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Abstract

Exponential growth of biomedical literature poses different challenges in searching. To

address complex information needs of the users, rigorous semantic processing of biomedical

text is required. Biomedical information access emerges out as a new discipline for this

reason. Traditional information access methods of matching, ranking, entity processing,

entity-entity relationship processing, etc. are challenged in this domain. These are the

major building blocks used to frame queries that represent complex information need

in the area of biomedical and clinical information access. This thesis aims to do query

processing using different IR and bioNLP techniques and to study their effects in retrieval

and summarization.

Various techniques of biomedical query reformulations are carried out and compared

for biomedical document retrieval. Query expansion is one query reformulation technique

which was carried out using relevance feedback and pseudo relevance feedback for biomed-

ical document retrieval. Relevance feedback approach uses information regarding actual

relevant documents to the query for feedback while pseudo relevance feedback approach

does not have such information and uses top retrieved documents for feedback as they

are assumed to be relevant to the query. One combined approach of relevance feedback

and pseudo relevance feedback has been proposed which is based on feedback document

discovery and uses various classification and clustering techniques on biomedical docu-

ments to identify good document for feedback. This approach uses relevance feedback for

a number of documents and tries to learn relevance for other documents for feedback. This

feedback document discovery based query expansion approach shows improvement over

relevance feedback based query expansion technique for biomedical document retrieval.

An improved version of this feedback document discovery based query expansion approach

where the features of entities are weighted based on the type of the entities and query is also
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proposed which shows improvement of the document retrieval system over the previous

one without feature weighting.

Automatic query expansion techniques based on feedback relies on two feedback

sources: feedback documents selection and feedback terms selection. In biomedical do-

main, medical entities are more meaningful than surface words. Therefore the entity

based processing is necessary for any application in this domain. This thesis also includes

a survey on advances in biomedical entity identification which includes biomedical en-

tity identification process, various community identified challenges in the area, various

resources available, approaches for biomedical entity identification and comparison of

various techniques proposed in the literature for biomedical entity identification. UMLS is

one biomedical resource which brings together many health and biomedical vocabularies

and standards. UMLS contains biomedical entities with categorization and their relations

with semantic information. A novel query expansion technique which uses knowledge

from UMLS for feedback term selection is proposed where the queries are expanded using

biomedical entities. The proposed method considers UMLS entities from a query with their

related entities identified by UMLS and constructs query specific graph of biomedical enti-

ties for term selection. This query reformulation approach shows improvement over pseudo

relevance feedback and state-of-the-art UMLS based query reformulation approaches.

The amount of information for clinicians and clinical researchers is growing exponen-

tially. These documents are long and number of topical documents are more. To synthesize

the documents, text summarization attempts to reduce text so that the users can quickly

understand relevant source information. In the biomedical domain, various summarization

techniques are developed in recent years. Text summarization may be useful to medical

practitioners with their information and knowledge management tasks. In this work we

focus on query-focused biomedical text summarization where the summary should be

related to the query. The entity-based processing is incorporated in the summarization

process along with word-embedding based similarity. The aim of this work is to use query

reformulation in the summarization and see how it affects the summaries, whether expanded

queries help to get better summaries.
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CHAPTER 1

Introduction

Retrieving relevant information from biomedical text is a challenging area of research in

information access. Thousands of articles are being added to biomedical literature each

year and this large collection of publications can be useful for finding hidden biomedical

knowledge by applying information retrieval (IR) and Natural Language Processing (NLP)

technologies. The tasks of named entity recognition and relation and event extraction, sum-

marization, question answering, and literature based discovery are outlined in Biomedical

text mining: a survey of recent progress [129]. Biomedical text processing seeks special

attention due to the characteristics of biomedical terminologies. Major challenges in the

biomedical domain are handling complex, ambiguous, inconsistent medical terms and

their ad-hoc abbreviations. Many medical terms are very complex. The average length of

biomedical entities is much higher than other entities, which makes entity identification

tasks difficult in the biomedical domain. Medical entity extraction, normalization, and

relationship extraction are themselves research problems. They may help to develop better

retrieval and ranking of documents for medical search systems, biomedical text summa-

rization, biomedical text data visualization and other biomedical applications. There are

various types of biomedical queries: short questions, medical case reports, medical case

narratives, verbose medical queries, community questions and semi-structured queries.

Short questions:

Ex. HIV and the GI tract, recent reviews,

can radiation therapy cause a delayed pericardial effusion?

Verbose medical queries:
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Ex. Describe the procedure or methods for normalization procedures that are used for

microarray data,

Provide information about the role of the gene Apolipoprotein E (ApoE) in the

disease Alzheimer’s Disease

Semi-structured queries:

Ex. <disease>Colon cancer</disease>

<gene>KRAS (G13D), BRAF (V600E)</gene>

<demographic>52-year-old male</demographic>

<other>Type II Diabetes, Hypertension</other>

Medical case reports:

Ex. 76-year-old female with pmh of diastolic CHF, atrial fibrillation on coumadin, pre-

senting with Hct 16.9 and shortness of breath. She had routine labs drawn yesterday

at her PCP’s office. Once her hematocrit came she was called and instructed to come

to the ED. She is also reporting progressive shortness of breath worse with exertion

over the past two weeks. She denies fevers, chills, chest pain, palpitaitons, cough,

abdominal pain, constipation or diahrrea, melena, blood in her stool, dysuria, rash.

She reports orthopnea.

In the ED: vitals were 98.4 131/49, 60 24 100% 2L. ekg with NSR, twi in V1, no

significant change from previous. Repeat CBC showed Hct 16.1 with haptoglobin <

20, and elevated LDH to 315. In addition, her guaiac was reported as being positive.

Past medical history:

Hypertension

Atrial flutter/fibrillation, s/p cardioversion [**2797-1-27**]

Diastolic heart failure

Hysterectomy

Bilateral hip replacements

Social History:

Married for 53 years with four children. She is retired from the airport. She does not

smoke or drink.

Occupation: retired from airport

2



Drugs: denies

Tobacco: denies any history

Alcohol: denies

Medical case narratives:

Ex. An 82 man with chronic obstructive pulmonary disease, status-post bioprosthetic

atrial valve replacement for atrial stenosis, atrial fibrillation with cardioversion, right

nephrectomy for renal cell carcinoma, colon cancer status-post colectomy, presents

with 9 day history of productive cough, fever and dyspnea.

Community Questions:

Ex. I have some black patches on my back of the head and 2 patches on my neck area.

Initially they were small but now they have become large. It concerns me a lot. What

could be the reason for this problem? Please suggest me some solution.

This diverse nature of medical data introduces various challenges for biomedical infor-

mation retrieval and summarization systems. The queries searched on the web are either

short or verbose queries. Medical case reports and medical case narratives are the notes

generated at the time of admission of the patient in the hospital. Retrieval system which can

directly relate biomedical literature documents to such notes will be very much usefull to

the medical practitioner to better diagnose the patient by referring to the retrieved literature

articles related to patient’s case report.

1.1 Query processing in information retrieval and text

summarization

The classic information retrieval models have their own ways of processing queries and

matching the documents. The Boolean retrieval model [115] has the Boolean queries,

which include Boolean operators AND, OR, NOT and the model finds the documents where

those query terms are present. The extended Boolean retrieval models also include term

proximity operators through which users can specify that the two terms of the query must
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occur close to each other in the document [118]. The closeness here is considered as the

number of intervening words or sentences allowed.

In contrast with the Boolean retrieval model, ranked retrieval models process free text

queries rather than using operators in the queries. It finds the documents which are the

best match to the query by ranking them based on the similarity. The Boolean model only

considers the presence or absence of query terms and retrieves a set of matching documents.

There is no scale for grading or ranking those documents. However, the ranked retrieval

model considers the frequency of terms in the documents, scores the documents based

on the query terms present, and ranks them based on the score. The document scores

are determined based on how good match a document is to a query. The most popular

term weighting scheme is tf-idf which is based on term frequency and inverse document

frequency [116]. The tf-idf weight to term t in document d is given by:

(tf -idf )t,d = t ft,d × id ft

This tf-idf value is higher when the term occurs frequently within a few documents which

discriminates those documents from others. The value is lower when the term rarely occurs

in the document, or it occurs in most of the documents. When the term t is present in all

the documents, it gets the lowest tf-idf value. Thus, the scoring function is given by the

sum, over all query terms, of the tf-idf weights of each query term t in document d.

score(q, d) = ∑
t∈q

(tf -idf )t,d

The most popular ranked retrieval model is vector space model [119] where the queries

and the documents are represented as vectors in a common vector space. Each component

of the vector corresponds to each term in the dictionary with some weight, and it loses the

relative ordering of the terms in the documents. For dictionary terms that are not present

in the document, the weights for those terms are zero. The weights for present terms are

usually computed as tf-idf weights. However, a number of weighting schemes are there

for the vectors. The standard way to compute the similarity between two documents is to

get the cosine similarity of their vector representations and normalize it by the length of

the documents.Considering query as a small document and representing it as a vector, the
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cosine similarity between the normalized query vector and a normalized document vector

can be computed as:

sim(q, d) =
~V(q) · ~V(d)
|~V(q)| |~V(d)|

This similarity is being used as a measure to score the documents for the query. The

resulting scores can then be used to select the top-matching documents. The vector space

model assumes terms are statistically independent and hence it loses the order of the terms

in the document.

The language modeling [131] approach to IR provides a different view for document

ranking. It considers context to similar words and phrases using the surrounding terms. It

builds a probabilistic language model from each document, and the documents are ranked

based on the probability of generating a query from the model p(q|Md). This approach

models the idea that the document whose model is likely to generate the query is a good

match to the query. This is possible if the document contains the query terms often. A

general query likelihood language model ranks the documents by the probability of a

document p(d/q) which is interpreted as the likelihood of document d relevant to query q:

P(d|q) = P(q|d) P(d)
P(q)

where p(q) is the same for all the documents and p(d) is uniform across all the documents.

So p(q) and p(d) both can be ignored and the documents can be ranked by simply p(q|d)

i.e., the probability of generating query q from the document d. In a way, we can say

that the language modeling approach models the process of query generation and ranks

the documents by the probability that the query would be observed as a random sample

from the respective document model. Language models require proper smoothing while

calculating the probabilities for unseen words. A number of smoothing techniques are

there but it is difficult to choose an effective one. Usually, language model approaches use

simple unigram model, and still perform better than tf-idf and other ranking approaches.

The probabilistic language modeling approach BM25 [111] is being used as a standard

baseline in IR research. In our experiments also, we will use BM25 as the baseline result.

Divergence From Randomness (DFR) [5] is a nonparametric probabilistic framework

of IR, based on the amount of information in the documents. The DFR models weight
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the terms based on the divergence between a random term distribution and the actual term

distribution. It models the idea: "The more the divergence of the within-document term-

frequency from its frequency within the collection, the more the information carried by the

word t in document d. In other words, the term-weight is inversely related to the probability

of term-frequency within the document d obtained by a model M of randomness." [137].

weight(t|d) = k× ProbM(t ∈ d|Collection)

The above formula gives the weight for term t in document d based on divergence from

randomness. M represents the model of randomness used to calculate the probability and k

is defined by M.

These retrieval models usually suffer due to synonymy and polysemy present in the

text. In the text data collections, the same concept is being referred using different words

at different places but with the same meaning. That is known as synonymy. Sometimes,

the same phrase is being used in different contexts, which have different meanings of the

concept. That is known as polysemy. Synonymy and polysemy are the obstacles for any

information retrieval system to get all the matching documents for queries. Retrieval models

suffer due to such conditions. These problems can be addressed with the help of the query

refinement process either fully automatically or by keeping the user in the loop. There are

two types of query refinement processes: global methods and local methods. The global

query reformulation methods do not use a query or the results returned from the query to

get semantically similar terms. Global methods majorly include the corpus or external

resources in the process of reformulating query. The local query reformulation methods

make use of the query and the related documents matching the initial query. Relevance

feedback and pseudo relevance feedback (also known as blind relevance feedback) are

the local methods for reformulating the query. Relevance Feedback method involves the

user in the retrieval process to improve the final result. The user gives feedback on each

document of the initial set of results, whether it is relevant or non-relevant. This user

feedback gets incorporated in reformulating the query to get a better representation of the

information need and the system gives a revised set of results as final results. The relevance

feedback can have more than one iterations also. Relevance feedback technique finds a

new query vector~q that maximizes similarity with user-identified relevant documents and

6



minimizes the similarity with user-identifies non-relevant documents. If Cr is a set of

relevant documents and Cnr is a set of non-relevant documents, then

~qopt = argmax~q[sim(~q, Cr)− sim(~q, Cnr)]

Considering cosine similarity, the optimal query vector is:

~qopt =
1
|Cr| ∑

~d∈Cr

~d− 1
|Cnr| ∑

~d∈Cnr

~d

The optimal query is the vector difference between the centroids of the relevant and

non-relevant documents. However, the complete set of relevant documents is not known

for any real IR system. So with user query, partial knowledge of relevant and non-relevant

documents, the Rocchio algorithm [75] generates a new modified query~qm as :

~qm = α~q + β
1
|Dr| ∑

~d∈Dr

~d− γ
1
|Dnr| ∑

~d∈Dnr

~d

where~q is the original query vector, Dr is a set of known relevant documents, and Dnr is

a set of known non-relevant documents. α, β and γ are the weights associated with them.

For systems where only positive feedback is considered, γ will be set to 0. For most of the

systems, positive feedback turns out to be more important than negative feedback. So in

most IR systems, the values of β and γ are set such that β > γ. Relevance feedback in this

way can improve precision and recall both for the IR systems.

1.2 Community identified challenges in biomedical infor-

mation retrieval and summarization

Various community challenges in the area of biomedical information retrieval and biomedi-

cal text summarization are listed in Table 1.1.
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Table 1.1: Community challenges for biomedical document retrieval and summarization
over the years 2013-21.

Year Challenge Task

2003-2007 TREC Genomics Track1 Ad-hoc retrieval

2014-2016 TREC CDS Track2 Clinical Decision Support Track

2017-2020
TREC Precision Medicine

Track3

Biomedical articles and clinical trials

retrieval

2013-2016 CLEF eHealth4
Patient-centered Information Retrieval,

Cross-lingual Information Retrieval

2014 TAC BiomedSumm Track5 Biomedical Summarization Track

2013-2021 BioASQ6
Biomedical Semantic QA (IR and

summarization)

1.3 Unified Medical Language System

The Unified Medical Language System or UMLS (http://umls.nlm.nih.gov) is a set of files

and software that integrates many health and biomedical vocabularies and standards. It

distributes key terminology, classification, and coding standards to associated resources for

effective and inter-operable biomedical information systems. UMLS can be used to enhance

or develop various biomedical applications. This repository of biomedical vocabularies

is developed and maintained by the US National Library of Medicine (NLM). 2 million

names for some 900k concepts from more than 60 families of biomedical vocabularies

are integrated in UMLS, along with 12 million relations among those concepts. UMLS

metathesaurus [17] contains terms and codes from many vocabularies, including MeSH,

OMIM, NCBI Taxonomy, Gene Ontology, CPT, ICD-10-CM, LOINC, RxNorm, and

SNOMED-CT with their hierarchies, definitions, attributes, and relationships. Figure 1.1

shows higher-level view of UMLS composition.

1https://dmice.ohsu.edu/trec-gen/
2http://www.trec-cds.org/
3http://www.trec-cds.org/
4https://sites.google.com/site/clefehealth/
5https://tac.nist.gov/2014/BiomedSumm/
6http://www.bioasq.org/

8



Figure 1.1: Various subdomains integrated in UMLS [19].

In addition to data, the UMLS includes tools for customizing the Metathesaurus,

generating lexical variants, creating indexes, and extracting UMLS concepts from the text.

UMLS has a semantic Network that contains broad categories of semantic types used

to categorize concepts of metathesaurus along with semantic relations for categorization of

relations between concepts. Figure 1.2 shows a subset of UMLS semantic network.

Figure 1.2: A subset of UMLS semantic network [17].

The UMLS has been useful for many applications, including decision support sys-

tems, managing patient records, information retrieval (IR), and data mining. To get

effective access to knowledge in such applications, National Library of Medicine has devel-
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oped a program named Metamap7 to map the biomedical text to metathesaurus concepts.

Using Metamap, users can find UMLS concepts referred in the text. MetaMap uses a

knowledge-intensive approach based on symbolic, natural language processing (NLP) and

computational linguistic techniques.

1.4 Query reformulation in biomedical information retrieval

systems

The vast amount of available biomedical literature makes it difficult to access relevant

articles for the specific information need. To facilitate this, a biomedical literature search

engine called PubMed8 is available, which does keyword-based binary matching[112] to

access the MEDLINE database of abstracts and references on biomedical topics and life

sciences and is maintained by the United States National Library of Medicine (NLM) at the

National Institutes of Health (NIH). The biomedical document retrieval system will find

the relevant documents from the literature based on medical conditions, medical history,

and symptoms. It helps the medical practitioners to diagnose and treat the patient, also to

the people who want to know their medical condition before visiting the medical expert.

Such document retrieval system usually suffers from term mismatch problem, which is

due to multiple synonyms available. Also, the term abbreviations and term inconsistencies

obstacle the retrieval system in finding true relevant documents. To overcome the problems

of term mismatching, query reformulation is being used in the retrieval systems.

1.4.1 Query reformulation using feedback document discovery

Query reformulation is a process of reformulating the user query to improve retrieval

performance in IR systems. Query reformulation process includes adding more words to

the query, removing some words from the query, weighting the words according to its

importance in the query or all of it. Query reformulation aims to reduce query-document

mismatch and retrieve more relevant documents for better system performance. While

query expansion focuses on expanding the query using words or phrases with a similar

7https://metamap.nlm.nih.gov/
8https://www.ncbi.nlm.nih.gov/pubmed/

10



meaning or with some other statistical relation to the set of relevant documents in order

to have better system performance. Many times in the literature, query expansion is also

referred as query reformulation as it is a part of query reformulation. We also use query

reformulation and query expansion interchangeably.

Automatic query expansion, which has a long history in information retrieval, can be

useful in the biomedical domain. It has been seen in the literature that automatic query

expansion improves the system performance as compared to no expansion of the queries

[25]. There are mainly two techniques to automatic query expansion: Relevance Feedback

(RF) and Pseudo Relevance Feedback (PRF). Relevance Feedback based techniques use

only relevant documents as feedback documents from top retrieved documents, while

Pseudo Relevance Feedback based techniques use all the top retrieved documents as

feedback documents. Thus Relevance Feedback techniques require human judgements

to identify relevant documents from top retrieved documents, which increases the cost of

the retrieval system. The Pseudo Relevance Feedback based techniques do not require

any human judgement to identify relevant feedback documents. It assumes that all the

top retrieved documents are relevant and uses them as feedback documents. It has been

seen that RF based techniques outperform PRF based techniques for biomedical document

retrieval [120] but include the cost of human judgements. While PRF based techniques

are fully automated and they do not require any expensive external inputs in the retrieval

process, they still give a good improvement over original query processing.

Since Relevance Feedback is costly for a large number of top retrieved documents,

we attempt to reduce the cost and try to discover good feedback documents automatically.

In this thesis, we present feedback document discovery based approaches that learn to

identify good feedback documents using a little human intervention. The approach uses

human judgements for a small set of feedback documents, and then tries to learn to

identify true relevant documents from the rest of the documents. The documents identified

relevant are used for feedback, and query expansion is performed. Two approaches for

feedback document discovery based on classification and clustering are presented here.

Also, we compare the statistical and domain-specific representation of biomedical text

in classification as well as clustering modules. In the domain-specific representation, the

features are weighted based on the semantic types. We will describe the experiments
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performed for feedback document discovery and show that it helps to improve the retrieval

results. Domain specific feature weighting in feedback document discovery is helping in

finding good feedback documents.

1.4.2 Query reformulation using UMLS in retrieval

Incorporating external biomedical knowledge sources in the retrieval systems is an another

direction of research. The emergence of medical domain specific knowledge like UMLS

can contribute to better understand the biomedical text from documents and queries for the

retrieval system. Various approaches of information retrieval with UMLS Metathesaurus

have been reported: some with decline in the results[51] and some with gain in the

results[8]. Other biomedical resources like RxNorm and drug dictionary have also been

used to expand queries with other related terms in order to improve the representation of a

query for relevance estimation [34].

In biomedical information retrieval systems, meaningful query reformulation usually

amounts to selecting the right set of entities. Here in this present thesis, we propose a

new graph based query reformulation approach which selects expansion terms from the

query-specific graph of related entities from UMLS. We also study the effect of using

UMLS entities in query processing for clinical decision support systems. The proposed

graph-based query processing technique takes advantage of UMLS knowledge resource

to generate query-specific graph of related entities, and weights the entities based on

the statistics from the feedback documents in the expanded query. We will show that

the proposed method can give 4-5% significant improvement in the retrieval results for

biomedical documents.

1.5 Query reformulation for biomedical text summariza-

tion

Text retrieval and text summarization often gets interconnected in the information systems.

In the biomedical domain also, there are systems where the documents are summarized

before retrieval and there are systems where the summarization is applied on the documents
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after the retrieval. Kan et. al [56] has proposed the use of multidocument summarization

as a post-processing step in document retrieval. They examined the use of the summary

as a replacement to the standard ranked list and showed that query-based multidocument

summarization systems can help retrieval system better match the needs of the searcher.

Document summarization is also used in query expansion in the document retrieval process

where the document summaries are used to improve term selection. [65] The retrieval

documents are first summarized, the expansion terms are selected from the summaries and

then retrieval is performed. This query expansion from summaries was more effective than

the query expansion from whole documents.

1.5.1 Query-focused text summarization

Automatic text summarization of biomedical text is a promising method for helping clini-

cians and researchers to efficiently obtain and understand any topic by producing a summary

from one or multiple documents. In the biomedical domain, various summarization tech-

niques are developed in recent years. The research has focused on a hybrid technique

comprising statistical, language processing, and machine learning techniques [82]. Some-

times, there may exist a query for which the user seeks information and sometimes may

not. In the case of query-focused summarization, the generated summary should contain

the answer to the query. It is a usual scenario that users want exact answers along with

some related details for their medical related queries. Therefore, we are focusing here

on query-focused biomedical multi-document summarization which will be helpful to

clinicians and all other users who are seeking elaborated answers to their medical related

queries.

Query focused summarization and question answering are seen to be helping each other

frequently in the literature. An automatic generic document summarization system was

coupled with a question-answering system QAAS where summarization system is used

as a noise filter as well as summarizer for question answering system [140]. The authors

show that the system has been adapted to generate customized summary depending on the

specific question. Mori et al. [88] used question answering engine and integrated it with the

multidocument summarization system. The sentence importance for summarization was

calculated using the scores given by question answering system for responses to multiple
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questions. Abstractive summarization evaluation metric based on automatic question-

answering is proposed recently which checks for faithfulness by word overlap between

answer generated from summary and answer generated from the source document [39]

This metric has higher correlation with human faithfulness scores for highly abstractive

summaries.

1.5.2 Query reformulation using UMLS in summarization

Summarization systems rely on sentence similarity measures and therefore it is important

to incorporate biomedical entity knowledge in the sentence similarity measure. For query

focused biomedical text summarization, we explore various techniques of based on sentence-

sentence and query-sentence similarity measures. We also consider the query-specific graph

based query reformulation using UMLS in the summarization process and incorporate the

weights of the expanded entities in the similarity measures. We explore the word-embedding

based summarization techniques where sentence-sentence similarity is calculated using

the distances between words in the embedding space. Here we study the effect of query

expansion and entity based similarity measures for biomedical text summarization systems.

1.6 Main contributions

In this section, we provide a brief overview of the main contributions of this thesis. Query

expansion/reformulation is being actively researched upon for a long time. While Biomedi-

cal systems require domain specific knowledge manually in some or the other way, query

processing in biomedical domain needs to be revisited. This thesis focuses on query refor-

mulation techniques in biomedical applications with minimal human inputs. The primary

contributions are as follows:

• We propose a partial relevance feedback technique for query expansion in biomedical

document retrieval which is a combination of Relevance Feedback and Pseudo

Relevance Feedback. We extensively compare the three techniques varying the the

number of documents considered. We see the effect of changing the amount of

manual and pseudo inputs in partial relevance feedback.
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• Next we propose the feedback document discovery based query reformulation using

various classification and clustering techniques. The feedback document discovery

approach succeeds in reducing the cost of manual intervention in the feedback process

for query expansion.

• We improvise feedback document discovery based query reformulation with feature

weighting based on the type of the queries and semantic nature of the terms in

documents.

• We study the impact of UMLS on query reformulation. We propose a new query-

specific graph-based query reformulation method for biomedical document retrieval.

The technique utilizes knowledge resource UMLS with statistical information from

the feedback documents. Our proposed technique was able to outperform those query

expansion techniques which used UMLS.

• At the end, we propose entity based sentence similarity measures for query-focused

biomedical text summarization where we incorporate query reformulation into the

existing summarization techniques.

1.7 Thesis organization

This dissertation is organized as below. We discuss the existing approaches for biomedical

entity identification, query reformulation for biomedical document retrieval, and query

reformulation for biomedical text summarization in the second chapter. In the third chapter,

we discuss in detail two particular techniques of automatic query expansion, i.e. Relevance

Feedback and Pseudo Relevance Feedback. We highlight how the nature of the two

techniques affects the retrieval performance. We also present Partial Relevance Feedback

method which combines both Relevance Feedback and Pseudo Relevance Feedback. We

then explain the proposed feedback document discovery method for query reformulation.

We define it with classification and clustering based learning module incorporated in

Partial Relevance Feedback. We enhance this feedback document discovery based query

reformulation method with entity based feature weighting where generic types of entities are

considered to be more important. We show that feedback document discovery based query
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reformulation helps to identify good feedback documents. We also show that the simple

feature weighting technique can improve the system performance when incorporated with

feedback document discovery. Later, we explore the other framework Learning To Rank

which is a supervised approach to document ranking where query expansion is carried out.

Learning To Rank framework is also used in an unsupervised way for biomedical domain.

We also compare the query expansion using topic modeling with the query expansion using

Pseudo Relevance Feedback and show that the feedback based query expansion is more

promising.

In the fourth chapter, we discuss query reformulation methods that use UMLS. We

present the query expansion using UMLS concepts and MeSH terms. We combine the query

expansion technique using UMLS concepts with Pseudo Relevance Feedback as well as

Relevance Feedback techniques. We show that the UMLS concepts from queries help to get

better retrieval results. We present query expansion using manually identified biomedical

entities from queries with Pseudo Relevance Feedback and Relevance Feedback. We then

propose query-specific UMLS graph based query reformulation method which leverages

biomedical entities from queries and documents. We explain the graph creation method

using those entities, graph refinement method using their context and several methods of

entity weighting in the graph. We compare the proposed graph based query reformulation

method on biomedical datasets and show that it helps to improve the system performance.

In the fifth chapter, we discuss the existing text summarization techniques and compare

them in biomedical domain. We present a query-sentence matching based summarization

technique for query focused text summarization. We use query reformulation technique

based on UMLS in query-focused summarization. We incorporate the weights of the

biomedical entities from the reformulated queries into the similarity measures of the

summarization process. We also use word-embeddings in the summarization process where

the sentence-sentence similarity is defined based on the similarity between entities in the

embedding space. We compare these methods on biomedical question answering dataset

where the answers are generated using summarization on the biomedical text.

Finally, we conclude the thesis in the last chapter with possible directions for future

work.
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CHAPTER 2

Literature survey

In this chapter, we compare some of the existing techniques for biomedical entity iden-

tification. We discuss the approaches for query reformulation in biomedical document

retrieval systems and the effectiveness of UMLS based query reformulation techniques. We

also discuss the existing text summarization techniques for query-focused domain-specific

summarization.

2.1 Biomedical entity identification

Biomedical entity identification refers to the task of identifying and classifying biomedical

terms into predefined categories. It is an essential step for any biomedical natural language

processing system. The biomedical entities of major concern are Genes, Proteins, Drugs,

temporal expressions, Disease names, etc. As the biomedical knowledge grows, it adds

new medical terms and entities to the collection of biomedical entities, making the set

of biomedical entities incomplete at any point of time. Therefore, the string matching

based algorithms which use the dictionary of entities for Named Entity Identification are

no longer useful for biomedical domain as it is difficult to have an exhaustive dictionary.

Biomedical Entity Identification task involves:

- Identifying boundaries of the entities

- Assigning a preferred class to the entity

- Getting the preferred name or concept’s unique identifier of the entity

These steps are themselves individual tasks, sometimes referred as biomedical entity

detection, biomedical entity classification and biomedical entity normalization respectively.
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2.1.1 Biomedical Entity Identification task

IDENTIFYING BOUNDARIES OF THE ENTITIES:

Entity Identification in biomedical domain is a challenging task due to the characteristics

of medical entities. Biomedical entities are sometimes very complex, for example, ’nuclear

factor kappa-light-chain-enhancer of activated B cells’ and ‘NF-kB DNA binding with

electromobility shift assay’. The average length of biomedical entities is much higher

which makes the process of identifying boundaries of entities difficult.

BIO [105] is a popular scheme for identifying boundaries of entities. BIO stands for

Beginning, Inside, and Outside of the entity. The starting word of the entity is marked

as beginning of the entity and subsequent words of the entity are marked as inside of

entity. Other non-entity words are marked as outside. BIO tagged representation of the

text "nuclear factor kappa-light-chain-enhancer of activated B cells is found in almost all

animal cell types" is:

"Nuclear/B factor/I kappa-light-chain-enhancer/I of/I

activated/I B/I cells/I is/O found/O in/O almost/O all/O

animal/O cell/O types/O"

CLASSIFICATION OF BIOMEDICAL ENTITIES

After identifying the boundaries of the medical entities, a proper class should be assigned

to each entity. Biomedical entities are largely classified into the following categories: DNA,

RNA, Protein, Cell type, Cell line, Chemicals, Genes, Species, Diseases, Treatments, etc.

Physicians often use ad-hoc abbreviations for biomedical entities. They also use acronyms

and abbreviations which are ambiguous like ‘PSA’ can be ‘prostate specific antigen’ or

‘psoriasis arthritis’ or ‘poultry science association’. The meaning of all three entities is

different, but they share the same abbreviation. Thus, the correct expansion of such entity

is very important in order to classify the entity correctly.

BIOMEDICAL ENTITY NORMALIZATION

Biomedical terminology changes very rapidly which makes it inconsistent. For instance,

‘H1N1 influenza’, ‘swine influenza’, ‘SI’, ‘Pig Flu’ and ‘Swine-Origin Influenza A H1N1
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Virus’, all refer to the same entity. Such different representations of the same entity should

be mapped to a single entity. Due to these reasons, the biomedical entity identification task

implicitly needs entity normalization as a subtask which can also address abbreviations,

synonymy and polysemy. It requires external resources to map the entity to its preferred

representation or concept. Such knowledge sources include ontologies (ex. Gene Ontology

[30] ) and semantic networks (ex. UMLS Metathesaurus [19] ).

2.1.2 Community challenges and resources for entity identification

Community identified challenges in the area of biomedical entity identification and normal-

ization are listed in Table 2.1.

Table 2.1: Community challenges for biomedical entity recognition over the years 2004-17.

Year Challenge Task

2004 BioCreative I Identification of gene mentions [52, 151]

2006 BioCreative II
Gene mention tagging (GM) [130] & Gene normalization

(GN) [87]

2010 BioCreative III GN: The gene normalization task [72, 73]

2012 BioCreative IV
Chemical and Drug Named Entity Recognition

(CHEMDNER) [60, 61]

2013 CLEF eHealth
Task 1: Named entity recognition and normalization of

disorders [101]

2014 CLEF eHealth Disease/Disorder Template Filling [89]

2015 BioCreative V
CHEMDNER patents [63], Chemical-disease relation

(CDR) task [144]

2015 CLEF eHealth Clinical Named Entity Recognition [92]

2016 CLEF eHealth Multilingual Information Extraction [91]

2017 BioCreative V.5
Chemical Entity Mention recognition (CEMP) [100], Gene

and Protein Related Object recognition (GPRO) [100]

2017 CLEF eHealth Multilingual Information Extraction - ICD10 coding [93]

2019 n2c2
Open Health NLP (OHNLP) shared task on clinical concept

normalization [49]
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The standard evaluation measures used for Biomedical Entity Identification tasks are

Precision, Recall, and F-score. Various datasets, for example, GENIA [58], AIMed [21],

JNLPBA04 [59], NCBI disease corpus [37], CHEMDNER corpus [62], GENETAG [134],

BioCreative GM [130], i2b2 [141] etc. are used by the community for Biomedical Entity

Identification.

2.1.3 Approaches to biomedical entity identification

Biomedical Named Entity Recognition approaches mainly characterized into four groups

[6] :

1. Dictionary-based approaches [103, 132, 149] that try to find names of nomenclatures

in the literature.

2. Rule-based approaches [3, 66] that manually or automatically construct rules and

patterns to directly match words to candidate entities in the literature.

3. Machine learning approaches [156, 108, 113] that use machine learning techniques,

such as SVMs [31], CRFs [64], and neural networks to develop statistical models for

biomedical entity recognition.

4. Hybrid approaches [125, 138] that merge two or more of the above approaches of

Named Entity Recognition (NER).

Dictionary-based approaches use dictionary as a biomedical resource for the matching

of entity occurrences directly. It identifies the biomedical entities from the text using

string matching based algorithms. Dictionary-based methods utilize a comprehensive list

of biomedical terms to identify biomedical entities from biomedical text. This approach

highly suffers due to spelling mistakes, morphological variants of entities, and incomplete

biomedical resources. To deal with such situations, spelling variations based algorithms

and approximate string matching based algorithms have been proposed.

Rule-based approaches use pre-established rules based on the composition pattern of

biomedical entities. These approaches need rules to identify biomedical entities; hence

we need to define them properly. rule-based approaches give better performance than

dictionary-based approaches.
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Machine learning based approaches are becoming popular for biomedical entity identi-

fication. They use supervised statistical methods to identify entities. These methods are

pre-trained on a tagged dataset and learn to identify medical entities from new data. To train

these methods, we require gold-standard data created using manual intervention. Machine

learning based approaches give better results than dictionary-based and rule-based ap-

proaches. There are semi-supervised methods and also methods which create training data

with the use of bootstrapping. Classification-based approaches like SVM and sequential

approaches like Hidden Markov Model (HMM) [104], Maximum Entropy Markov Model

(MEMM) [16], Conditional Random Field (CRF) [64], and Long Short Term Memory

(LSTM) [53] are very much favorable for biomedical entity identification. Sequential

methods are even better than classification methods. The state-of-the-art biomedical entity

recognition models are based on CRF and LSTM.

Given a word sequence W = w1, w2, ..., wn and its label sequence L = l1, l2, ..., ln, the

conditional probability of a linear chain CRF is given in Equation 2.1.

P(L/W, λ) =
1
z

exp (
n

∑
i=1

m

∑
j=1

λj f j(li, li−1, w, i)) (2.1)

where f j(li, li−1, w, i) is a feature function; li and li−1 refer to current and previous

state, respectively; z is a normalization factor shown in Equation 2.2.

z = ∑
l

exp (
n

∑
i=1

m

∑
j=1

λj f j(li, li−1, w, i)) (2.2)

When any of these dictionary-based, rule-based and machine learning based approaches

are combined for biomedical entity identification, they are known as hybrid approaches.

Various methods proposed in the literature for biomedical entity identification in JNLPBA04

dataset are compared in Table 2.

GuoDong et al. [47] has explored various deep knowledge resources such as the name

alias, the cascaded entity name, dictionary, the alias list LocusLink, abbreviation resolution

and POS with SVM and achieved 72.55% F-measure for biomedical NER. Liao et al. [67]

has proposed generic classifier ensemble approach using SVM based on the principle that

contributing degrees of prediction classes among different classes in the same classifier are

different and they also differ among different classifiers. They compared their results with
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a single SVM classifier, vote-based SVM-classifier selection, HMM, MEMM and CRF and

achieved a maximum F-measure of 77.85% on JNLPBA04 dataset.

Table 2.2: Comparison of biomedical entity identification approaches on JNLPBA04 dataset
over the years 2004-2018.

Year Method F-measure

2004 HMM + SVM + deep knowledge resources [47] 72.55

2012 Generic classifier ensemble with SVM [67] 77.85

2012 SVM-CRF [156] 92.59

2013 Gimli [22] 72.23

2013 GA based feature selection for SVM and CRF [41] 75.17

2014 CRF + word representations [135] 71.39

2014 CRF + rules [106] 75.77

2015 CRF + MapReduce [136] 73.31

2015 GA based classifier-ensemble for SVM and CRF [114] 75.97

2015 Deep neutral network [150] 71.01

2016 Bidirectional LSTM (character + words) [108] 72.70

2017 BLSTM + WE + char + dropout + CRF [46] 75.87

2018 Bidirectional LM + transfer learning [113] 75.03

Zhu et al. [156] has used SVM to separate biological terms from non-biological terms

and CRFs to determine the types of biological terms. Their proposed hybrid approach

SVM-CRF has surprisingly achieved F-measure of 92.59% on JNLPBA04 data and 97.48%

on GENIA data. An open-source tool, Gimli [22] implements a machine learning technique

CRF with a rich set of features, which include morphological, orthographic, linguistic, and

domain knowledge features. It also has a post-processing module that does parentheses

correction and abbreviation resolution. Gimli shows 72.23% F-score on JNLPBA04

dataset. Ekbal et al. [41] have used genetic algorithm (GA) in feature selection process

for SVM and CRF classifiers with stacked based ensemble to combine the classifiers. On

JNLPBA04 dataset and GENETAG dataset, they achieved F-measure values of 75.17%

and 94.70%, respectively. Their approach gave 1%-2% increment over best individual

classifier, Majority-vote based ensemble and weighted vote-based ensemble.
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Tang et al. [135] investigated and combined three different types of word representation

features for Biomedical Entity Identification, including clustering-based representation,

distributional representation, and word embeddings. Their system achieved F-measure

80.96% 71.39% with 3.75% and 1.39% improvement when compared with the systems

using baseline features for BioCreAtIvE II GM and JNLPBA04 corpora, respectively. Raja

et al. [106] have combined machine learning based approach with rule-based approach.

Their generated post-processing rules were combined with CRF and achieved F-score of

75.77% on JNLPBA04 dataset.

Tang et al. [136] used a parallel optimization framework with CRF for biomedical

entity identification, achieving 73.31% F-score with short training time. Saha et al. [114]

used single objective optimization based classifier ensemble technique with SVM and CRF

which gives F-measure values 75.97% and 95.90%, achieving increments of 1.07% and

0.57% over the individual classifiers for JNLPBA04 and GENETAG dataset, respectively.

Yao et al. [150] used a multilayer neural network to continuously learn the represen-

tation of features, achieving 71.01% F-score. Rei et al. [108] has proposed a character

level neural model (bidirectional LSTM) in combination with word level model using

attention mechanism and achieved 72.70% F-score as compared to F-score 70.75% for

word level model. Gridach et al. [46] has achieved F-measure 75.87% using CRF on top of

bidirectional LSTM in combination with pretrained word embeddings and character-level

embeddings. Sachan et al. [113] has used transfer learning with bidirectional language

model for biomedical entity recognition and achieved F-measure 75.03%.

Crichton et al. [32] has studied multi-task learning across 15 biomedical NER datasets

using CNN with multiple output layers and observed an average improvement on multi-task

learning as compared to single task learning. Ju et al. [55] proposed a neural model to

identify nested entities by dynamically stacking NER layers. They used LSTM+CRF as a

neural model and this dynamic model achieved F-measure 74.7% and 72.2% on GENIA

and ACE2005 dataset, respectively.

Xu et al. [148] has used BiLSTM-CRF model NCBI Disease Corpus and achieved

80.22% F-score for disease named entity identification. Xu et al. [147] has proposed to

combine disease dictionary using bidirectional LSTM and CRF with a dictionary attention

layer for disease named entity recognition. Zeng et al. [153] showed the effect of bidirec-
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tional LSTM and CRF with word embedding and character embedding for drug named

entity recognition.

A comprehensive study [45] of dictionary-based concept recognition approaches for

biological entities (genes, proteins, chemicals, etc) including MetaMap, NCBO Annotator,

and ConceptMapper show that MetaMap has f-measure performance of 0.8 which is highest

after ConceptMapper while experimenting on 8 different ontologies.

Among these dictionary-based, rule-based, machine learning based and hybrid ap-

proaches, machine learning and hybrid approaches are more popular in the research com-

munity. Combined approaches based on neural networks and sequential machine learning

methods are outperforming other techniques on most biomedical entity recognition datasets.

There is a very popular program called MetaMap [7] which is developed by National

Library of Medicine (NLM) to identify UMLS concepts form the text. It uses a knowledge-

intensive approach based on symbolic, natural language processing (NLP) and compu-

tational linguistic techniques. Metamap has proved to be useful for many applications

including decision support systems, management of patient records, information retrieval

(IR) and data mining. It uses SPECIALIST minimal commitment parser and Xerox part-

of-speech tagger to identify lexicons and assign syntactic tags. Later it generates variants

for the lexicons with all its synonyms, acronyms, abbreviations, derivational variants, their

combinations and spelling variants. Metathesaurus candidates are retrieved based on the

string matching and evaluates them against the input text by calculating the strength of the

mapping.

The community challenges listed in Table 2.1 focused on entity/concept recognition

and normalization, separately. The challenge ShARe/CLEF eHealth 2013 Task 1 had two

subtasks: Task 1a which focused on disorder mention identification/recognition based on

Unified Medical Language System (UMLS) definition and Task 1b which was on disorder

mention normalization to an ontology. Similarly, n2c2 shared task only focused on clinical

concept normalization. By entity recognition, it means to identify existing entities in the

text while the process of normalization involves mapping these entities to their normalized

representation. The ShARe/CLEF eHealth 2013 Task 1b focused on mapping disorder

mentions to the closest equivalent Unified Medical Language System28 (UMLS) Concept

Unique Identifier (CUI) subset of SNOMED CT. While the shared task n2c2 focused
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on mapping the given text span/concept mentions to the corresponding concepts in the

SNOMED CT and RxNorm vocabularies from the UMLS. The shared task used the MCN

corpus[74] which maps all mentions of problems, treatments, and tests in the 2010 i2b2/VA

challenge data[141] to the Unified Medical Language System concepts.

2.2 Query reformulation for biomedical document retrieval

2.2.1 Feedback document discovery for query expansion

Query reformulation based on relevance feedback was first studied by Salton and Buckley

[117]. Various feedback models [4, 23] show the effectiveness of query reformulation

in various fields. The statistical query expansion techniques for clinical decision support

systems with pseudo relevance feedback and fusion of retrieval systems have been reported

in [1, 33, 36, 78, 123]. More recently, query expansion using local and global context

analysis is studied by Xu and Croft [146]. For clinical decision support retrieval, an

approach for pseudo relevance feedback based on proximity information is proposed in

[99].

Roberts et al. [110] provides an overview and analysis of state-of-the-art biomedical

literature retrieval. Oh and Jung [95] showed query expansion using external collections

in biomedical information retrieval. Sankhavara et al. [124] have fused automatic and

manual feedback for query expansion in biomedical information retrieval. Stokes et al.

[133] discusses the success factors for effective query expansion with respect to various

sources of term expansion such as corpus-based co-occurrence statistics, pseudo-relevance

feedback methods, and domain-specific and domain-independent ontologies.

One attempt is to learn the truly relevant documents for feedback by using minimum

human intervention. We compare partial relevance feedback approach with relevance

feedback and pseudo relevance feedback. The proposed feedback document discovery

approach uses human judgements for a small set of feedback documents, and then it tries

to learn to identify true relevant documents from the rest of the documents. Then the

documents identified relevant are used for feedback, and query expansion is performed.

Two approaches for this learning based on classification and clustering are presented here.

The feedback document discovery approach is modified with entity-based feature weighting
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for biomedical document retrieval systems.

2.2.2 Query reformulation using UMLS

Being the largest biomedical resource, UMLS has been used in various fields of biomedical

information retrieval and biomedical natural language processing systems. It has broad

categories of semantic types and semantic groups. Figure 2.1 shows the partial semantic

network of UMLS.

Figure 2.1: UMLS concepts with semantic types from UMLS semantic network. (Image
from source1.)

UMLS has also been used in other fields of research like medical image retrieval and

medical question answering [90, 127, 139]. In the biomedical IR field, research is being

done on developing conceptual relevance models based on UMLS [11, 29, 69, 143].

The UMLS thesaurus is reasonably used to solve the vocabulary mismatch problem

between a query and documents. This problem arises due to insufficient medical knowledge

of the users to formulate a query for their information need. To solve this problem, query

reformulation techniques based on UMLS have been reported in the literature. Some

techniques improve system performance while some techniques degrade it. Aronson and

Rindflesch [8] reported query expansion using UMLS, where the optimum relative weights

1http://snu-dhpm.ac.kr/pds/files/UMLS%20Applications_%ED%95%9C%EC%8A%B9%EB%B9%88.pdf
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for terms, phrases, and concepts were determined from a series of experiments and kept

fixed. Hersh et al. [51] used synonym relations and hierarchical relations like parent or

child from UMLS for query expansion and showed that it causes a decline in retrieval

performance generally but improves it for some queries. Query expansion strategies based

on UMLS metathesaurus proposed by Lu and Mu [71] show improvement in short queries

while decline in results for long queries on Medline plus dataset.

Demner-Fushman et al. [35] have reviewed recently renewed interest in advanced NLP

systems for clinical decision support. Balaneshin-Kordan et al. [12] show effectiveness

of Markov Random Fields-based retrieval model and an optimization method for jointly

weighting unigrams, ordered bigrams, and unordered bigrams of UMLS concepts. Palotti

and Hanbury [98] reformulated queries based on UMLS concepts present in the queries

and their triggered names and preferred names. They chose to weight concepts based on

exploration manually and then used pseudo relevance feedback based query expansion.

Audeh et al. [9] also used UMLS concepts and their preferred names with pseudo relevance

feedback. Zhan et al. [155] used UMLS concept’s variants to performed pseudo relevance

feedback based query expansion and their results are not as good as query expansion using

pseudo relevance feedback without using UMLS for query processing. Drosatos et al. [38]

used UMLS synonyms while processing queries. Agrafiotes and Arampatzis [2] augmented

queries with UMLS atoms and observed that adding larger number of words to query

usually leads to decreased performance while adding a few specific words works well.

Gurulingappa et al. [48] did query expansion using UMLS concepts filtered by semantic

types along with pseudo relevance feedback and reported better results compared to query

expansion without UMLS concepts. Wei et al. [145] used UMLS for query expansion

where they considered all string variants of concepts from UMLS. Wang et al. [142] used

specific types of relations from UMLS and added those concepts while processing the

query. Some of these works have not compared their results with any baseline, so it is

difficult to see how much they improved. Most of these previous works are limited to the

participating teams of TREC CDS tracks.

A bayesian approach to incorporate different types of biomedical knowledge bases

into information retrieval systems for clinical decision support in precision medicine has

been proposed in [13]. This approach uses UMLS to obtain candidate query expansion
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concepts from biomedical knowledge bases and outperforms state-of-the-art baselines for

2017 TREC precision medicine task. McNamee [81] has used UMLS for disease term

expansion for article retrieval in precision medicine.

Martinez et al. [76] has proposed query expansion technique which uses personalized

pagerank on graph representation of UMLS for electronic health record retrieval, which

improved results over baselines, while our proposed method does query expansion based

on query-specific graph representation from UMLS for clinical decision support systems,

which makes the query reformulation process more specialized to the information need

represented in the query and uses statistics from feedback documents. The literature shows

that UMLS has been used in various ways to do query expansion and it is proven to be

useful in their particular ways. However, there is no generalized method proposed which

uses all the features of UMLS knowledge for query expansion.

Zhang and He [154] proposed query expansion using diagnosis predicted from external

resources where they used UMLS for medical concepts extraction and reported better

results with diagnosis prediction technique for query expansion in the document retrieval

for clinical decision support systems. Apart from these, we couldn’t find many works that

use UMLS in query processing for clinical decision support systems.

2.3 Query reformulation for biomedical text summariza-

tion

A lot of research has been carried out in the field of biomedical text summarization. A recent

survey on the research in text summarization in biomedical domain highlights that natural

language processing and hybrid techniques were prominently used for summarization of

multiple documents [82]. Text summarization methods using knowledge resources like

UMLS have achieved a lot of interest currently in biomedical domain.

The graph-based summarization using named-entities has been presented as EntityRank

algorithm, which considers information about named entities in the process of multi-

document graph-based summarization [128]. Their results show that the addition of

named-entity information increases the performance of graph-based summarizers in the

biomedical domain. Moradi and Ghadiri [85] studied different feature selection approaches
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for identifying important concepts in a biomedical text and showed that the concept

based summarization method outperforms other frequency-based, domain-independent,

and baseline methods.

Query based biomedical text summarization techniques which rely on external ontology

knowledge resource UMLS are proposed in the literature. The ontology-based method of

biomedical text summarization performed better when compared to keyword-only methods

[24, 27, 42, 44, 86]. Sarker et al.[126] observed that an approach for query-focused summa-

rization of medical text based on target-sentence-specific and target-sentence-independent

statistics along with domain-specific features outperforms other baseline and benchmark

summarization systems.

Text summarization approaches often rely on the similarity measure to model the

text documents. Azadani and Ghadiri [10] has studied the impact of the similarity mea-

sure on the performance of the summarization methods in biomedical domain and found

that exploiting both biomedical concepts and semantic types improvises the quality of

summaries.

Here we propose query-specific biomedical text summarization methods, which use

ontology knowledge source UMLS [19] to generate a graph of candidate biomedical entities

from the query and their semantically connected entities. The importance values of the

entities from the query graph are then incorporated in the similarity measure of existing

summarization approaches for selecting sentences.
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CHAPTER 3

Feedback Document Discovery based query re-

formulation in retrieval

In this chapter, we explore various query reformulation techniques in biomedical domain.

We start with query expansion using pseudo relevance feedback and relevance feedback.

We examine their effects and experiment with partial relevance feedback method for query

expansion. Later we discuss a feedback document discovery method for query reformulation

and it’s effect on document retrieval. We will also include feature weighting in feedback

document discovery process. A different approach of document retrieval, learning to rank,

is also carried with query expansion. This chapter also includes basic experiments of query

expansion using topic modeling.

3.1 Automatic Query Expansion With Pseudo Relevance

Feedback & Relevance Feedback

Query Expansion (QE) is the process of reformulating a query to improve retrieval perfor-

mance and efficiency of IR systems. QE is proved to be efficient in the case of document

retrieval [25]. It helps to overcome vocabulary mismatch issues by expanding the user

query with additional relevant terms and re-weighting all terms. Query Expansion which

uses the top retrieved relevant documents is known as Relevance Feedback. It requires

human judgment to identify relevant documents from top retrieved documents. In contrast,

pseudo Relevance Feedback technique assumes the top retrieved documents to be relevant

and uses them as feedback documents. It does not require human input at all. Here we focus

on biomedical document retrieval system where biomedical literature articles are retrieved
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against queries. First we see the effect of Pseudo relevance feedback and relevance feedback

based query processing on the retrieval results. The Query expansion based approaches for

biomedical domain gives better results as compared to retrieval without query expansion

[123].

For our experiments, we have used the datasets from TREC Clinical Decision Support

(CDS) track1, which contain millions of full-text biomedical articles from PMC (PubMed

Central)2. The medical case reports are used as queries which are case narratives of

patients’ medical condition. The retrieval system has to retrieve biomedical articles related

to patient’s medical case report from the available collection. The statistics of CDS 2014,

2015 and 2016 datasets are given in Table 3.1 below.

Table 3.1: TREC Clinical Decision Support (CDS) track DATA statistics.

Dataset CDS 2014 CDS 2015 CDS 2016

#Documents 733,138 733,138 1,255,259

Collection size 47.2 GB 47.2 GB 87.8 GB

#Total terms 1,600,536,286 1,600,536,286 2,954,366,841

#Unique terms 3,689,317 3,689,317 4,564,612

#Topics 30 30 30

#Rel. docs/Topic 112 150 182

Query forms
Description,

Summary

Description,

Summary

Note,

Description,

Summary

Avg. length of Description (words) 75.8 80.4 119.9

Avg. length of Summary (in words) 24.6 20.4 33.3

Avg. length of Note (in words) - - 239.4

Avg. Doc length (in words) 2183 2183 2353

The topics in the datasets are medical case reports which describe information such as

a patient’s medical history, the patient’s current symptoms, tests performed by a physician

to diagnose the patient’s condition, the patient’s diagnosis, and finally, the steps taken by
1http://www.trec-cds.org/
2http://www.ncbi.nlm.nih.gov/pmc/
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a physician to treat the patient. For each case report, there are two versions: description

and summary. Description contains all medical details about the patient, while summary

is a shorter version of the case report. The topics and relevance judgements address three

most common generic clinical question types: ‘diagnosis’, ‘test’, and ‘treatment’. Some

example topic summaries from CDS 2015 dataset are shown in Table 3.2.

Table 3.2: Example queries from CDS 2015 dataset.

No. Type Summary

1 diagnosis
A 44-year-old man with coffee-ground emesis, tachycardia,

hypoxia, hypotension and cool, clammy extremities.

11 test

A 56-year old Caucasian female presents with sensitivity to

cold, fatigue, and constipation. Physical examination

reveals hyporeflexia with delayed relaxation of knee and

ankle reflexes, and very dry skin.

21 treatment
A 32-year-old male presents with diarrhea and foul-smelling

stools. Stool smear reveals protozoan parasites.

The retrieved documents should be helpful to diagnose the patient for diagnosis type of

topics, suggest test to be performed for test type of topics and for treatment type of topics,

documents should suggest best treatment for the patient described in the topic. The topics

for CDS 2014 and CDS 2015 are medical case narratives manually created by experts, while

electronic health records of admission notes curated by physicians from the MIMIC-III

data were used as topics in CDS 2016 dataset [109].

We first see the effect of standard query expansion in biomedical full-text article retrieval

for patient’s medical case reports. The initial experiment compares the retrieval results of

standard query expansion techniques with the retrieval results without query expansion.

The retrieval with original queries is done using retrieval models BM25 [111] and In_expC2

[5]. Query expansion is also experimented considering the same retrieval models. The

retrieval model BM25 is a ranking function based on probabilistic retrieval framework,

while In_expC2 is a probabilistic model based on Divergence From Randomness (DFR).

These models are available in Terrier IR Plateform [96], developed by School of Computing
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Science, University of Glasgow. We have used Terrier3 for all the experiments on document

retrieval.

Here, we consider two standard query expansion techniques: Relevance Feedback (RF)

and Pseudo Relevance Feedback (PRF). The feedback based query expansion process was

described in Section 1.1. The relevance feedback technique requires user’s feedback on the

initial retrieval results, modifies the initial query using the feedback, and re-retrieves the

documents based on the modified query. On the other hand, pseudo relevance feedback

does not require user’s input for modifying the queries. It assumes that all the top retrieved

documents are relevant and considers all of them as relevant documents while selecting

expansion terms and modifying the query. The query modification process is same for both

relevance feedback and pseudo relevance feedback, while the difference lies in the process

of choosing feedback documents. Since relevance feedback requires domain experts and

medical experts’ availability is sparse and costly, the research question here is "Can we

reduce human efforts in relevance feedback?". To address the question, we first examine the

gap lying between relevance feedback and pseudo relevance feedback in terms of retrieval

performance for biomedical domain.

The experiments of pseudo relevance feedback based query expansion and relevance

feedback based query expansion are carried out on CDS 2014, CDS 2015, and CDS 2016

datasets and the results are compared with standard retrieval (without query expansion).

The retrieval is done using BM25 and In_expC2 models on the summary part of the

query. For pseudo relevance feedback and relevance feedback, the top 10 and top 50

retrieved documents are considered as feedback documents while modifying the queries.

For the evaluation, Mean Average Precision (MAP) and Inferred Normalized Discounted

Cumulative Gain (infNDCG) [152] are used as the performance measures.

Mean average precision for a set of queries is the mean of the average precision scores

for each query which is given by the following:

MAP =
∑Q

q=1 AP(q)

Q
3http://terrier.org
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where Q is the number of queries and AP is the average precision which is given by

AP =
∑n

i=1 P@i ? rel(i)
∑n

i=1 rel(i)

where, rel(i) is 1 if the item at rank i is a relevant document, zero otherwise. P@i is a

precision measure which corresponds to the number of relevant documents among the top i

retrieved documents.

The evaluation measure infNDCG is an inferred normalized discounted cumulative gain

which is calculated as the following:

NDCGp =
DCGp

IDCGp

where,

DCGp =
p

∑
i=1

rel(i)
log2(i1)

and

IDCGp = DCGp of the ideal result list of documents sorted by relevance.

The higher the value of evaluation measure, the better the retrieval result of the system.

MAP and infNDCG results of the experiments are given in Table 3.3 and Table 3.4,

respectively.

Table 3.3: Results (MAP) of Query Expansion with PRF and RF.

MAP CDS 2014 CDS 2015 CDS 2016

BM25 0.1071 0.1147 0.0620

BM25+PRF10 0.1542 (+4.71%) 0.1805 (+6.58%) 0.0769 (+1.49%)

BM25+PRF50 0.1502 (+4.31%) 0.1693 (+5.46%) 0.0800 (+1.80%)

BM25+RF10 0.2050 (+9.79%) 0.1941 (+7.94%) 0.0984 (+3.64%)

BM25+RF50 0.2768 (+16.97%) 0.2283 (+11.36%) 0.1456 (+8.36%)

In_expC2 0.1096 0.1201 0.0632

In_expC2+PRF10 0.1623 (+5.27%) 0.1725 (+5.24%) 0.0754 (+1.22%)

In_expC2+PRF50 0.1580 (+4.84%) 0.1752 (+5.51%) 0.0745 (+1.13%)

In_expC2+RF10 0.2117 (+10.21%) 0.1895 (+6.94%) 0.0992 (+3.60%)

In_expC2+RF50 0.2587 (+14.91%) 0.2191 (+9.90%) 0.1275 (+6.43%)
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The result improves with PRF and RF based query expansion giving statistically

significant results (p < 0.05) as compared to no expansion. Here RF is giving 5-6%

more improvement than PRF over no expansion. We argue that biomedical retrieval should

be done keeping human in the loop. A small human intervention can give 6% increment

to retrieval accuracy in biomedical domain. The results of relevance feedback with 50

documents are better than the results with 10 documents, while the results of pseudo

relevance feedback are better with 10 feedback documents than 50 documents.

Table 3.4: Results (infNDCG) of Query Expansion with PRF and RF.

infNDCG CDS 2014 CDS 2015 CDS 2016

BM25 0.1836 0.2115 0.1710

BM25+PRF10 0.2522 (+6.86%) 0.2830 (+7.15%) 0.2047 (+3.37%)

BM25+PRF50 0.2301 (+4.65%) 0.2658 (+5.43%) 0.2021 (+3.11%)

BM25+RF10 0.3355 (+15.19%) 0.3028 (+9.13%) 0.2428 (+7.18%)

BM25+RF50 0.4186 (+23.50%) 0.3478 (+13.63%) 0.3094 (+13.39%)

In_expC2 0.2002 0.2132 0.1785

In_expC2+PRF10 0.2724 (+7.22%) 0.2734 (+6.02%) 0.2018 (+2.33%)

In_expC2+PRF50 0.2482 (+4.80%) 0.2725 (+5.93%) 0.2076 (+2.91%)

In_expC2+RF10 0.3426 (+14.24%) 0.3015 (+8.83%) 0.2450 (+6.65%)

In_expC2+RF50 0.4019 (+20.17%) 0.3390 (+12.58%) 0.3219 (+14.34%)

To see the effect of the number of documents considered for feedback, query expansion

with RF and PRF is performed varying it from 5 to 200. Considering retrieval models

BM25 and In_expC2, MAP and infNDCG results for PRF and RF based query expansion

with the number of feedback documents from 5 to 200 (5,10, 15, 20, 21, 30, 40, 50, 75,

100, 150 1nd 200) are shown in Table 3.5 for CDS 2014 dataset. Table 3.6 and Table 3.7

show the results of similar experiments on CDS 2015 and CDS 2016 datasets, respectively.

The results of query expansion using PRF and RF are better than the results of original

queries without query expansion as shown in Table 3.5, Table 3.6 and Table 3.7 for all three

datasets. As we increase the number of feedback documents, the result of RF increases. In

the case of PRF, the result increases with the increment in number of feedback documents

up to a certain level and starts decreasing later with more feedback documents.
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Figure 3.1: Feedback documents vs retrieval performance MAP(on left) and infNDCG(on
right) of query expansion using PRF and RF over BM25 on CDS 2014.

Figure 3.2: Feedback documents vs retrieval performance MAP(on left) and infNDCG(on
right) of query expansion using PRF and RF over In_expC2 on CDS 2014.

Figure 3.3: Feedback documents vs retrieval performance MAP(on left) and infNDCG(on
right) of query expansion using PRF and RF over BM25 on CDS 2015.
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Figure 3.4: Feedback documents vs retrieval performance MAP(on left) and infNDCG(on
right) of query expansion using PRF and RF over In_expC2 on CDS 2015.

Figure 3.5: Feedback documents vs retrieval performance MAP(on left) and infNDCG(on
right) of query expansion using PRF and RF over BM25 on CDS 2016.

Figure 3.6: Feedback documents vs retrieval performance MAP(on left) and infNDCG(on
right) of query expansion using PRF and RF over In_expC2 on CDS 2016.
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The plots of these results are shown in Figures 3.1-3.6. Figure 3.1 and Figure 3.2 show

feedback documents vs. retrieval performance, in terms of MAP (plot on left) and infNDCG

(plot on right), for PRF and RF on CDS 2014 when using BM25 and In_expC2 retrieval

models respectively. Similarly, Figure 3.3 and Figure 3.4 show the feedback documents vs.

retrieval performance plots for BM25 and In_expC2, respectively, for CDS 2015 dataset.

For CDS 2016, such plots are shown in Figure 3.5 and Figure 3.6.

These plots, shown in Figures 3.1-3.6, indicate that the PRF and RF are promising tech-

niques for biomedical document retrieval. There is a significant gap between performances

of PRF and RF and it is consistent across all three datasets. The research opportunity lies

here to achieve the performance of RF but with less human efforts. For CDS 2014, CDS

2015, and CDS 2016 datasets, PRF is giving better results than the original queries while RF

is giving the best results. In both the techniques, feedback documents matter considerably.

As we increase the feedback documents, the retrieval performance using RF based query

expansion increases. The more we provide manual feedback, the better we get the results.

However, getting manual feedback is very costly. In case of PRF, manual feedback is not

required as the feedback documents are chosen directly from top retrieved documents. So,

as we increase the number of feedback documents, the retrieval performance increases

initially, but later it starts decreasing with more feedback documents. The plots show that

the optimal range of number of feedback documents is around 10-25 for CDS 2014, CDS

2015, and CDS 2016 datasets. After that, the performance starts decreasing, but still, it is

always better than the performance of original queries (without query expansion).

3.2 Partial Relevance Feedback for Query Expansion

To get the benefits of RF with less human effort (reduced cost) and the benefits of PRF with

good performance accuracy, we try to combine both and introduce a novel method partial

relevance feedback (RFp). Figure 3.7 shows the trade-off between PRF and RF.
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Figure 3.7: Partial Relevance Feedback: Trade-off between PRF and RF.

The partial relevance feedback technique combines feedback documents from RF and

PRF both and does query expansion with the new set of feedback documents. PRF uses

top retrieved documents for feedback, and RF uses user identified relevant documents

for feedback, while partial relevance feedback method uses few user-identified relevant

documents as well as some top retrieved documents for feedback. The top retrieved

documents are divided into two parts. For the initial subset of the documents, user’s

input about the relevancy of the documents is considered, and only relevant documents

are included in the feedback. The second subset of top retrieved documents is assumed

to be relevant and used directly for feedback. Thus, partial relevance feedback is about

combining PRF and RF, reducing the cost of manual intervention, and making the feedback

based query expansion process more automatic. The process of partial relevance feedback

considering top n retrieved documents does relevance feedback on first k documents, k<n,

and pseudo relevance feedback on later n-k documents. Then it performs query expansion

using relevant documents from first k documents and all n-k documents.

The partial relevance feedback based query expansion is performed for biomedical

document retrieval on CDS datasets. The results of partial relevance feedback are compared

with PRF and RF. Table 3.8 and Table 3.9 shows the result comparison on CDS 2014, CDS

2015, and CDS 2016 datasets in terms of MAP and infNDCG, respectively.
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Table 3.8: MAP results of Query Expansion with partial relevance feedback.

MAP CDS 2014 CDS 2015 CDS 2016

BM25 0.1071 0.1147 0.0620

BM25+PRF50 0.1502 0.1693 0.0800

BM25+RFp_20_50 0.1743 0.1762 0.0874

BM25+RF50 0.2768 0.2283 0.1456

In_expC2 0.1096 0.1201 0.0632

In_expC2+PRF50 0.1580 0.1752 0.0745

In_expC2+RFp_20_50 0.1809 0.1834 0.0806

In_expC2+RF50 0.2587 0.2191 0.1275

Table 3.9: InfNDCG results of Query Expansion with partial relevance feedback.

infNDCG CDS 2014 CDS 2015 CDS 2016

BM25 0.1836 0.2115 0.1710

BM25+PRF50 0.2301 0.2658 0.2021

BM25+RFp_20_50 0.2667 0.2722 0.2210

BM25+RF50 0.4186 0.3478 0.3094

In_expC2 0.2002 0.2132 0.1785

In_expC2+PRF50 0.2482 0.2725 0.2076

In_expC2+RFp_20_50 0.2814 0.2823 0.2256

In_expC2+RF50 0.4019 0.3390 0.3219

Here, the top 50 documents are considered for feedback in all the methods. For partial

relevance feedback, out of 50 documents, first 20 documents are considered with manual

feedback and next 30 documents are considered with pseudo relevance. So, n=50 and k=20

is set for the experiments. On all three datasets, the results of partial relevance feedback are

higher than the pseudo relevance feedback but lower than the relevance feedback which

was expected to be.

The experiments of partial relevance feedback are performed varying the size of subset

for which the user’s input was considered. The number of documents considered for user’s

input was 5, 10, 15, 20, 25, 30, 40, 50, 75, and 100. These results of partial relevance
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feedback, RF, PRF, and results without query expansion, using BM25 retrieval model, are

plotted in Figure 3.8, Figure 3.9 and Figure 3.10 for CDS 2014, CDS 2015, and CDS 2016

datasets, respectively.

Figure 3.8: No. of feedback documents vs retrieval performance(MAP, infNDCG) plot for
partial relevance feedback based query expansion on CDS 2014.

Figure 3.9: No. of feedback documents vs retrieval performance(MAP, infNDCG) plot for
partial relevance feedback based query expansion on CDS 2015.

Figure 3.10: No. of feedback documents vs retrieval performance(MAP, infNDCG) plot
for partial relevance feedback based query expansion on CDS 2016.
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Figure 3.8 shows the plots of the number of feedback documents considered in partial

relevance feedback vs. retrieval performance in terms of MAP and infNDCG for CDS 2014

dataset. Figure 3.9 and Figure 3.10 show the similar plots for CDS 2015 and CDS 2016

datasets, respectively. From all these plots, we can say that the results of partial relevance

feedback are better than the results of pseudo relevance feedback.

Figure 3.11: Effect of k on retrieval performance(MAP and infNDCG) on CDS 2014.

Figure 3.12: Effect of k on retrieval performance(MAP and infNDCG) on CDS 2015.

Figure 3.13: Effect of k on retrieval performance(MAP and infNDCG) on CDS 2016.
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To see the effect of k, we have experimented with varying the value of k used in partial

relevance feedback. Keeping the value of n fix and changing the value of k from 5 to 200,

the experiments are performed on all three datasets, and the results are presented in Figure

3.11, Figure 3.12, and Figure 3.13. Figure 3.11 shows the plots of value of k vs retrieval

performance in terms of MAP and infNDCG on CDS 2014 dataset, keeping n=50, 100

and 200 fix at a time. Similarly, the plots of varying k vs retrieval performance for CDS

2015 and CDS 2016 datasets are shown in Figure 3.12 and Figure 3.13, respectively. These

results indicate that MAP and infNDCG increases with the value of k.

The higher the value of k, the better the performance of partial relevance feedback that

means if we can incorporate more input from user in partial relevance feedback, we can get

better system. For CDS 2014 dataset, we got good results if we set the value of k as one

third of the value of n. For n=50, we start getting improvement from k=15. Similarly, we

start getting improvement from k=30 for n=100 and from k=60 for n=200. For CDS 2015

and CDS 2016 datasets, we get the good improvements when k is half the value of n. We

can see that the curves go up from k=25 for n=50, from k=50 for n=100 and from k=100 for

n=200 in Figure 3.12 and Figure 3.13. That means we need approximately 30%, 50%, and

50% manual intervention in partial relevance feedback for CDS 2014, CDS 2015, and CDS

2016 datasets, respectively. Later, as we increase the the amount of manual intervention,

we get more improvement but with the increased cost.

3.3 Feedback Documents Discovery based Query Refor-

mulation

Query expansion methods largely rely on feedback documents and feedback terms. Au-

tomatic query expansion methods based on pseudo relevance feedback uses top retrieved

documents as feedback documents. Those feedback documents might not be all relevant.

The feedback document set might contain non-relevant docs along with truly relevant docu-

ments. The retrieval system gets hurt with these non-relevant documents in the feedback

set. They become noise in the feedback system. Relevance feedback method discards

non-relevant documents from feedback but the process is costly while partial relevance

feedback is a combination of both, PRF and RF. Here, we propose a modified version of
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partial relevance feedback method with a learning module that helps to identify relevant

documents and discard the non-relevant documents for feedback.

This query reformulation approach is based on feedback document discovery which

learns to identify relevant documents for query expansion from top retrieved documents

[122]. The main aim is to use a small amount of human judgement and learn pseudo

judgement for other documents to reformulate the queries. This approach is based on

the learning method. If we have human judgements available for some of the feedback

documents, then it will serve as training data for the learning module which will later

be used to classify other documents as relevant or non-relevant. The documents were

represented as a collection of bag-of-words, the TF-IDF scores of the words represent

features, and human relevance scores provide the classes. Here, we propose two approaches

of feedback document discovery. The first approach has a classification module (described

in Algorithm 1), while the second approach has classification followed by clustering

modules (described in Algorithm 2). The second approach is a two-step process where

clustering is applied to relevant class, predicted by the classification method, to filter out

more non-relevant documents. These methods only use relevant-predicted documents as

feedback documents in query expansion.

3.3.1 Feedback document discovery using classification

The first proposed algorithm is based on classification. If we have human judgements

available for some of the feedback documents, then it will serve as training data for

classification. The documents are represented as a collection of bag-of-words, the TF-IDF

scores of the words represent features, and human relevance scores provide the classes.

Using these data, a classification module is trained and later used to predict the relevance

of other top retrieved feedback documents. This approach of feedback document discovery

using classification is given below.
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Algorithm 1: Using classification

1: for each query Q do

2: N = Total number of top retrieved documents to consider for feedback

3: k = Number of top retrieved documents for which human judgements are available

4: l = N-k; Number of top retrieved documents for which human judgements are not

available

5: DN - set of N top retrieved documents {d1, d2, ..., dN}

6: Dk - set of k top retrieved documents for which human judgements are available

{d1, d2, ..., dk}

7: Dl - set of l=N-k top retrieved documents for which human judgements are not

available {dk+1, dk+2, ..., dN}

8: DF - set of feedback documents

9: DF = {di; relevance o f di > 0, di ∈ Dk}

10: Train a classifier C on Dk using relevance as a class label and generate model Mc

11: for each document dj in Dl, k + 1 ≤ j ≤ N do

12: Predict the relevance rj of dj using the trained model Mc

13: if rj > 0 then

14: DF = DF ∪ {dj}

3.3.2 Feedback document discovery using classification and cluster-

ing

The second algorithm is an extension of the first algorithm. The analysis of results of the

first algorithm shows that the feedback document set still contains some non-relevant docs,

and they are responsible for insignificant improvement. This approach further removes

non-relevant documents from the relevant document class identified by the classification

approach. The idea is to perform clustering on the relevant identified documents with the

number of clusters equals to two: one for actually relevant documents and another for non-

relevant documents. This approach of feedback document discovery using classification
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and clustering is given below.

Algorithm 2: Using classification and clustering

1: for each query Q do

2: N = Total number of top retrieved documents to consider for feedback

3: k = Number of top retrieved documents for which human judgements are available

4: l = N-k; Number of top retrieved documents for which human judgements are not

available

5: DN - set of N top retrieved documents {d1, d2, ..., dN}

6: Dk - set of k top retrieved documents for which human judgements are available

{d1, d2, ..., dk}

7: Dl - set of l=N-k top retrieved documents for which human judgements are not

available {dk+1, dk+2, ..., dN}

8: DF - set of feedback documents

9: DF = {di; relevance o f di > 0, di ∈ Dk}

10: Train a classifier C on Dk using relevance as a class label and generate model Mc

11: DR = φ, DNR = φ

12: for each document dj in Dl, k + 1 ≤ j ≤ N do

13: Predict the relevance rj of dj using trained model Mc

14: if rj > 0 then

15: DF = DF ∪ {dj}

16: else

17: DNR = DNR ∪ {dj} \\ DR contains relevant predicted documents from Dl

18: Perform K-means clustering on DR with k=2 (relevant docs and non-relevant docs)

19: DF = DF ∪ {documents f rom relevant docs cluster}

Here, K-means clustering is used with k=2. Since the convergence of K-means cluster-

ing depends on the initial choice of cluster centroids, the initial cluster centroids are chosen

as the average of relevant documents’ vectors and the average of non-relevant documents’
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vectors from training data for relevant and non-relevant document representing classes,

respectively.

3.3.3 Experiments

The query expansion considers top N retrieved documents for feedback. Here, we have

considered the top 250 documents, from which a subset of top 50 documents is used in

training, i.e. human judgements for top 50 documents are used in training, and the rest

of 200 documents are taken for testing data. The relevance is predicted for those 200

documents and only relevant predicted documents are then used for feedback. The result of

relevance feedback using top 50 documents is used as baseline. All the computed results

will be compared with the baseline.

The experiments are performed using nine different classifiers for classification in the

first algorithm. Table 3.10 shows the results of feedback document discovery with various

classifiers in terms of MAP score for CDS 2014 dataset. Neural-Net gives the best result

among all nine classifiers. Also, the result of classification with Nearest-Neighbors is

comparable to the baseline.

Table 3.10: Results of feedback document discovery using different classifiers on CDS
2014 dataset.

CDS 2014

MAP classification

Baseline (RF_50) 0.2768

Nearest-Neighbors 0.2761

Linear-SVM 0.2736

RBF-SVM 0.2736

Gaussian-Process 0.2736

Decision-Tree 0.2496

Random-Forest 0.2733

Neural-Net 0.2790

AdaBoost 0.2618

Naive-Bayes 0.2614
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The classification results are not significant with the baseline results. We investigated

the results and found that the relevant classified documents in relevance class are not all

actually relevant. The feedback document set still contains some irrelevant documents

(misclassification). For all the 30 queries of CDS 2014, Nearest-Neighbour classified

625 documents as relevant out of all 200*30 documents. Out of 625 documents used

for feedback, 244 documents were actually relevant while the other 381 documents were

wrongly classified as relevant. So, these 381 irrelevant documents are noise to the system.

The second approach takes this matter into consideration and further refines the feedback

document set by performing 2-cluster clustering on 625 documents. Manually removing

381 irrelevant documents from feedback document set shows significant improvement over

baseline. The results of manually removing false-classified documents from feedback set

and feedback document discovery using classification+clustering are shown in Table 3.11.

Table 3.11: Results of feedback document discovery using different classification and
clustering on CDS 2014 dataset.

CDS 2014

MAP classification

classification +

manually removing

false relevant docs

classification +

clustering

Baseline (RF_50) 0.2768 0.2768 0.2768

Nearest-Neighbors 0.2761 0.2815 (p = 0.048) 0.2794

Linear-SVM 0.2736 0.2760 0.2750

RBF-SVM 0.2736 0.2760 0.2750

Gaussian-Process 0.2736 0.2762 0.2753

Decision-Tree 0.2496 0.2788 0.2725

Random-Forest 0.2733 0.2760 0.2747

Neural-Net 0.2790 0.2808 0.2790

AdaBoost 0.2618 0.2806 0.2741

Naive-Bayes 0.2614 0.2792 0.2661

The same experiments are performed on CDS 2015 and 2016 datasets. The results of

both the algorithms using six different classifiers are shown in Table 3.12.
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Table 3.12: Results of feedback document discovery on CDS 2015 and CDS 2016 dataset.
Bold represents highest result. ? represents statistically significant result with p<0.05.

CDS 2015 CDS 2016

MAP classification
classification +

clustering
classification

classification +

clustering

Baseline (RF_50) 0.2283 0.2283 0.1456 0.1456

Nearest-Neighbors 0.2234 0.2324? 0.1456 0.1459

Decision-Tree 0.2065 0.2218 0.1138 0.1370

Random-Forest 0.2130 0.2281 0.1450 0.1458

Neural-Net 0.2295 0.2299 0.1460 0.1466

AdaBoost 0.2092 0.2213 0.1255 0.1345

Naive-Bayes 0.2172 0.2269 0.1436 0.1468

The results of nearest-neighbors and neural-net, using both the approaches (classifi-

cation and classification + clustering), are better than the baseline for CDS 2014, CDS

2015, and CDS 2016 datasets. The second algorithm with nearest-neighbors and clustering

performs best for all three datasets. For CDS 2015 dataset, the result of nearest-neighbors

with clustering is statistically significant as compared to baseline. For CDS 2016 dataset,

both the algorithms perform similar to the baseline. Here, feedback document discovery

method used manual judgements for 50 documents only. Figure 3.14 shows the query wise

difference in infNDCG results between Neural net(classification + clustering) and RF_50.

Figure 3.14: Query wise performance difference between feedback document discovery
and relevance feedback in terms of infNDCG.
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The positive difference means that the query expansion using feedback document

discovery performs better than the query expansion using relevance feedback. The negative

difference means that the query expansion using relevance feedback gives better results. Out

of 30 queries of CDS 2014, two queries degrade the performance score of infNDCG, but

seven queries improve while others have same scores. On an average, feedback document

discovery helps in query expansion to get good feedback documents using a small amount

of human intervention.

3.4 Feature weighting in finding feedback documents for

query expansion

The Feedback document discovery method is reinforced with feature weighting to see the

effect of biomedical features on feedback based query expansion. This proposed approach

uses NLP based feature weighting technique with classification and clustering method

on the documents and identifies relevant documents for feedback. The documents are

represented using Term Frequency and Inverse Document Frequency (TF-IDF) features

which are weighted according to the type of query and the type of the terms.

3.4.1 Entity based feature weighting

For classification and clustering in feedback document discovery, we propose a feature

weighting technique which is based on the semantic type of the entities. The TF-IDF

features used in feedback document discovery methods (described in Section 3.3.1 and

Section 3.3.2) are weighted based on ’problem’, ’test’, and ’treatment’ types of biomedical

entities.

In this technique, we are using Clinical Named Entity Recognition system (CliNER)

[18], which is an open-source natural language processing system for named entity recog-

nition in clinical text of electronic health records. CliNER is implemented as a sequence

classification task, where every token is predicted IOB-style [107] as either: Problem,

Test, Treatment, or None. We have trained it on i2b2 2010 dataset [141] which includes

discharge summaries from Partners Health-Care, from Beth Israel Deaconess Medical

53



Center, and from University of Pittsburgh Medical Center. These discharge summaries are

manually annotated for concept, assertion, and relation information. The model is trained

on the documents of i2b2 dataset to identify medical entities of type ‘problem’, ‘test’ and

‘treatment’ from them. It has precision 0.795 on 2010 i2b2 dataset. This trained model

is then applied on CDS documents to identify those three types of concept entities. The

features related to these entities in CDS documents are weighted, thus giving importance to

these entities while learning to identify feedback documents. The proposed two approaches

for feature weighting on these entities are as follows:

FW1 : The first approach does feature weighting of medical concepts based on the type

of the query. There are three types of queries in the dataset: ‘Diagnosis’, ‘Test’, and

‘Treatment’. For queries of a particular type, only features of the entities of the same type

are weighted. The feature of term t is determined as follows:

f (t)q =



w ∗ TF ∗ IDF if q is of type diagnosis and t is a problem type term

w ∗ TF ∗ IDF if q is of type test and t is a test type term

w ∗ TF ∗ IDF if q is of type treatment and t is a treatment type term

TF ∗ IDF otherwise

For ‘Diagnosis’type of queries, only ‘Problem’type of entities are weighted by weight

w. For ‘Test’type of queries, only ‘Test’type of entities are weighted by weight w. For

‘Treatment’type of queries, only ‘Treatment’type of entities are weighted by weight w. In

this way, it gives importance to those entities which are categorically similar to the query.

FW2: The second approach does feature weighting of medical concepts irrespective of

the type of query. For all the queries of type ‘Diagnosis’, ‘Test’and ‘Treatment’, All the

entities of types ‘Problem’, ‘Test’, and ‘Treatment’are weighted by weight w. The feature

of term t is determined as follows:

f (t)q =

w ∗ TF ∗ IDF if t is either problem or test or treatment type term

TF ∗ IDF otherwise
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3.4.2 Experiments and Results

The experiments of feature weighting in feedback document discovery based query expan-

sion are performed on CDS datasets. Three years data has been used in the experiments

i.e., CDS 2014, CDS 2015, and CDS 2016 dataset. The query expansion considers top

N retrieved documents for feedback. Here, we have considered top 250 documents, from

which the set of top 50 documents are used as training i.e., human judgements for top 50

documents are used in training, and the rest of 200 documents are taken for testing data.

The relevance is predicted for those 200 documents and only relevant predicted documents

are then used for feedback. The result of relevance feedback using top 50 documents is the

baseline for other results.

The results of two feature weighting techniques along with the results of original queries

without expansion, query expansion with relevance feedback, and query expansion with

feedback document discovery without feature weighting (only using TF-IDF) for CDS

2014 dataset are given in Table 3.13 in terms of MAP and infNDCG score.

Table 3.13: Results of feedback document discovery with feature weighting on CDS
2014. Percentage improvements with respect to PRF are shown in brackets. ? represents
statistically significant results.

CDS 2014

MAP infNDCG

TF-

IDF
FW1 FW2

TF-

IDF
FW1 FW2

Original Queries 0.1071 0.1836

Queries+PRF50 0.1502 0.2301

Queries+RF50 0.2768 (84%) 0.4186 (82%)

Nearest neighbors 0.2761 0.2754 0.2747 0.4177 0.4161 0.4140

Nearest neighbors + k-means 0.2794 0.2778 0.2777 0.4220 0.4168 0.4195

Neural net 0.2790 0.2784 0.2787 0.4235 0.4243 0.4240

Neural net + k-means
0.2790

(86%)
0.2788

0.2807?

(87%)

0.4218

(83%)
0.4225

0.4269?

(86%)

The similar result comparisons for CDS 2015 and CDS 2016 dataset are given in Table
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3.14 and Table 3.15, respectively.

Table 3.14: Results of feedback document discovery with feature weighting on CDS
2015. Percentage improvements with respect to PRF are shown in brackets. ? represents
statistically significant results.

CDS 2015

MAP infNDCG

TF-

IDF
FW1 FW2

TF-

IDF
FW1 FW2

Original Queries 0.1147 0.2115

Queries+PRF50 0.1693 0.2658

Queries+RF50 0.2283 (35%) 0.3478 (31%)

Nearest neighbors 0.2234 0.2212 0.2234 0.3518 0.3480 0.3518

Nearest neighbors + k-means 0.2244 0.2214 0.2299 0.3541 0.3519 0.3506

Neural net 0.2295 0.2297 0.2284 0.3528 0.3514 0.3492

Neural net + k-means
0.2299

(36%)

0.2302

(36%)
0.2301

0.3529

(33%)
0.3525

0.3526?

(33%)

Table 3.15: Results of feedback document discovery with feature weighting on CDS
2016. Percentage improvements with respect to PRF are shown in brackets. ? represents
statistically significant results.

CDS 2016

MAP infNDCG

TF-

IDF
FW1 FW2

TF-

IDF
FW1 FW2

Original Queries 0.062 0.1710

Queries+PRF50 0.0800 0.2021

Queries+RF50 0.1456 (82%) 0.3094 (53%)

Nearest neighbors 0.1456 0.1463 0.1458 0.3113 0.3124 0.3113

Nearest neighbors + k-means 0.1459 0.1470 0.1467
0.3127

(55%)

0.3158?

(56%)
0.3139

Neural net 0.1460 0.1467 0.1463 0.3073 0.3136 0.3143

Neural net + k-means
0.1466

(83%)

0.1471

(84%)
0.1458 0.3100 0.3132? 0.3124?
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The results of feature weighting in feedback document discovery show improvement

with neural net + k-means over relevance feedback. For CDS 2014, the results of FW2 with

neural net + k-means are significantly improved than the results of relevance feedback. For

CDS 2015 dataset, infNDCG result of FW2 with with neural net + k-means is significantly

better than the result of relevance feedback. Feedback document discovery with feature

weighting helps to identify good relevant documents for feedback which contain related

biomedical entities. For example, in the query ‘58-year-old woman with hypertension and

obesity presents with exercise-related episodic chest pain radiating to the back’, the feature

weighting in feedback document discovery identified important entities like ‘pulmonary

embolism’, ‘cardiac enzymes’, ‘stress-induced cardiomyopathy’, etc.. from manually

identified relevant documents and classified the other documents based on these entities. It

managed to remove the documents which are containing other terms like ‘procedure’, ‘tol-

erance’, ‘permit’ etc... more often than the identified biomedical entities of type ‘problem’,

‘test’ and ‘treatment’.

3.5 Learning To Rank

Learning To Rank (LTR) [70] is an application of machine learning in the construction

of ranking models for information retrieval systems where retrieval problem is modeled

as a ranking problem. LTR framework requires training data of queries and documents

matching them together with the relevance degree of each match. The learning algorithm

uses the training data and produces a ranking model which computes the relevance of

documents for actual queries.

The LTR framework is applied on CDS 2014 dataset, where the features for query

document pairs are considered as per the features of OHSUMED LETOR dataset [102].

These features are mainly based on TF, IDF, and their normalized versions. Since the

whole document pool is too large, document pooling has been done and top K documents

(retrieved by BM25) for each query are used for feature extraction. SVMRank [54] is used

here as a machine learning framework.

Table 3.16 shows the results of LTR when the features are computed on Title+Abstract

part of the documents and Title+Abstract+Content of the documents (i.e. full documents).
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With these variations of features, the experiments are carried out on original queries, queries

with UMLS concepts and queries with manually identified medical concepts.

Table 3.16: Results of Learning to Rank with various features.

infNDCG
OHSUMED features

on T, A and T+A

OHSUMED features

on T, A and C

Original Queries 0.0970 0.1769

Queries + UMLS 0.0833 0.1556

Queries + Manual 0.1049 (8%) 0.1785 (1%)

All these LTR experiments require human judgement for training. To overcome the

need of manual judgement, pseudo judgements were also considered where out of k training

documents, Top k/2 documents are considered to be relevant and other k/2 documents to be

non-relevant. Table 3.17 shows the results of LTR trained using human judgements and

pseudo judgements.

Table 3.17: Results of Learning To Rank with pseudo judgements.

infNDCG

Retrieval (BM25) 0.1836

LTR using human judgements 0.1769

Pseudo LTR K=1000 0.1849

Pseudo LTR K=1500 0.1872

Pseudo LTR K=2000 0.1859

Pseudo LTR K=2500 0.1865

Pseudo LTR K=3000 0.1865

The results of LTR trained using pseudo judgements are better than the results of LTR

trained with actual human judgements, but they are comparable to the retrieval using BM25.
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3.6 Query expansion using topic modeling

Topic modeling is widely used in text mining to find semantic structures. It refers to

discovering abstract topics from the text using machine learning techniques. It is an

unsupervised approach based on clustering where words or phrases are grouped together

according to the information content. It analyses a set of documents and identifies the

groups/topics that best represents the information of unlabeled text. A set of words grouped

together forms a topic. Here, we have used topic modeling for query processing, and

we refer it as query expansion using topic modeling. The approach is experimented for

biomedical document retrieval systems. In the process, we use top retrieved documents,

apply topic modeling on them and find important topics from them. In the query expansion

process, each query gets expanded with those important identified topics.

For topic modeling, we have used the topic model package MALLET[77], which has a

fast and highly scalable implementation of Gibbs sampling, efficient methods for document-

topic hyperparameter optimization, and tools for inferring topics for new documents given

trained models. The experiments of query expansion using topic modeling are performed

on CDS 2014 dataset and the results are shown in Table 3.18.

Table 3.18: Results of query expansion using topic modeling on CDS 2014 dataset.

CDS 2014 MAP infNDCG

BM25 0.1071 0.1836

BM25+PRF10 0.1542 (44%) 0.2522 (37%)

BM25+TM10 0.1312 0.2172

In_expC2 0.1096 0.2002

In_expC2+PRF10 0.1623 (48%) 0.2724 (36%)

In_expC2+TM10 0.1438 0.2194

The results of query expansion using topic modeling are compared with the results

without query expansion and pseudo relevance feedback based query expansion. The

comparison shows that the results of query expansion using topic modeling are not better

than or similar to the results of query expansion using PRF on CDS 2014 dataset.
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The combination of two unsupervised techniques of query expansion, using topic

modeling and using PRF, the experiments are performed on CDS 206 dataset [121]. The

results are shown in Table 3.19.

Table 3.19: Results of combining topic modeling with pseudo relevance feedback on CDS
2016 dataset.

CDS 2016 MAP infNDCG infAP R-prec P@10

In_expC2 0.0632 0.1785 0.0203 0.1298 0.2767

In_expC2+PRF 0.0754
0.2018

(13%)

0.0281

(3%)
0.1355

0.2833

(2%)

In_expC2+TM 0.0642 0.1787 0.0208 0.1310 0.2700

In_expC2+TM_summ+PRF
0.0760

(20%)
0.1988 0.0253

0.1416

(9%)
0.2667

In_expC2+TM_desc+PRF 0.0576 0.1692 0.0255 0.1175 0.2900

In_expC2+TM_note+PRF 0.0631 0.1734 0.0227 0.1160 0.2100

Percentage improvement with respect to retrieval without query expansion are shown in

the brackets. The results show that combining topic modeling and PRF for query expansion

performs better than the individuals in terms of MAP and R-prec. While considering

infNDCG, infAP and P@10, PRF performs best.

3.7 Conclusion

In this chapter, we have explored various query expansion techniques for biomedical

document retrieval systems. Automatic query expansion using PRF, RF, retrieval using

learning to rank, and query expansion using topic modeling are experimented, and the results

are compared. We have also seen query expansion using partial relevance feedback, which is

a combination of PRF and RF. Partial relevance feedback gives considerable improvement

when we use RF for 30% to 50% of the feedback document set and PRF for the rest.

As we increase the amount of RF, we get better results but with the heavily increased

cost. The modified version of partial relevance feedback, which has a learning module

to identify relevant feedback documents, is proposed as feedback document discovery
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based query reformulation where different classifiers are explored. Later, this feedback

document discovery based query expansion is supported with NLP based feature weighting

to consider the semantics of biomedical text while processing it. With feedback document

discovery and feature weighting, we can reduce the amount of manual intervention and

still get the better results than the relevance feedback. In the next chapter, we will see

UMLS graph based query reformulation technique for biomedical document retrieval

systems, which considers conceptual and semantic properties of biomedical text using

UMLS metathesaurus.
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CHAPTER 4

UMLS graph based query reformulation in re-

trieval

Applications of biomedical domain require entity level processing instead of term level and

hence require semantic processing of biomedical text. The biomedical entities tend to be

complex, ambiguous, inconsistent and on an average, longer than entities in regular texts.

Hence special attention to entity-level processing is required where conceptual and semantic

knowledge of entities needs to be incorporated. The previous chapter explores various

query expansion techniques where the queries as well as the documents are processed

at term level, and the queries are expanded with related terms from related documents.

In this chapter, we will explore the query expansion techniques at entity level, where

the queries get expanded with conceptually and semantically related entities. For entity

level processing of queries and documents, the knowledge from UMLS metathesaurus is

utilized. This chapter also explores the usage and impact of UMLS for entity based query

reformulation in biomedical document retrieval.

4.1 UMLS Concepts Based Query Reformulation

Biomedical domain-specific knowledge can be incorporated to the process of query refor-

mulation in Biomedical IR system. There are knowledge-based approaches proposed in

the literature [8, 34, 50]. In biomedical domain, medical concepts and entities are more

informative than other terms. Moreover, medical ontologies, thesaurus and biomedical

entity identifiers are available to identify medical related concepts.

With the knowledge from UMLS metathesaurus, we have modified the queries in
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various ways. The following three pre-retrieval query reformulation experiments are done

using it. First: The UMLS concepts are identified from the query text, and their preferred

names are used with the original queries. Second: Along with the UMLS concepts, MeSH

(Medical Subject Heading) entry terms are also identified and used in queries. Example:

For the UMLS concept ‘hypertension’, the mesh entry terms are ‘blood pressure, high’.

MeSH is a hierarchically organized vocabulary of UMLS. Third: Medical entities are

identified manually with the help of an expert and used with the queries.

Table 4.1 shows the results of these reformulated queries of CDS 2014. PRF and RF

based query expansion is also carried out on each form of the queries. The highest results

are shown in bold.

Table 4.1: Results of UMLS concepts based query processing.

MAP infNDCF

Original Queries 0.1071 0.1836

Queries + UMLS concepts 0.1100 0.1830

Queries + UMLS concepts + Mesh terms 0.1039 0.1749

Queries + Manual Entities 0.1112 0.1860

Original Queries + PRF10 0.1542 0.2522

Queries + UMLS concepts + PRF10 0.1607 0.2607

Queries + UMLS concepts + Mesh terms + PRF10 0.1460 0.2409

Queries + Manual Entities + PRF10 0.1601 0.2634

Original Queries + RF10 0.2050 0.3355

Queries + UMLS concepts + RF10 0.2164 0.3423

Queries + UMLS concepts + Mesh terms + RF10 0.2052 0.3321

Queries + Manual Entities + RF10 0.2112 0.3394

Original Queries + RF50 0.2768 0.4186

Queries + UMLS concepts + RF50 0.2776 0.4232

The results show improvement when using UMLS concepts in queries as compared to

original queries. The MAP result of queries+UMLS concepts is higher than original queries

and it is similar to the result of queries+manual entities. The results of queries+UMLS
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concepts + PRF are higher than original queries+PRF for MAP and infNDCG. Similarly, the

results of queries+UMLS concepts+RF are higher than the results of original queries+RF.

Including Mesh terms in the queries along with UMLS concepts do not help to get better

performance in any case, but UMLS concepts definitely give promising results. In some

cases, the results of using UMLS concepts are even better than the results using manual

entities.

4.2 Query specific graph based query reformulation us-

ing UMLS

A novel graph based approach for query reformulation using UMLS is described here, in

which queries are expanded using biomedical entities. In biomedical information retrieval

systems, meaningful query reformulation usually amounts to selecting the right set of

entities. This method considers UMLS entities from a query with their related entities

identified by UMLS and constructs query-specific graph of biomedical entities for term

selection.

Incorporating medical knowledge by expert manually in any system leads to better

performance of the system. For biomedical document retrieval systems, manually tweaking

queries by an expert gives best results [12, 28, 57] which are more effective than fully

automatic approaches. Another way of incorporating medical knowledge is to refine search

results by medical experts and use refined results for feedback which is a partially manual

feedback approach with automatic query reformulation from human identified relevant

documents but still a costly scenario. On the other hand, fully automatic systems have

an upper bound on performance. To achieve better feedback in automatic systems in the

absence of expert knowledge, some middle ground between fully automatic and fully

manual feedback needs to be identified.

This query specific graph based query reformulation approach can be characterized

somewhere between manual and automatic feedback which relies on an external resource,

manually prepared by medical experts, for better feedback and does query processing

automatically. It uses UMLS as a substitute of medical expert intervention.

Here we study the effect of using UMLS entities in query processing for clinical
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decision support systems. We present a graph based query processing technique that takes

advantage of UMLS knowledge resource. This technique generates query specific graph

of related entities, weights the entities and uses them to expand the query. This query

reformulation approach is compared with baseline, pseudo relevance feedback based query

expansion approach, and state-of-the-art UMLS based query reformulation approaches.

The proposed method can be generalized to any other domain if there exists a knowledge

graph or ontology for that domain.

4.2.1 Graph creation using UMLS

The proposed approach generates query specific graph using biomedical entities and

relations from UMLS. It finds UMLS concepts from the query and represents them as

nodes in the graph. We call them query concepts or query entities. This concepts extraction

task is done using Metamap [4], which identifies UMLS metathesaurus concepts referred

in the text. MetaMap uses a knowledge-intensive approach based on symbolic, natural

language processing (NLP) and computational linguistic techniques to map biomedical

text to UMLS metathesaurus with 86% accuracy [4]. The concepts identified by Metatmap

are represented as nodes in the graph. Along with concepts, UMLS also contains relations

between entities. These relations for query concepts are used to expand nodes. Each query

node gets expanded by its related UMLS concepts considering all types of relations within

UMLS. After the node expansion, the expanded graph contains all the related concepts as

nodes and relations as edges.

Two nodes in the graph can have an edge between them if and only if those two entities

have some relation in UMLS. There are various types of relations present in UMLS, and

this approach considers all types of relations i.e. no manual filtering is done based on the

type of relations. This makes the approach more generalized for any type of biomedical

queries. There can be some isolated nodes in the graph when any query concept is not

related to any other query concept, or it does not have any common related concept with

another query concept. Isolated query concepts in the graph, if there exists any, will not

make any difference in this query reformulation process.

For example, the query “A 78 year old male presents with frequent stools and melena”

has 6 query concepts identified by UMLS: ‘year’, ‘old’, ‘male’, ‘presents’, ‘frequent stools’
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and ‘melena’. These concepts are expanded with other related concepts. A subset of

constructed graph for this query is shown in Figure 4.1.

Figure 4.1: A subset of initial graph constructed for query “A 78 year old male presents
with frequent stools and melena” (graph visualized using Gephi [14] software). Different
colors are used just for better visualization. They do not signify anything.

4.2.2 Graph refinement using pseudo relevant documents

Once the graph is constructed using the method described in Section 4.2.1, it is further

refined by assigning weights to the edges and removing some of the edges in the graph.

The edge weights are calculated based on the co-occurrence value of entities in pseudo

relevant documents. Pseudo-relevant documents are also parsed using Metamap to get

the UMLS concepts from them. Top k retrieved documents are used as pseudo relevant

documents in this process. For any edge between two entities, the number of times those

two entities are co-occurring in top k retrieved documents is used as weight for that edge.

The co-occurrence of two entities here is defined as the presence of both the entities in

the same paragraph. If two entities are present in the same document but in different

paragraphs, then they are not considered as co-occurring entities based on the assumption

made here that two different paragraphs usually represent two different contexts. They

might not be similar in terms of the information they refer.
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The graph is further refined by removing some of the edges. The edges whose edge

weights are less than a threshold (edge weight ≤ l) are removed from the graph. Less edge

weight for an edge between two entities means those two entities rarely occur together and

hence share very little or no context. Adding such entities in the query might lead to query

drift which will lower the performance of the system. Figure 4.2 shows a refined graph

with edge weights (edge weight > threshold) for the query “A 78 year old male presents

with frequent stools and melena”.

Figure 4.2: Refined graph with edge weights for query “A 78 year old male presents with
frequent stools and melena" (graph visualized using Gephi software).

In the graph constructed for query “A 78 year old male presents with frequent stools

and melena”, the nodes ‘year’, ‘old’, ‘presents’ and ‘frequent stools’ were connected to the

other nodes. But after removing the edges having edge weight less than a threshold, they

got isolated, and hence they are not present in the refined graph shown in Figure 4.2. The

numbers on edges show the weights of the edges, determined using the co-occurrences of

two entities in the documents. The alphabetical tags on the edges are the abbreviations1 for

the type of relations between node entities in UMLS metathesaurus. For example, 5.0-SIB

on edge between ‘melena’ and ‘hematemesis’ indicates that they are co-occurring 5 times

in the document text, and they have a sibling type relation in UMLS metathesaurus.

1https://www.nlm.nih.gov/research/umls/knowledge_sources/ metathesaurus/release/abbreviations.html
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4.2.3 Importance value of the entities in query-specific graph

The query graph now has weighted edges in it. The next step is to weight the nodes in

the refined graph. Node weight represents the importance of that node in the graph, i.e.

the importance of that entity in the graph for that particular query. We refer the generated

graph as querygraph. A few techniques of node weighting are considered here.

Pagerank:

PageRank is a link analysis algorithm, originally designed to measure the importance of

website pages. It assigns a numerical weighting to each element of a hyperlinked set of

documents, such as the World Wide Web, to measure its relative importance within the

set. The PageRank algorithm may be applied to any collection of entities that are linked

internally and can be represented as a graph. The numerical weight that it assigns to any

element is referred to as the PageRank of that element. The PageRank value indicates

the importance of a particular node. An edge to a node counts as a vote of support. The

PageRank of a node is defined recursively and depends on the number of edges to that node

and PageRank metric of all nodes that are connected to it. A node that is connected to many

nodes with high PageRank receives a high PageRank itself. The PageRank computations

iteratively adjust approximate PageRank values to more closely reflect the theoretical true

value. The PageRank algorithm on the graph of UMLS entities will iteratively compute

PageRank value of each UMLS entity based on the edges that are connected to that entity.

The formula for the Pagerank value of node n is given by the equation:

PR(n) = ∑
i∈C(n)

PR(i)
L(i)

where C(n) is the set of UMLS entities connected to node n and L(i) is the number of

edges on node i.

Figure 4.3 shows the graph with PageRank weights for the query “A 78 year old male

presents with frequent stools and melena”.
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Figure 4.3: Graph with node weights assigned using PageRank algorithm for query “A 78
year old male presents with frequent stools and melena” (graph visualized using Gephi).

Degree Centrality (DC):

Degree Centrality or degree of any node is defined as the number of links/edges associated

with that node. It is given as the following:

DC(n) = degree(n)

= number o f edges connected to node n

Sigmoid Degree Centrality (sig_DC):

This measure considers the degree centrality with sigmoid function as weights for the nodes.

Sigmoid Degree Centrality is defined as the following:

sig_DC(n) = sigmoid(degree(n))

=
1

1 + edegree(n)
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Normalized Degree Centrality (norm_DC):

Normalized Degree Centrality is defined as the degree centrality of a node normalized

using the degree centrality of all nodes. It is given by the formula:

norm_DC(n) =
degree(n)

∑n
i=1 degree(i)

Weighted Degree Centrality (WDC):

Weighted Degree Centrality is defined as the sum of weighs of the edges incident upon a

node.

WDC(n) = weighted_degree(n)

= sum o f weightes o f edges connected to node n

Sigmoid Weighted Degree Centrality (sig_WDC):

Sigmoid function on Weighted Degree Centrality is also considered as a node weighting

measure. It is given as the following:

sig_DC(n) = sigmoid(weighted_degree(n))

=
1

1 + eweighted_degree(n)

Normalized Weighted Degree Centrality (norm_WDC):

Normalized Weighted Degree Centrality measure is based on Weighted Degree Centrality,

which is normalized using a logarithmic function. This measure is defined as the following:

norm_WDC(n) =
1

1 + weighted_degree(n)
ln(weighted_degree(n))

Figure 4.4 shows the graph with normalized weighted degree weights for the same

query “A 78 year old male presents with frequent stools and melena”.
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Figure 4.4: Graph with normalized weighted degree weights for query “A 78 year old male
presents with frequent stools and melena” (graph visualized using Gephi software).

4.2.4 Query reformulation using weighted entities in query-specific

graph

The query reformulation process uses the generated graph with node weights. Each query

will have its own specific graph having the knowledge from UMLS incorporated with

biomedical entities and context from top retrieved documents. The queries are reformulated

by adding entities from query-specific graph along with their weights into the original

query. So, the new query consists of the original query and entities with weights from its

generated graph. These new queries are then expanded using pseudo relevance feedback

based query expansion method.

The complete process of query reformulation using query-specific graph from UMLS

is given below:
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Algorithm 3: Query reformulation using UMLS graph.

1: for each query Q do

2: Identify UMLS concepts from query Q and call them query concepts

3: Represent these query concepts as nodes in graph

4: for each query concept in graph do

5: Find all related concepts to this query concept using UMLS

6: Add these related concepts in graph as nodes

7: Add connecting edges between related concepts and query concept

8: for every edge in graph do

9: assign edge_weight = co-occurrence value of two entities in top retrieved docs

10: Remove the edges having low edge weight

11: for each node in the graph do

12: Assign importance weight to the node

13: Reformulate the query as:

New query QNew = Q + all weighted entities from graph

4.3 Experiment details

We conducted a set of experiments using the summarization methods described in the

previous section. This section describes the experimental setup.

4.3.1 Dataset and Evaluation Metrics

The retrieval experiments are performed on CDS 2014, CDS 2015 and CDS 2016 datasets.

Evaluation metrics infNDCG [152] (described in Section 3.1), infAP [152], P@10 and

Rprec are used here, which were used in TREC CDS 2015 and 2016 tracks. These are

the standard measures for an information retrieval system to evaluate how satisfactory the

search results are to the user’s query intent. P@10 is precision at 10 measure, which is

calculated as the following:
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P@10 =
#no o f relevant docs f rom top 10 retrieved docs

10

Rprec measure indicates the precision at the position equal to total number of relevant

documents available. It is calculated by the following formula.

Rprec =
#no o f relevant docs f rom top k retrieved docs

k

where, k = total no of relevant documents available

infAP indicates inferred average precision. AP (average precision) is given by the

following:

AP =
∑n

i=1 P@i ? rel(i)
#no o f relevant docs

where, rel(i) is 1 if the item at rank i is a relevant document, zero otherwise.

4.3.2 Experimental Setup

The retrieval experiments are performed on CDS 2015 and CDS 2016 datasets using

Terrier[97] plateform. Queries and the documents are processed using Metamap[7] to

identify UMLS concepts from them. Metamap is a software tool developed by National

Library of Medicine which maps biomedical text to UMLS metathesaurus. The queries are

processed using Metamap and UMLS concepts are identified. To expand the nodes of the

graph with related entities and refine it based on co-occurrence values, the top 10 retrieved

documents are taken into consideration and parsed using Metamap for the queries of CDS

2015 dataset, while for CDS 2016 queries, the top 100 documents were considered. The

number of pseudo relevant documents used for graph refinement in both the datasets are

chosen empirically. The document retrieval is done using BM25 ranking model for the

summary part of queries, while Bo1 model is used in PRF.

4.4 Results

The results of the experiments of UMLS graph based query reformulation performed using

various node weighting techniques are given in Table 4.2 for CDS 2014, CDS 2015 and
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CDS 2016 datasets.

Table 4.2: InfNDCG results of UMLS query-specific graph based query reformulation
using various weighting techniques. The highest results for each dataset are given in bold.

Method CDS 2014 CDS 2015 CDS 2016

BM25 0.1398 0.1591 0.1548

UMLS_graph_no_weights 0.1249 0.1600 0.1993

UMLS_graph_pagerank 0.1375 0.1661 0.1619

UMLS_graph_DC 0.1236 0.1551 0.1814

UMLS_graph_WDC 0.1015 0.1168 0.1492

UMLS_graph_norm_DC 0.1351 0.1673 0.1654

UMLS_graph_sig_DC 0.1299 0.1613 0.1986

UMLS_graph_sig_WDC 0.1239 0.1604 0.1983

UMLS_graph_norm_WDC 0.139 0.1665 0.1907

BM25 + PRF 0.1969 0.2104 0.1916

UMLS_graph_no_weights + PRF 0.1570 0.2022 0.2359

UMLS_graph_pagerank + PRF 0.2024 0.2154 0.2154

UMLS_graph_DC + PRF 0.1556 0.1886 0.2381

UMLS_graph_WDC + PRF 0.1307 0.1480 0.1862

UMLS_graph_norm_DC + PRF 0.1961 0.2066 0.2160

UMLS_graph_sig_DC + PRF 0.1692 0.2074 0.2424

UMLS_graph_sig_WDC + PRF 0.1573 0.2028 0.2374

UMLS_graph_norm_WDC + PRF 0.1887 0.2114 0.2351

For CDS 2014 dataset, UMLS_graph_pagerank+PRF performed better than the BM25+PRF.

For CDS 2015 dataset, all the variations of UMLS graph except UMLS_graph_DC and

UMLS_graph_WDC performed better than BM25. UMLS_graph_pagerank+PRF and

UMLS_graph_norm_WDC+PRF performed better than BM25+PRF. For CDS 2016, all

the variations of UMLS graph except UMLS_graph_WDC, with and without PRF, helped

to get better performance than BM25.

The comparison of the results of UMLS graph based query reformulation with no

weights, with weights calculated by PageRank and with normalized weighted degree
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weights are shown in Table 4.3 along with baseline results and state-of-the-art results for

CDS 2015 and CDS 2016 datasets. Bold values represent the highest results. ? represents

statistically significant result with p < 0.05 when compared to BM25. ?? and ‡ represent

statistically significant result with p < 0.05 and p < 0.1, respectively, when compared to

BM25 + PRF.

Table 4.3: InfNDCG results of UMLS query-specific graph based query reformulation on
CDS 2015 and CDS 2016 datasets. Value in bracket shows percentage increment from
baseline result BM25.

Method CDS 2015 CDS 2016

BM25 0.1591 0.1625

UMLS_graph_no_weights 0.1600 (+1%) 0.1993† (+23%)

UMLS_graph_pagerank 0.1661? (+4%) 0.1619

UMLS_graph_norm_WDC 0.1665? (+5%) 0.1907? (+17%)

BM25 + PRF 0.2104 (+32%) 0.1916 (+18%)

Best run from CDS task 0.2339 [98] 0.2265 [2]

unigram_SMDB [154] 0.2173 0.1843

UMLS_graph_no_weights + PRF 0.2022 (+27%) 0.2359‡ (+45%)

UMLS_graph_pagerank + PRF 0.2154 (+35%) 0.2154‡ (+33%)

UMLS_graph_norm_WDC + PRF 0.2114 (+33%) 0.2351?? (+45%)

For CDS 2015 and CDS 2016 datasets, our results are compared with the best infNDCG

result among the submitted runs (which makes use of UMLS) during TREC CDS 2015

and TREC CDS 2016, respectively. For comparison of the results, we have considered

only those submitted runs that use UMLS for query reformulation in the standard retrieval

framework.

In TREC CDS 2015, UMLS based system performing highest was Palotti and Hanbury

[98] where queries were reformulated using UMLS concepts, triggered names and preferred

names with fixed weights and pseudo relevance feedback based query expansion. In TREC

CDS 2016, Agrafiotes and Arampatzis [2] reported the highest results using UMLS atoms

in the query. These two results are directly taken from the papers and used here for

comparison. In Table 4.3, Our results are also compared with results of state-of-the-art
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query reformulation method using UMLS, unigram_SMDB, from Zhang and He [154]

where they did query expansion based on diagnosis prediction from SemMedDB using

UMLS concepts. Our method UMLS_graph_pagerank + PRF performs highest with

increment 35% from baseline on CDS 2015 dataset while UMLS_graph_no_weights +

PRF and UMLS_graph_norm_WDC + PRF perform highest with increment 45% from

baseline on CDS 2016 dataset.

The method query-specific UMLS graph based query reformulation helps to get se-

mantically related terms to the query terms. For example, the query ‘A 78 year old male

presents with frequent stools and melena’ gets terms like ‘ematochezia’, ‘gastrointestina’,

and ‘hemorrhage’ which helped to get more relevant documents after query reformulation.

These terms are weighted based on the co-occurrences in the top retrieved documents which

helped to fetch more relevant documents. Also the query terms ‘melena’ and ‘male’ get

more weights from the query-specific graphs. The updated query after query-specific graph

based query reformulation using UMLS is given below:

Initial query:

A1 781 year1 old1 male1 presents1 with1 f requent1 stools1 and1 melena1

Updated query after pagerank (from graph shown in Figure 4.3):

A1 781 year1 old1 male1 presents1 with1 f requent1 stools1 and1 melena1 melena0.41

male0.096 diagnosis0.08 history0.069 surgery0.043 hematochezia0.035 therapy0.035

complications0.028 hematemesis0.028 classi f ication0.024 hemorrhage0.024 urine0.024

pathology0.024 f emale0.022 mortality0.02 gastrointestinal0.02 congenital0.02

Updated query after normalized weighted degree (from graph shown in Figure 4.4):

A1 781 year1 old1 male1 presents1 with1 f requent1 stools1 and1 melena1 male0.026

melena0.046 diagnosis0.134 f emale0.143 history0.148 surgery0.196 therapy0.218

hematochezia0.218 hematemesis0.244 complications0.244 pathology0.257 hemorrhage0.257

classi f ication0.257 urine0.257 mortality0.268 congenital0.268 gastrointestinal0.268

Evaluation results infNDCG, infAP, P@10 and Rprec on CDS 2015 and CDS 2016
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datasets are shown in Table 4.4 and 4.5, respectively. Bold values represent the highest

results. ?, �, and † represent statistically significant results with p < 0.05, p < 0.01 and

p < 0.1, respectively, when compared to baseline BM25. ?? and ‡ represent statistically

significant result with p < 0.05 and p < 0.1, respectively, when compared to baseline

BM25 + PRF.

Table 4.4: Results of UMLS query-specific graph based query reformulation on CDS 2015.
Bold values represent highest results.

CDS 2015 infNDCG infAP P@10 Rprec

BM25 0.1591 0.0260 0.3133 0.1175

UMLS_graph_no_weights 0.1600 0.0264 0.3100 0.1230

UMLS_graph_pagerank 0.1661? 0.0279? 0.3300† 0.1232

UMLS_graph_norm_WDC 0.1665? 0.0277? 0.3267 0.1240?

BM25 + PRF 0.2104 0.0423 0.3600 0.1514

UMLS_graph_no_weights + PRF 0.2022 0.0403 0.3600 0.1454

UMLS_graph_pagerank + PRF 0.2154 0.0442 0.3567 0.1576

UMLS_graph_norm_WDC + PRF 0.2114 0.0425 0.3600 0.1517

Table 4.5: Results of UMLS query-specific graph based query reformulation on CDS 2016.
Bold values represent highest results.

CDS 2016 infNDCG infAP P@10 Rprec

BM25 0.1625 0.0176 0.2367 0.0970

UMLS_graph_no_weights 0.1993† 0.0247† 0.2833 0.1200?

UMLS_graph_pagerank 0.1619 0.0166 0.2333 0.1073?

UMLS_graph_norm_WDC 0.1907? 0.0232† 0.2767 0.1232�

BM25 + PRF 0.1916 0.0275 0.2967 0.1280

UMLS_graph_no_weights + PRF 0.2359‡ 0.0362 0.3633?? 0.1251

UMLS_graph_pagerank + PRF 0.2154‡ 0.0319‡ 0.2967 0.1285

UMLS_graph_norm_WDC + PRF 0.2351?? 0.0345 0.3367 0.1331

Statistical significance test on results shows that the results are significantly better

than the baselines. UMLS graph based query reformulation helped retrieve more relevant
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documents and hence all four evaluation measures show improvement.

Table 4.6: Query category wise infNDCG results of UMLS query-specific graph based
query reformulation on CDS 2015. Bold values represent highest results.

CDS 2015 all Diagnosis Test Treatment

BM25 0.1591 0.1469 0.1755 0.1547

UMLS_graph_no_weights 0.1600 0.1359 0.1840 0.1602

UMLS_graph_pagerank 0.1661? 0.1438 0.1874† 0.1670?

UMLS_graph_DC 0.1551 0.1299 0.1881 0.1472

UMLS_graph_WDC 0.1168 0.1009 0.1355 0.1141

UMLS_graph_norm_DC 0.1673† 0.1433 0.1884† 0.1702†

UMLS_graph_sig_DC 0.1613 0.1331 0.1875† 0.1633

UMLS_graph_sig_WDC 0.1604 0.1362 0.1841 0.1610

UMLS_graph_norm_WDC 0.1665? 0.1515 0.1824† 0.1657†

BM25 + PRF 0.2104 0.2032 0.2043 0.2236

UMLS_graph_no_weights + PRF 0.2022 0.1873 0.1944 0.2247

UMLS_graph_pagerank + PRF 0.2154 0.1982 0.2189† 0.2292

UMLS_graph_DC + PRF 0.1886 0.1559 0.1926 0.2172

UMLS_graph_WDC + PRF 0.1480 0.1267 0.1406 0.1767

UMLS_graph_norm_DC + PRF 0.2066 0.1965 0.1920 0.2313

UMLS_graph_sig_DC + PRF 0.2074 0.1844 0.2096 0.2284

UMLS_graph_sig_WDC + PRF 0.2028 0.1834 0.1996 0.2254

UMLS_graph_norm_WDC + PRF 0.2114 0.2009 0.2072 0.2260

For three categories of queries: ‘diagnosis’, ‘test’ and ‘treatment’, category wise results

along with overall results on CDS 2015 and CDS 2016 datasets are shown in Table 4.6

and Table 4.7, respectively. Bold values represent the highest results. ? and † represent

statistically significant result with p < 0.05 and p < 0.1, respectively, when compared

to baseline BM25. ?? and ‡ represent statistically significant result with p < 0.05 and

p < 0.1, respectively, when compared to baseline BM25 + PRF.
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Table 4.7: Query category wise infNDCG results of UMLS query-specific graph based
query reformulation on CDS 2016. Bold values represent highest results.

CDS 2016 all Diagnosis Test Treatment

BM25 0.1625 0.1616 0.1972 0.1287

UMLS_graph_no_weights 0.1993† 0.1547 0.1798 0.2633?

UMLS_graph_pagerank 0.1619 0.1415 0.1891 0.1550†

UMLS_graph_DC 0.1814 0.1504 0.1862 0.2076

UMLS_graph_WDC 0.1492 0.1272 0.1425 0.1779

UMLS_graph_norm_DC 0.1658 0.1430 0.1882 0.1663†

UMLS_graph_sig_DC 0.1986† 0.1511 0.1885 0.2562?

UMLS_graph_sig_WDC 0.1983† 0.1574 0.1789 0.2588?

UMLS_graph_norm_WDC 0.1907? 0.1656 0.2064 0.2001?

BM25 + PRF 0.1916 0.1802 0.2062 0.1885

UMLS_graph_no_weights + PRF 0.2359† 0.1736 0.2035 0.3306†

UMLS_graph_pagerank + PRF 0.2154† 0.1915? 0.2062 0.2486

UMLS_graph_DC + PRF 0.2381† 0.1780 0.2023 0.3338†

UMLS_graph_WDC + PRF 0.1862 0.1547 0.1388 0.2651

UMLS_graph_norm_DC + PRF 0.2160 0.1649 0.2163 0.2668†

UMLS_graph_sig_DC + PRF 0.2424† 0.1759 0.2149 0.3365?

UMLS_graph_sig_WDC + PRF 0.2374† 0.1736 0.2037 0.3350†

UMLS_graph_norm_WDC + PRF 0.2351? 0.1844 0.2238 0.2971†

Considering all the queries of CDS 2015, UMLS_graph_norm_DC gave the high-

est and significant (p < 0.1) result, but the results of UMLS_graph_pagerank and

UMLS_graph_norm-_WDC are more significant with p < 0.05. These three techniques,

UMLS_graph_pagerank, UMLS_graph_norm_DC and UMLS_graph_norm_WDC gave

statistically significant results for ‘test’ and ‘treatment’ type of queries also. In CDS 2016,

all the variations using UMLS graph, except UMLS_graph_WDC and UMLS_graph_WDC+PRF,

are giving better results, and most of them are statistically significant for all queries as well

as ‘treatment’ type of queries.

Query wise infNDCG difference graph of UMLS_graph_norm_WDC+PRF with base-
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line BM25+PRF for CDS 2016 is shown in Figure 4.5. From the graph, we can see that

out of 30 queries, 11 queries improve, 9 queries degrade, and others remain the same. But

the overall increment is three times higher than the decrements in queries. So, the overall

performance increased reasonably.

Figure 4.5: Query wise difference graph between UMLS_graph_norm_WDC+PRF and
BM25+PRF for CDS 2016.

Figure 4.6: Distribution of relation types and semantic group types of entities in ‘diagnosis’,
‘test’ and ‘treatment’ queries of CDS 2016.

Figure 4.6 shows category wise distribution of semantic groups of entities and their

relation types in the constructed graph for ‘diagnosis’, ‘test and ‘treatment’ type of refor-

mulated queries of CDS 2016. For ‘diagnosis’ type of queries, relations of type RQ(related

and possibly synonymous) and entities of semantic types from DISO(disorders) are more

in the querygraphs. For ‘test’ type of queries, the relations of type QB(qualified by) and

SY(synonym) are more in the querygraphs, while entities of type CONC(Concepts & Ideas)

are more. For ‘treatment’ type of queries, CHEM(Chemicals & Drugs) type of entities are
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more. PAR(parent relationship) type of relations and PROC(procedures) type of entities

are equally distributed in querygraphs of all three types of queries.

Figure 4.7: Distribution of relation types and semantic groups of entities in the improved
queries and degraded queries of CDS 2016.

The distribution of relation types and semantic groups of entities in improved queries

and degraded queries are shown in Figure 4.7. In the querygraphs of improved queries,

SIB(sibling relationship) and RO(relationship other than synonymous, narrower, or broader)

type of relations are more, while the relations of type CHD(child relationship), PAR(parent

relationship), RB(broader relationship) and SY(synonymy) are same in improved as well as

degraded queries. DISO(disorders), CHEM(chemicals & drugs) and LIVB(living beings)

type of entities are more in the querygraphs of improved queries which may be the reason

for improvement in retrieval.

4.5 Conclusion

This chapter presented entity-based query processing and reformulation techniques for

biomedical document retrieval systems. The external knowledge source UMLS has been

used to identify biomedical concepts from queries and query expansion is carried out with

the identified UMLS concepts. Later, UMLS knowledge about the semantics of concepts

and relations has been used in query-specific graph based query reformulation technique for

retrieval. The method uses UMLS entities and their relations from UMLS to construct the

query-specific graph and refines the graph based on the co-occurrence statistics from top

retrieved documents. The entities from the graph with their weights are added to the original
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queries. The experiments show that the query-specific graph based query reformulation

using UMLS helped to improve retrieval results. The results are significantly better with

4%-5% improvement on CDS 2015 dataset and 23%-27% improvement on CDS 2016

dataset. The proposed method is also promising for ‘test’ and ‘treatment’ type of queries.

The next chapter explores the use of these query reformulation techniques for query-focused

biomedical text summarization systems. Standard techniques of text summarization are also

discussed for biomedical domain, along with query-focused summarization techniques.
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CHAPTER 5

Query-focused biomedical text summarization us-

ing UMLS graph

In the last two chapters, we have seen the query reformulation techniques for biomedi-

cal document retrieval systems. This chapter focuses on query-focused biomedical text

summarization systems and query modification techniques for them. Query-focused sum-

marization systems need to take query in the prime focus and generate the summaries

according to it. The generated summaries should be able to answer the given query. We

present various techniques of query-focused text summarization based on the sentence-

sentence and query-sentence similarity measures. We also consider the query-specific

graph based query reformulation method described in the previous chapter and incorporate

it in the summarization process. We explore the word-embedding based summarization

techniques where sentence-sentence similarity is calculated using the distances between

words in the embedding space.

5.1 Summarization Methods with query modifications

This section describes standard summarization techniques, query-sentence matching based

summarization method, modified query-sentence matching based summarization method

using UMLS query graph, modified lexrank using UMLS query-graph and word2vec.

5.1.1 TextRank and LexRank

TextRank [79] and LexRank [43] are two standard unsupervised approaches used for text

summarization. Both are graph-based ranking algorithms where a graph is constructed
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using sentences as nodes. The edges in the graph are weighted based on the content overlap

or the similarity between two sentences. This sentence-sentence similarity can be lexical

or semantic or a combination of both. TextRank uses the similarity measure based on the

number of words two sentences have in common while LexRank uses cosine similarity of

TF-IDF vectors. The similarity measure used by TextRank is given by:

sim(si, sj) =
|wk|wk ∈ si & wk ∈ sj|

log(|si|)× log(|sj|)

where, |si| and |si| are the number of words in the sentences si and si, respectively. The

similarity measure used by LexRank is defined as the following:

sim(si, sj) =

∑
w∈si,sj

(t fw,si × id fw)× (t f w, sj × id fw)√
∑

w∈si

(t fw,si × id fw)2
√

∑
w∈sj

(t fw,sj × id fw)2

where t fw,si is the term frequency of word w in sentence si. Term frequency is defined

as the number of occurrences of the word in the sentence divided by the total number of

the words in the sentence. id fw is the total number of sentences divided by the number of

sentences containing word w.

In the graph, edges were formed between the sentences having similarity greater than

the threshold. In both algorithms, the sentences are ranked based on the similarities with

other sentences. PageRank algorithm is applied to the resulting graph where each sentence

node gets weighted based on the weights of the connected sentences. Pagerank works

iteratively till the node weights remain unchanged. The summary is formed by combining

the top ranking sentences, using a length cutoff to limit the size of the summary.

5.1.2 Query-Sentence matching

The Query Sentence Matching (QSM) based summarization method [20, 40] compares all

the sentences with the query and takes top similar sentences to be included in the summary.

The queries and all the sentences in snippets are represented by vectors of tf-idf values of

words in the sentences. The similarity measure used to match query vector and sentence

vector is cosine similarity. It is calculated by using the following formula:
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sim(q, s) =
∑

w∈q,s
(t fw,q × id fw)× (t fw,s × id fw)√

∑
w∈q

(t fw,qid fw)2
√

∑
w∈s

(t fw,sid fw)2

where t fw,q and t fw,s are the term frequencies of word w in the query q and sentence s,

respectively. id fw is the inverse of the number of sentences with word w normalized by the

total number of sentences.

5.1.3 UMLS graph based query-sentence matching

The UMLS graph based query-sentence matching (UMLS_querygraph_QSM) summariza-

tion method is a modified version of QSM which uses query-specific graphs generated

using UMLS to get the importance of words. For each query, it generates a graph using

method described in Section 4.2. This method uses concepts identified using graph based

method along with weights. The weights are incorporated in the similarity measure while

ranking the sentences for the summary. The UMLS query-graph based cosine similarity

between a query and a sentence is calculated using the following formula:

sim(q, s) =
∑

w∈q,s
(t fw,q × id fw + Ww,q)(t fw,s × id fw)√

∑
w∈q

(t fw,q × id fw + Ww,q)2
√

∑
w∈s

(t fw,s × id fw)2

where,

Ww,q = importance of concept w from query-graph of q, if w is in query-graph

= 0, otherwise

t fw,q and t fw,s are the term frequencies of the word w in query q and sentence s,

respectively. id fw is the inverse of the number of sentences with word w normalized by the

total number of sentences.

5.1.4 UMLS query graph based lexrank

The UMLS query-graph based lexrank (lexrank_UMLS_querygraph) is a modified version

of lexrank which uses query-specific graphs generated using UMLS (as described in Section

4.2) to get the importance of words, matches sentences using weighted cosine similarity
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measure, generates a graph of sentences and then applies Pagerank on the graph. The main

difference with the method lexrank is UMLS query-graph weighted cosine similarity. The

later processing is same as it is in lexrank. The UMLS query graph based weighted cosine

similarity is given by:

sim(si, sj) =

∑
w∈si,sj

((t fw,si + Ww)× id fw)× ((t f w, sj + Ww)× id fw)√
∑

w∈si

((t fw,si + Ww)× id fw)2
√

∑
w∈sj

((t fw,sj + Ww)× id fw)2

where,

Ww = importance of concept w from query-graph, if w is in query-graph

= 1, otherwise

t fw,q and t fw,s are the term frequencies of the word w in query q and sentence s,

respectively. id fw is the inverse of the number of sentences with word w normalized by the

total number of sentences.

5.1.5 Lexrank with Word2Vec similarity

The summarization method lexrank with Word2Vec (lexrank_w2v) uses Word2Vec[80] in

the similarity measure and uses lexrank for ranking the sentences. It incorporates Word2Vec

word-embeddings based similarity between words into the sentence similarity measure.

The sentences are represented as nodes and the sentence-sentence similarities represent the

edges. The similarity measure is defined using weighted cosine similarity where weights

are the Word2Vec similarity scores. It is given as the following:

sim(si, sj) =

∑
p∈si,q∈sj

(t fp,si × id fp)×W2Vp,q × (t f q, sj × id fq)

|Si| × |Sj|

where,

|Si| =
√

∑
p,q∈si

(t fp,si × id fp)×W2Vp,q × (t f q, si × id fq) ,

|Sj| =
√

∑
p,q∈sj

(t fp,sj × id fp)×W2Vp,q × (t f q, sj × id fq)
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Here, t fw,s is the term frequency of word w in the sentence s. W2Vp,q is the Word2Vec

similarity score of the two words p and q. id fw is the inverse of the number of sentences

with word w normalized by the total number of sentences.

With this similarity measure for edges, the sentences are ranked using PageRank and

top weighted sentences are used to generate the summary.

5.1.6 UMLS query graph based lexrank with Word2Vec similarity

The summarization method UMLS query graph based lexrank with Word2Vec similarity

(lexrank_w2v) combines the two methods UMLS query graph based lexrank and lexrank

with Word2Vec similarity. It uses the query-specific graph generated using UMLS to weight

the biomedical entities of the sentences which are semantically similar to the query. It also

uses word-embedding based similarity scores of the words into the similarity measures

of sentences and applies PageRank on the graph of sentences. The sentence-sentence

similarity of the summarization method UMLS query graph based lexrank with Word2Vec

is given below:

sim(si, sj) =

∑
p∈si,q∈sj

((t fp,si + Wp)× id fp)×W2Vp,q × ((t fq,sj + Wq)× id fq)

|Si| × |Sj|

where,

|Si| =
√

∑
p,q∈si

((t fp,si + Wp)× id fp)×W2Vp,q × ((t fq,si + Wq)× id fq) ,

|Sj| =
√

∑
p,q∈sj

((t fp,sj + Wp)× id fp)×W2Vp,q × ((t fq,sj + Wq)× id fq)

Ww,q = importance of concept w from query-graph of q, if w is in query-graph

= 0, otherwise

W2Vp,q = Word2Vec similarity score of the two words p and q.

t fw,s is the term frequency of word w in the sentence s. id fw is the inverse of the

number of sentences with word w normalized by the total number of sentences.
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5.2 Experiments and Results

This section describes the experiments performed for query-focused biomedical text sum-

marization along with their results. For the experiments, the dataset of BioASQ1 task 5b

phase B challenge is used which is a benchmark dataset containing questions, in English,

along with gold standard (reference) answers constructed by a team of biomedical experts.

The test dataset has five different batches, each containing 100 questions. For each question,

the relevant snippets are given and the ideal answer for that question need to be generated.

The ideal answers are paragraph sized summaries so it’s a case of multi-document sum-

marization on relevant snippets. The experiments are performed using sumy[15] which is

a standard toolkit for text summarization. The pretrained Word2Vec model trained using

wikipedia articles, PUBMED absracts and PMC open-access articles [83] is used to compute

semantic similarity in the methods lexrank_w2v and lexrank_UMLS_querygraph_w2v. For

the evaluation of the summarization system, ROUGE [68] scores are used. We use ROUGE-

2 Recall and ROUGE-SU4 Recall which were used as evaluation measures in BioASQ. We

also use ROUGE-2 F-measure and ROUGE-SU4 F-measure for the evaluation.

The results of the summarization methods (described in Section 5.1) on all five test

batches of BioASQ5 dataset are shown in Table 5.1 and Table 5.2 in terms of ROUGE-2

Recall and ROUGE-SU4 Recall, respectively. The results are compared with the highest

result form all the participants’ submitted runs (Results given on BioASQ website2). There

were two teams who had achieved highest results. The first one was Mollá [84] who

had compared the summaries generated using simple approaches like tfidf, word2vec and

regression as well as deep learning approach using LSTM. He found that the results of

simple approaches are better than the results of regression and LSTM on BioASQ 5b

dataset. Their trivial method of selecting first n number of snippets performed better than

all other methods for batch 1. For other batches of the dataset, simple method of selecting

n snippets based on their similarity and ranking using tfidf and word2vec performed best.

The another best performing team was Chandu et al. [26] who had experimented with

different biomedical ontologies and various algorithms including agglomerative clustering,

Maximum Marginal Relevance (MMR) and sentence compression.

1http://bioasq.org/
2http://participants-area.bioasq.org/oracle/results/taskB/phaseB/
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Table 5.1: ROUGE-2 Recall results of query-focused summarization on BIOASQ5 dataset.
Bold represents improved results. * and † represent statistical significance with p < 0.05
when compared to lexrank and lexrank_w2v, respectively.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

MQ-1 [84] 0.5470 0.5117 0.5771 0.5617 0.5184

MQ-2 [84] 0.5131 0.5351 0.6062 0.5822 0.5802

Oaqa5b [26] - 0.1939 0.2005 0.6726 0.7064

Oaqa5b-tfidf [26] - 0.1332 0.2010 0.6766 0.5773

Highest from BIOASQ5b
0.5470

[MQ-1]

0.5351

[MQ-2]

0.6062

[MQ-2]

0.6766

[Oaqa5b-

tfidf]

0.7064

[Oaqa5b]

textrank 0.51881 0.53219 0.61788 0.61691 0.57595

QSM 0.53949 0.51927 0.58284 0.56974 0.55141

UMLS_querygraph_QSM 0.54469 0.51265 0.58951 0.57762 0.56889

lexrank 0.57164 0.56183 0.62557 0.61498 0.61600

lexrank_UMLS_querygraph 0.57934 0.55415 0.62782 0.60919 0.63727*

lexrank_w2v 0.63714 0.58883 0.64739 0.68106 0.68917

lexrank_UMLS_querygraph_

w2v
0.63702 0.58731 0.65970† 0.67914 0.68923
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Table 5.2: ROUGE-SU4 Recall results of query-focused summarization on BIOASQ5
dataset. Bold represents improved results. † represents statistical significance with p <
0.05 when compared to lexrank_w2v.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

MQ-1 [84] 0.5599 0.5167 0.5813 0.5533 0.5189

MQ-2 [84] 0.5221 0.5384 0.6085 0.5742 0.5703

Oaqa5b [26] - 0.1928 0.1982 0.6642 0.6962

Oaqa5b-tfidf [26] - 0.1352 0.1993 0.6692 0.5747

Highest from BIOASQ5b
0.5599

[MQ-1]

0.5384

[MQ-2]

0.6085

[MQ-2]

0.6692

[Oaqa5b-

tfidf]

0.6962

[Oaqa5b]

textrank 0.54185 0.55807 0.62477 0.63446 0.58013

QSM 0.55802 0.54324 0.59378 0.58078 0.56276

UMLS_querygraph_QSM 0.56070 0.53985 0.59884 0.59370 0.57849

lexrank 0.58874 0.58776 0.63584 0.62668 0.61692

lexrank_UMLS_querygraph 0.59513 0.57862 0.63842 0.62340 0.63599

lexrank_w2v 0.64894 0.61257 0.65070 0.68993 0.68391

lexrank_UMLS_querygraph_

w2v
0.64469 0.60703 0.66356† 0.68865 0.68184

Table 5.3 and Table 5.4 show ROUGE-2 F-measure and ROUGE-SU4 F-measure

results, respectively, for the summarization techniques on BioASQ5 dataset.
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Table 5.3: ROUGE-2 F-measure results of query-focused summarization on BIOASQ5
dataset. Bold represents improved results. * represents statistical significance with p <
0.05 when compared to baseline lexrank. ‡ represents statistical significance with p < 0.01
when compared to lexrank_w2v.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

textrank 0.19838 0.18567 0.20888 0.24909 0.21848

QSM 0.21946 0.19911 0.21575 0.25155 0.21718

UMLS_querygraph_QSM 0.22000 0.19623 0.21736 0.25012 0.22053

lexrank 0.23048 0.20502 0.23207 0.26066 0.24558

lexrank_UMLS_querygraph 0.23244 0.20429 0.23463 0.25616 0.25215*

lexrank_w2v 0.25814 0.22737 0.25651 0.29846 0.28642

lexrank_UMLS_querygraph_

w2v
0.25822 0.22747 0.26339‡ 0.30132 0.28630

Table 5.4: ROUGE-SU4 F-measure results of query-focused summarization on BIOASQ5
dataset. Bold represents improved results. ‡ represents statistical significance with p < 0.01
when compared to lexrank_w2v.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

textrank 0.1958 0.18035 0.20379 0.24188 0.21137

QSM 0.21542 0.19350 0.21262 0.24367 0.21170

UMLS_querygraph_QSM 0.21516 0.19172 0.21425 0.24278 0.21484

lexrank 0.22533 0.20130 0.22793 0.25181 0.23835

lexrank_UMLS_querygraph 0.22695 0.19988 0.23046 0.24801 0.24393

lexrank_w2v 0.24993 0.22081 0.24835 0.28746 0.27606

lexrank_UMLS_querygraph_

w2v
0.24923 0.22038 0.25472‡ 0.29056 0.27562

The results show that UMLS_querygraph_QSM gives improvement over QSM except

for batch 2. Query modification using query-specific graph generated using UMLS helps to

better match the important sentences for summaries. The method lexrank_UMLS_querygraph

gives an improvement over lexrank for batch 1,3 and 5 of the dataset. For the other two

batches, the results are comparable. For batch 5, improvements in ROUGE-2 Recall
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and ROUGE-2 F-measure results of lexrank_UMLS_querygraph are statistically signifi-

cant with respect to the results of lexrank. The method lexrank_UMLS_querygraph_w2v

gives significantly better results for batch 3 as compared to lexrank_w2v. The results are

statistically significant for all four evaluation measures.

Figure 5.1: Query wise difference in the results of lexrank_UMLS_querygraph with
baseline results lexrank and distribution of types of the queries.

The graphs in the first row of Figure 5.1 show the query type wise change in the

results of lexrank_UMLS_querygraph as compared to lexrank for every batch of the data

while the second row shows the batch wise distribution of the queries based on their types.

From the graphs, we can say that the ‘yesno’ type of questions are getting improved in

all batches (considering batch 2 where it is showing zero change: no improvement and

no deterioration). The graph of batch 5 indicates that the overall result improvement of

the method lexrank_UMLS_querygraph is mainly due to the improvements in ‘factoid’

and ‘yesno’ type of queries. For batch 2 and 4 where lexrank_UMLS_querygraph failed,

decrements in ‘factoid’, ‘list’ and ‘summary’ type of queries must be the reason.

ROUGE measures surface level lexical similarity between system-generated summary

and reference summary. The measures are based on the overlaps of word sequences

like word pairs, n-gram which makes them unsuitable for summaries with substantial

paraphrasing. The research is being carried out to improve automatic summarization

evaluation. Ng and Abrecht [94] proposed ROUGE-WE measures where word embeddings

are used to measure the semantic similarity of the words used in summaries instead of

computing lexical similarity in ROUGE. ROUGE-WE-1 outperformed leading state-of-the-

art measures. ROUGE-WE-2 is also a better evaluation measure than ROUGE-2. They also

show that ROUGE-WE-SU4 takes readability into account while evaluating summaries.
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Table 5.5: ROUGE-WE results of query-focused summarization on BIOASQ5 dataset.
Bold represents improved results. ? and † represent statistical significance with p < 0.05
and p < 0.1, respectively, when compared to lexrank_w2v.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

ROUGE-WE-1 F-measure scores

ROUGE-
WE-1

lexrank_w2v 0.25332 0.22886 0.24497 0.26566 0.25529

lexrank_UMLS_

querygraph_w2v
0.25574 0.24109? 0.25603? 0.27143 0.26504?

ROUGE-WE-2 F-measure scores

ROUGE-
WE-2

lexrank_w2v 0.19622 0.17698 0.19784 0.21893 0.21055

lexrank_UMLS_

querygraph_w2v
0.19878 0.17709 0.19977 0.22581† 0.21627

ROUGE-WE-SU4 F-measure scores

ROUGE-
WE-SU4

lexrank_w2v 0.17013 0.15012 0.17243 0.18719 0.18209

lexrank_UMLS_

querygraph_w2v
0.17611 0.15822? 0.17443 0.19005 0.18741†

Here, we also use ROUGE-WE-1, ROUGE-WE-2, and ROUGE-WE-SU4 evaluation

measures to capture semantic similarities between the summaries generated using word

embedding based summarization techniques and the reference summaries. Table 5.5 shows

ROUGE-WE evaluation results for lexrank_w2v and lexrank_UMLS_querygraph_w2v

summarization techniques. While computing ROUGE-WE scores, we used the same

Word2Vec pre-trained model that was used in summarization. The results of summarization

using lexrank_UMLS_querygraph_w2v are compared with the results of lexrank_w2v

using ROUGE-WE-1 F-measure, ROUGE-WE-2 F-measure, and ROUGE-WE-SU4 F-

measure. The method lexrank_UMLS_querygraph_w2v outperforms lexrank_w2v in

all three ROUGE-WE measures for all five batches of BioASQ dataset. The weights

of the query-specific graph generated using UMLS when incorporated in the similarity

measures of summarization help to get better sentences for summaries and incorporating
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word-embedding based similarity helps to get more semantically similar summaries.

5.3 Conclusion

For query-focused biomedical text summarization systems, various techniques have been

analyzed on BioASQ dataset along with the proposed UMLS query-graph based summa-

rization techniques. These techniques use reformulated queries by query-specific UMLS

graph based method and incorporate them with the summarization methods QSM, textrank

and textrank in the embedding space. The weights are determined using the statistics from

the biomedical text for the candidate biomedical entities from queries and their semantically

related entities identified by UMLS. These weights are then used in the similarity measures

of the text summarization techniques. The experiments are performed on BioASQ 5b

phaseB dataset for all 5 batches. From the comparison of their results with baselines

and other top performing systems, we can conclude that UMLS query-graph based query

processing is useful for query-focused biomedical text summarization also. Query-specific

graph generated using UMLS when incorporated in the summarization methods either help

to get better summaries with statistically significant improvement in the evaluation measure

or give similar results to the original method. The result analysis based on question types

shows that UMLS query graph weights of the entities, when incorporated in lexrank, helps

to get better summaries for ‘yesno’ types of questions.
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CHAPTER 6

Conclusion and future direction

This chapter presents an overview of the work that we discussed throughout the thesis

and points out possible research directions. This thesis focuses on query processing for

biomedical document retrieval and biomedical text summarization systems. Term selection

and document selection techniques in query expansion for biomedical document retrieval

and biomedical text summarization systems are explored here. A new approach of feedback

document discovery for query expansion is proposed for literature document retrieval

systems which is a combination of true relevance feedback and pseudo relevance feedback

to optimize the cost of feedback as well as to improve the efficiency with query expansion.

This approach is then improvised with feature weighting based on medical/non-medical

entities for finding good feedback documents for query expansion. These approaches

are showing improvement on TREC CDS datasets. The possible future research can be

carried out in the direction to automatically determine the proportion of manual and learned

feedback in feedback document discovery using partial feedback.

Considering the importance of the domain-specific entities in biomedical information

systems, a novel method of entity based query processing using UMLS is proposed where

UMLS concepts and their relations are utilized along with the statistics from the dataset

to choose the expansion terms and their weights. The experiments of the query-specific

UMLS graph based query reformulation when combined with pseudo relevance feedback

show significant improvement in the results on TREC CDS datasets. The query category

wise results are also promising and significant for all three generic clinical category types

of queries. In the future, the research can be carried out to incorporate automatic learning

of weights for expanded concepts in reformulated queries to enhance the retrieval system

performance.
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For query-focused biomedical text summarization systems, various techniques have

been analyzed on BioASQ dataset along with the proposed UMLS query graph based

summarization techniques. The proposed technique incorporates the weights of the candi-

date biomedical entities from queries and their semantically related entities identified by

UMLS and statistics of biomedical text. It also considers word embedding based similarity

between words while calculating the similarity between sentences. From the comparison of

their results with baselines and other top performing systems results on BioASQ 5b phaseB

dataset, we can conclude that UMLS query-graph based query processing is useful for

query-focused biomedical text summarization also. The result analysis based on question

type shows that it gives improvement for ‘yesno’ types of questions in every batch of

the dataset. Word embedding based evaluation measures show a significant difference

between summarization with query modification and without query modification on all five

batches of BioASQ dataset. More sophisticated word embeddings based approaches like

LSTM and BERT can be explored for query-focused biomedical text summarization in

future. Collectively, we can conclude that accounting biomedical entities as features in text

processing module is beneficial for biomedical information retrieval as well as biomedical

text summarization systems.
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