Please use this identifier to cite or link to this item: http://drsr.daiict.ac.in//handle/123456789/440
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPatil, Hemant A.
dc.contributor.authorZaki, Mohammadi
dc.date.accessioned2017-06-10T14:40:41Z
dc.date.available2017-06-10T14:40:41Z
dc.date.issued2013
dc.identifier.citationZaki, Mohammadi (2013). Financial time series analysis and prediction using Chaos theory, HHT and SVR.. Dhirubhai Ambani Institute of Information and Communication Technology, xv, 143 p. (Acc.No: T00403)
dc.identifier.urihttp://drsr.daiict.ac.in/handle/123456789/440
dc.description.abstractStock market prediction is a very complex and therefore well studied area of economics and applied mathematics. The stock market prediction is often termed as a non-solvable problem precisely because as cited many times by various authors that the probability of correct prediction is no less than the probability of success of a fair coin toss. In this thesis, we exploit the presence of chaos in stock market data; in particular, we use the Bombay Stock Exchange data for explanation, along with results of using different datasets of different countries, and use a novel de-noising algorithm, based on the Hilbert-Huang Transform (HHT), and apply it to the - Support Vector Regression (SVR) for prediction of the pre-processed time series data. We compare the results with the existing techniques based on wavelet denoising. The purpose of this thesis is two-fold. Firstly, it deals with the verification of Takens’ embedding theorem as applied to chaotic time series data and its denoising and prediction. The work provides an experimental proof that indeed prediction of financial time series is possible via machine learning. On the other hand, it also gives a brief review of the existing techniques in various areas of data analysis and prediction so that the algorithm used can be fully justified. The algorithm presented here achieves an error of less than 1.5 % which is an improvement on the other previously existing techniques.
dc.publisherDhirubhai Ambani Institute of Information and Communication Technology
dc.subjectChaos theory
dc.subjectFractals
dc.subjectChaotic behavior
dc.subjectHilbert- Huang Transform
dc.subjectSupport Vector Regression
dc.subjectStock Market Prediction
dc.subjectChaos Theory
dc.classification.ddc332.60151474 ZAK
dc.titleFinancial time series analysis and prediction using Chaos theory, HHT and SVR.
dc.typeDissertation
dc.degreeM. Tech
dc.student.id201111026
dc.accession.numberT00403
Appears in Collections:M Tech Dissertations

Files in This Item:
File Description SizeFormat 
201111026.pdf
  Restricted Access
5.38 MBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.