• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Mining effective association rules using support-conviction framework

    Thumbnail
    View/Open
    200511024.pdf (391.4Kb)
    Date
    2007
    Author
    Sharma, Adarsh
    Metadata
    Show full item record
    Abstract
    Discovering association rules is one of the most important tasks in data mining. Most of the research has been done on association rule mining by using the support-confidence framework. In this thesis, we point out some drawbacks of the support-confidence framework for mining association rules. In order to avoid the limitations in the rule selection criterion, we replace confidence by the conviction, which is a more reliable measure of implication rules. We have generated the test data synthetically by the Hierarchical Synthetic Data Generator, which appropriately models the customer behaviour in the retailing environment. Experimental Results show that there is higher correlation between the antecedent and consequent of the rules produced by the supportconviction framework compared with the rules produced by support-confidence framework. Although support-conviction framework mines the effective associations but the association rules generated are large in numbers that are difficult to deal with. To overcome this problem, we propose an association rule pruning algorithm, which produces non-redundant and significant rules. Results obtained with synthetic data show that the proposed approach for mining association rules is quite effective and generates meaningful associations among the sets of data items.
    URI
    http://drsr.daiict.ac.in/handle/123456789/168
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV