Repository logo
Collections
Browse
Statistics
  • English
  • हिंदी
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Publications
  3. Journal Article
  4. Detection and classification of atrial and ventricular cardiovascular diseases to improve the cardiac health literacy for resource constrained regions

Publication:
Detection and classification of atrial and ventricular cardiovascular diseases to improve the cardiac health literacy for resource constrained regions

Date

01-06-2023

Authors

Arora, Neha
Mishra, Biswajit

Journal Title

Journal ISSN

Volume Title

Publisher

The Institution of Engineering and Technology(IET)

Research Projects

Organizational Units

Journal Issue

Abstract

ECG is a non-invasive way of determining cardiac health by measuring the electrical activity of the heart. A novel detection technique for feature points P, QRS and T is investigated to diagnose various atrial and ventricular cardiovascular anomalies with ECG signals for ambulatory monitoring. Before the system is worthy of field trials, it is validated with several databases and recorded their response. The QRS complex detection is based on the Pan Tompkins algorithm and difference operation method that provides positive predictivity, sensitivity and false detection rate of 99.29%, 99.49% and 1.29%, respectively. Proposed novel T wave detection provides sensitivity of 97.78%. Also, proposed P wave detection provides positive predictivity, sensitivity and false detection rate of 99.43%, 99.4% and 1.15% for the control study (normal subjects) and 82.68%, 94.3% and 25.4% for the case (patients with cardiac anomalies) study, respectively. Disease detection such as arrhythmia is based on standard R-R intervals while myocardial infarction is based on the ST-T deviations where the positive predictivity, sensitivity and accuracy are observed to be 94.6%, 84.2% and 85%, respectively. It should be noted that, since the frontal leads are only used, the anterior myocardial infarction cases are detected with the injury pattern in lead�avl�and ST depression in reciprocal leads. Detection of atrial fibrillation is done for both short and long duration signals using statistical methods using interquartile range and standard deviations, giving very high accuracy, 100% in most cases. The system hardware for obtaining the 2 lead ECG signal is designed using commercially available off the shelf components. Small field validation of the designed system is performed at a Public Health Centre in Gujarat, India with 42 patients (both cases and controls). 78.5% accuracy was achieved during the field validation. It is thus concluded that the proposed method is ideal for improvisation in cardiac health monitoring outreach in resource constrained regions.

Description

Keywords

Citation

Neha Arora, and Mishra, Biswajit, "Detection and classification of atrial and ventricular cardiovascular diseases to improve the cardiac health literacy for resource constrained regions," Healthcare Technology Letters, The Institution of Engineering and Technology(IET), ISSN: 2053-3713, vol. 10, no. 3, Jun. 2023, pp. 35-72, doi: 10.1049/htl2.12043.

URI

https://ir.daiict.ac.in/handle/dau.ir/2083

Collections

Journal Article

Endorsement

Review

Supplemented By

Referenced By

Full item page

Research Impact

Metrics powered by PlumX, Altmetric and Dimensions

 
Quick Links
  • Home
  • Search
  • Research Overview
  • About
Contact

DAU, Gandhinagar, India

library@dau.ac.in

+91 0796-8261-578

Follow Us

© 2025 Dhirubhai Ambani University
Designed by Library Team