• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Super resolution of Covid-19 CT-Scan Images

    Thumbnail
    View/Open
    202011038.pdf (1.586Mb)
    Date
    2022
    Author
    Patel, Vaidik Gautam
    Metadata
    Show full item record
    Abstract
    Acquisition of high quality CT images is difficult, because it requires exposing patients to high doses of radiation. Super resolution algorithms can help in over coming this problem and obtain higher spatial resolution in CT images. Much deep learning based architecture have been proposed in the literature to overcome this problem. We perform the task of super resolution on a U-Net and study the effects of 2 preprocessing methods which are scaling and zscore. The evaluation strategy for the super resolution of CT images in the literature uses the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM), however the results are published for the entire image. This is not a good practice for the evaluation of SR, we propose a novel region based similarity measurement practice and a lung specific or region of interest based similarity measurement. We further bifurcate the SSIM metric into it�s 3 component, i.e. luminance, contrast and structure, and study the impact of super resolution on each of these components.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1107
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV