Publication:
Embedding double starlike trees into hypercubes

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorChouduma, S A
dc.contributor.authorLavanyaa, S
dc.contributor.authorV, Sunitha
dc.date.accessioned2025-08-01T13:09:30Z
dc.date.issued01-01-2011
dc.description.abstractA�double starlike tree�is a subdivision of a double star where the edge joining the central vertices is not subdivided. It was conjectured and subsequently proved by Kobeissi and Mollard [M. Kobeissi and M. Mollard,�Spanning graphs of hypercubes: Starlike and double starlike trees, Discrete Math. 244 (2002), pp. 231�239; M. Kobeissi and M. Mollard,�Disjoint cycles and spanning graphs of hypercubes, Discrete Math. 288 (2004), pp. 73�87]. that every equipartite double starlike tree on 2�n�vertices with maximum degree at most�n�spans the hypercube of dimension�n. In this note, we present an alternative and simple proof of this theorem using our results proved recently in Choudum�et al. [S.A. Choudum, S. Lavanya and V. Sunitha,�Disjoint paths in hypercubes with prescribed origins and lengths, Int. J. Comput. Math. 87 (2010), pp. 1692�1708].
dc.format.extent01-May
dc.identifier.citationS. A. Chouduma, S. Lavanyaa, and V Sunitha, "Embedding double starlike trees into hypercubes," International Journal of Computer Mathematics, Vol. 88, no. 1, Jan. 2011, pp. 1-5. Doi: 10.1080/00207160903406554
dc.identifier.doi10.1080/00207160903406554
dc.identifier.issn1029-0265
dc.identifier.scopus2-s2.0-78650570249
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1989
dc.identifier.wosWOS:000285511000001
dc.language.isoen
dc.relation.ispartofseriesVol. 88; No. 1
dc.sourceInternational Journal of Computer Mathematics
dc.source.urihttps://www.tandfonline.com/doi/abs/10.1080/00207160903406554
dc.titleEmbedding double starlike trees into hypercubes
dspace.entity.typePublication
relation.isAuthorOfPublication453a586e-899a-4722-a2af-251a4577f5b8
relation.isAuthorOfPublication.latestForDiscovery453a586e-899a-4722-a2af-251a4577f5b8

Files

Collections