uid, T, signsku
{T})

to the storage server Sj. The user stores encryption keys {Ki}n
i=1 locally.

– DupCheck(uid, T, pub, signsku
{T}) : The server Sj verifies the signature

and stores (uid, T). It forwards the tag sequence to the TTP along with

the signature signsks
{T}.

103

For the tag sequence T, the TTP creates a bit string b = b1b2 . . . bn

where bi = 1 initially. For each tag ti, the TTP checks whether it

already exist in the system. If there is a match, then it checks whether

the duplicate tag is stored on the same storage server, Sj. The TTP sets

bi = 0 if the duplicate tag is stored on the same server. For each new

tag tk, the TTP stores (tk, (uid, sid)). For each existing tag, it appends

(uid, sid) to the entry of the tag. if the number of duplicate tags is more

than the threshold, then for each duplicate tag, the TTP compares

the user id with the owner id of the tag. If the user id is not same as

owner id, then it computes total number of tags that matches with tags

of a particular owner id. If the proportion of matches is more than a

threshold, then it notifies the owner through a storage server. The TTP

sends b to the storage server along with the signature signskr
{b}. The

storage server forwards it to the client.

• File upload and �le check Phase.

– FileUpload(b = b1||b2|| . . . ||bn, signskr
{b}) :

If bi = 1, then user encrypts the block Bi as follows:

1. Li ← {0, 1}k

2. c1i ← E(Li, Bi)

3. c2i ← Li ⊕ Ki.

The ciphertext for the word Bi is ci = c1i||c2i. The user sends

(c = {ci}m
i=1, signsku

(c)) to the server.

– FileCheck(C, T, pub, {Ki}n
i=1) : Whenever a user downloads a file C from

the server, it first verifies the corresponding tag T for the file. It first

breaks C as C = c1||c2||c3|| . . . ||cn and T = τ1||τ2||τ3|| . . . ||τn. For each

1 ≤ i ≤ n, if τi = H(P, Ki), then proceed; else aborts. Then it computes

104

Li = c2i ⊕ Ki and decrypts c1i as B′i = D(Li, c1i). If Ki = H(P, B′i), then

accept the file, else abort.

7.5 Security Analysis

A client encrypts data to keep the data confidential from everyone else. We need

to make sure that the encryption method used in the scheme ensures data privacy.

Theorem 16. Let H be a cryptographically secure hash function and SE = (E, D) be

a secure symmetric encryption scheme. Then the RCE scheme is Privacy against chosen

distribution attack (PRV-CDA) secure.

Bellare et. al [26] provided proof of the above theorem. Since the underly-

ing encryption scheme is PRV-CDA secure, the proposed scheme provides data

privacy.

If a fake file upload attack, an attacker uploads a fake file for a tag of the gen-

uine file. Later, an honest client tries to upload an original file for the same tag.

Since the tag already exists in the system, the client does not upload the file, and

the DBS links a fake file to the client. At the time of retrieval, the client receives

a fake file. TC security prevents this attack as a client can always check the tag

consistency. Since the RCE scheme is TC secure, the proposed DeDOP scheme is

also TC secure.

In a public channel, an attacker may get the tag sequence uploaded by another

client. Later, the attacker sends the tag sequence to the server. The server follows

the protocol and forwards it to the TTP. Since the corresponding file is already

stored in the server, the TTP returns bit sequence b = b1b2 . . . bn with all bi = 0.

The attacker does not have to upload any block of the file, and the attcker will

be able to access the file. However, the file is encrypted using massaged derived

keys. Without the keys, the attacker does not learn anything about the data and

does not gain any information.

105

7.6 Conclusions

In this chapter, we discussed the importance of ownership of data in a multi-

server scenario. We reviewed several existing ownership and data deduplication

schemes. It considers a user as an owner of the data if the user possesses some

meta-data in all those schemes. However, it does not check whether the user is

the creator of the data in the system. We proposed an approach that can tackle the

ownership issue and data deduplication in multiple storage server scenarios. We

have used the randomized convergent encryption scheme of the message locked

encryption with deterministic tags. We note that the proposed scheme provides

tag consistency at the client level but does not provide tag consistency at the server

level.

106

CHAPTER 8

Data accountability in cloud storage

8.1 Introduction

The main advantages of storing data on the public cloud are data availability, reli-

ability, and ease of data sharing at a reasonable price [61]. However, storing data,

in particular, sensitive data, on public cloud storage, becomes a potential target

of an attacker. If sensitive data gets leaked or compromised, then the data owner

and service provider could face problems in protecting user data from malicious

intent. Recently, a freelance photographer Dave Cooper lost around 100, 000 video

clips due to a bug in Adobe Premiere Pro [52]. He was able to detect deleted files

as it is significant in numbers. Now imagine only one of the 100, 000 clips gets

removed due to a bug. Will Dave be able to detect it? Clients (People or organiza-

tions) store their data on the cloud without keeping any local copy of it, and this

makes it difficult for the client to detect a slight modification or deletion in the

data as it is hard to remember complete data. If the cloud service provider vol-

untarily discloses the data modification, then it may affect their reputation, and it

is in their best interest not to reveal any data damage that could lead to potential

harm to the company as well as an individual. To keep the data intact, the system

must have a mechanism to verify the integrity of the data stored on the public

cloud.

Consider a scenario of a healthcare application where a healthcare company

provides predictions based on a client’s medical history. In such a situation, clients

of the healthcare company may want to keep a history of all their data by storing

it on the cloud without keeping any local copy. The decision-making process in

107

the medical field also depends on past data of a patient. A partial or full modifi-

cation or deletion of previous data stored on the cloud may affect a health-related

decision-making process of the patient. It is necessary to have a specific mecha-

nism to verify the integrity of the data stored in the cloud. Once a user uploads

data on the cloud storage, will it remain as it is overtime? Without saving the

complete data locally, how does a user make sure that the file is not modified?

The trivial way to ensure this is to download the whole file and compare the

hash value of the file with a locally stored hash value. If the file size is large

and the user has constrained computational resources, then the trivial method

is inefficient as it involves large data transmission. This method is not suitable

for a system where the integrity of data is checked frequently [82]. To provide

data integrity with minimum communication cost, researches introduced several

techniques like Proof of Storage (PoS), Provable Data Possession (PDP), Proof of

Retrievability (POR), etc.

We introduce a new Proof of Storage with data deduplication scheme (DPoS).

The DPoS scheme has following goals: (i) cross-user data deduplication at block-

level; (ii) provide proof of data stored. We use a variant of VIP-POPE scheme

proposed in previous chapter. In previous chapter, we trusted the cloud with

the polynomial f but not with the computation using f . The scheme provided

proof of computation. In this scenario, we don’t trust the cloud with data. Using

same VIP-POPE scheme, we can generate proof of data by treating the file F as

polynomial by considering blocks of the file as coefficients of the the polynomial.

In the proposed scheme, there is a single tag for each block which can act as tag

during data deduplication and meta data during proof of storage process. It is

also possible to verify tag and block relation at the time of file upload. Without

tag consistency check, a user can submit a fake file for a tag. The DPoS scheme

works as follows. We assume that each client is registered with the cloud server.

To upload a file, a client first breaks the file in blocks and generates tag sequence

for the file. It sends tag sequence to the cloud storage server CSS. The CSS breaks

the tag sequence in individual tags and looks up in the dictionary for each tag.

The CSS sends a binary sequence b1b2b3 . . . bn to the client. For each 1 ≤ i ≤ n,

108

bi = 1 if the i-th tag is already stored in the CSS; else, bi = 0. The client send data

only for those blocks for which bi = 0. For each uploaded block, the CSS checks

whether the tag is consistent with block. For proof of storage, a client picks a

random number x and an index set for challenged blocks. The CSS treats those

challenged blocks as coefficients of a polynomial and evaluate the polynomial at

x along with the proof. The client can verify the integrity of the data using secret

value and proof provided by the CSS.

8.2 System Model and Assumptions

8.2.1 System Model

Several previous proof of storage schemes considers trusted third party for audit-

ing data stored on the server [36, 40, 39]. In DPoS, we do not require any trusted

third party auditor. The system model of DPoS has mainly two entities:

• Clients: A client is an individual or an organization that has large files and

stores it on the public cloud. Whenever required, the client can demand

proof of the integrity of the data from the cloud.

• Cloud Storage Server: Cloud storage server (CSS) is a data storage server

maintained by a cloud service provider who has a vast amount of storage

space. For efficient use of the storage space, the CSS performs data dedupli-

cation over the stored data.

A client stores large files on the CSS and keeps a local copy of only metadata

related to the files. At the time of the file upload, the CSS performs data dedupli-

cation for efficient storage management. If two data are the same, then the CSS

keeps only one copy of the data. As a client does not have any local copy of the

data, the client should be able to check the integrity of the data stored on the CSS.

To perform a data integrity check, a client sends a challenge to the CSS for a spe-

cific file. In response, the CSS provides proof for the integrity of the data using a

challenge and the file stored on the server. Using metadata related to the file and

verification parameters, the client verifies the proof.

109

In the proposed DPoS scheme, a tag, which is used during the data dedupli-

cation and the proof of the storage process, is computed for each data block. It is

also possible to verify the consistency of the tag at the time of file upload. Without

a tag consistency check, a user can submit a fake file for a valid tag. We assume

that each client is registered with the cloud server. To upload a file, a client first

breaks the file in blocks and generates a tag sequence for the file. It sends the

tag sequence to the cloud storage server (CSS). The CSS breaks the tag sequence

in individual tags and looks up in the dictionary for each tag. The CSS sends a

binary sequence b1b2b3 . . . bn to the client. For each 1 ≤ i ≤ n, bi = 1 if the i-th

tag is already stored in the CSS; else, bi = 0. The client send data only for those

blocks for which bi = 0. For each uploaded block, the CSS checks whether the tag

is consistent with block. For proof of storage, a client picks a random number x

and an index set for challenged blocks. The CSS treats those challenged blocks as

coefficients of a vector and evaluates the inner product with the challenge vector

along with the proof. The client can verify the integrity of the data using secret

value and proof provided by the CSS.

8.2.2 Assumptions

We assume that the cloud storage server is a semi-trusted. We do not trust the

cloud with the data stored on the server as data are prone to human or machine

error. It can act as a forgery adversary who tries to hide the data corruption by

forging a valid proof using corrupted data. A forgery adversary has access to the

valid data corresponding to the corrupted data.

We also assume that a client can also be malicious. A registered client may act

as data faking adversary who tries to upload fake data along with valid tag in the

system. A data faking adversary has an access to the valid file and is registered

on the CSS.

110

Fi
gu

re
8.

1:
Th

e
pr

op
os

ed
D

Po
S

sc
he

m
e
D
P
oS

111

8.2.3 Security Model

Any proof of storage with data deduplication scheme should be secure against

duplicate data faking attacks as well as forgery attack. In duplicate data faking

attacks, an attacker replaces valid data by fake data without being detected. Con-

sider a scenario where an attacker uploads a fake data F′ with some tag T. Later,

an honest client tries to upload a file F with the correct tag T on the server. Since

the tag T is already stored on the server, the server keeps only one copy of the

data, and it is F′. When the client downloads the file for tag T, it receives F′ in-

stead of F. Therefore, it is necessary to check whether the tag and the file are

related at the time of upload. To prevent duplicate faking attacks, we consider the

Stronger Tag Consistency security model. In STC, we assume that the adversary

has access to public parameters as well as a valid target file and corresponding

tags. The goal of the adversary is to create a fake file that can pass through the file

upload process along with the tags of the target file. Note that a malicious user

can act as an STC adversary.

Definition 32 (Stronger Tag Consistency (STC)). Let Π be a data deduplication

scheme and A be a PPT adversary. The Stronger Tag Consistency (STC) experiment of

A against Π is defined as follows:

ExpSTCΠ,A (λ):

pub← Setup(λ) ;

(sku, pku)← Init(pub) ;

(B, B′)← A(pub) ;

(t, γ, pku)← TagGen(B, pub, sku, pku) ;

If (B 6= B′) and FileCheck(B′, t, pku, pub):

return true ;

Else return false.

The advantage of A against the STC experiment is given by:

AdvSTCΠ,A(λ) = Pr
[
ExpSTCΠ,A(λ) = true

]
.

112

A scheme Π is STC secure if this advantage is negligible for anyA ∈ POLY(λ)2.

In a forgery attack, an adversary has access to the target file along with corre-

sponding tags. The goal of the forgery adversary is to provide valid data integrity

proof with a modified target file. A malicious cloud server can act as a forgery

adversary. To prevent this attack, we consider Unforegeability in the PoS security

model.

Definition 33 (Unforgeability in PoS (UNF-PoS)). Let Π be a Proof of Storage (PoS)

scheme and A be a PPT adversary. The Unforgeability in PoS (UNF-PoS) experiment of

A against Π is defined as follows:

ExpUNF-PoSΠ,A (λ):

pub← Setup(λ) ;

(sku, pku)← Init(pub) ;

(�lename, F, T)← A(pub, pku) ;

x ← Z?
q ;

I ⊂ {1, 2, · · · , n} ;

(F′, (d′, π′))← A(x, I, �lename, F, T, pku, pub) ;

If (F 6= F′) and PrivateProofVerify(x, I, d′, π′, �lename, sku):

return 1 ;

Else return 0.

The advantage of A against the UNF-PoS experiment is given by:

AdvUNF-PoSΠ,A (λ) = Pr
[
ExpUNF-PoSΠ,A (λ) = 1

]
.

A scheme Π is UNF-PoS secure if the advantage AdvUNF-PoSΠ,A (λ) is negligible for

any A ∈ POLY(λ)2.

8.3 Construction of DPoS

We provide detailed construction of our proposed scheme. The Data Deduplica-

tion with Proof of Storage (DPoS) scheme is a 9-tuple algorithm Setup, Init, TagGen,

DupCheck, FileUpload, FileCheck, ProofGen, PrivateProofVerify, PublicProofVerify. The

113

proposed scheme DPoS is illustrated in the Figure 8.1. The detailed working of

each of the algorithm is as follows:

- Setup(λ) : This algorithm is run by the CSS. This algorithm first generates a

prime number q such that the complexity of DLP in Zq is at least λ bits. It

selects a cryptographically secure hash function H : {0, 1}? → Zq, a secure

signature algorithm signsk(.), a multiplicative group G = 〈g〉 of order q

and a pseudo-random function f : {0, 1}? ×Z×Zq → Zq. It also selects

another pseudo-random function θ(·, ·) which takes an element of Z?
q and

an integer m as an input and outputs m many random elements of Z?
q . It

outputs pub = (G, g, q, H, f , θ, signsk(.), β) where β is a bit length of each

block in a file.

- Init(pub) : This algorithm is run by the client. It randomly pick s ∈ Z×q and

computes g1/s. It further selects m random numbers {βi ∈ Z×q }m
i=1, where

m = β
log2(q)

. It sets the client’s secret key sku =
{

s, {βi}m
i=1
}

and the client’s

public key pku =
{

g1/s,
{

gβi
}m

i=1

}
.

- TagGen(F, pub, sku, pku) : Let F = B1||B2|| . . . ||Bn where each Bi =

Bi1 Bi2 . . . Bim is a block of a length β bits and Bij is j-th sector of i-th block.

The client first assign a name �lename to the file. The client computes the tag

sequence T for the file F as follows. For each 1 ≤ i ≤ n, it computes

1. ri = f (�lename, s, i)

2. γi = gri

3. ti =
((

∑m
j=1 β j · Bij

)
+ ri

)
s.

The tag sequence for the file F is T = {ti, γi, H(Bi)}n
i=1. The client sends

(T, pku) to the CSS.

- DupCheck(T, pku, pub) : For each 1 ≤ i ≤ n, the CSS takes H(Bi) and com-

pare it with the tags of already stored data. If there is a match found for

114

some i = k, then it retrieves corresponding stored block Bk and verifies the

equation 8.1: (
g1/s

)tk
= γk ·

m

∏
j=1

(
gβ j
)Bkj

(8.1)

For the file F, it creates a bit string b = b1b2 · · · bn where bi = 1 if the tag ti is

already stored in the system; else, bi = 0. The CSS sends b to the client.

- FileUpload(b, F) : The client creates a file F′ = B′1B′2 · · · B′n where B′i = Bi if

bi = 1; else, B′i = Null. The client sends (F′, �lename) to the CSS and stores

(�lename, s, n).

- FileCheck(b, F′, �lename, T, pku, pub) : For each 1 ≤ i ≤ n, if bi = 1, then the

CSS checks whether B′i and (ti, γi, H(Bi)) are related using equations 8.2 and

8.3:

[H(B′i) = H(Bi) (8.2)

(
g1/s

)ti
= γi ·

m

∏
j=1

(
gβ j
)Bij

(8.3)

If it does not holds true for at least one i, 1 ≤ i ≤ n, then it returns 0

and aborts; else it returns 1 and proceeds further. If bi = 0, then it links

B′i to already stored Bi. It stores F along with {�lename, T, pku}. It sends

signskcss
(�lename||pku||n) as receipt to the client where skcss is the signing

key of the CSS.

- ProofGen(�lename, x, I, F, T): For the target file, client picks a random num-

ber x ∈ Z?
q and a set of indices I ⊂ {1, 2, · · · , n} and sends it to the CSS. The

CSS generates {α1, α2, . . . , αζ} = θ(x, ζ) where ζ = |I| and for 1 ≤ j ≤ m, it

computes

dj =
ζ

∑
i=1

αi · BI(i)j and π =
ζ

∑
i=1

αi · tI(i).

115

It sends
(

d = {dj}m
j=1, π, {γI(i)}

ζ
i=1

)
to the client.

- PrivateProofVerify(x, I, d, π, �lename, sku) : The client first generates {α1,

α2, . . . , αζ} = θ(x, ζ) where ζ = |I| and computes

z =
ζ

∑
i=1

αi · f (�lename, s, I(i)).

If s
(

∑m
j=1 β j · dj + z

)
= π, then the algorithm returns 1; else, it returns 0.

- PublicProofVerify(x, I, d, π, {γI(i)}
ζ
i=1, pku) : The public verifier first gen-

erates {α1, α2, . . . , αζ} = θ(x, ζ) where ζ = |I| and computes

Z =
ζ

∏
i=1

γ
αi
I(i).

If ∏m
j=1

(
gβ j
)dj · Z =

(
g1/s)π

, then the algorithm returns 1; else, it returns 0.

Correctness:

- FileCheck:

(
g1/s

)ti
=
(

g1/s
)((∑m

j=1 β j·Bij

)
+ri

)
s

= g
(

∑m
j=1 β j·Bij

)
+ri

= g∑m
j=1 β j·Bij γi

= γi ·
m

∏
j=1

(
gβ j
)Bij

.

- PrivateProofVerify:

116

s

(
m

∑
j=1

β j · dj + z

)
= s

(
m

∑
j=1

β j

ζ

∑
i=1

αiBI(i)j +
ζ

∑
i=1

αirI(i)

)

=
ζ

∑
i=1

αi(
m

∑
j=1

β jBI(i)j + rI(i))s

=
ζ

∑
i=1

αitI(i)

= π.

- PublicProofVerify:

m

∏
j=1

(
gβ j
)dj · Z =

m

∏
j=1

g
(

β j ∑ζ
i=1 αiBI(i)j

)
·

ζ

∏
i=1

γ
αi
I(i)

=
m

∏
j=1

ζ

∏
i=1

g(β jαiBI(i)j) ·
ζ

∏
i=1

grI(i)αi

=
ζ

∏
i=1

gαi ∑m
j=1 β jBI(i)j ·

ζ

∏
i=1

grI(i)αi

=
ζ

∏
i=1

gαi

(
∑m

j=1 β jBI(i)j+rI(i)

)

=
ζ

∏
i=1

(
g1/s

)αitI(i)

=
(

g1/s
)∑ζ

i=1 αitI(i)

=
(

g1/s
)π

.

8.4 Security Analysis

We show that the proposed scheme DPoS is STC secure. This provides security

against duplicate data faking attacks where a malicious client tries to successfully

upload a fake file for a valid tag.

Theorem 17. DPoS is STC secure if the hash function H is collision resistant.

117

Table 8.1: Theoretical comparison of proposed scheme with existing schemes

Client’s cost Server’s cost
Scheme Tag generation Proof Verification Proof generation
Zheng et al. [38] 4nE + 2snM +

2nH
3mE + mM + 2P 3mM + mE

Yuan et al. [40] nH + snE +
2snM

mH + mM + 4P sE + (2m+s)M +
mE

DPoS nH + nE + nM mH + mM mH + 2mM
1 n: number of blocks in the file, s: number of sectors in each block, m: number of challenge

blocks
2 E: cost of one modular exponentiation, M: cost of one modular multiplication, H: cost of

one hash computation, P: cost of one pairing operation

Proof. We show that if the adversary A in ExpSTCDPoS,A(λ) is successful in duplicate

data faking attack with non-negligible probability then it can find a collision for

the hash function H with same non-negligible probability. Let (t, γ, H(B)) be a

valid tag for the block B and an adversaryA finds another block B′ such that B′ 6=

B and the ExpSTCDPoS,A(λ) returns true for the block B′. This means H(B) = H(B′)

and

(
g1/s

)t
= γ ·

m

∏
j=1

(
gβ j
)B′j

g∑m
j=1 β jBj+r = gr · g∑m

j=1 β jB′j

m

∑
j=1

β jBj =
m

∑
j=1

β jB′j.

Since {β j}m
j=1 are randomly selected from Z?

q , the probability of ∑m
j=1 β jBj =

∑m
j=1 β jB′j and H(B) = H(B′) for any two blocks is less than the probability

of getting a collision for the hash function H. As the adversary A has non-

negligible success probability, we have a collision for the hash function H with

non-negligible probability. Since the hash function H is collision resistant, we

conclude that there does not exist such adversary A and DPoS is STC secure.

Now, we show that DPoS is unforgeable. In the proposed scheme, the proba-

bility of the CSS producing a valid integrity proof using a corrupt file is negligible.

Any error in the file gets detected during integrity proof verification.

Theorem 18. DPoS is UNF secure under DL assumption.

118

Proof. We show that if the adversary A in ExpUNF-PoSDPoS,A (λ) is successful in modify-

ing the file F = B1B2 . . . Bn to F′ = B′1B′2 . . . B′n with non-negligible probability

then it can successfully find the secret value s corresponding to the file F. The

ExpUNF-PoSDPoS,A (λ) returns 1 only if F 6= F′ and the proof is valid for the file F. Let F′

be the modified file, (d′, π′) is integrity proof generated using F′ for the challenge

(x, I) and (d, π) is integrity proof generated using F for the challenge (x, I).

Case I: d = d′ or π = π′.

If d = d′, then for each 1 ≤ j ≤ m, we have

ζ

∑
i=1

αi · BI(i)j =
ζ

∑
i=1

αi · B′I(i)j

for all {α1, α2, . . . , αm} ∈ (Z?
q)

m and all I ⊂ {1, 2, . . . , n}. This gives BI(i)j = BI(i)j

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. This gives F = F′ which contradicts the

assumption that F 6= F′. Hence, d = d′ cannot be true.

If π = π′, then we have
ζ

∑
i=1

αitI(i) =
ζ

∑
i=1

αit′I(i)

for all {α1, α2, . . . , αm} ∈ (Z?
q)

m and all I ⊂ {1, 2, . . . , n}. This gives ti = t′i for all

i ∈ {1, 2, . . . , n}. As F 6= F′, there is at least one i ∈ {1, 2, . . . , n} such that Bi 6= B′i .

Since ti = t′i, we have ∑m
j=1 β jBj = ∑m

j=1 β jB′j. The probability of ∑m
j=1 β jBj =

∑m
j=1 β jB′j for two different blocks Bi, B′i is negligible, 1/q, and hence, we cannot

have π = π′ with non-negligible probability.

Case II: d 6= d′ and π 6= π′.

Since both (d, π) and (d′, π′) are valid proofs for the file F, we have

s

(
m

∑
j=1

β j · dj + z

)
= π and s

(
m

∑
j=1

β j · d′j + z

)
= π′

where z = ∑m
i=1 αi · f (�lename, s, I(i)). By subtracting one from other, we get

s

(
m

∑
j=1

β j · dj −
m

∑
j=1

β j · d′j

)
= π − π′

119

s =
π − π′(

∑m
j=1 β j · dj −∑m

j=1 β j · d′j
) .

We note that the denominator can still be zero even though d 6= d′. However,

the probability of ∑m
j=1 β j · dj = ∑m

j=1 β j · d′j is 1/q which is negligible for a large

prime q. Since the adversary A knows both (d, π) and (d′, π′), it can easily com-

pute the secret s with non-negligible advantage. Given public value g1/s, finding

the secret s is equivalent to solving discrete logarithm problem (DLP). Since it is

computationally hard to solve DLP as per DL assumption, we conclude that there

does not exist such adversary A and DPoS is UNF secure.

8.5 Performance Analysis

To analyze our scheme analytically, we compare Tag generation, Proof genera-

tion, and Proof verification parts of our scheme with existing schemes. To make

the comparison authentic and as close as possible, we consider only those pa-

pers which proposed a proof of storage with deduplication schemes. Table 8.1

illustrates the comparison between the proposed scheme, Zheng et al.’ scheme,

and Yuan et al. ’s scheme. From the Table 8.1, it is evident that the proposed

Number of blocks, n

Ti
m

e
(s

)

0

20

40

60

80

2000 4000 6000 8000

Our scheme Zheng's scheme

Figure 8.2: Tag generation cost vs number of blocks

120

Number of blocks, n

Ti
m

e
(s

)

0

2

4

6

2000 4000 6000 8000

Our scheme Yuan's scheme Zheng's scheme

Figure 8.3: Proof generation cost vs number of blocks

Number of blocks, n

Ti
m

e
(s

)

0

1.5

3

4.5

6

1000 2000 3000 4000 5000 6000 7000 8000

Our: PrivateVerify Our: PublicVerify Yuan's scheme
Zheng's scheme

Figure 8.4: Verification cost vs number of blocks

scheme takes much less time for verification of the proof as it does not require

any pairing operation. The verification is usually done by the client, which may

have a resource-constrained device. It is important to have the verification cost

as low as possible. The client also does tag generation for a file. In our proposed

121

scheme, the theoretical cost of the tag generation is on par with other schemes

and can be analyzed more accurately by implementing all these schemes in the

same environment. The proof generation part in our scheme does not require any

exponentiation as compared to other schemes. This means the cost of proof gen-

eration is also lesser than that of the existing schemes. We further compare these

schemes more accurately by implementing all on the same platform with the same

parameters.

8.5.1 Experimental Results

We implement DPoS scheme along with Yuan’s scheme and Zheng’s scheme in

a pc with following specifications: Ubuntu 18.04.2 LTS operating system, 4 GB

memory, i5− 6500 processor @ 3.2 GHz and Sage 8.1 [66].

Block size (Kb)

Ti
m

e
(s

)

0

5

10

15

20

25

10 20 30 40 50 60 70

Our scheme Zheng's scheme

Figure 8.5: Tag generation cost vs block size

We have taken two scenarios. In the first scenario, we kept the block size fixed

while changing the number of blocks. This eventually changes the size of the

file. We have considered a block size of 8 Kb, and the number of blocks varies

between 1000 to 8000. In our scheme, we are breaking our blocks into sectors of

size 1024 bits. For other two schemes, the size of each sector depends on the size

122

Block size (Kb)

Ti
m

e
(s

)

0

2

4

6

8

10

8 16 24 32 40 48 56 64

Our scheme Yuan's scheme Zheng's scheme

Figure 8.6: Proof generation cost vs block size

Block size (Kb)

Ti
m

e
(s

)

1

2

3

4

5

6

7

10 20 30 40 50 60 70

Our: PrivateVerify Our: PublicVerify Yuan's scheme
Zheng's scheme

Figure 8.7: Verification cost vs block size

of the elliptic curve group used. We used standard elliptic curve secp256k1 from

Standards for Efficient Cryptography 2 (SEC 2) [64]. This sets the size of each

sector to be 256 bits and 32 sectors in each block for the other schemes. For λ = 80

bit security, we selected a 1024 bit prime as q for our scheme.

Figure 8.2, 8.3, 8.4 shows cost comparison of all three schemes for tag gener-

123

ation, proof generation and proof verification process. Since Tag generation for

Yuan’s scheme is taking more than 500 seconds for each case, we have not in-

cluded it in the graphical representation. Moreover, the tag generation is a one

time cost for each file but data integrity check are often done frequently. The

proof generation and verification is required to be an efficient. The tag generation

and proof verification are done on the client-side while proof generation is done

on the server-side. In all the three processes, our scheme takes less time as com-

pared to the other two schemes. For tag, generation, our scheme takes less than

1 seconds for up to 8000 blocks. For the challenge process, it is considered that

460 blocks are enough for 99% detection rate when there is enough blocks and

the probability of data corruption is 0.01 [40, 32]. In our experiment, the number

of challenge blocks is 460. As the number of challenege blocks is fixed, the proof

generation and verification cost for each scheme remains constant as the file size

increases. However, the cost for proof generation in our scheme is less than 0.1

second and for other two schemes, it is around 5 seconds. For the proof verifica-

tion process, private verification of our scheme is better than Zheng’s scheme by

a factor of at least 1000. This is significant and important as verification of proof

is done by the client. The public verification cost of our scheme is comparable but

less than the verification cost of Yuan’s scheme.

In the second scenario, we fixed a file size of 5 MB with different block size.

We kept the rest of the parameters the same as in the first experiment. Since the

file size is the same and the block size is different, it changes the number of blocks

as well. For this experiment, we kept the number of challenge blocks equal to

460. We considered block sizes of 8 Kb to 64 Kb. The cost of tag generation for

Yuan’s scheme is more than 1000 seconds for each case. We did not put it on the

graph as it is already very high. As shown in the Figure 8.5, the cost of tag gener-

ation decreases as block size increases. However, it is negligible for our scheme as

compared to the other two schemes. As shown in the Figure 8.6, the cost of proof

generation increases as we increase the block size, and it is significantly lower for

our scheme for all block sizes. Even though the cost of proof verification is con-

stant and lower for our scheme and Yuan’s scheme as shown in the Figure 8.7,

124

private verification of our scheme is still better than Yuan’s scheme by a factor of

around 25.

8.6 Conclusion

This chapter presented an efficient proof of storage with data deduplication at

the block-level scheme, DPoS. The design of the DPoS is based on the idea of the

VIP− POPE scheme. In the VIP− POPE scheme, we are verifying the computation

over encrypted data. In DPoS, we consider the computation of proof of storage as

computation over data. If data gets modified, then the verification of computation

fails. Therefore, verification of the integrity of the data is equivalent to verification

of computation.

The DPoS scheme does not require any additional parameters for the data

deduplication process. The verification parameters used in the proof of storage is

used for the data deduplication process. Moreover, it is secure against duplicate

faking attacks and forgery attacks. We implemented DPoS with existing similar

schemes and observed that the proposed scheme DPoS is efficient and practical

compared to other schemes.

125

CHAPTER 9

Conclusion and Future Work

Verification of computation and integrity of stored data are important security

concerns in cloud-based services. Verification of computation is challenging, es-

pecially when the logic of computation is hidden from users. While designing

schemes related to these problems, one needs to consider several other features

like data privacy, user’s privacy, efficient storage system, etc. based on the appli-

cation. In this thesis, we presented our contribution to verifiable cloud comput-

ing and storage services. We have formally defined verifiable private polynomial

evaluation and IND-CFA, polynomial protection PP, and unforgeability security

models. We presented the first verifiable private polynomial evaluation scheme

PIPE, which is secure under standard security assumptions. We have provided

detailed security proofs for PIPE.

We provided a verifiable oblivious polynomial evaluation VIP− POPE scheme

for healthcare-related applications, where users encrypt data before sending it to

the cloud. We formally proved IND-CFA, CPI, and unforgeability properties of

pipetwo. We compared the proposed scheme with existing related schemes by

implementing all the schemes on the same platform. We observed that our pro-

posed scheme VIP− POPE outperforms other schemes significantly. To provide

privacy-preserving identification and verifiable computation in a single scheme,

we designed PriVC. The PriVC scheme verifies computation over encrypted data,

privacy-preserving user authentication, and user undeniability. We provided

IND-CFA, unforgeability, and non-repudiation security proofs. We have shown

that the proposed scheme PriVC is efficient by implementing our scheme with

realistic parameters.

126

We presented an efficient proof of storage scheme with block-level data dedu-

plication for data integrity in cloud storage service. We have shown that the pro-

posed scheme is secure against duplicate faking attacks and proof forgery attacks.

We proved our scheme’s efficiency by implementing our scheme and existing re-

lated schemes on the same platform. We observed that our proposed scheme is

significantly better than the rest of the scheme.

The thesis work opens up some future scope, verifying computation with a

multi-variable polynomial in a similar scenario. Inputs to the multi-variable poly-

nomial may come from the same user or different users. It will be more challeng-

ing to preserve data privacy and verify the computation simultaneously when

inputs to the polynomial come from two different users. Consider a scenario with

two variable polynomial f (x, y). One user sends x0, and another user sends y0 to

the cloud. The cloud computes f (x0, y0) along with two separate proof of compu-

tation, π1 and π2. The cloud sends (f (x0, y0), π1) to first user and (f (x0, y0), π2)

to second user. Each user does not know anything about the input of other users,

however, they still need to verify the computation. Another scope is in the area

of proof of storage with data deduplication over encrypted data. Our proposed

scheme DPoS considers plain data. Data deduplication over encrypted data re-

quires a convergent encryption method to ensure that each data owner can de-

crypt the data. However, existing proof of storage schemes does not work in such

a scenario. The challenge process is proof of storage involves a homomorphic

authenticator. Convergent encryption does not have homomorphic property as

it encrypts each data block with a different key, which can be challenging to ad-

dress.

127

References

[1] Gantz, J., Reinsel, D.: The digital universe decade–are you ready(2010).

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-

you-ready.pdf, last accessed on 16th August, 2019.

[2] Baudron, O., Fouque, P., Pointcheval, D., Stern, J., Poupard, G.: Practical

multi-candidate election system. In Proceedings of the Twentieth Annual ACM

Symposium on Principles of Distributed Computing (PODC), Newport, Rhode

Island, USA, pp. 274–283, 2001.

[3] Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user

Setting: Security Proofs and Improvements. In Proceedings of Advances in

Cryptology - EUROCRYPT, International Conference on the Theory and Ap-

plication of Cryptographic Techniques, Bruges, Belgium, pp. 259–274, 2000.

[4] Bultel, X., Das, M.L., Gajera, H., Gerault, D., Giraud, M., Lafourcade, P.: Verifi-

able Private Polynomial Evaluation. In Proceedings of Provable Security - 11th

International Conference (ProvSec), Xi’an, China, pp. 487–506, 2017.

[5] Canetti, R., Riva, B., Rothblum, G.N.: Two Protocols for Delegation of Com-

putation. In Proceedings of Information Theoretic Security - 6th International

Conference (ICITS), Montreal, QC, Canada, pp. 37–61, 2012.

[6] Choi, S.G., Katz, J., Kumaresan, R., Cid C.: Multi-Client Non-interactive Ver-

ifiable Computation. In Proceedings of Theory of Cryptography - 10th Theory

of Cryptography Conference (TCC), Tokyo, Japan, pp. 499–518, 2013.

[7] Diffie, W., Hellman, M.E.: New directions in cryptography. In IEEE Transac-

tions on Information Theory, 22(6), pp. 644–654, November 1976.

128

[8] Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing.

In Proceedings of 28th Annual Symposium on Foundations of Computer Sci-

ence, Los Angeles, California, USA, pp. 427–437, 1987.

[9] Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identifi-

cation and Signature Problems. In Proceedings of Advances in Cryptology -

CRYPTO, Santa Barbara, California, USA, pp. 186–194, 1986.

[10] Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials

and matrix computations, with applications. In Proceedings of the ACM Con-

ference on Computer and Communications Security (CCS), Raleigh, NC, USA,

pp. 501–512, 2012.

[11] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and

Oblivious Pseudorandom Functions. In Proceedings of Second Theory of Cryp-

tography Conference (TCC), Cambridge, MA, USA, pp. 303–324, 2005.

[12] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set

Intersection. In Proceedings of Advances in Cryptology- EUROCRYPT, Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, Interlaken, Switzerland, pp. 1–19, 2004.

[13] Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing:

Outsourcing Computation to Untrusted Workers. In Proceedings of Advances

in Cryptology - CRYPTO, 30th Annual Cryptology Conference, Santa Barbara,

CA, USA, pp. 465–482, 2010.

[14] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to

Polynomials and Their Applications. In Proceedings of Advances in Cryptol-

ogy - ASIACRYPT - 16th International Conference on the Theory and Applica-

tion of Cryptology and Information Security, Singapore, pp. 177–194, 2010.

[15] Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In Proceedings of Ad-

vances in Cryptology - CRYPTO, 20th Annual Cryptology Conference, Santa

Barbara, CA, USA, pp. 36–54, 2000.

129

[16] Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In Pro-

ceedings of the Thirty-First Annual ACM Symposium on Theory of Comput-

ing, Atlanta, Georgia, USA, pp. 245–254, 1999.

[17] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuos-

ity Classes. In Proceedings of Advances in Cryptology - EUROCRYPT, 17th in-

ternational conference on Theory and application of cryptographic techniques,

Prague, Czech Republic, pp. 223–238, 1999.

[18] Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation.

In Proceedings of Theory of Cryptography - 10th Theory of Cryptography Con-

ference (TCC), Tokyo, Japan, pp. 222–242, 2013.

[19] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly Practical

Verifiable Computation. In Proceedings of IEEE Symposium on Security and

Privacy (SP), Berkeley, CA, USA, pp. 238–252, 2013.

[20] Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in

public: Verifiable computation from attribute-based encryption. In Proceedings

of Theory of Cryptography - 9th Theory of Cryptography Conference (TCC),

Taormina, Sicily, Italy, pp. 422–439, 2012.

[21] Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable

Secret Sharing. In Proceedings of Advances in Cryptology - CRYPTO, 11th An-

nual International Cryptology Conference, Santa Barbara, California, USA, pp.

129–140, 1991.

[22] Fersh, M., Kiltz, E., Poettering, B.: On the Provable Security of (EC)DSA

Signatures. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS), Vienna, Austria, pp. 1651–1662, 2016.

[23] Xia, Z., Yang, B., Zhang, M., Mu, Y.: An Efficient and Provably Secure Pri-

vate Polynomial Evaluation Scheme. In Proceedings of Information Security

Practice and Experience - 14th International Conference (ISPEC) Tokyo, Japan,

pp. 595–609, 2018.

130

[24] Douceur, J.D., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming

space from duplicate files in a server-less distributed file system. In Proceedings

of IEEE International Conference on Distributed Computing System, Vienna,

Austria, pp. 617–624, 2002.

[25] Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: Server-aided encryp-

tion for deduplicated storage. In Proceedings of USENIX Security Symposium,

Washington, DC, USA, pp. 179–194, 2013.

[26] Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and

secure deduplication. In Proceedings of Advances in Cryptology — EURO-

CRYPT, 32nd Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Athens, Greece, pp. 296–312, 2013.

[27] Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-

locked encryption for lock-dependent messages. In Proceedings of Advances in

Cryptology — CRYPTO, 33rd Annual Cryptology Conference, Santa Barbara,

CA, USA, pp. 374–391, 2013.

[28] Bellare, M., Keelveedhi, S.: Interactive message-locked encryption and se-

cure deduplication. In Proceedings of 18th IACR International Conference on

Practice and Theory in Public-Key Cryptography (PKC), Gaithersburg, MD,

USA, pp. 516–538, 2015.

[29] Jiang, T., Chen, X., Wu, Q., Ma, J., Susilo, W., Lou, W.: Secure and Efficient

Cloud Data Deduplication With Randomized Tag. In IEEE transactions on in-

formation forensics and security, 12(3), pp. 532–543, October 2016.

[30] Garfinkel, S.L.: Public key cryptography. In IEEE Journal of Computer, 29(6),

pp. 101–104, June 1996.

[31] Storer, M.W., Greenan, K., Long, D.D.E., Miller, E.L.: Secure data deduplica-

tion. In Proceedings of 4th ACM International Workshop on Storage security

and survivability, Alexandria, Virginia, USA, pp. 1–10, 2008.

131

[32] Ateniese, G., Burns, R., Herring, J.: Provable data possession at untrusted

stores. In proceeding of the 14th ACM Conference on Computer and Commu-

nications Security (CCS), pp. 598–609, 2007.

[33] Mukundan, R., Madria, S., Linderman, M.: Efficient integrity verification of

replicated data in cloud using homomorphic encryption. In Springer Journal of

Distributed and Parallel Databases, 32(4), pp. 507–534, December 2014.

[34] Lin, C., Shen, Z., Chen, Q., Sheldon, F.: A data integrity verification scheme

in mobile cloud computing. In journal of Network and Computer Applications,

77, pp. 146–151, January 2017.

[35] Wang, Y., Wu, Q., Qin, B., Tang, S., Susilo, W.: Online/Offline Provable Data

Possession. In IEEE Transactions of Information Forensic and Security, 12(5),

pp. 1182–1194, January 2017.

[36] Li, J., Tan, X., Chen, X., Wong, D.S., Xhafa, F.: OPoR: Enabling Proof of Re-

trievability in Cloud Computing with Resource-Constrained Devices. In IEEE

Transactions on Cloud Computing, 3(2), pp. 195–205, October 2014.

[37] Tan, C.B., Hanafi, M., Hijazi, A., Lim, Y., Gani, A.: A survey on Proof of Re-

trievability for cloud data integrity and availability: Cloud storage state-of-the-

art, issues, solutions and future trends. In Journal of Network and Computer

Applications, 110, pp. 75–86, May 2018.

[38] Zheng, Q., Xu, S.: Secure and efficient proof of storage with deduplication. In

Proceedings of the second ACM conference on Data and Application Security

and Privacy (CODASPY), San Antonio, Texas, USA, pp. 1–12, 2012.

[39] Shin, Y., Koo, D., Hur, J., Yun, J.: Secure proof of storage with deduplica-

tion for cloud storage systems. In Multimedia Tools and Applications, Springer,

76(19), pp. 19363–19378, October 2017.

[40] Yuan, J., Yu, S.: Secure and Constant Cost Public Cloud Storage Auditing

with Deduplication. In Proceedings of IEEE conference on Communications

and Network Security, National Harbor, MD, USA, pp. 145–153, 2013.

132

[41] Vasilopoulos, D., Onen, M., Elkhiyaoui, K., Molva, R.: Message-Locked

Proofs of Retrievability with Secure Deduplication. In Proceedings of the 2016

ACM on Cloud Computing Security Workshop, Vienna, Austria, pp. 73–83,

2016.

[42] He, K., Chen, J., Du, R., Wu, Q., Xue, G., Zhang, X.: DeyPoS: Deduplicatable

Dynamic Proof of Storage for Multi-User Environments. In IEEE Transactions

on Computers, 65(12), pp. 3631–3645, April 2016.

[43] Juels, A., Kaliski, B.S.: Pors: proofs of retrievability for large files. In Proceed-

ings of the 14th ACM conference on Computer and communications security

(CCS), Alexandria, Virginia, USA, pp. 584–597, 2007.

[44] Shawish, A., Salma, M.: Cloud Computing: Paradigms and Technologies.

In Inter-cooperative Collective Intelligence: Techniques and Applications, 496,

pp. 39–67, August 2013.

[45] Guo, L., Zhang, C., Yue, H., Fang, Y.: PSaD: A privacy-preserving social-

assisted content dissemination scheme in DTNs. In IEEE Transactions on Mo-

bile Computing, 13(12), pp. 2903–2918, February 2014.

[46] Dropbox, accessed on Apr. 15, 2020. [Online]. Available:

https://www.dropbox.com/

[47] Google. Google Drive, accessed on Apr. 15, 2020. http://drive.google.com

[48] NetApp. Universal Storage System, accessed on Apr. 15, 2020. [Online].

Available: http://www.netapp.com/us/products/platform-os/dedupe.aspx

[49] Guo, L., Fang, Y., Li, M., Li, P.: Verifiable Privacy-preserving Monitoring for

Cloud-assisted mHealth Systems. In Proceedings of IEEE Conference on Com-

puter Communications (INFOCOM), Kowloon, Hong Kong, pp. 1026–1034,

2015.

[50] Pollard, J.: A monte carlo method for index computation (mod p). In Mathe-

matics of Computation, volume 32, pp. 918–924. Springer, 1978.

133

[51] Gajera, H., Naik, S., Das M.L.: On the security of “Verifiable privacy-

preserving monitoring for cloud-assisted mHealth systems”. In Proceedings of

International Conference on Information Systems Security (ICISS), Jaipur, In-

dia, pp. 324–335, 2016.

[52] Jones, R.: Nasty Adobe Bug Deleted $250, 000-Worth of Man’s Files, Law-

suit Claims. https://gizmodo.com/nasty-adobe-bug-deleted-250-000-worth-

of-mans-files-l-1830405390, last accessed on August 18, 2019.

[53] Raczkowski Paruch: Cloud computing in Poland.

https://www.lexology.com/library/detail.aspx?g=396a301b-6fea-49b5-ab68-

abf3c5041707, last accessed on August 18, 2019.

[54] Mohan, P., Sultan, S.: MediNet: A mobile healthcare management system

for the Caribbean region. In Proceedings of International Conference of Mobile

and Ubiquitous Systems: Networking & Services, Toronto, ON, Canada, pp.

1–2, 2009.

[55] Liu, C.H., Wen, J., Yu, Q., Yang, B., Wang, W.: HealthKiosk: A family-based

connected healthcare system for long-term monitoring. In Proceedings of IEEE

Conference on Computer Communications Workshops, Shanghai, China, pp.

241–246, 2011.

[56] Klasnja, P., Pratt, W.: Healthcare in the pocket: Mapping the space of mobile-

phone health interventions. In Journal of Biomedical Informatics, 45(1), pp.

184–198, February 2012.

[57] Chiarini, G., Ray, P., Akter, S., Masella, C., Ganz, A.: mHealth technologies

for chronic diseases and elders: A systematic review. In IEEE Journal on Se-

lected Areas in Communications, 31(9), pp. 6–18, August 2013.

[58] Pisa, P. S., Abdalla, M., Duarte, O. C. M. B.: Somewhat homomorphic

encryption scheme for arithmetic operations on large integers. In Proceed-

ings of Global Information Infrastructure and Networking Symposium (GIIS),

Choroni, Venezuela, pp. 1–8, 2012.

134

[59] Chenal, M., Tang, Q.: On Key Recovery Attacks Against Existing Some-

what Homomorphic Encryption Schemes. In Proceedings of 3rd International

Conference on Cryptology and Information Security in Latin America (LATIN-

CRYPT 2014), Florianópolis, Brazil, pp. 239–258, 2014.

[60] Lepoint, T., Tibouchi, M.: Cryptanalysis of a (Somewhat) Additively Homo-

morphic Encryption Scheme Used in PIR. In Proceedings of International Con-

ference on Financial Cryptography and Data Security, San Juan, Puerto Rico,

pp. 184–193, 2015.

[61] Knorr, E.: What is cloud computing? Everything you need to

know now. https://www.infoworld.com/article/2683784/what-is-cloud-

computing.html, last accessed on August 18, 2019.

[62] Pearson, S., Benameur, A.: Privacy, Security and Trust Issues Arising from

Cloud Computing. In Proceedings of IEEE Second International Conference on

Cloud Computing Technology and Science, Indianapolis, IN, USA, pp. 693–

702, 2010.

[63] https://aws.amazon.com/agreement/, last accessed on August 18, 2019.

[64] Certicom Research: Standards for Efficient Cryptography 2 (SEC 2).

http://www.secg.org/sec2-v2.pdf, last accessed on August 18, 2019.

[65] Li, Y., Yu, Y., Min, G., Susilo, W., Ni, J., Choo, K. K. R.: Fuzzy identity-based

data integrity auditing for reliable cloud storage systems. In IEEE Transactions

on Dependable and Secure Computing, vol 16(1), pp. 72–83, Feb 2017.

[66] https://www.sagemath.org/, last accessed on August 18, 2019.

[67] Amin, R., Islam, S. K. H., Biswas, G. P., Khan, M. K., Kumar, N.: A robust

and anonymous patient monitoring system using wireless medical sensor net-

works. In Future Generation Computer Systems, 80, pp. 483–495, March 2018.

[68] De Muth, J. E.: Basic statistics and pharmaceutical statistical applications.

Chapman and Hall/CRC, 2014.

135

[69] Personal info of 1.5m SingHealth patients, includ-

ing PM Lee, stolen in Singapore’s worst cyber attack.

https://www.straitstimes.com/singapore/personal-info-of-15m-singhealth-

patients-including-pm-lee-stolen-in-singapores-most, last accessed on August

2018, 2019.

[70] ElGamal, T.: A public key cryptosystem and a signature scheme based on dis-

crete logarithms. In IEEE Transactions on Information Theory, 31(4), pp. 469–

472, July 1985.

[71] Online Statistics Education: A Multimedia Course of Study

(http://onlinestatbook.com/). Project Leader: David M. Lane, Rice Uni-

versity.

[72] Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V.:Fully homomor-

phic encryption over the integers. In proceedings of 29th Annual International

Conference on the Theory and Applications of Cryptographic Techniques (EU-

ROCRYPT), Monaco and Nice, French Riviera, pp. 24–43, 2010.

[73] Basu, A., Sengupta, I., and Singh, J. K.: Secured cloud storage scheme us-

ing ECC based key management in user hierarchy. In Proc. of the Interna-

tional Conference on Information Systems Security (ICISS 2011), LNCS 7093,

Springer, pp. 175–189, 2011.

[74] Lin, H., Shao, J., Zhang, C., and Fang,Y.: CAM: Cloud-assisted privacy pre-

serving mobile health monitoring. In IEEE Transactions on Information Foren-

sics and Security, 8(6):985–997, 2013.

[75] Wang, W., Li, Z., Owens, R., and Bhargava, B.: Secure and efficient access to

outsourced Data. In Proceedings of the ACM workshop on Cloud Computing

Security (CCSW 2009), pp. 55–66, 2009.

[76] Katz, J., Yehuda, L.: Introduction to Modern Cryptography. CRC Press, 2007.

[77] Bellare, M.: A Note on Negligible Functions.

https://eprint.iacr.org/1997/004.pdf

136

[78] Chaum, D., Pedersen, T. P.: Wallet Databases with Observers. In Proceedings

of Annual International Cryptology Conference (CRYPTO), Santa Barbara, Cal-

ifornia, USA, pp. 89–105, 1992.

[79] Meadows, C.A.: Formal verification of cryptographic protocols: A survey. In

Proceedings of Advances in Cryptology — ASIACRYPT, 4th International Con-

ferences on the Theory and Applications of Cryptology Wollongong, Australia,

pp. 133–150, 1994.

[80] Blanchet, B.: CryptoVerif: A computationally-sound security protocol veri-

fier, 2017, [online] Available: http://cryptoverif.inria.fr/cryptoverif.pdf.

[81] Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected

equivalences for security protocols. In The Journal of Logic and Algebraic Pro-

gramming, 75(1), pp. 3–51, Feb-Mar 2008.

[82] Ateniese, G., Di Pietro, R., Mancini L. V., and Tsudik, G.: Scalable and effi-

cient provable data possession. In proceeding of the 4th International Confer-

ence on Security and privacy in communication networks, Istanbul, Turkey, pp.

1–10, 2008.

[83] Hur, J., Koo, D., Shin, Y., and Kang, K.: Secure Data Deduplication with

Dynamic Ownership Management in Cloud Storage. In IEEE Transactions on

Knowledge and Data Engineering, 28(11), pp. 3113–3125, Jun 2016.

[84] Ng, W. K., Wen, Y., and Zhu, H.,: Private data deduplication protocols in

cloud storage. In Proceeding of the 27th Annual ACM Symposium on Applied

Computing (SAC’12), Trento, Italy, pp. 441–446, 2012.

[85] Ding, W., Yan, Z., and Deng, R. H.: Secure Encrypted Data Deduplication

with Ownership Proof and User Revocation. In Proceeding of the International

Conference on Algorithms and Architectures for Parallel Processing, Helsinki,

Finland, pp. 297–312, 2017.

[86] Okayama, T.: Future gardening systemsmart garden. In Journal of Develop-

ments in Sustainable Agriculture, 9(1), pp. 47–50, 2014.

137

[87] Lloret, J., Garcia, M., Bri, D., and Sendra, S.: A wireless sensor network de-

ployment for rural and forest fire detection and verification. In Sensors, 9(11),

pp. 8722–8747, 2009.

138

Appendix A : PolyCommitPed Scheme

We recall the PolyCommitPed construction presented by Kate et al. [14].

Definition 34. PolyCommitPed = (setup, init, compute, verif) is a PPE scheme defined

as follows:

setup(λ): Using the security parameter λ, it generates two groups G and GT of prime

order p (providing λ-bit security) such that there exists a symmetric bilinear pairing

e : G × G → GT. Moreover, it chooses two generators g and h of G and picks

α ← Z∗p. It sets F = Z∗p, pub = (G, GT, p, e, g, h, (gα, . . . , gαk
), (hα, . . . , hαk

))

and returns (pub, F).

init(pub, f): Using f (x) = ∑k
i=0 ai · xi, this algorithm chooses a random polynomial of

degree k, r(x) = ∑k
i=0 ri · xi ∈ Zp[x] and sets sk = r(x). It computes C =

∏k
i=0(gαi

)ai(hαi
)ri = g f (α)hr(α) and sets vk = C. Finally, it returns (sk, vk).

compute(pub, vk, xi, sk, f): This algorithm computes ψi(x) = (f (x)− f (xi))/(x− xi)

and ψ̂i(x) = (r(x) − r(xi))/(x − xi). Let (γ0, . . . , γk) and (γ̂0, . . . , γ̂k)

be such that ψi(x) = ∑k
j=0 γj · xj and ψ̂i(x) = ∑k

j=0 γ̂j · xj. It computes

wi = ∏k
j=0(gαj

)γj(hαj
)γ̂j = gψi(α)hψ̂i(α). It sets π = (xi, r(xi), wi) and returns

(f (xi), π).

verif(pub, vk, xi, f (xi), π): If e(C, g) equals to e(wi, (gα)−xi)e(g f (xi)hr(xi), g), the algo-

rithm outputs 1, else it outputs 0.

139

Appendix B : Publications from the thesis

Published:

1. Gajera, H., Naik, S., Das, M. L.: On the security of “verifiable privacy-

preserving monitoring for cloud-assisted mhealth systems”. In Proceed-

ings of International Conference on Information Systems Security (ICISS),

pp. 324–335, 2016.

2. Bultel, X., Das, M. L., Gajera, H., Gerault, D., Giraud, M., Lafourcade, P.:

Verifiable private polynomial evaluation. In Proceedings of International

Conference on Provable Security (ProvSec 2017), pp. 487–506, 2017.

3. Gajera, H., Naik, S., Das, M. L.: MedCop: Verifiable Computation for Mobile

Healthcare System. In Proceedings of International Symposium on Security

in Computing and Communication (SSCC), pp. 471–482, 2018.

4. Gajera, H., Giraud, M., Gerault, D., Das, M. L., Lafourcade, P.: Verifiable and

Private Oblivious Polynomial Evaluation. In Proceedings of International

Conference on Information Security Theory and Practice (IFIP 2019), pp. 49–

65, 2019.

5. Gajera, H., Das, M. L.: Privc: Privacy Preserving Verifiable Computation.

In Proceedings of International Conference on COMmunication Systems &

NETworkS (COMSNETS), pp. 298–305, 2020.

6. Gajera, H., Das, M. L.: DeDOP: Deduplication with cross-server Ownership

over encrypted data. In Proceedings of Third ISEA Conference on Security

and Privacy (ISEA-ISAP), pp. 36–40, 2020.

140

7. Gajera, H., Das, M. L.: Fine-grained Data Deduplication and proof of stor-

age Scheme in Public Cloud Storage. In Proceedings of International Confer-

ence on COMmunication Systems & NETworkS (COMSNETS), pp. 237–241,

2021.

141

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Outsourced Computation
	Verifiable Computation
	Oblivious Polynomial Evaluation

	Outsourced Storage
	Data Dedupliaction and Proof of Storage

	Contribution of the thesis

	Background and Preliminaries
	Mathematical Notion
	Public Key Encryption
	Paillier Cryptosystem

	Homomorphic Encryption
	DGHV scheme

	Zero-Knowledge Proof
	Cryptographic Assumptions
	Feldman's Verifiable Secret Sharing
	Conclusion

	Inherent Limitations of Polynomial Evaluation
	Introduction
	PHR Computation and Verification
	System Setup
	Privacy-preserving Identity Verification
	Verifiable PHR Computation

	Security Weaknesses
	Insider Attack
	Outsider Attack

	Proposed Improvements
	Prevention of Insider Attack
	Prevention of Outsider Attack
	Performance Analysis

	Inherent Limitation
	Single Query Attack
	Conclusion

	Verifiable Private Polynomial Evaluation
	Introduction
	System Model for PPE
	Polynomial Protection
	Chosen Function Attack
	Unforgeability
	Security Against Collusion Attacks

	Verifiable Private Polynomial Evaluation
	Construction of PIPE
	Security Analysis

	Conclusion

	Verifiable and Private Oblivious Polynomial Evaluation
	Introduction
	Security Models for VPOPE
	Client's Privacy - Indistinguishability
	Chosen Function Attack
	Unforgeability
	Query Soundness

	PPE for Encrypted data
	Intuition
	Construction of VIP-POPE
	Security Analysis
	Experimental Results

	conclusion

	Privacy-Preserving Verifiable Computation
	Introduction
	Adversarial Assumptions

	Construction of the PriVC
	Security Analysis
	IND-CFA security
	Unforgeability

	Experimental Results
	Conclusion

	DeDuplication with Cross-server Ownership
	Introduction
	Preliminaries
	Scheme Description
	Assumptions
	Security Model

	The proposed scheme, DeDOP
	Security Analysis
	Conclusions

	Data accountability in cloud storage
	Introduction
	System Model and Assumptions
	System Model
	Assumptions
	Security Model

	Construction of DPoS
	Security Analysis
	Performance Analysis
	Experimental Results

	Conclusion

	Conclusion and Future Work
	References
	Appendix A: PolyCommitPed Scheme
	Appendix B: Publications from the thesis

